
Max-Planck-Institut
für biologische Kybernetik

Spemannstraße 38␣•␣72076 Tübingen␣•␣Germany

Arbeitsgruppe Bülthoff

Technical Report No. 086

The Motion-Lab —
A Virtual Reality Laboratory for
Spatial Updating Experiments

Markus von der Heyde1

December 2000

1 Cognitive and Computational Psychophysics Department, Max-Planck Institute for Biological Cybernetics, Spe-
mannstraße 38, 72076 Tübingen, Germany, E–mail: Markus.von.der.Heyde@Tuebingen.mpg.de

This report is available via anonymous ftp at ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-memos/pdf/TR-086.pdf in PDF–format or at

ftp://ftp.kyb.tuebingen.mpg.de/pub/mpi-memos/TR-086.ps.Z in compressed PostScript–format. The complete series of Technical Re-

ports is documented at: http://www.kyb.tuebingen.mpg.de/bu/techr/



The Motion-Lab —
A Virtual Reality Laboratory for
Spatial Updating Experiments

Markus von der Heyde

Abstract. The main question addressed in the Motion-Lab is:“How do we know where we are?”
Normally, humans know where they are with respect to the immediate surround. The overall perception of
this environment results from the integration of multiple sensory modalities. Here we use Virtual Reality
to study the interaction of visual, vestibular, and proprioceptive senses and explore the way these senses
might be integrated into a coherent perception of spatial orientation and location. This Technical Report
describes a Virtual Reality laboratory, its technical implementation as a distributed network of computers
and discusses its usability for experiments designed to investigate questions of spatial orientation.

The primary question we have explored in the
Motion-Lab concerns the perceived location of
oneself in real space as well as in a virtual en-
vironment. This location (here including position
and orientation) is important for the interpretation
of the other senses. For example, perceiving our
location enables us to disambiguate between pos-
sible interpretations of a visual scene.

Normally, we know our location and it is natu-
rally updated when we move through space. How
is this updating related to our perception? Which
of our senses contribute to this automatic spatial
updating? If some senses, for example vision, do
not contribute, but would profit from the update, a
strong coupling of several modalities in our per-
ception would be the result. In traditional psy-
chophysics, one specialized cue in one modality is
studied (for example, color perception in vision).
However, more recently psychophysics was ex-
tended to look for cue integration and adaptation
effects across modalities. Nonetheless, no general
model so far explains the network of influences
between our senses. Current experiments in the
Motion-Lab will be presented in a later Technical
Report to explore inter-modality effects.

1 Spatial Updating

Under normal conditions, our spatial location
(position and orientation) in the environment is
known to us and is self-evident. In typical vir-
tual reality applications, the relationship between
(mostly) visually perceived location and the real
body location is broken. Consequently, our posi-
tion and movements in space are no longer coher-
ently perceived by all our senses. The visual sense
is not only one that provides a spatial frame of
reference. We also perceive spatial auditory cues
and form reference frames of our own body po-
sition and motion by proprioception, and exter-
nal accelerations by the vestibular system. If those
senses agree on one reference frame, we feel in
a stable environment immersed. There is hardly
any way to misperceive one’s own location, which
might be the reason why humans have difficulty
ignoring the stable world. Moreover, some peo-
ple believe this basic assumption of a mostly sta-
ble world is enhancing our perception because it
can reduce processing effort. The assumption of
the stable world around us reduces most of the
analysis to the changing parts. However, people
argue, there must be some sort of boot strapping
process which allows us to reset or correct our
spatial frame of reference in the environment. Of
course, it is possible that both principles exist in

1



parallel. The faster update process would analyze
the changing parts and a more sophisticated and
slower process would analyze all the information
provided from our senses and correcting the spa-
tial reference frame known from the first process.

Different senses provide either absolute or rel-
ative information which could be integrated into
the frames of reference.Vision is known to pro-
vide us with excellent measurements about our lo-
cation and movements in space. Distance to ob-
jects, their movement direction and relative speed
can be easily extracted in hardly more than the
blink of an eye. Optic flow can give us the sense
of self-motion, if the visual field of view is large
enough. It can be used to navigate through an en-
vironment (Beall & Loomis, 1997; Riecke, 1998).
Landmarks, in contrast to optic flow, are more
reliable and do not lead to accumulation errors
(Bülthoff, Riecke, & Veen, 2000). Spatialized
soundis worse than vision; front-back confusions
and a poor spatial resolution produce an unreli-
able spatial location (Begault, 1994). However,
there is an auditory reference frame, which could
help to focus our attention towards targets and lo-
calize them roughly in space. Disturbances of this
rather inaccurate reference frame, achieved by un-
naturally changing sound sources, may nonethe-
less confuse our belief in one coherent or unique
reference frame for all the senses.Propriocep-
tion provides information about our body posi-
tion. Active and passive changes to body limbs
are ”known” to the system and contribute to mo-
tion perception (Mergner, Siebold, Schweigart,
& Becker, 1991; Hlavacka, Mergner, & Bolha,
1996). Also, the force on different joints intro-
duces knowledge about our position relative to ex-
ternal forces (e.g. gravity). Finally, thevestibular
systemis known to measure changes in velocity
by means of linear and angular accelerations. We
maintain a strong sense of gravitational direction,
which is known with respect to our body axes
(Mergner & Rosemeier, 1998). If the sensation
of gravitational force is unpredictable or unsta-
ble, we have trouble in maintaining straight gait
or posture.

