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Abstract

The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-

gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of

the instability in a global (on the magnetic surface) setting. Previous studies have focused on

particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that

introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include

non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e.

across the magnetic field, but within the magnetic flux surface. We consider the limit where this

variation occurs on a scale much larger than that of the ITG mode, and also the case where these

scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift

on the flux surface causes global (on the surface) stabilization, as compared to the most unstable

local mode. In the absence of scale separation, we find destabilization is also possible, but only if

a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius

effects are neglected. We discuss the relative importance of surface global effects and known radially

global effects.
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I. INTRODUCTION

With the start of the Wendelstein 7-X experiment [1] and the coming of ITER [2], we

are urged to explore the role of non-axisymmetric magnetic fields in fusion devices, for

they are crucial in the control of edge localized modes (ELMs) in Tokamaks and they will

necessarily influence core transport in Stellarators [3]. There is general agreement on the

use of gyrokinetic theory [4] for the prediction of kinetic instabilities and transport levels in

the core of fusion plasmas, however, there is not a simple prescription on how to solve this

equation.

Gyrokinetic theory describes strongly anisotropic, slowly evolving plasmas. It is an

asymptotic theory based on the fundamental assumption that perturbations can vary across

the equilibrium magnetic field on a short kinetic length, l⊥ (of the order of the Larmor radius

ρ),

∇⊥δf1 ∼ l−1
⊥ δf1 ∼ ρ−1δf1, (1)

but equilibrium quantities vary slowly on a macroscopic length L,

∇⊥f0 ∼ L−1f0. (2)

Perturbations are assumed to vary slowly along the equilibrium magnetic field

∇‖δf1
∇⊥δf1

∼ l⊥
L

∼ ρ

L
≪ 1. (3)

A further separation of time scales,

ω

Ωc
∼ ρ

L
≪ 1, (4)

where Ωc is the cyclotron frequency, allows an average over the gyro-motion, to obtain a

closed nonlinear kinetic theory that retains Larmor radius effects. The distribution function

of particles is found perturbatively in ρ∗ = ρ/L, that is f = f0+δf1+. . ., with δfn ∼ ρ∗δfn−1,

where the expansion parameter, ρ∗ ≪ 1, is chosen to be l⊥/L : the ratio of the characteristic

scales of variation of perturbations and equilibrium quantities, respectively. Thus, one of

the fundamental assumptions of gyrokinetics is the separation of length and time scales

ρ≪ L, (5)

so that conditions (3) and (4) are fulfilled. Most numerical codes solve for δf1, giving answers

which are correct only to zeroth order in the expansion parameter.
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The natural representation for modes supported by the gyrokinetic equation in toroidal

geometry is the twisted slice of Roberts and Taylor [5]. The same representation, suitably

extended to allow for toroidal topology, was adopted to solve the problem of ballooning

modes in ideal MHD [6] and is the basis of a fruitful approach to numerical simulations of

microturbulence: the local flux-tube [7]. In a local flux-tube simulation, the information

about the variation of equilibrium quantities is carried by characteristic constant length

scales. For instance, the equilibrium density gradient that drives drift-wave turbulence is

treated as
∇n
n

≈ 1

n0(r0)
∇n0(r0)

[

1− r

Ln

]

≈ − 1

Ln
, (6)

where n0(r0) is a constant value at a given location r0. Local flux-tube simulations therefore

can preserve separation of scales in a simple and effective way.

In some circumstances, however, we might be interested in equilibrium quantities with

less trivial variations or in large turbulent structures that do not fulfill conventional scale

separation. This motivated the development of “global” gyrokinetic codes. There are mainly

two families of such codes: those which retain radial variations of equilibrium quantities

(radially global) [8–15], and those which retain variations of these quantities across the

equilibrium magnetic field (within but not across magnetic surfaces, ergo global on the

surface) [3, 16]. In both cases, allowing for spatial variation of equilibrium quantities to

interact with that of the fluctuations seems at odds with the underlining assumption of

separation of scales, Eq. (5), especially if the gyrokinetic equation solved is asymptotically

correct only to zeroth order in ρ∗ ≪ 1. However, we can identify two scenarios in which it is

both consistent and desirable to solve the gyrokinetic equation in the full-surface setting.

In the first scenario, conventional gyrokinetics is assumed to apply, with good scale sepa-

ration between the background and fluctuations. Fortunately, recent turbulence simulations

[17] indicate that the properties of fluctuations are then determined “locally”, by conditions

in the neighborhood of a given field line, validating the underlying assumption of scale sep-

aration. An intriguing question is whether this is also true of linear modes: If one (naively)

solves the linear gyrokinetic equation in a flux-surface domain, are then the linear modes

affected by the magnetic geometry of the entire surface, or are they determined only by the

properties at a specific location, i.e. where the modes peak?

The second scenario in which full-surface gyrokinetic simulations are needed is when

there is a certain loss of scale separation, namely that between the magnetic field and the
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fluctuations. Let us introduce a new scale a ≫ ρ, taken to be the smallest scale on which

the background magnetic field B can vary. The field may of course still have variation on

the larger equilibrium scale L, but now also includes a range of scales between a and L.

