arXiv:1803.00806v1 [cs.CG] 2 Mar 2018

A fast implementation of near neighbors queries
for Fréchet distance (GIS Cup)

Julian Baldus* Karl Bringmann'

Abstract

This paper describes an implementation of fast near-neighbours queries (also known
as range searching) with respect to the Fréchet distance. The algorithm is designed
to be efficient on practical data such as GPS trajectories. Our approach is to use a
quadtree data structure to enumerate all curves in the database that have similar start
and endpoints as the query curve. On these curves we run positive and negative filters
to narrow the set of potential results. Only for those trajectories where these heuristics
fail, we compute the Fréchet distance exactly, by running a novel recursive variant of
the classic free-space diagram algorithm.

Our implementation won the ACM SIGSPATIAL GIS Cup 20171,

*Saarland University, Saarland Informatics Campus, Saarbriicken, Germany, julianbaldus@gmail.com

fMax Planck Institute for Informatics, Saarland Informatics Campus, Saarbriicken, Germany,
kbringma@mpi-inf.mpg.de

"http://sigspatial2017.sigspatial.org/giscup2017/

http://arxiv.org/abs/1803.00806v1
http://sigspatial2017.sigspatial.org/giscup2017/

1 Introduction

The Fréchet distance is a very popular measure of similarity of two given curves m, o, which
roughly speaking measures the minimal length of a leash connecting a dog to its owner as
they walk without backtracking along m and o, respectively. As a natural measure of curve
similarity, it has broad applications in geographic information systems. Alt and Godau in-
troduced the Fréchet distance to computer science in seminal papers in the early 90’s, where
they presented an O(nmlog(nm)) algorithm to compute the Fréchet distance of polygonal
curves m and o with n and m vertices |2} [[T]. Over the decades, Fréchet distance developed
into a rich field of research, in which many generalizations and variants are studied (see,
e.g., [1L 8, @, 10]). However, the quadratic worst-case complexity of Alt and Godau’s algo-
rithm is still state-of-the-art, apart from log-factor improvements [7]. The second author
recently presented strong evidence that the Fréchet distance has no strongly subquadratic
algorithms, by proving that any such algorithm would yield a breakthrough for the Satisfi-
ability problem (specifically it would break the Strong Exponential Time Hypothesis) [5].

In this paper we study the problem of range searching with respect to the Fréchet
distance, which comes up in many applications. Here, in the preprocessing phase we are
given a set D of curves, which we call the database. As a query we are then given a query
curve w and a distance threshold §, and the task is to output all curves in D that have
Fréchet distance at most § to 7.

The naive solution is to compute the Fréchet distance between 7 and o for each o € D.
If 7 has n vertices and D consists of k curves having m vertices each, then this takes time
O(knmlog(nm)). We claim (without proof) that the construction of [5] can be adapted to
show that any significant improvement over this running time would yield a breakthrough
for the Satisfiability problem, specifically for any ¢ > 0 an O((knm)'~¢)-time algorithm
would falsify the Strong Exponential Time Hypothesis. However, this only excludes better
running time guarantees in the worse case, but it does not rule out algorithms that are
efficient on realistic instances.

What are realistic curves? In the area of computational geometry, researchers tried
to formalize what it means for a curve to be realistic. Several notions of curves have been
developed, such as backbone curves [4], k-bounded and k-straight curves [3], ¢-low density
curves [10], and c-packed curves [10]. While these notions improved our understanding of
characteristics of curves that make Fréchet distance computation hard, they are still very
far from modeling real-world trajectories such as the example data set given in the ACM
SIGSPATITAL GIS Cup 2017, which is supposedly derived from GPS traffic data in the
San Francisco Bay Area. These curves are (close to) shortest paths in an underlying road
network, and thus have the following features.

1. There are few sharp turns (narrow angles) in the input data, or at least every input
curve has small Fréchet distance to some curve with few sharp turns.

2. Two curves with similar start and endpoints have small Fréchet distance.

Note that this is neither a complete set of characteristics of realistic curves, nor a formal
definition of a model of such curves. However, it does show some features that are not
incorporated in the standard models of realistic curves, or only to a small extend.