So far it is unknown if and how these different
frames of reference are integrated to provide one
unique and stable reference frame. One could ask

how important these sources of information are
to our perceived location in space. One approach
is to determine each sensory modality’s ability to
provide a reliable perception of our spatial lo-
cation as some of the above mentioned studies
did. Naturally, one could not stop the other senses
from providing information, but one should make
that information as useless (uncorrelated to the
task) as possible. The other extreme would be to
try to control the input provided to all senses at
once and ask, by changing small parts of the sys-
tem, how much those changes influenced the per-
ceived location in space. Of course, there are lots
of ways that could be attempted in the current
setup of the Motion-Lab. However, the approach
to present a coherent simulated world which pro-
vides multiple frames of reference is technically
most demanding.

2 Virtual Reality

In the past, researchers have defined Virtual Real-
ity, for example, as:

“... a high-end user interface that in-
volves real-time simulation and interac-
tions through multiple sensorial chan-
nels. These sensorial modalities are vi-
sual, auditory, tactile, smell, taste, etc.”
(Burdea, 1993)

In addition to the quote given above, Burdea
and Coiffet (1994) summarized attempts at defin-
ing VR and stated clearly what Virtual Reality
is not. The authors rejected definitions where the
sense of “presence”, the immersion at a remote lo-
cation, is dominating, as well as definitions where
parts of the real environment are replaced or en-
hanced by simulated features (“enhanced real-
ity”). In addition, all statements associating the
definition of Virtual Reality with a specific set of
interaction devices like head mounted displays,
position sensing gloves or joysticks are not ade-
quate, since those tools can easily be exchanged
or used in applications not at all connected to Vir-
tual Reality.

Today, following the definition given above, the
functionality ofVirtual Reality (VR) is often de-
scribed as complex computer simulation which

2



exchanges the natural reality of a potential user
with a simulated version. The exchange is lim-
ited, in most cases, to some, but not all of the
senses the user could experience in the simula-
tion. Visual simulations are typically the main
part of today’s Virtual Reality applications. The
visual simulation tries to mimic the relevant as-
pects of the visual world, creating a simplified
version. Natural looking sceneries (Virtual Envi-
ronments) are the goal of many research projects,
a goal that has not so far been achieved due to
the overwhelming complexity of even a simple
outdoor scene. Nonetheless, the existing visual
simulations cover some important features of the
visual world like reflections, shading, shadows,
and natural scene dynamics. However, Virtual Re-
ality is not confined to visual simulations, but
also must include the user, allowing active be-
havior inside the simulation. Theuser interacts
with the simulation via specialized interfaces. Ac-
tions of the user cause changes in the simulation
and feedback is provided to let the user “immerse
into another world”. The sense ofpresencecan
be strengthened by real-time feedback involving
the user in Virtual Reality. Very closely related
to Virtual Reality is the termVirtual Environ-
ment (VE) which refers to the simulated envi-
ronment itself. Virtual Environments can be pre-
sented with Virtual Reality technology in multiple
sensory modalities.

In addition to the given definition of VR, Bur-
dea and Coiffet (1994) summarized the history of
VR. Already in the 1960’s, the Sensorama (Heilig,
1960) provided color and 3D video, stereo sound,
aromas, wind and vibrations in a motorcycle ride
through New York. This device delivered full sen-
sation in multiple modalities, but the user could
not interact. Nonetheless, this historical device
can be seen as be beginning of Virtual Reality.
It provided a sensational experience in advance
of many of today’s systems. Modern systems ac-
tually got away from the presentation of odor
and have concentrated on replacing the video in-
put from the Sensorama with a simulated version
which is capable of reacting to user input. The
user in a Virtual Environment, or in Virtual Re-
ality in general, can interact with the simulated
world. The interaction is made possible by differ-

ent devices for each sense.

