Notes on graph cuts with submodular edge weights
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Abstract

Generalizing the cost in the standard min-cut problem tobemsdular cost function im-
mediately makes the problem harder. Not only do we prove NErfess even for non-

negative submodular costs, but also show a lower boun@(pf|'/3) on the approx-

imation factor for the(s,¢) cut version of the problem. On the positive side, we pro-
pose and compare three approximation algorithms with arathapproximation factor of

O(min{|V|, /|E|log|V|}) that appear to do well in practice.

1 Introduction

We consider the problem of partitioning the node8adf an undirected grapy = (V, E) into (X, V' \ X)
with minimum cost. Let X be the set of edges betwe&nandV' \ X, sothat X = {(i,j) e E:i€ X,j €
V' \ X}. The cost of a cut is measured by a submodular fungtior2? — R defined on the edges 6.

Thatis, a cub X has cosy(X) £ f(§X), and the goal is to identify ah ¢ X C V that minimizesy(X).
Note thatg is not submodular in general. Equivalently, the problemlzariewed as minimizing under a
G-defined cut constraint, where a cut must bi-partition thepgr We name this problem edge-submodular
graph cuts (ESC) to distinguish it from the standard (edgehurtar cost) graph cut problem, which is the
minimization of a submodular function on thedegrather than the edges) and solvable in polynomial time.

If fis a modular function (i.e.f(A) = > ., f(a), VA C E), then ESC reduces to the standard min-cut
problem. ESC differs from submodular flows (solvable in paignial time), where submodularity defines
feasible flows but the cost of an edge set is still modular. Weansin Section 2 that submodular costs
make the min-cut problem much harder: it becomes NP-hand iévg€is nonnegative and normalized (i.e.,
f(@) = 0). Our reduction illustrates the expressive power of submardunctions. In fact, we show that

edge-submodulds, t)-cuts are not approximable with a factor better tiign'/3) for n = |V|. In Section 3,

we present preliminary techniques that achieve good seBulftractice and a®(min{|V|, v/|E|log|V|})
approximation in theory, thereby portending well for tigh&pproximation schemes.

An application for ESC, and our key motivation, comes frondifity separators in graphical models. Given a
graphical model describing a family of distributions, weéenfwish to find a separator, i.e., a set of variables
rendering a bi-partition of the remaining variables coiodially independent. We desire either small separa-
tors (measured as number of random variables), or sepsnaithr small state-space (the joint alphabet size
of the separator is small). For both measures, a standarduiagorithm solves the problem both exactly
and efficiently. In certain cases, however, we need a sepakidh small entropy. The log state space is a
modular upper bound on the entropy, but an arbitrarily laose so directly minimizing the entropy Is better.
A low-entropy separator can be encoded with a small numbbitefand therefore can be seen as informa-
tion theoretically equivalent to a small number of randomalzes, although more general. It is useful for
graphical-model inference on distributed computers. iBgauch a separator across machines can minimize
the cross-machine communication when there is no bi-partwith low mutual information. The separator
also helps to find boundaries in dynamic graphical models$liice entropy is submodular in the random
variable set, finding a low-entropy separator is an instafi&SC.

A variety of previous work relates to our problem, such as gtendard well-studied (modular) min-cut
problem [2] or the aforementioned submodular flow probleee (ferences in [2]). In the polymatroidal
maxflow problem (PF) [3], two submodular capacity functiahsach node restrict the in- and outflow of that
node, respectively. The inflow (resp. outflow) must lie witktie independence polyhedron associated with



the corresponding inflow (resp. outflow) capacity. We usesthiation to PF for a poly-time approximation
to ESC. A special case of ESC are label cuts, where one pagst®of edges [4]. In general, there has been
recent interest in replacing modular functions with subaiadones in standard combinatorial problems. For
example, [5] consider submodular load balancing, spacsgsind balanced cut. Submodular vertex cover,
spanning trees, shortest paths, and perfect matchingsldressed in [6]. The function approximation in [7]
makes algorithms for linear costs amenable to approxinratdems with submodular costs. We utilize ideas
from these papers. Further recent work considers submioohimémization with set cover constraints [8] or
maximization with matroid constraints [9].

2 Hardness

We start off by proving that submodular edge weights rentiectt problem NP hard, and the ¢)-cut ver-
sion inapproximable at better th&r{n'/3)*. The hardness proof also holds fat ¢)-cuts with nonnegative,
monotone costs. If we relax the monotonicity conditionnthiee lower bound also holds for ESC by adding
an edgd s, t) as in the proof of NP hardness.