Fluctuations exhibit a range of scales, and we will denote the largest scale as lo⊥, assuming

lo⊥ ∼ a≪ L. (7)

As the magnetic drifts must remain small, we require that the gradient of the magnetic field

can still be ordered as

∇B ∼ B/L, (8)

implying that any small scale component of B is itself small in magnitude. For example, if B

can be decomposed as B = B0 +Ba, then Ba/B0 ∼ a/L is required to ensure ∇Ba ∼ ∇B0;

basically, a small scale variation of the equilibrium magnetic field can be tolerated, if such

variation pertains to a small corrugation of the field. We note that the above ordering

constitutes a slight variation on standard gyrokinetic theory; further details of such a theory

are left for a future publication.

A concrete example where such an intermediate scale is necessary is a stellarator where

the character of the magnetic curvature changes (from good to bad and back again) over a

poloidal length-scale that is shorter than the major radius but still much larger then the ion

gyroradius.

In the case of an equilibrium magnetic field imposed with external coils (as for Stellara-

tors), the long-time evolution of the intermediate equilibrium scale, a, does not depend on

transport processes, as opposed to radially global structures such as the temperature profile.

Thus, we can expect Eq. (7) to be a structural property of a device that can be always be

evaluated a priori (a≪ L) and verified a posteriori (l⊥ . a).

In this work, we present a study of global (on the surface) effects on the electrostatic ion-

temperature-gradient (ITG) driven mode. We focus of the strongly driven, toroidal branch

of the instability.

The equations we will use to study this problem are presented in Section (II), with a

discussion of the assumptions and simplifications, the most significant being the neglect of

parallel ion motion. This is an important simplification because it focusses attention on the
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effects of non-axisymmetry in particular, as opposed to the effects of the variation of geo-

metric quantities along the magnetic field line, which have been studied in previous works

[18, 19]. In Section (III) we study perturbatively the effect of non-axisymmetric corrections

to the magnetic drift, in the limit that the scale of the mode is much smaller than the scale of

the magnetic drift. An important conclusion is that, in non-axisymmetric geometry, modes

are generally dependent on the magnetic geometry of the entire surface, i.e. they are not

driven by the resonance of the local drift, but to first order act according to the surface-

average drift. This means that, in non-axisymmetric systems, one must distinguish between

local (flux tube) and global (full-surface) linear modes, even in the conventional limit ρ∗ → 0.

This is different from previously studied (radially) global effects that require a finite ρ∗. In

Section (IV) we relax the assumption of separation of scales, between the mode and equi-

librium. What we find is consistent with the case of separation, but there now appears a

possibility of a destabilizing resonance with magnetic drift. However, this resonance occurs

under special conditions, and is counteracted by the aforementioned averaging effect, and we

conclude that the generic effect of non-axisymmetry is one of stabilization. In Section (V),

we discuss the relative importance of radially and surface-global effects, concluding that the

surface global effects predominate as long as the relative strength of non-axisymmetric com-

ponent of the magnetic drift exceeds the gyrokinetic expansion parameter ρ/L. Conclusions

are presented in Section (VI).

II. MODEL EQUATION

Our starting point is the linear gyrokinetic equation for the ions [20, 21]

iv‖
∂hk
∂z

+ (ω − ω̂d)hk =
(
ω − ω̂T∗

)
J0

(
k⊥v⊥
Ωi(B)

)
eϕk

T0i
F0i, (9)

where hk = hk (R, µ, E , t) denotes the Fourier component of the non-adiabatic part of the

perturbed distribution function δf = −F0iZeϕ (r, t) /T0i+h (R, µ, E , t) , µ = mv2⊥/(2B) the

magnetic moment, and E = Bµ + mv2‖/2 the total particle energy, and v⊥ and v‖ are the

perpendicular and parallel (to the equilibrium magnetic field B) particle velocities. Here

F0i =
n0i

(πv3thi)
3/2
e
− E

T0i (10)

is the equilibrium Maxwellian with vthi =
√

2T0i/mi, where T0i and n0i are the equilibrium

temperature and density, respectively. The term on the RHS of Eq. (9) represents the Fourier
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component, J0 (k⊥v⊥/Ωi(B))ϕk = 〈ϕ〉
R,k , of the gyroaveraged electrostatic potential ϕ.

Here [22] R = r + v⊥ × b̂/Ωi (B) is the gyrocentres’ position, r is the physical position

of particles in real space, b̂ = B/B is the unit vector in the direction of the equilibrium

magnetic field, and Ωi(B) = eB/mi is the cyclotron frequency. Furthermore, we have ω̂T∗ =

ω∗+ηiω∗ (E − 3/2) , with ω∗i = kαρivthi/(2Ln), and ρi = vthi/[aΩi(B0)]. Equilibrium density

and temperature are treated locally as shown in Eq. (6), with L
−1

n = (aB0)d lnn0i/dψ,

ηi = d lnT0i/d lnn0i, a is a reference scale, and B0 is a reference magnetic field strength.