VR interfaces have also changed since the
1960’s, becoming smaller, more powerful, and
lighter, thanks to the development of micro-
technology. Visual simulations are presented
mostly by projecting the simulated picture onto
a screen in front of the user. Another approach is
to make displays very small and integrate them
into a helmet, letting the user see through a spe-
cialized optic system. These systems are called
head mounted displays (HMD) an idea that dates
back to Heilig (1960). Other equipment is used
to enable users to interact with the simulated
world. These interactive interfaces enable users to
sense multiple sensory modalities simulated co-
herently by the computer. For example, virtual
touch can be simulated by a device called PHAN-
ToM, which can be used for psychophysical ex-
periments (e.g., von der Heyde & Häger-Ross,
1998). With this device virtual objects with a wide
variety of properties can be touched by the user
with the fingertip or a stylus. Other interfaces like
virtual bikes or position sensing gloves are used
to let the user navigate through virtual environ-
ments. The particular interfaces used in any VR
setup mostly depend on the application and its
goals.

Today’s video games and multimedia applica-
tions very often use sound, videos, and 3D an-
imations. Some interaction device like a com-
puter mouse or joystick is typically used for con-
trol. Even though such applications use multi-
ple modalities which can induce a sense of pres-
ence, we can still distinguish between them and
true VR. One way of doing so is by comparing
the degree of interaction. For instance, we can
switch a video recording on and can stop it any
time, but there is no real influence on the pic-
ture we see. However, the picture will look re-
alistic, since it is normally taken from the real
world and not rendered synthetically. Moving fur-
ther towards multimedia applications, the degree
of interaction increases. In multimedia applica-
tions one can choose what to do next and where
to look for new information. Nonetheless, the in-
formation presented as text, video or sound does
not react to our input. In today’s video games the
degree of interaction is quite high. In a simulated

3



3D environment, the player can change his/her
own position, collect objects, fight, and run. Some
of the games are close to our definition of VR.
Though in these games one can not feel objects
the simulated ego picks up, but one can turn the
objects around and use them as tools just as in
the real world. The boundaries between VR, com-
plex 3D animated games, and other similar appli-
cations become more and more vague and defined
by the purpose of the application, and some might
say by the costs of the system. Imagine a car race
simulating a complex 3D environment, providing
realistic sounds and using a force feedback steer-
ing wheel as input device. This game already sim-
ulates three modalities with immediate feedback
to the user’s reactions. Do other so called VR ap-
plications involve that much realism?

3 Motion-Lab

This report documents the general ideas and im-
plementational details of the Motion-Lab. This lab
combines VR equipment for multiple modalities
and is capable of delivering high-performance, in-
teractive simulations. Crucial design decisions are
explained and discussed as the software and hard-
ware is described. The goal is to enable the reader
to understand and compare this implementation
of a distributed VR system with solutions demon-
strated by other labs.

The overview starts with a general discussion
of VR systems as simulations for multiple modal-
ities. This is followed by a short discussion of
the advantages of distributed solutions in contrast
to a mainframe realization. Focusing on the dis-
tributed system, basic communication problems
are mentioned and one approach for the solution
of those problems is introduced as the main com-
munication structure in the Motion-Lab.

The hardware section (see section 4, p. 9)
demonstrates the variety of hardware used in the
lab and introduces all the devices to the reader.
Each piece of equipment is described in terms of
its functionality as well as the technical details.
Alternative solutions are discussed and the main
differences are rated.

Finally, the software concept is described in de-
tail, but without going too deeply into the source
code (see section 5, p. 17). The latter is avail-

able online in combination with the DOC++
documentation of most of the parts. General ideas
about software development which guided this
project are compiled into a short introduction to
distributed software development in context of
multiple OS.

3.1 Overview and purpose

This introduction to the realization of a distributed
VR system explains some of the general design
criteria and concepts. Different principles are dis-
cussed and guide the reader towards an under-
standing of the overall system. This part is meant
as an introduction to the Motion-Lab, as well as a
guide for those who start working in the lab and
would like to learn basic rules and principles.

3.2 VR systems integrate simulations for
multiple modalities

As the reader might know from his experience,
the realizations of many so called VR system are
confined to the simulation of a visual world. Most
of the setups involve at least one interaction de-
vice for controlling a virtual camera, allowing the
observer to change the view. Nonetheless, our VR
definition given in the introduction (see page 2)
requires the involvement of more than one modal-
ity in the simulation. Some authors like to call the
input device itself a device for haptic interaction
just because one touches it. Very rarely is force
feedback provided in real time for the controlling
devices and therefore the information is often go-
ing only in one direction: from the user into the
system.

In driving simulators, acoustic cues are rela-
tively simple to add and control. Starting a vir-
tual car and changing pitch of the motor noise or
simulating other sound properties with respect to
the driving parameters like speed is adding to the
sensation of a realistic system. Background audi-
tory stimulation has been shown to considerably
improve the sense of presence (Gilkey & Weisen-
berger, 1995). Providing sound which is simu-
lated in three dimensions is more complicated
and involves considerably more effort. However,
the sense of presence in the VE is significantly
enhanced by spatialized sound in comparison to
non-spatialized sound as Hendrix and Barfield

4

http://www.kyb.tuebingen.mpg.de/people/mvdh/motionlab/source


(1996) pointed out.