First, note that iff is nonnegative, normalized, and monotone, thés subadditive on the nodes. This has
no general benefit though: Lét C V be an arbitrary set of nodes ahd> 1 a large number, and define
a (subadditive) functiog : 2 — R asg(X) = 1[X = R] + b1[X # RandX # (], wherel[] is the
indicator function. Without knowing?, minimizing g requires exponentially many evaluationsgof This
hard function is the node-based cg$§X ) = f(6X) of ESC with edge costf(A) = max.c 4 w(e) where
w(e) = 1[e € JR] + blle ¢ JR]. Knowing the graph structure (thereby breaking aparhowever, we can
find the optimum in polynomial time by greedily merging nodgrp that are connected by heavy edges.

2.1 Edge-submodular cuts are NP hard

Itis known that the common min-cut problem with nonnegatimedular edge weights becomes hard if edge
weights can be negative, or if size constraints are addedempartitions [10]. If we allow an arbitrary
submodular functiory for the costs, then it is immediately clear that the ESC mwbbecomes NP hard.
As an example, correlation clustering (CC) corresponds3€ ith a modularf that takes the values1
and a complete grapi. CC for a fixed number of partitions is NP hard but does haveASI1]. With
strictly negative modulay, ESC becomes the max-cut problem, also NP hard but with atamrfctor
approximation [2]. By a graph bisection reduction, we prthat even with a nonnegatiye ESC is hard.

Definition 1 (Graph Bisection (GB)) Given an undirected grapty’ = (V, E) with weightsw : £ — R,
find a partitionV, V> C V of the nodes, such thélty | = |V2| = [V[/2and}_ ¢ o v, «1,) w(e) is minimal.

GB is NP hard and does not have a PTAS [12]. Ggi = (V, E) be an instance of GB with nodes.
We create an auxiliary graphi and submodular functiofiwhose minimum ESC corresponds to the optimal
bisection ofGg. G has two additional nhodes ¢t and2n + 1 additional edges. To forr®&, retainG g with

the costs onF’p and connect the additional nodesndt to every vertex inGg with corresponding new
edge set¥, and F;. Also connects with t. Thus,G = (Vg U {s,t},Ep U E; U E; U {(s,t)}). The
minimum ESC will (i) separate andt, (ii) separate the nodes Iz into two equal-sized partitions, that is,
cutn/2 edges each of, andE;, and (iii), have minimum cost with respect to the edges We enforce the
structural constraints (i) and (i) with barrier submodulanctionsf, and f», respectively, and then add the
costf3(A) = > .cang, w(e). The overall costis

f(A) = a1 f1(A) + aa f2(A) + az f3(4),

defined onE(G) with a; > 0 to be specified later. First, lgt(A) = 1[(s,t) ¢ A]|A|. This function is
submodular and strongly favors the inclusion of efige).

Next, an(s, t) separation cuts edges in&s U E;. A balanced cut oV assigns:/2 nodes tos, cutting their
edges ta, and the othen/2 nodes tor, cutting their edges te. Hence, the barriefs on E U E; favors,
among all setsl C E separating andt, those that fulfill two conditionsANE,| = n/2 = |ANE,|, and for
each node € Vg, the cutA cuts off either the connection toor to¢. Cutting both connections could lead to
animbalanced partition. Let, = ANE,, A; = ANE;, andAs~: = {(v;, 5)|(vs, ) € Ag and(v;, t) € A}
The desired function is

f2(A) = (JAs| +|Ad)D(n) — (JAs||Ae| = [Asne)D' (n — 1), 1)

whereD(n) andD’(n — 1) are suitable constants dependingronlf D(n) is the number of derangements
of n elements, and’(n) is the number of “derangements” when one element can be rdappself, then

10nly after completing our proofs we became aware of the spease considered in [4] that is also NP hard but has
a weaker lower bound.



f2 is the sum ofD(n) rank functions. In this case, the constants B@) = n!Y_;_,(—1)*/k! [13], and
D'(n-1)= ;;;3 (n —2)!(n — 1 — k)!(—1)k. Both constants are computable in polynomial time.