Our Contribution In this paper we describe an implementation of Fréchet distance range
searching, with the goal of having a practically fast method. Our implementation is the win-
ning submission to the ACM SIGSPATIAL GIS Cup 2017@. We also report on preliminary
experiments.

Our algorithm consists of three phases. First, we determine all curves in the database
whose start and endpoints are sufficiently close to the query curve’s start and endpoints.
Feature (2) ensures that most of these curves have small Fréchet distance to the query curve,
and thus the number of listed curves is not much more than the output size. To efficiently
enumerate these curves we use a multidimensional analogue of a quadtree. In the second
phase, we use a greedy algorithm to filter out some of the curves that have sufficiently small
Fréchet distance. We also have a negative filter that determines some of the curves with too
large Fréchet distance. Only if both heuristics fail, we have to run an exact Fréchet distance
decision algorithm, for which we use an novel recursive version of the standard free-space
diagram algorithm.

For our GIS Cup submission we also added a simple parallelization over multiple queries,
but in this paper we focus on answering a single query.

The first phase (quadtrees) is described in Section B the second phase (filters) follows
in Section [and the third phase (exact algorithm) is discussed in Section Bl We conclude
with preliminary experiments in Section [Gl

2 Preliminaries

All curves considered in this paper are polygonal. We define a polygonal curve m by its
vertices (m1,...,m,) with m; € R? for all i € {1,...,n}. We denote by |r| = n be the
number of vertices of 7. Moreover, we denote by ||| the total length S0 ||m; — miv1l],
where ||.|| denotes the Euclidean norm. We write m,_; for the subcurve (7, 7p41,..., 7). By
interpolating between vertices, we can also view 7 as a continuous function 7: [1,n] — R?
with m0 = (1 = A\)m + Amgyq fori € {1,...,n— 1} and X € [0,1].

Formally, the Fréchet distance is defined as follows. Let ®,, be the set of all continuous
and non-decreasing functions ¢ from [0,1] onto [1,n]. Then two curves m, o have Fréchet
distance

dp(m,0) = inf ma — .
p(m0) P1EP x| tE[O,}I(] H%l(t) %Q(t)”
¢26¢\0\

We call ¢ := (¢1, ¢2) a traversal of (m, o).

3 A Quadtree Finds Candidates

Consider two curves m, 0. Since any traversal starts at both starting points, we have |73 —
o1]| < dg(m,0). Similarly, since any traversal ends at both endpoints, we have ||| — 04[] <
dp (7, 0).

Denote by min-z(m) the minimal z-coordinate of any vertex of curve w. Then |min-z(7)—
min-z(o)| < dp(m, o). Indeed, if min-z(o) > min-z(7) then the vertex with minimal z-
coordinate on 7 has distance at least min-z(o) — min-z(7) to any vertex of o, and the
remaining case symmetrically yields the lower bound min-z(7) — min-z(o). We obtain

Zhttp://people.mpi-inf.mpg.de/ kbringma/frechetimpl/

http://people.mpi-inf.mpg.de/~kbringma/frechetimpl/

three symmetric lower bounds by considering maximal z-coordinates (max-z(m)), minimal
y-coordinates (min-y(m)), and maximal y-coordinates (max-y(m)). In total, we obtain:

dp(mw,0) > LBg(m,0), with
LBr(m,0) = max {[|m1 — a1, |7 — o4,
|min-z(7) — min-z(0)|, jmax-z(7) — max-z(o)|,

Imin-y(7) — min-y(o)], [max-y(7) — max-y(c)|}.

In the first phase of our algorithm we determine the candidate set D' := {o € D |
LBp(m,0) < ¢}. Note that for any remaining curve ¢ € D\ D’ we have dp(w,0) >
LBr(m,0) > 0, so there are no false negatives.