Flight and driving simulators can be divided in
two groups by considering vestibular cues. Some
of the simulators are mounted on so calledmo-
tion platformsto be moved as whole. The oth-
ers can not simulate whole body movements (by
means of short accelerations) and are calledfix-
base simulators. In both cases, simulations try to
move an observer in a large virtual environment.
Nonetheless, the simulators themselves stay in a
confined space even when they can move a short
distance. The mismatch between large changes in
simulated location (movements in three dimen-
sions) and the actual position in the laboratory
might be one factor of simulator sickness (Vi-
irre, 1996). The real accelerations can not pos-
sibly be matched to the simulated accelerations
without performing the actual perfect movement.
The movement type which should closest approx-
imate the important information for the vestibular
system of humans is defined by terms ofmotion
cueingor motion simulation.

In the Motion-Lab at the MPI, visual, haptic,
vestibular and acoustic simulations are integrated
into the system. Subjects1 can therefore perceive a
simulated world in many different modalities. The
simulation of non-spatial sound is clearly the most
simple one, due to limited implementation time.
On the other hand, it provides ways of instruct-
ing the observer even without vision by a syn-
thetic speech system presented via headphones or
loudspeakers. The other modalities involve addi-
tional hardware equipment which is often accom-
panied by software and libraries from the manu-
facturer. Integrating different modalities requires
the design of control programs for the specific
modality based on different time limits. For ex-
ample, a visual display runs optimally at a rate of
60 Hz, whereas haptic systems should reach be-
yond 1 kHz and sound simulations should be even
faster (44 kHz to reach CD quality). Showing this
wide range of speed requirements, it makes sense
to work the devices in a parallel manner, not dis-
turbing each other.

1Persons participating in the experiment are in the fol-
lowing referred to as masculine or feminine. It is understood,
that the respective other gender is meant to be referred to as
well.

3.3 Distributed system or stand alone
computer?

There are mainly two distinct ways of achieving
powerful simulations:

• The “big solution” runs on one very fast
mainframe computer providing all the con-
nections to different parts of the equipment.

• The distributed solution connects smaller
and specialized computers which are con-
nected to one device at a time, but provide
sufficient speed to run this device at the re-
quired speed.

These two solutions are discussed by focusing on
their respective qualities and drawbacks in the two
following sections. The advantages of one solu-
tion are very often the disadvantage of the other.

3.3.1 The “big solution”:

One of the obvious but important advantages of
having one big computer which does everything
in the VR-setup is that no synchronization be-
tween multiple databases for different modalities
is necessary2. In this solution there is just one OS
and one set of libraries involved. The maintenance
is therefore low in sense of work for a technician,
but the costs for the special hardware which might
be involved are considerably high. Furthermore,
an advantage which clearly separates this solu-
tion from the other is the possible load-balancing
across modalities. The programmer can design his
program in a way that the most urgent work is
done first. In addition, the “big solution” can reli-
ably synchronize tasks below a time resolution of
1 ms.

The biggest disadvantage might be the miss-
ing support for some special hardware with a
given OS. It seems to be difficult or at least much
more expensive to get some parts and interfaces
changed later. The system mostly stays as it is be-
cause it is hard to extended only a part of it. The
overall costs are considerably high, since the com-
puter needs to be in the high performance sector
of the market. Special cooling and noise problems

2Nonetheless, most VR programs still use different ob-
ject trees for different modalities. However, there are re-
cently several approaches which try to integrate, for exam-
ple, sound, haptic and vision into one representation.

5



might occur and additional problems are posed by
short cabling or other interface communication.

3.3.2 The distributed solution:

There are some advantages of the distributed
solution which could at the same time be seen
as disadvantages of the “big solution”. It is more
flexible and easy to extend the system gradually
or to substitute parts of the whole system. The
use of special OS platforms and special libraries
for those platforms becomes possible, since not
all the different computers have to run the same
OS. For most of the parts, it becomes possible to
use standard components, which are more com-
mon and have the advantage of lower investment
costs. Different parts of the simulation – or let’s
say the system – are running independent of each
other which makes critical parts safer from gen-
eral crashes of the system. The stability of the
overall system increases since the nodes of a com-
puter network can replace each other in function-
ality.

The biggest disadvantage is the communication
overhead of the system for synchronizing the data.
No real synchrony is possible, but if the speed of
the system if sufficiently high, the reached syn-
chrony is acceptable for some projects. Ryan and
Sharkey (1998) propose a smooth connection be-
tween asynchronous update for objects close to
the observer, allowing real-time interactivity, and
synchronous, but delayed update for distant ob-
jects. The authors argue that network latency (dif-
ferences in time) thus will not cause discontinuity
in space for the user.