The form of the perturbations used is ∼ exp[−iωt+iS(ψ, α)], where field-aligned co-ordinates

(ψ, α, z) define the equilibrium magnetic field [23]

B = ∇ψ ×∇α, (11)

z being the field-line following co-ordinate and ψ a scalar that defines magnetic flux surfaces.

The triad of co-ordinates is completed by the field-line label α = θ − ιζ, constructed from

the poloidal (θ) and toroidal (ζ) angles, with ι the rotational transform. Our main focus in

this work will be the geometric effects associated to the variable α. Within this formalism,

the fast variation of the fields is contained in the eikonal S, which defines the wavevector

k⊥ ≡ ∇S = kψ∇ψ + kα∇α, (12)

where S is not periodic in α, but kα = ∂αS and kψ = ∂ψS are [21].

Geometric effects enter Eq. (9) mainly in two ways: through the frequency

ω̂d = v̂d · k⊥ ≡
(

v2‖
v2thi

+
v2⊥
2v2thi

)

vd · k⊥, (13)

via the gradient of the equilibrium magnetic field in the low-β approximation of the drift

frequency,

ωd = vd · k⊥ ≡ v2thi
Ωi(B)

b̂×
(

b̂ · ∇b̂

)

· k⊥, (14)

via the wave vector k⊥, and through the gyroaverage operation, which varies with k⊥ for

the following reason. If we know the solution of Eq. (9), we can readily evaluate the

perturbed ion density and use it in the quasineutrality equation (assuming an adiabatic

electron response)
1

n0

ˆ

d3vJ0

(
k⊥v⊥
Ωi

)

hk = (1 + τ)
Zeϕk

T0i
, (15)
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where τ = T0i/T0e. The function hk is generally proportional to J0F0i, and therefore the

velocity-space integral of Eq. (15) results in a functional of argument b ∝ k2⊥ [20, 21] .

However, in general geometry

k2⊥ = kik
i = kig

ijkj, (16)

where gij is the metric tensor associated with the system under consideration. For instance,

if we consider a large-aspect-ratio axisymmetric toroidal plasma with circular cross section,

in suitably normalized units, we have [24, 25]

gψψ = 1, gψα = gαψ = ŝz, gαα = 1 + ŝ2z2, (17)

where ŝ = q(ψ)−1dq/dψ is the magnetic shear, q the safety factor, and we find the familiar

expression [6]

k2⊥ = k2ψ + 2kψkαŝz + k2α
(
1 + ŝ2z2

)
. (18)

This simple case is paradigmatic of the difficulties encountered when solving Eq. (9) in

toroidal geometry. In Eq. (18), the dependence of k2⊥ on the shear, ŝ, introduces a depen-

dence on the field-following co-ordinate z in the driving term of the gyrokinetic equation

(9). Thus, Eq. (9), in general, must be solved as a differential problem along the field line,

with appropriate boundary conditions [26].

We now aim at the study of Eq. (9) when the magnetic geometry imposes variations

of the equilibrium quantities in the variable α, insomuch that Eq. (9) must be considered

differential in the variable α as well. This idea is at the heart of the numerical treatment of

gyrokinetics on a flux surface, and will lead us in our analysis.

Let us specify the type of instability we want to investigate in this geometrical setting:

the ion-temperature-gradient (ITG) driven instability. Traditionally, the theory of ITG

modes has been studied by using a sound expansion of the kinetic ion response, generating

simplified fluid models that retain key kinetic features such as diamagnetic and finite Larmor

radius (FLR) effects [19, 27–29]. We will adopt this approach in this work.

After solving the ion gyrokinetic equation in a sound expansion (small streaming term),

with a suitable ordering [19, 29], and integrating the quasineutrality condition Eq. (15), we

obtain a second order differential equation for the electrostatic potential

(

τ − 1

2

ωTv
2
thi

ω3

∂2

∂z2

)

ϕ =
(

−2
ωdωT
ω2

+
ωT
ω
b
)

ϕ, (19)
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where b = (a2k2⊥)ρ
2
i /2. The result is standard and will not be reproduced here [see Ref. [19]

and references therein]. We just note that, for sake of simplicity, we are considering strong

temperature gradients, ηi ≫ 1, so that ω∗i → 0 but ωT = ηiω∗i = O(1). How do we extend

Eq. (19) to a magnetic surface? Let us analyze the local (in α) problem first.