In order to determine D', for each curve o € D we store an 8-dimensional vector con-
sisting of the coordinates for the start and endpoints as well as the largest and smallest
coordinates in both dimensions. We store all these vectors in an 8-dimensional analogue of
a quadtree. Given a query (m,0), for the query curve m we also compute this 8-dimensional
vector. Then using the quadtree we can enumerate all curves o € D’.

Because of feature (2) from the introduction, curves o € D’ typically also have dp (7, o)
not much larger than §. This means that this enumeration has not too many false positives
in practical situations, i.e., there are not too many curves o € D" with dg(m, o) > 4, see also
the last line of Table [II

On all enumerated curves o € D', we first run the filters from the next section, and only
if these heuristics fail we run the exact decision algorithm from Section Bl This determines
for each curve o € D’ whether dp(m,0) < ¢ and thus solves the range searching problem.

4 Positive and Negative Filters

Let m,0 be curves with n,m vertices, respectively, and let § > 0. Our task is to decide
whether dp(m, o) <. We make use of the following heuristics.

Greedy Algorithm We first run a simple greedy algorithm, which was previously dis-
cussed in [6]: We start at ¢ = 1,7 = 1. When we are at (i,7), we either increment ¢ or j or
both, specifically we go to the pair (i, ') € {(i+1,7),(i,5+1),(i+1,j+1)} minimizing the
distance ||my — oj||. From these three possible steps we ignore the ones that would increase
i beyond n or j beyond m. We end once we reach (n,m). If during the whole process we
stayed within distance ¢, then it follows that dp(m,o) < §. This easy and very efficient
(O(n +m) time) algorithm filters out some curves o € D' with dp(7,0) < 4.

Negative Filter Set ¢; := 1. For any i € {2,...,n}, let ¢; be the first point on o after
¢i—1 that is within distance § of m;, i.e., set ¢; := min{q € [¢;—1,m] | ||log — m;|| < 0}. Note
that here ¢ may be a real number, i.e., o, may be an interpolated point. An easy inductive
proof shows that in any traversal that stays in distance §, any point o, that is visited while
being at m; satisfies z > ¢;, i.e., ¢; is a lower bound on the position in ¢ while being at ;.
Hence, if it happens that some value g; is undefined (since the set that we minimize over is
empty), then we can conclude dp(m, o) > §. This filters out some curves o € D’ that have
too large Fréchet distance.

The above procedure can be implemented in time O(n + m). However, the constant
factors are relatively large, since in each step we compute the intersection of a circle ({x €
R? | ||z — ;]| = 6}) and a line segment ({o, | ¢ € [j,7+1]}). Hence, we instead implemented
a discrete version of this filter, where intuitively we aim to round down each ¢; to an integer,
so that we only consider vertices in both 7 and o. Formally, we replace the definition of g;
by ¢ := min{j € {Gi—1,...,m} | ||oj — ml| — |[o; — 0j41]| < d}. Observe that we relax the
distance constraint by the length of the current segment in o, which indeed implies ¢; < g;.
Thus, when it happens that §; is undefined, we can conclude that dp(m, o) > 4.

As this procedure is not symmetric in 7w and o, we can run it a second time with their
roles swapped.

5 Fréchet Distance Decider

It remains to handle the curves o € D’ reported by the first phase (quadtree) that are not
filtered out in the second phase (filters). Preliminary experiments show that this third step
dominates the running time compared to the first two phases, see Table [II, which is why we
spent most of our development time on an optimized implementation of this phase.

We start by reviewing the standard free-space diagram algorithm for the Fréchet distance.
Then we describe our intuition for an optimized implementation, and finally we present the
details of our new algorithm. In the whole section, let w,0 be curves with n,m vertices,
respectively, and let § > 0.

5.1 Standard Free-space Algorithm

The set F' := {(p,q) € [1,n] x [1,m] | ||mp — 04| < d}, which describes the pairs (p, q)
such that 7, and o, are in distance ¢, is called the free-space diagram of m and o. We also
define the reachable free-space R C F as the pairs (p,q) such that there exists an z- and
y-monotone path through the free-space diagram from the lower left corner (1,1) to (p,q).
These concepts are used in all known algorithms for the Fréchet distance, because of the
fact that dgp(m, o) < § holds if and only if (n,m) € R.