3.4 Distributed components and
asynchronous communication structure

We decided to implement the Motion-Lab as a
distributed VR system. The following section will
explain how the communication latency is actu-
ally made acceptable for our system by imple-
menting a “soft synchrony” strategy. The com-
munication is the crucial point of a distributed
system, especially when different processes have
to provide fast feedback at different speeds. The
main point of the communication in the Motion-
Lab is the asynchrony of all processes and the ex-
plicit statement that there is no guarantee for a

special message to be accepted by the recipient at
a given point in time. Moreover, the information
has to be coded in a way that provides the current
state and additional information which allows the
recipient to extrapolate the status into future.

Let us illustrate the main problem with an ex-
ample. Imagine the situation where an input de-
vice (e.g., a joystick) is controlled by interrupts
on a system level and therefore has a rate between
1 and 60 Hz. On the other side, a motion plat-
form is updated very strictly with 30 Hz. The sim-
ulation in between has to connect to both devices
and the programmer chooses to run it at 10 Hz. In
some of the simulation steps, there is no new input
from the input device, but the system just takes the
last known value. In other simulation steps several
records of the input devices had been available,
but the last record is the most important, since it
codes the most recent state. For the simulation it
might be sufficient to always take the last known
record to update, for example, an internal model
to move a virtual observer forward. Based on the
internal state, the simulation can therefore send
information to the motion platform, which would
arrive there at a rate of 10 Hz. The platform needs
to interpolate now for at least two steps between
two new data records in order to come up with a
smooth movement at 30 Hz rate.

There are two opposing principles working
here: One to slow down update rate (from 60 to
10 Hz) and the other to interpolate in time to
increase update rate (from 10 to 30 Hz). If the
process which is providing information is run-
ning at a higher speed (faster update rate) than
the consuming process, it is always safe to take
the last record which was available. Having the
situation the other way around would then result
in a jumpy movement and would cause notice-
able disturbance for visual and vestibular simu-
lations. Therefore, if at some point the consum-
ing process is running faster than the data records
from the providing processes arrive, the program
should extrapolate from the last know record into
the future to guess the momentary status of the
system. If at each point in time the status of the
system (take position of an observer as an exam-
ple) is know, together with a prediction of the rate
of change (velocity), extrapolation becomes easy.

6



struct
data-

instruction

program

data flow

program flow

Figure 3: Legend for all flow figures (2, 4, 8, 11, and
19).

This extrapolation method is also useful when
short breaks in the system make the information
flow unsteady and change the update frequency.
Since a lot of different devices work at their in-
herent speed or changing rates, it makes sense to
soft synchronize them using the above principles
(see Fig. 1).

3.5 Synchrony, and closed- or open-loop
functionality

Synchrony is an issue by itself, when different
modalities are involved. If someone drops a cup
and one hears it breaking on the floor before see-
ing it happen, the situation would seem unnatural
to us. Having the sound reach the ears later than
the visual event reaches the eyes would, on the
other hand, feel normal when seen and heard from
a distance, since sounds travels more slowly than
light. Extending the distance further, one would
always expect to perceive the lightning before the
thunder. Events in the real world often provide
feedback in multiple modalities. If we substitute
some of the modalities in the simulation with a
virtual version, we should provide the same syn-
chrony. Exceptions are experimental paradigms
explicitly dealing with time differences as done
by Cunningham, von der Heyde, and Bülthoff
(2000a)3. In closed loop experiment it will there-
fore be necessary to provide synchronized feed-
back for events which where caused by the ob-
server without a noticeable loss of time. The feed-
back should be provided in a closed loop so that
every action is directly coupled to its effect (see
Fig. 2).

For an open loop condition the observer has no
influence on the occurrence of events in time4.

3Even then we have to know the exact point in time of
certain events in order to add additional time offset in the
program.

4Note: If the simulation provides no feedback to actions,
it does not fulfill the given requirements for VR!

server
hmd-

server
platform-

simulation program

time loop

movement
database

Figure 4: The open loop condition is in comparison
easier because most of the events in the simulation can
be calculated beforehand, stored in a movement data
base, and do not have to be updated based on the users
action.

The system gets simpler when it does not pro-
vide feedback to the actions of the observer (see
Fig. 4): The simulation can be reduced to a play-
back for different modalities in a predefined time
schedule. If the accuracy of time resolution and
synchronization on a system level is guaranteed,
the playback will appear synchronous to the ob-
server5. One could, in this situation, exactly define
events to occur at a certain point in time and com-
pensate even for slow transfer rates, if the simula-
tion is completely known beforehand6.

In contrast, the closed loop condition demands
that the system react with respect to actions of a
observer. The level of interaction determines the
level of feedback required to let the simulation
appear realistic. For example, in a simulation of
a race car the steering wheel is the primary inter-
action device. If the wheel is providing the steer-
ing angle to the simulation, the camera could be
updated simulating a moving observer. Driving in
this simple simulation of a car does not feel real;
the “sense of being there” is quite low. Adding
force feedback centering to the steering wheel
would improve the feeling of driving a real car.
Furthermore, the driver can tell from the haptic
feedback alone whether he is going straight. Ex-
tending this idea even further, the force model of
the steering wheel could include the speed of the

5Ignoring processes which have order effects and take
history into account.