The simplest way to identify classes of solutions of Eq. (19) is by expanding the RHS

at the location in z where the magnetic drift has a local maximum (greatest drive). The

magnetic drift frequency can be taken as quadratic in z around its maximum[19] ωd =

(kαρivthi/R)(1 − σ2θ2), where θ = πz/l‖ is now used as the normalized field-line-following

co-ordinate, σ is a constant, R a length associated with the magnetic field curvature, and l‖

the connection length. The function b, as Eq. (18) shows, can be also taken to be quadratic

in z, then

b ≈ (k2αρ
2
i /2)(1 + ŝ2θ2), (20)

where we anticipated that kψ ≡ 0. Thus, by using in Eq. (19) the ansatz

ϕ = e−λθ
2

, (21)

one can derive, after setting to zero the coefficients of the quadratic polynomial obtained,

two equations for the eigenvalue ω, and for λ [19]. The former characterizes the stability,

the latter determines the localization of the mode along the field:

τ +
kαρi
2

v3thiλ

ω3q2R2LT
︸ ︷︷ ︸

streaming

− 1

4

vthi
ωLT

k3αρ
3
i

︸ ︷︷ ︸

FLR

+
v2thi

LTRω2
k2αρ

2
i

︸ ︷︷ ︸

curv.

= 0 (22)

−kαρi
v3thiλ

2

ω3q2R2LT
︸ ︷︷ ︸

streaming

− 1

4

vthi
ωLT

k3αρ
3
i ŝ

2

︸ ︷︷ ︸

FLR

+
v2thi

LTRω2
k2αρ

2
i

(

ŝ− 1

2

)

︸ ︷︷ ︸

curv.

= 0, (23)

where we are considering the s−α geometry [6] for illustrative purposes, since this allows us

to discuss the effect of the shear. In this case R is the major radius of the device, l‖ = qπR,

and σ2 = 1/2− ŝ.

We see that Eq. (19) supports two types of solutions: one when the streaming term

contributes to the instability of the mode (slab branch), λ ∼ O(1), and one when it does

not. An ordering then follows from the requirement that the contribution of the streaming

term is small in Eq. (22) but not in Eq. (23), where it is needed to determine λ :

kαρi
v3thi

ω3q2R2LT
∼ 1

λ2
≪ 1. (24)
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This implies a condition on R/LT and on the connection length l‖ = qπR. The actual details

of such constraint depend on the explicit form of the eigenvalue ω. We call the first case

“ballooning limit”, where the shear plays a crucial role in the stability and localization of

the mode. In the second case, when Eq. (24) holds, the eigenfunction is strongly localized

along the field by the curvature term. This is what we call “strong interchange limit”. In

this regime, indeed, the streaming term contribution in Eq. (22) can be neglected [because

is O(λ−1)], but the finite λ contribution in Eq. (23) sets the structure of the mode, which is

assumed to be localized enough for Eq. (20) and (21) to be valid. While in the ballooning

limit the shear enters in the expression for the frequency, it does not in the strong interchange

limit. For instance, by neglecting the FLR term for simplicity, we find

λ ≈ ei
π

4 qkαρi

(
R

τLT

)1/4√

ŝ− 1/2≫ 1, (25)

for q ≫ (LT/R)
1/4/(kαρi), with ŝ ∼ O(1). Equation (25), shows a dependence on the

shear caused by the third term of Eq. (23). When we compare a positive value ŝ = ŝ0 >

0 with its negative counterpart ŝ = −ŝ0 < 0 (negative shear is a common situation for

Stellarators and not so uncommon in Tokamaks), λ rotates in the complex plane without

fundamentally affecting the stability of the mode. For ŝ = 1/2, the FLR correction must

provide localization.

In the light of these considerations, we proceed by focussing on the strong interchange

limit and neglect the parallel ion dynamics even if a finite shear is kept. This simplification

allows us to extend Eq. (19) to the magnetic surface, and yet obtain an analytically tractable

model. We defer further discussions on the effect of finite shear and proceed with our

analysis.

A closer look to Eq. (14) now gives

ωd = vαd

(

kα + kψ
vψd
vαd

)

, (26)

with vαd = vd · ∇α, and vψd = vd · ∇ψ. The function vψd /v
α
d depends on geometry but for

kψ → 0 it will not affect our results. Again, we set kψ ≡ 0 (but justify this later), and we

are left with

ωd =
vthi

Ωi(B)
(∂ψB)kαvthi. (27)
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As discussed in the Introduction, in practice this quantity varies on a length scale a that is

much shorter than the major radius. The corresponding coefficient of Eq. (19) is no longer

constant in a global (surface) setting and we must consider the replacement kα → −i∂α.
This must be true also for ωT and b. Thus, we have

ωd → −iv
2
thi

Ωi
∂ψB∂α, (28)

ωT → − i

e

dT

dψ
∂α, (29)

and

b→ −1

2
ρ2i |a∇α|2 ∂2α. (30)

We now notice that physical periodicity in the toroidal angle ζ requires that the solution of

Eq. (19) satisfies

ϕ(ψ, α + 2πι, θ) = ϕ(ψ, α, θ). (31)

Since this property must hold for all coefficients on the RHS of Eq. (19), the drive of the

instability must be of the form

ωdωT → −f(α/ι) ρ2i
LBLT

v2thi∂
2
α, (32)

for some 2π−periodic function f = f(α/ι). Here, ρi, LT , and LB can be considered to be

independent of α, and are introduced to make the function f in Eq. (32) dimensionless.