A subset Cj; = Fnli,i+1] x[j,j+1] forie {l,...,n—1},j € {l,...,m—1} is
called a free-space cell. It is a well-known fact that each Cj ; is the intersection of an ellipse
with the box [i,i 4+ 1] X [j,7 + 1], in particular C;; is convex. We denote by Fi{j the left
boundary of C; ;, i.e., the interval F'N[i,141] x {j}, and similarly by Filjj the bottom interval
F i} x [j,j+1]. Similarly, F}; = F”Jr1 and F}; = FZ+1] Any such interval can be
computed in constant time by one intersection of a circle and a line segment.

Furthermore, we define the reachable subset R i =1L ! ;MR and similarly R? IR Rt
Then dp (7, 0) < 6 holds if and only if (n,m) € R}, |, ;. A simple procedure computes the
output intervals R ; and Rt from the input intervals Rl and Rb in constant time. Since
also the leftmost boundarles Ri,l and bottommost boundarles RbJ» can each be computed
in constant time, we can determine all reachability intervals in total time O(nm). This is
the standard algorithm for deciding whether dp(m, o) < 0.

5.2 Intuition for our Algorithm

For intuition, think of m and o being equal curves, specifically a line segment of length L
subdivided n times. In this very simple case, the reachable free-space is a tube of the form

R ={(p,q) € [1,n] x [1,m] | |p — ¢| < A} with A = dn/L. Our intuition is that up to a
“smooth” transformation and some ‘“noise” at the boundary of R, this case models practical
input curves quite well.

Observe that in this specific case R consists of ©(An) non-empty free-space cells. An
algorithm enumerating all non-empty free-space cells thus takes time Q(An). However, there
are large blocks of the reachable free-space that are either completely filled (i.e., reachable)
or completely empty (i.e., unreachable). Let B denote the number of “boundary” free-space
cells, which are neither completely filled nor completely empty. In our exemplary situation
we have B = O(n). By an analogy to (standard 2-dimensional) quadtrees, it can be shown
that there is a partitioning of [1,n] x [1,m] into O(B) blocks of the form [p, b] x [g,d] such
that each block is either completely filled or completely empty or a boundary free-space cell.
The goal of our recursive algorithm is to compute such a partitioning. In the motivating
example of 7 and o being the same subdivided straight line, this complexity is O(B) = O(n),
which yields a speedup compared to the time Q(An) of the standard algorithm for large A.

However, since checking whether a block is completely filled or completely empty is
costly, we replace this step by a heuristic involving the triangle inequality. For this heuristic
variant, we cannot prove a bound of O(B) on size of the generated partitioning, but on
practical data it behaves well.

In a nutshell, the idea is to identify large blocks of completely filled or completely empty
reachable free-space, and handle them efficiently (in constant time).

5.3 Details of our Algorithm

We construct a partitioning of the reachable free-space recursively as follows. Given sub-
curves 7, p, 04,4 and their input intervals Ré,q for i € {p,...,b} and R;’w- for j € {q,...,d},
the recursive subproblem is to determine all output intervals R}, fori € {p,...,b} and Ra ;
for j € {q,...,d}. At the root of the recursion we have [p,b] = [1,n] and [q,d] = [1, m].

We now describe how to handle a recursive subproblem. Suppose that the lower left
corner (p,q) is in the input intervals. Also suppose that the distances ||m; — 0| are at most
dforallie{p,...,b},7 €{q,...,d}. Then all free-space cells C; j fori € {p,...,b—1},j €
{q,...,d — 1} are completely filled, and thus we are done with the subcurves m, j, 0, 4.
However, testing the condition requires iterating over all i’s and j’s and thus is too costly.
Hence, we replace it with a cheaper condition: We test whether ||m, — oq|| + |70l +
log.all <6, ie., whether the distance between the startpoints of the current subcurves plus
the curvelengths of the current subcurves is at most §. Note that by triangle inequality this
implies that all distances ||m; — 0| are at most ¢ for any i € {p,...,b},j € {¢,...,d}, and
thus the free-space spanned by m, ; and o, g is completely filled. Also, this check can be
performed in constant time after the following preprocessing: For any curve in the database
as well as for the query curve we store for each prefix 7 ; the curvelength ||my ;||. This
allows us to determine the curvelength of 7, as ||m1 || — ||71.p|| in constant time. This
yields a quick test handling large completely filled blocks in constant time.