6A lot of “fun-rides” in Disneyland, for example, are well
predefined and worked out for play back. If decisions of the
observers are taken into account, alternative outcomes are
defined and the observer works down a tree of decisions.

7



5 10 15 20 25 30
−2

0

2

4

6

8

10

12

time

va
lu

e

(a) Oversampling with factor of 1.5

5 10 15 20 25 30
−2

0

2

4

6

8

10

12

time

va
lu

e

(b) Oversampling with 1.5 + noise

5 10 15 20 25 30
−2

0

2

4

6

8

10

12

time

va
lu

e

(c) Undersampling with factor of 0.5

5 10 15 20 25 30
−2

0

2

4

6

8

10

12

time

va
lu

e

(d) Oversampling with 0.5 + noise

Figure 1: The extrapolation method can provide smooth paths even when the provided data flow is not smooth and
in addition unsteady in time. Two examples show that the extrapolation works for under and oversampling relative
to a given frequency. The left panels show data results for two frequencies without noise. The right panels show
for the same frequencies the results for a situation where time and data are overlayed by random noise adding
+/-25% of the respective units. The one dimensional case can be generalized to serve all six degrees of freedom
for camera or motion-platform data. The red circles indicate the transmitted position data on with bases the last
velocity was calculated. The blue dots indicate the derived position connected with a thin black line to the data
point they are based on. The green stars indicate a potential rendered image based on the blue position at the time
the image would be displayed. Unsteady and changing frequencies normally cause “jumps” in continuous data
when the stream is re-sampled with a fixed rate. In contrast, this extrapolation method predicts a future point based
on position and velocity information. Even sudden changes of rate (due to incomplete data, for example) will not
disturb the smoothness of the data. Due to the velocity prediction the algorithm overshoots, displaying behavior
similar to low-pass filters.

8



wheel-
server server

tracker-

server
hmd-

server
platform-

virtual
observer

loop
simulation

simulation program

Figure 2: The closed loop simulation feeds back the actions of an observer to the modalities he experiences in the
simulation. Every action is coupled to the reaction in the simulated world.

car: turning the tires on the spot would be harder
at low speeds and so on. The information provided
by the combination of both modalities (vision and
haptics) is similar, but the coherence and syn-
chrony makes the simulation more realistic. In-
cluding sudden jerks when leaving the road or ve-
locity coupled noise, for example, would add in-
formation which could not be visually perceived.
This example offers no systematic proof that syn-
chrony and coherent feedback in different modal-
ities make a better driving simulator. However, it
makes a plausible suggestion of what could be
gained by having those features. So far, there has
been some evidence that presence, the “sense of
being there”, improves task performance in VR
(Witmer & Singer, 1998). However, as Witmer
and Singer pointed out, presence is negatively cor-
related with simulator sickness, which leaves the
direction of causality between the two unclear.

4 Hardware

In general, the hardware is standard commercially
available equipment, with the exception of the

force feedback steering wheel7. For later ease of
reference, the next sections include short descrip-
tions of the different devices and their basic work-
ing principles and functions. The information is
mostly provided by the manufacturer, but is all
rephrased and simplified for the purpose of this
technical report. Specific questions referring to
technical data or functional details should be di-
rected to the addresses given in von der Heyde
(2001). A general overview of the Motion-Lab
equipment is given in Figure 5.

4.1 Motion platform

The central item in the Motion-Lab is the Maxcue
motion platform from Motionbase (see Fig. 7).
It was built and designed after the Stewart plat-
form principle: Two bodies are connected by six
legs, which can vary in length (Fichter, 1986).
One of the bodies is traditionally named base and
the other platform. In our case the base is con-
nected to the building letting the platform move
by changes in the six cylinder lengths. The Max-

7It was designed and constructed in the institute’s own
workshop.

9



Tracking

Visualization

Interface

Motion

Figure 5: The Motion-Lab setup in its main parts con-
sists of the motion platform with a seat for a human,
interfaces for him/her to control his/her position in the
virtual world, the visualization of that world presented
by an HMD, and a tracking system to render the cor-
responding viewing angle for the measured head posi-
tion. Each device is controlled by a separate computer
to guarantee optimal performance.

cue motion platform has six electrically driven
cylinders which are symmetrically arranged be-
tween base and the platform frame8. The platform
is able to perform movements in all six degrees of
freedom (DOF), so it can turn around three axes
and move in all three linear directions indepen-
dently. The coordinate system for the platform is
identical to the coordinate system for the simula-
tions of the whole lab: The X axis points away in
front of the user sitting on the platform, and the
Z-axis points upwards which completes the right
hand coordinate system with the Y-axis pointing
to the left of the user. Therefore, the rotations
around the X-axis is called roll, the one around the
Y-axis pitch, and the rotation around the Z-axis is
called yaw (see Fig. 6). Normally those terms are
used by pilots, but have been adopted here for the
technical descriptions. For describing human ori-
entation in space we use the same names for sim-
plicity9.