If |As| + |A¢| is kept constant, thefh (A) will be minimal if A;~, = 0. Hence, we should not cut the edges
on both sides of a node iWiz. Furthermore|A,||A,| is maximal if [As| = |A:| = (JAs| + |A:])/2. If we
chooseA, and A; accordingly, then adding edges #q, i.e., cutting more tham edges inF, U E;, will
increase the cost, thanks to the choicéxf) andD’(n — 1). Thus, for|A N (E, U E})| > n, the value of
f2 is smallest ifA containsn/2 edges from either side and cuts off each node either framt. Note that

this f5 is submodular. Lastly, we choosg = 1, ay = 10} . 5, w(e) anda; = 5a;1n>D’(n —1).

2.2 Lower bound for edge-submodular (ES) s, t)-cuts

In this section, we show a lower bound on the approximatiotofeof ES(s, t) cuts.

Theorem 1 (Lower bound for ESs, t) cuts with nonnegative, monotone costgpr a fixede > 0,0 > 0,
any (randomized) approximation algorithm for the ESt) cut problem with an approximation factor better
thann'/3=¢/(1 + §) needs exponentially many queries.

We prove Theorem 1 with the technique of [7], also used in [B]6The proof

shows a type of input where even for a polynomial humber ofuatmns, it
S t is very unlikely that we can distinguish between two costcfions f, i that
: may appear as input. Their optima differ by a large factoy,aAny solution
for f that is within a factor ofo of the optimum would be enough evidence
i to discriminatef andh. Thus, no polynomial-time algorithm can guarantee an
Figure 1: Ladder graph approximation ratio better tham since it would have to distinguish between the
two functions. To achieve a low probability of discrimir@ti we randomly pick a cuR C F and desigrf
sothatforaquer®) C E, f(Q) # h(Q) onlyif |QN R|is large, an event of exponentially small probability.
By a union bound argument, the probability of havif{@)) = h(Q) for a set of polynomially many queries
is still too large for an approximation guarantee bettentha

The graph in Figure 1 hals columns of edged, parallel paths frons to ¢, andn’ < k¢ = n nodes. Any

(s,t) cut cuts each path at least once. Thus, theré‘aneinimal (s, t) cuts. To sample a random chtcC F,
we choose one edge from each path uniformly with probahijity. Let 5 = (1 + 6)¢/k and

h(Q) = min{|Q], £}; £(Q) = min{|Q N R| + min{|Q N R, B}, ¢}.

We choosé: = n'/3¢ and/¢ = n?/3*<. The ratio of optima of, and f is £/ = n'/3~¢/(1 + ). Letus
| <

now look at the probability?(f(Q) # ¢(Q)) = P(f(Q) < g(Q)) foragiven@ C E. If |Q , then the
probability

P(f(Q) <h(Q)) = P(IQNR| > )

increases ag grows. If, on the other handlp| > ¢, then the probability

P(f(Q) < h(Q)) = P(IQ N R| +min{|Q N R|, (1+8){/k} <0)
decreases a3 grows. Hence, the probability of difference is largest wh@h= ¢.

Solet|@| = ¢. Then we can distribut@ over at mostl = ¢ and at least > /3 paths to maké(|QNR| > )
nonzero. IfQ) coversm < k edges of a path, then the probability tidaincludes the cut edge in this path is
m/k. Hence,|Q N R| is the sum ofl random variables, witlk[ |P N R|] = |Q|/k = ¢/k. Each variable
takes values if0, 1}. We can bound the probability of a large intersection viafftiveg’s bound [14]:
P(IQNR| > (1+0)¢/k) < exp(—2620%/(dk?)) < exp(—2820/k*) = exp(—2n*6?).

Since the probability of (Q) < h(Q) is exponentially small, the theorem holds.

Note that this proof only relies on nonnegative monotonarsdular functions, in fact, matroid rank func-
tions [7]. For general submodular functions, the lower lbisrprobably worse.

3 Approximation Algorithms

The difficulty of ESC cuts lies in the non-locality of the subdularity with respect to the graph structure. If
the submodularity is restricted to the sets of edges thaésraadjacent node, and the function is modular on
anything coarser, then the problem is exactly solvable Igrgmnial time [3]. Even simpler, in the common
min-cut problem with a modular cost, there is no inherenessidmodularity. Our approximation algorithms



rely on a local approximation of the submodularity, thatie, split the sef into small local set€; (single
edges or neighborhoods). The new cost function may be sublarodithin a set, but behaves in a modular

way across sets, i.ef,(A) = Zle fi(E; N A). Restricted submodularity or an appropriate approxinmatio
is the basis for our bounds. In the sequél,C E denotes the optimal ES cut, and= |V|.