We use a similar test to determine whether the free-space spanned by m, ; and o, g4 is
completely empty.

In case these tests do not apply, we split one of the two curves into two halves, say we
split 7,_p into 7, _, and m, p for r = [(p+0b)/2|. We then recursively determine the reachable
free-space in the subcurves (7., 04 4) and then in (7, 4,04 4).

In case we reach a cell, i.e., b = p+1 and d = g+ 1, we handle it as in the usual free-space
diagram algorithm. This finishes the description of our recursive algorithm.

The worst-case complexity of this algorithm is O(nmlog(nm)), however, this does not
reflect the behaviour on realistic inputs. We leave it as an open problem for the theory
community to explain the efficiency of our algorithm on a reasonable model of curves.

6 Experimental Results

A set of 220000 trajectories was provided by the GIS Cup organizers as test data. They
each have between 11 and 769 vertices. We performed preliminary experiments on this
database on a MacBook Air with an 1,8 GHz Intel Core i5 and 8 GB RAM. The time to
read the database from the hard disc is about 9700ms, which dominates the time of 310ms
to build our data structures.

On this database D, we generate random queries as follows. Fix an outputsize k €
{0,1,10,100,1000}. We pick a random curve = € D. Using a binary-search-like procedure,
we determine a random distance threshold ¢ such that there are exactly k curves in D within
distance d to m. (For some curves m € D such a threshold does not exist since there are
multiple curves with the same distance to 7; in this case we ignore 7 and pick a new random
curve.) We then measure the running time for the query (m,?).

The results are shown in Table[Il where each entry gives the mean and standard deviation
over 500 such random queries. The first line shows the time per query. Fitting this first line
to the model a + kP - ¢ yields an approximation of ~0.44ms + k%7 . 0.27ms for the average
query time in terms of the outputsize k.

The next four lines show the time spent for our main components. Note that for £ > 10
the dominant part is the exact decision procedure, while for smaller £ our solution could
possibly benefit from an improved quadtree implementation.

The next lines show the average query time if we (1) remove the greedy filter, (2) remove
the negative filter, or (3) replace our novel decision procedure with the standard decision
algorithm for the Fréchet distance. Note that all components are necessary as the running
time increases by at least a factor ~ 2 — except for the negative filter, but we believe that
the latter is benefitial for other types of data.

Finally, the last line of Table [shows the number p of false positives of our quadtree
data structure, i.e., while the correct output size is k£ the quadtree returns k + p candidates.
Note that this number p is very small on average compared to k, showing that our lower
bound LBp(w, o) and the resulting quadtree data structure are very effective. (Recall that
these false positives are catched by our filters or exact decider; the complete algorithm has
no false positives or negatives.)

7 Conclusion

We described a novel implementation for near-neighbors queries with respect to the Fréchet
distance, which won the ACM SIGSPATIAL GIS Cup 2017. It remains to incorporate this or
a similarly fast implementation into one of the standard libraries for geographic information
systems, in order to make it usable in a wide range of applications.

We leave it as an open problem to theoretically explain the running time of our algorithm
on a suitable model of realistic input curves. The biggest issue for this is that it seems like
our algorithm uses some features that are present in many realistic input curves, but which
are not guaranteed by the standard models of realistic input curves used in computational

geometry. Omne such property is that curves with similar start- and endpoints have small
Fréchet distance.

References

[

2]

3]

4]

[5]

[6]

17l

18]

19]

[10]

[11]

Helmut Alt and Maike Buchin. Can we compute the similarity between surfaces? Dis-
crete € Computational Geometry, 43(1):78-99, 2010.

Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5(1-2):78-99, 1995.

Helmut Alt, Christian Knauer, and Carola Wenk. Comparison of distance measures for
planar curves. Algorithmica, 38(1):45-58, 2004.

Boris Aronov, Sariel Har-Peled, Christian Knauer, Yusu Wang, and Carola Wenk.
Fréchet distance for curves, revisited. In Proc. 14th Annu. European Symp. Algorithms

(ESA’06), pages 52—63. 2006.

Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. 55th Ann. IEEE Symposium on
Foundations of Computer Science (FOCS’14), pages 661-670, 2014.

Karl Bringmann and Wolfgang Mulzer. Approximability of the discrete Fréchet dis-
tance. JoCG, 7(2):46-76, 2016.

Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets
walk the dog - with an application to Alt’s conjecture. In Proc. 25th Annu. ACM-SIAM
Sympos. Discrete Algorithms (SODA’14), pages 1399-1413, 2014.

Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve
matching via the Fréchet distance. In Proc. 20th Annu. ACM-SIAM Symp. Discrete
Algorithms (SODA’09), pages 645-654, 2009.

Erin Wolf Chambers, Eric Colin de Verdiére, Jeff Erickson, Sylvain Lazard, Francis
Lazarus, and Shripad Thite. Homotopic Fréchet distance between curves or, walking
your dog in the woods in polynomial time. Computational Geometry, 43(3):295-311,
2010.

Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance
for realistic curves in near linear time. Discrete & Comp. Geom., 48(1):94-127, 2012.

Michael Godau. A natural metric for curves - computing the distance for polygonal
chains and approximation algorithms. In Proc. 8th Sympos. Theoret. Aspects Comput.
Sci. (STACS’91), pages 127-136, 1991.

output size k: 0 1 10 100 1000
total time: 0.44 +0.12ms | 0.72 £ 047 ms | 2.00 + 2.11 ms 11.58 4+ 15.97 ms 60.44 + 92.25 ms
time for quadtree: 0.42 £ 0.10 ms | 0.44 + 0.10 ms | 0.45 £ 0.09 ms 0.55 £ 0.12 ms 0.77 £ 0.14 ms
time for greedy filter: 0.01 + 0.01 ms | 0.02 &£ 0.02 ms | 0.07 4+ 0.06 ms 0.53 4+ 0.32 ms 5.39 4+ 2.96 ms
time for negative filter: 0.01 + 0.02 ms | 0.04 & 0.06 ms | 0.16 4+ 0.20 ms 0.92 4+ 1.32 ms 4.44 + 7.33 ms
time for exact decider: 0.01 = 0.05 ms | 0.23 & 0.40 ms | 1.31 4+ 1.87 ms 9.58 4+ 14.44 ms 49.77 £+ 83.39 ms
total without greedy filter: 1.02 £ 0.48 ms | 1.52 £ 0.86 ms | 5.93 4+ 4.25 ms 46.55 4+ 37.76 ms | 345.42 4+ 290.81 ms
total without negative filter: | 0.44 + 0.14 ms | 0.78 £ 0.66 ms | 2.56 + 3.14 ms 12.00 £ 15.71 ms 65.74 4+ 94.74 ms
total without exact decider: 0.60 £ 1.42 ms | 2.58 £ 4.90 ms | 12.20 £ 21.72 ms | 91.16 £ 163.71 ms | 571.88 £ 1114.99 ms
‘ # false positives of quadtree: 0.16 £ 0.53 1.06 £ 1.76 ‘ 4.05 £ 5.92 ‘ 9.63 + 13.48 69.43 + 171.58

Table 1: Experimental evaluation on the GIS Cup example dataset.

	Introduction
	Preliminaries
	A Quadtree Finds Candidates
	Positive and Negative Filters
	Fréchet Distance Decider
	Standard Free-space Algorithm
	Intuition for our Algorithm
	Details of our Algorithm

	Experimental Results
	Conclusion