8Besides a few restrictions on the position of the legs, the
endpoints of the cylinders are arbitrary.

9Others prefer to use the terms tilt, nick, and heading

Y

Z

X

(a) Front view

X

Y

Z

(b) Top view

Figure 6: The coordinate system for the motion plat-
form is at the same time the general coordinate system
for the simulations for the whole lab.

Figure 7: Maxcue motion
platform

The actual control of the
platform’s movements is
achieved in several steps
(see Fig. 8). A data
record which contains
six numbers, one for
each DOF, is given to the
platform library at a rate
between 30 and 100 Hz.
Depending on the filter parameters, these values
can be interpreted as accelerations, velocities or
positions10. These values are passed on to the
DSP board in the motion control host computer
by the library provided by Motionbase. This board
implements the digital filters in hardware with
the given parameters. The filtered values are con-
verted into cylinder lengths by the inverse kine-
matics of the platform. The cylinder lengths are
derived from the given six DOF position by calcu-
lating the transformed frame mount points of the
legs from the normal setup geometry with one ma-
trix multiplication. The Euclidean distance from
the base to the transformed leg positions on the
frame is the length of the cylinders. Therefore,
there is only one solution for the inverse kinemat-
ics. In contrast, the forwards kinematics is more
complicated and probably not analytically solv-
able, but approximately solvable by a multidimen-
sional Newton algorithm for any required accu-

10The programming of the filters is subject to a nondisclo-
sure agreement and therefore can not be discussed.

10



racy of the calculation. This calculation would, if
needed, enable the library to recalculate the ac-
tual position of the platform for control reasons
given the lengths of the cylinders. Nonetheless,
this additional control is not yet implemented in
the Motion-Lab Library.

There are many similar motion platform sys-
tems on the market, mainly being divided into
two groups: The legs are either moved by elec-
tric motors or by hydraulic pressure. Pneumatic
systems can be classified as hydraulic systems,
since they share common features. The general
advantage of hydraulic systems is the smaller size
of the legs; they can generate higher forces with
less technical effort. On the other hand, there is
always a compressor needed for generating the
force, which is usually very noisy and has to re-
main close by to allow rapid changes in pressure.
The seals of the hydraulic cylinders have the duty
of maintaining the pressure inside the cylinder and
therefore add high friction to the cylinder. The
result is very often a noticeable jump at the be-
ginning of a movement. This can cause distur-
bances, especially at turning points of one or more
cylinders. In contrast, the electric system can start
movements more slowly and have smooth turn-
ing points. The resolution of the length control for
one cylinder can be very high with the smallest
step being 0.6µm in our case. On the other hand,
the small steps can cause micro-vibrations, which
can be disturbing: The person sitting on the plat-
form can notice the movement by the vibration
before it is actually possible to feel the movement
by visual, vestibular or proprioceptive cues. In our
lab, those vibrations can be covered by very small
changes in position driven by white noise which
causes constant vibrations and sufficiently cov-
ers the actual onset of a larger movement. As the
reader can see, each and every system has certain
problems with the start of very soft movements.
However, the systems also differ in the maximum
frequency of movements they can perform. The
electric systems are in general faster11 since the
latency of the hydraulic systems to react to small
pressure changes is quite high.

11Our system is designed to perform active vibrations up
to 25 Hz.

4.2 Head Mounted Display (HMD)

The visual simulation in the Motion-Lab is pre-
sented to the user via an HMD. An HMD com-
bines, in principle, two small displays with an op-
tic lens system, which enables the user to see the
small displays at a very close distance while fo-
cussing to a comfortable distance. The displays
are mounted together with the optic lense system
inside a cover. The helmet can be placed on the
head of the user like a bike helmet (see Fig. 9.c).
When considering various models by different
manufactures, several points have to be consid-
ered. The resolution and technology of the dis-
play is naturally important for the visual impres-
sion. Recently, LCD’s became common and in-
creased the possible resolution. However, because
of the illumination decay of LCD, they some-
times present the picture too slowly and afterim-
ages appear. CRT’s on the other hand are available
in higher resolutions but are considerably heav-
ier. The optic lense system itself is equally im-
portant, since distortions and color changes could
disturb the presented picture. The most impor-
tant factor of an HMD is the field of view for
the user (Arthur, 2000). Today’s best helmets typ-
ically cover 40◦-60◦ of horizontal visual field,
whereas the human visual field covers more than
190◦. The larger the field the more natural the
view inside looks12. A small visual field, in con-
trast, can cause simulator sickness and may cause
spatial disorientation. Another factor is the weight
of the helmet which can cause fatigue. There is
usually no external support for the 0.5 to 3.5 kg
of an average device. A study by Cobb, Nichols,
Ramsey, and Wilson (1999) summarizes the se-
rious effects caused by HMD’s as virtual reality-
induced symptoms and effects (VRISE).