3.1 Approximation of the cost function (acf)

Goemans et al. [7] present an approximatjoaf a submodular functiorf with f(A) < f(A) < af(A).

The approximation factos is y/|E| + 1 if f is a matroid rank function, an@(/|E|log|E|) for general
monotone submodular functions. For an integer-valuedrpatyoid rank function whose maximum cost of
a single element is bounded (i.eapx.cr f(e) < ¢ < o0), we can get an approximation within a factor

of « = O(4/c|E]) by approximating the matroid expansion of the polymatr&ddtion 10.3 in [15]). For
general nonmonotone submodular functions, only a lowentdsiknown [7].

The approximation is the square root of a modular functiom,, iof the formf(A) = Y oecawl(e)
where valuesw(e) are derived from the algorithm. The minimizer @¢fis the same as the minimizer
of f2. Thus, we set the weight of each edgeut¢e) and then solve a traditional min-cut (¢s, t)-cut)
with edge cost functionf2(4) = > ecaw(e). This problem can be solved efficiently and exactly. Let
B € argming g anan acutf 2(B'). The approximation quality of f implies that

f(B) < af(B) <af(A%) < af(A").
For planar graphs witth(n) edges, the approximation factor becoriés/n) or O(y/nlogn). Note that the
graph in the proof of Thm. 1 is planar. Therefore, for planapis and matroid rank functions, the above
procedure achieves a lower/upper bound ga@(af'/?) versusO(n'/2).

3.2 Approximation via “polymatroidal network flows” (pf)

To restrict the submodular behavior ffto local regions, we can partitiofl into disjoint setsk; and then
usef(A) = >, f(AN E;). Locality in the graph is expressed by edges adjacent toaimne svertex. Let
II(A) = {A4,...,A,} be an edge-partition of thes, t)-cut A, whereA; only contains edges adjacent to
v; € V(G). With P4 denoting the set of such partitions, let
f(A) = mi A 2
fA) = omin, 321040, @
that is, each edge is assigned to its adjacent node eithéresnar thet side of the cut. The algorithm for

polymatroidal network flows [3] solves &g, ¢) cut for this f if we use the following construction: Replace
each undirected edge in the graph by two opposing directgesetthat are parallel with respect to the cost.
In polymatroidal flows, the edge capacities are defined bypbansalular function on the set of incoming and
the set of outgoing edges for each node. We set this fundtobpth incoming and outgoing edges on each
node, tof restricted to the particular set. The dual of the polymaibimax-flow is the minimum cut with
respect to a convolution of the capacities for incoming antfjoing sets [3], and the convolution is then
exactly Equation 2. The polymatroidal flow problem can beasglexactly inO(|E|° log |E|) time with an
algorithm based on augmenting paths. The cost fungtioan be any submodular function.

For fixeds, ¢, let the setd* be the optimal directefs, t) cut, andB the cut found by the approximation. Let
As(A) C V be the set of nodes adjacent4oon thes side, andA;(A4) C V its analogue on theside. The
set of edges adjacent to nodés év. Then

F(a") < min{ S fAtnsw), Y fATn 5uj)}
’IJiEAS(A*) ’U]‘EAt(A*)

< mln{|Aé(A )|, max AT 0w, [AAT)] | mmax, f(A msvj)}

< min{ |AL(A")], |A/(A7)]} £(A7),
The last inequality holds only for monotone nondecreasufgr®dular functions. Fl{rthermore, we can
boundmin{|Ag|, |A¢|} < |V]/2. Let us now relatef (A*) to f(B) for a a minimumf-cost cutB. By
submodularity, we know that, f(A;) > f(UU, A:) for any collection of disjoint set§A; },. Hence f(B) <
F(B) < f(A*) < min{|A(A)], |A¢(A)|}f(A*). If we know thatf (B)/f(B) = |V|~“, then we get a more
specific ratiof (B)/ f(A*) < |[V|*~®/2. On dense graphs wheB|'/*log | E| > |V, this approximation is
better than the one in the previous section.



15

1

0.5

0qu mc gh ghl acf pf Oqu mc gh ghl acf pf 0 qu mc gh ghl acf pf

Oqu mc gh ghl acf pf

Figure 2: Average approximation factors on (i) grids, (I)stered graphs, (iii) grids with largel*| and (iv)
small dense worst-case graphs.