The FLR term gives

ωT b→ i
vthi
4LT

g(α/ι)ρ3i∂
3
α, (33)

where we have used e−1dT/dψ = ρivthi/(2LT ), and g(α/ι) = |a∇α|2B2
0/B

2(α) is also a

2π−periodic function. In Eq. (33), we have also used ∂α lnϕ ∼ L/a ≫ ∂α lnB ∼ 1, from

our ordering assumptions.

After introducing the new periodic variable y = α/ι, the normalized scale ̺i ≡ ιρi/a, and

neglecting the parallel derivatives ∂2z , we finally have

{

τ − i
vthi
4LTω

g(y)̺3i∂
3
y

}

ϕ(y) =
v2thif (y)

ω2LBLT
̺2i ∂

2
yϕ(y), (34)

with

f(y) =
aLB
2

∂ψB

B2
, (35)
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where B and g are also periodic.

We propose Eq. (32) as a minimal model that encapsulates the field-line-label dependence

of the drive of the toroidal branch of the electrosatic ITG mode. Equation (34) is the simplest

model for studying surface-global effects on ITG modes in the strong interchange limit. The

function f = f(y) can then be modelled in several ways, all with the common feature that

“deviation from axisymmetry” is measured imposing a variation in the y−variable on the

drive of the toroidal branch of the local ITG instability, e.g.

f(y) = f0 + ǫhf1(y), (36)

where f1 ∼ O(f0), f0 and ǫh are positive constants, and the origin of y is defined so that

f1(y) has a maximum at y = yM with f0f1(yM) > 0. By construction f(y) = f0. Higher

order terms could be kept in the definition of f. We content ourselves with a first order

correction.

Then, the maximum growth rate of the local non-axisymmetric mode, with no FLR

effects, is determined by

τω2
NAS = −k2y̺2i

v2thi
LBLT

[f0 + ǫhf1(yM)] (37)

as opposed to

τω2
AS = −k2y̺2i

v2thi
LBLT

f0 (38)

in axisymmetric geometry: ǫh → 0. When calculating global effects associated with the

y−variation of the strength of the magnetic drift, we will compare our results to both Eq.

(37) and (38), and to their equivalent that retain FLR effects.

III. GEOMETRIC STABILIZATION IN THE LIMIT l⊥ ≪ a

In the limit l⊥ ≪ a, the differential operators in Eq. (34) only act on the electrostatic

potential ϕ.

Then, after introducing the ansatz

ϕ(y) = es(y)/̺i , (39)

we obtain

τ =
v2thif (y)

ω2LBLT

[

̺is
′′ + (s′)

2
]

+ i
vthi
4LTω

g(y)
[

̺2i s
′′′ + 3̺is

′s′′ + (s′)
3
]

, (40)
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which, for ̺i → 0, yields

τ =
v2thif (y)

ω2LBLT
(s′)

2
+ i

vthi
4LTω

g(y) (s′)
3
. (41)

We now perform an expansion in ǫh, which was defined in Eq. (36). We will have

ω = ω0 + ǫhω1 + . . . , (42)

g(y) = g0 + ǫhg1(y) + . . . , (43)

and

s′ = s′0 + ǫhs
′
1 + . . . (44)

We notice that the eigenvalue ω in Eq. (34) is not a function of y and the same must be

true for each term of its ǫh−expansion. The function s′, on the contrary, is y−dependent.

To zeroth order we then find

τ =
v2thif0
ω2
0LBLT

(s′0)
2
+ i

vthig0
4LTω0

(s′0)
3
, (45)

which can be matched to the local eigenvalue equation for an axisymmetric system, Eq.

(38), if

s′0 = iky̺i = const. (46)

Periodicity in y implies quantization, in the sense that ky̺i must be equal to 2πn for some

integer n which can be chosen so that s̄′1 = 0. Notice that kψ = 0 maximizes the growth

rate, since it minimizes the FLR stabilizing effect. This justifies our earlier assumption and

it is important since we will be comparing maximum gowth rates to determine whether the

global effetcs are stabilizing.

To next order we have

2τω0ω1 = 2
v2thif0
LBLT

s′0s
′
1 +3i

vthiω0

4LT
(s′0)

2
s′1 + i

vthiω0

4LT
(s′0)

3
g1 +

v2thi
LBLT

(s′0)
2
f1 + i

vthig0
4LT

(s′0)
3
ω1.

(47)

The periodic function f(y) = f0 + ǫhf1(y) averages to f(y) = f0, while g(y) to g(y) ≡ g0.

The function s′1 averages to zero. Thus, the y−average of Eq. (47) yields

ω1 ∝ s′1 = 0, (48)
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Since the local non-axisymmetric mode is unstable to first order [see Eq. (37)], Eq. (48)

proves that, to the relevant order, the global mode is less unstable than the most unstable

non-axisymmetric local one, whose imaginary part has a non-zero ǫh contribution.

When comparing growth rates to an axisymmetric system, to evaluate whether the global

correction is destabilizing or not, we need to go to second order in ǫh. The analysis is

particularly clear if we neglect FLR effects, i.e. the second term in Eq. (45). This is

possible for k3y̺
3
i vthi/(LTω0) ≪ 1, which gives ky̺i ≈ ̺i/l⊥ ≪ (LT/LB)

1/4 ≪ 1.

We obtain

2τω0ω2 =
v2thi
LBLT

{

f0 (s
′
1)

2
+ 2f1(y)s

′
0s

′
1 + f2(y) (s

′
0)

2
+ 2f0s

′
0s

′
2

}

. (49)

Again, we average this result, and get

2τω2ω0 =
v2thi
LBLT

{

2s′0(s
′
1) f1 + f0(s

′
1)

2
}

, (50)

By setting ω1 = 0 in Eq. (47), we find

s′1 = −1

2

f1(y)

f0
s′0. (51)

After using Eq. (51), we obtain

ω2 = −i3
8

f 2
1

f 2
0

vthif
1/2
0√

LBLT τ
ky̺i. (52)

We therefore have
ω

|ω0|
≈ i

{

1− ǫ2h
3

8

f 2
1

f 2
0

}

. (53)

The global correction is stabilizing through an average of the curvature square [the term

f 2
1 in Eq. (53)]. It is known, from the analysis of numerical solutions [17], that FLR

corrections generally have a stabilizing effect that adds to the stabilization here derived.

IV. GEOMETRIC STABILIZATION FOR l⊥ ∼ a

When the scale of the mode is comparable to the scale of the equilibrium magnetic

field (l⊥ ∼ a), the WKB approach of the previous section is not applicable. However, this

case is very important because numerical simulations demonstrate that large-scale turbulent

fluctuations are suppressed by their interaction with the magnetic field variation [3, 17].
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This motivates us to try to understand the suppression linearly. The appropriate limit to

describe such modes is k⊥̺i ≪ 1, so we neglect the FLR terms in what follows. Again, using

f(y) = f0 + ǫhf1(y), we obtain the equation

τω2ϕ =
v2thi
LBLT

(f0 + ǫhf1) ̺
2
i

d2ϕ

dy2
. (54)

We expand

ϕ = ϕ0 + ǫhϕ1 + ..., (55)

ω = ω0 + ǫhω1 + ǫ2hω2 + ..., (56)

f1(y) =
∑

m

eimyf̂1(m), (57)

where the reality condition f̂(−m) = f̂ ∗(m) applies, and we again assume f̄1 = f̂1(0) = 0.

The method of solving this system involves identifying and eliminating secular growth at

each order by imposing solubility constraints; see [30] Sec. 11.4. To zeroth order in ǫh, we

find

̺2i
d2ϕ0

dy2
=

τω2
0

f0v
2
thi/(LBLT )

ϕ0, (58)

so we take ϕ0 = c0 exp(in0y) + c.c., with n0 ∈ Z and c0 a complex constant. Eq. (58) gives

ω0 = i̺in0f
1/2
0 vthi/

√
LBLT τ . This implies that n0 = ∂y lnϕ0 ∼ L/a ≫ 1. To first order in

ǫh, we have

(

1 +
1

n2
0

d2

dy2

)

ϕ1 = −
[

2
ω1

ω0
− f1(y)

f0

]

ϕ0(y). (59)

Both terms on the right hand side can induce secular growth in ϕ1 which is incompatible

with periodicity. To avoid this we impose two conditions, namely that the exp(±in0y)

components of the right hand side are both zero. Multiplying by exp(±in0y) and integrating

over a period, we find

2
ω1

ω0
=
c∗0
c0

f̂1(2n0)

f0
, (60)

2
ω1

ω0

=
c0
c∗0

f̂ ∗
1 (2n0)

f 0

. (61)
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Eliminating c∗0/c0 from (60), and using the result found in Eq. (61), we obtain

ω1 = ±in0̺i
vthif

1/2
0√

LBLT τ

|f̂1(2n0)|
2f0

. (62)

Thus we find a first order correction to the mode frequency that can be either stabilizing

or destabilizing. At first this could seem surprising. Let us cosider the consequences of the

first order result on the zeroth order eigenfunction ϕ0. The quantity c∗0/c0 is also determined

by Eqs. (60)-(61). Thus we can express ϕ0 as follows

ϕ0 = c0

{

exp(in0y)±
|f̂1(2n0)|
f̂1(2n0)

exp(−in0y)

}

, (63)

where the sign ± comes from Eq. (62). Without loss of generality, we assume that f̂1 is

real. (This is ensured by a constant shift in y.) The two ϕ0 solutions then have even and

odd parities, respectively. The double sign in Eq. (62), therefore, takes into account of this

fact. We now quantify how much instability is caused by the global first order correction of