3.3 Modular minimum cocycle basis with local improvementsghl)

In this section, we use the modular approximati¢r) = > eca f(e). The minimum cut forf is simply the
common modular edge-cost min-cut (our “(mc)” baseline W§loTo improve on this single candidate, we

construct the minimum cut basis for the graph with weight3he cuts of a graph form a vector space over
F2, and the minimum weight basis for this space can be found binarmam cut tree [16]. This Gomory-
Hu tree is computable by solving(n) min-cuts [17]. The corresponding cut basis contains a minadth

respect tof for any pair of vertices in the graph. Any of tme— 1 basis cuts is a candidate cut. We may
evaluatef on all of them and pick the minimum (our “(gh)” baseline beJow

Among the basis cuts is the minimum clitwith respect tof. Define the gain of an edgewith respect
to a setA to bep.(A) = f(AU{e}) — f(A). Furthermore, for the optimum*, we definey(4*) =
minge 4+ pe(F \ {e})/ max.ca~ f(e). Then the approximation factor is at most

/B _ |47) |
FA%) 7 1+ (JA%] = D)y (A7)
This ratio is between 1 foy(A*) = 1 and|A*| for v(A*) = 0.

To locally improve on the set of basis cuts frwe use two upper bounds on the cost of any edge set. For
anyB,C C F, we have [18]

f(B)<hi(B)2 F(C) = > pe(EN{e})+ D> pe(C)

ecC\B ee B\C
F(B) <ha(B) 2 F(C) = D pe(C\{e})+ D pel®)
eeC\B ecB\C

For each basis cut;, we setC' = C; treated as a constant and find the 8yf; that minimizesh;(B). We
can continue by taking the better of the two as the compasso@’, and so on, until nd3, ; has a lower
f-cost than the initial basis cdt;.

The minimizer ofh; can again be found via a modular min-cut with modified edgehisi Set

wl(e){Pe(E\{e}) ifecC w2(e>{pe(0\{e}) ifecC

pe(C) otherwise; pe (D) otherwise.

With these weights, the modular weight of a éuts

dowile)= D pe(EN{e})+ D pe(C) =hi(B) = f(O)+ Y pe(E\{e}), ®3)

eeB eeCNB ee B\C ecC

constant w.r.tB

and analogously fots.

This approximation works well in practice, and only religs standard min-cut solutions. The local im-
provement helps most if. (E \ {e}) is larger than zero for most edges (this does not hold, faamce, for
truncated matroid rank functions), and if the low costiéfwith respect tof is based on interactions of small
sets of edges. We know that any edge in the optimali$aiccurs in at least one basis cut|#*| > n, then
some basis cuts must contain more than one edgg of he local step works if the edgesdan N A* suffice
to reduce the new weiglat.(C;) of anye € A* \ C; enough compared to the original weigfte).



3.4 Experiments

Our experiments use randomly generated polymatroid ranktions and two types of synthetic graphs:
grids and loosely interconnected cliques. The graphs haiveden 50 and 100 edges. The algorithms were
implemented in Matlab with the help of a graph cut [19] and S6@box [20]. For baselines, we compare
against the following three simple heuristics: (qu) Quewes algorithm [21], even though(X) = f(6X)

is only subadditive so no guarantees exists; (mc) a modulacot with edge weightai(e) = f(e); (gh) the
f-evaluated best out @fll the cuts in a Gomory-Hu tree built with modular edge weigktmgmc). Figure 2
shows the results, normalized by an estimate of the optiwstl @nd then averaged. Averages are over 72
instances for the clustered graphs and 101 instances fgrithgraphs. Of the three suggested algorithms,
(ghl) performs best on our instances. In (i) and (i};| does not differ much from the number of edges in
a modular min-cut. In (iii)] A*| is chosen to be large, and roughly bi-partitions the gragtaetis where the
bound for (pf) becomes worse. Overall, the factors are gdetithe min-cut-based comparison algorithms
(mc), (gh) can reach their worst-case fadtdt| = n2/4 in a clique, and (qu) performs arbitrarily poorly on
some graphs. The results in (iv) are on such graphs with 7 tootieés — note thg axis. In these graphs,
better bounds or the local improvement come into play: (&pf), and (ghl) always find the best solution. Of
the three suggested algorithms, the running time of (ghtjast uniform. The cutting plane method in (acf)
converges only slowly for some functions, even on less tit¥hetiges.

Acknowledgments: We wish to thank Jens Vygen for the intractable subadditivecfion example, and
Andrew Guillory for his Gomory-Hu tree code.
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