Eq. (62). The result of the asymptotic expansion in ǫh, to first order, is

ω = ω0

{

1 +
ǫh
2

|f̂1(2n0)|
f0

}

+O(ǫ2h), (64)

for an even zeroth order solution [e.g. we choose the “+” sign in Eq. (62) and (63)]. We

shall not forget that the local maximum non-axisymmetric mode is

ωNAS = ω0

{

1 + ǫh
∑

m6=0

eiyMm f̂1(m)

f0

}1/2

, (65)

where we replaced f1(y) =
∑

m e
iymf̂1(m) in Eq. (37). When the function f1 is dominated by

the resonance,
∑

m e
iyMmf̂1(m) ≈ eiyM2n0 f̂1(2n0)+e

−iyM2n0 f̂ ∗
1 (2n0). For an even ϕ0, f̂1(2n0) ∈

R
+ ⇒ f̂1(2n0) = |f̂1(2n0)|, thus

∑

m e
iyMmf̂1(m) = 2 cos(2n0yM)|f̂1(2n0)|. Then, Eq. (65)

becomes

ωNAS = ω0

{

1 + ǫh
|f̂1(2n0)|

f0
cos(2n0yM)

}

+O(ǫ2h). (66)

Since −1 ≤ cos(2n0yM) ≤ 1, we conclude that the destabilizing global effect on the local

axisymmetric mode [the ǫh correction in Eq. (64)] is smaller than the ǫh contribution to the

local maximum non-axisymmetric mode of Eq. (66) for the case f̂1(m) = 0, ∀ m 6= 2n0. The

result could hold generally but a proof could not be found.
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When f̂1(±2n0) = 0, the only way to avoid secular growth in ϕ1 is to have ω1 = 0. We must

then proceed to the next order to obtain the frequency correction ω2.

To second order in ǫh, we have

(

1 +
1

n2
0

d2

dy2

)

ϕ2 = −
[

2
ω2

ω0
ϕ0 +

f1(y)

f0

1

n2
0

d2ϕ1

dy2

]

, (67)

with

ϕ1 = c1e
in0y + c0n

2
0e
in0y

ˆ y

y0

e−2in0y′dy′
ˆ y′

y′
0

f1(y
′′)

f0
e2in0y′′dy′′ + c.c., (68)

for ω1 = 0, where c1 and y0 are arbitrary constants.

As with the previous order, we must impose the solubility conditions

2
ω2

ω0

c0 = − 1

2π

ˆ 2π

0

dy exp(−in0y)
f1(y)

f0

1

n2
0

d2ϕ1

dy2
, (69)

2
ω2

ω0

c∗0 = − 1

2π

ˆ 2π

0

dy exp(in0y)
f1(y)

f0

1

n2
0

d2ϕ1

dy2
. (70)

There are two terms from Eqn. (68) that must be calculated, the one proportional to c0 and

the other proportional to c∗0. The constraints can thus be rewritten as

2
ω2

ω0

c0 = c0I1 + c∗0I
∗
2 , (71)

2
ω2

ω0

c∗0 = c∗0I1 + c0I2. (72)

where we have introduced the following integral quantities

I1 = −
∞∑

m=1

|f̂1(m)|2
f 2
0

2− 6n2
0/m

2

1− 4n2
0/m

2
, (73)

I2 = − 1

f 2
0

∞∑

m=1

f̂1(m)f̂1(2n0 −m)
(n0

m
− 1
)2

. (74)

Note that we have used f̂1(0) = f̂1(±2n0) = 0. Equations (71)-(72) yield the second order

correction

2
ω2

ω0
= I1 ± |I2| . (75)

If f̂1(m) decays quickly, so that
∣
∣
∣f̂1(m)

∣
∣
∣ ≈ 0 for m ≥ n0 then I2 → 0, and we are left with
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ω2 = −ω0

2

∞∑

m=1

|f̂1(m)|2
f 2
0

(
2− 6n2

0/m
2

1− 4n2
0/m

2

)

. (76)

It can be verified that the quantity in parentheses is positive unless
√
3n0 < m < 2n0, i.e.

there is a window of small scales (m ∼ n0 ∼ L/a≫ 1) that can act to destabilize the mode.

However, large scale components of f1 give negative contribution to the growth rate. If

f̂1(m) is a decaying function, such large scales will be dominant in the summation, resulting

in an overall stabilizing effect. This result resonates with the recent numerical finding that

large-scale turbulent structures are suppressed by the interaction with small equilibrium

scales [17]. A simple case in which ω2 is always stabilizing is when f̂1(m) ≡ 0 for m ≥ n0,

then I2 ≡ 0, and ℑ[ω2] < 0. The obvious case in which global destabilization can occur is

when the function f̂1 peaks at a particular mres for which
√
3n0 < mres < 2n0.

For the sake of completeness, we now consider n0 ≫ m, i.e. that the mode is at a scale

much smaller than those represented in f1(y). Then we obtain

ω2 = −3ω0

8

1

2π

ˆ 2π

0

f 2
1

f 2
0

. (77)

Happily, this expression matches Eqn. (52), which however was derived by first taking the

n0 ≫ m, and then the ǫh ≪ 1 limit. Eq. (77) was derived by taking the same limits in

inverse order. The two limits therefore commute.

V. RADIALLY VERSUS SURFACE GLOBAL EFFECTS

As previously mentioned in the Introduction, we can consider two types of global effects

associated with the variation of equilibrium quantities: radial and poloidal. We now discuss

in which circumstances we might expect each effect to be predominant.

Radially global structures of drift-wave-like linear modes [31, 32] (as the ITG mode)

generally form on time scales too long to be observed before turbulent radial decorrelatation

would suppress them. On the other hand, fast variations of equilibrium quantities in y (α)

are mostly given by the machine design, they are externally imposed, and they are in fact

likely to manifest even nonlinearly [17, 33] . Therefore, it is reasonable to expect a clear

separation between radial and surface global structures of the mode under consideration.

That said, it is still legitimate to ask the question which global effect is quantitatively
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more important. The relation between the radially-global, Γ, and local, ω0, eigenvalue is

well known in the theory of ballooning modes. For the case of ideal MHD, it can be found

in Eq. (38) of the seminal paper of Connor Hastie and Taylor [34]

Γ2 = ω2
0 +

1

2n |ν ′ (θ0)|

(
∂2ω2

0

∂ψ2

∂2ω2
0

∂θ20

)1/2

, (78)

where n≫ 1 is the mode number, ω0 is the local eigenvalue maximized over the ballooning

parameter θ0, and ν is so that q = (2π)−1
¸

dzν. Equation (78), for large n≫ 1, tells us that

Γ ≈ ω0

{

1 +O
(
1

n

)}

, (79)

as discussed by Hastie and Taylor in Ref. [35]. Similar results apply in the context of drift-

wave turbulence [32, 36, 37], see Fig. (6) of Ref [37]. Equation (79) needs to be compared

to the expression that takes into account of global (on the surface) correction of Eq. (52)

Ω ≈ i
vthi√
LBLT τ

{

1− ǫ2h
f 2
1

4f 2
0

}

. (80)

Thus, the radially-global correction of Eq. (79) can compete with the surface global correc-

tion of Eq. (80) when
ρi
R

∼ ǫ2h, (81)

if n−1 ∼ ρi/R.

For typical values we have ρi/R ≈ 10−3, and for machines such as Wendelstein 7-X

[38, 39] and LHD [40, 41] we have ǫh & 0.1, thus surface global effects seem to be dominant

in stellarators, but could also be as important as radially-global effects in large tokamaks.

We conclude this Section by noting that we have considered global corrections to what are

known as “isolated” [36] of “trapped” [42] modes. There is another class of modes known as

“passing” [42] or “general” [36]. The two types of modes generally peak at different poloidal

locations and their relative strength depends upon the machine geometry. Surface-global

effects are likely to influence passing (general) modes as well.

VI. SUMMARY AND DISCUSSION

In this article we have reported on a gyrokinetic study of global (on the magnetic surface)

effects on the linear, strongly driven, toroidal ITG instability. A minimal model for the
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study of this instability in a surface-global setting has been derived [Eq. (34)] and analysed

perturbatively. This analysis is based on the smallness of the parameter that measures

deviation from axisymmetry, ǫh, [see Eqs. (36) and (37)] and on l⊥ ≪ a, where l−1
⊥ is the

characteristic perpendicular wave-length of the mode and a is an intermediate characteristic

scale of variation of the equilibrium magnetic field discussed in Eqs. (7)-(8).

It has been found that, for systems close to axisymmetry, ǫh ≪ 1, surface-global cor-

rections are stabilizing. The mechanism for this stabilization is a reduction of the field

curvature drive caused by its averaging over the flux surface [Eq. (52)].

For l⊥ ∼ a, we observe the presence of a resonance between the magnetic drift and the

perturbed electrostatic potential. Such resonance can cause global destabilization [Eq. (62)],

but below the level set by the maximum local non-axisymmetric mode [see Eq. (64) and

(66)]. This is proven in the case in which the resonance is dominant. In the absence of

the resonance, stabilization remains the most important effect if the spectrum of the non-

axisymmetric component of the magnetic drift is a decaying function [Eq. (76)-(77)]. We

also find that surface-global effects can compete with radially global ones for ǫ2h ∼ ρ∗, where

ρ∗ is the small expansion parameter of gyrokinetic theory. This suggests that surface-global

effects might be dominant in stellarators (for which ǫh ∼ 0.1, and ρ∗ ∼ 10−3), and can

compete with radially global ones in large tokamaks. In the latter case, non-axisymmetric

effects are expected to be non-negligible towards the plasma pedestal. Our results pertain

to the physics of the ITG mode. However, we might expect the approach to be applicable

also to other modes, in any context that requires the breaking of axisymmetry, as in ELMs

mitigation, for instance [43]. The geometric stabilization we identified does not depend on

the long time evolution of macroscopic quantities such as plasma density and temperature

radial profiles, as in the case of finite ρ∗ effects. It stems from the geometric properties of

the device under consideration. In this sense it is also intrinsic [17].
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