The helmet we chose to use in the Motion-Lab
is the ProView XL50 produced by Kaiser (see
Fig. 9). The two LCD’s present a visual field of
40◦x30◦ at a resolution of 1024x768 pixels. The
refresh rate is fixed to 60 Hz which should be
provided by the computer generating the standard
XVGA signal. The weight of 980 g is relatively
low such that the helmet can be worn for up to

12Some tasks are also known to require a larger field of
view (e.g., driving a very large boat).

11



Maxcue
MDU

MCC host

en
la

ge
d

switch
network

MCC host

MDU

ethernet

MCC

platfom
server

Figure 8: Information flow for the platform control: from numbers to positions. The host for the Motion Control
Card (MCC) runs the actual server application. This application connects the input and output from the Ethernet
with the MCC. On the MCC the platform positions get filtered and transformed into the actuator (leg) lengths
necessary to move the platform. Those values are transfered to the Motion Drive Unit (MDU) where they are
amplified to control the motors of the platform legs.

(a) Half front view (b) Side view (c) Subject with HMD

Figure 9: Kaiser Head Mounted Display ProView XL50

12



60 minutes without discomfort. Compared to pro-
jection systems, HMD’s have the general advan-
tage that they can easily be replaced by a newer
model with better performance/resolution, lower
weight and bigger field of view.

Other visualization setups are possible in the
Motion-Lab, but have not been implemented yet.
In principle, one could use a small LCD projec-
tor and a fixed screen both mounted on top of the
platform. The projection would have to be care-
fully coupled with the performed motion of the
platform in order to generate a good impression
of a stable world. An HMD blanks out all vision
of the exterior room, but having plain view around
(especially seeing the platform itself) might result
in other problems yet to be solved.

4.3 Force feedback steering wheel and
analog control

Figure 10: Force feedback
steering wheel (here in the
VE Lab)

The force feedback
steering wheel is the pri-
mary input device for
driving applications (see
Fig. 10 for the setup in
the VE Lab and Fig 20
for a picture on the mo-
tion platform). This cus-
tom built device is constructed to have maximum
flexibility and is adjustable for heights, steering
angle, and distance to the driver. A high force mo-
tor is controlled by an analog card who’s signal is
amplified and transformed for the motor-control
(see Fig. 11). A potentiometer measures the cur-
rent steering angle and enables a fine force control
in a local feedback loop. Standard pedals can ex-
tend the functionality of the wheel and be used for
breaking and acceleration. The current implemen-
tation was adopted from game pedals which were
connected to the same analog card. The analog
card (AT-MIO-10-16E) has more ports which can
be used for further extensions. It can sample the
data and provide analog output at rates up to 10
kHz. The local force feedback control can there-
fore be very rapidly and accurately controlled.
The wheel is also usable in the other lab of the
MPI in front of the cylindrical screen (Cunning-
ham, von der Heyde, & B̈ulthoff, 2000b; Cun-
ningham et al., 2000a).

4.4 Joysticks

Joysticks are commonly used in computer games.
Therefore, many are constructed to be connected
to the standard game-port of a soundcard. Joy-
sticks are handheld devices which enable simul-
taneous analog control for multiple axes. Sim-
ple versions have two axes and more complex
joysticks can have up to four axes. Normally,
the stick is returned to neutral center position by
springs. Modern versions have small motors driv-
ing the joystick back enabling the simulation of
changing forces. Multiple joysticks can be used
in the Motion-Lab as input devices to the simula-
tion (see Fig. 12). The simplest (Fig. 12.a) has two
separate analog axes and two buttons for digital
answers. A more complex device (Fig. 12.c) has,
in addition, two axes for special controls which
should emulate functionality of a helicopter: The
foot pedals are negatively coupled and the han-
dle includes up and down movements as well as
a digital button emulation for rotations. The last
joystick (Fig. 12.b) combines the two axes of the
first one with a horizontal turn axis and a large
number of buttons. This device can give dynamic
force feedback if the application addresses a spe-
cial driver. In general, the control of the joystick is
done via the game-port and therefore triggers an
interrupt of the system. The maximum data rate is
limited in the current implementation to 60 Hz.

4.5 Tracker

In order to take the body movements of the user in
to account, it is useful to track these movements.
This can be done by mechanical devices (like the
joystick) or allowing free movements using other
tracking devices. Several systems employing dif-
ferent methods are available on the market. Based
on high frequency magnetic fields the Fastrak
(Polhemus) system or Flock of Birds (Ascension)
are the most commonly known. These systems
are sensitive to metal in the direct environment
and therefore not recommended in the Motion-
Lab. Other systems measure the time differences
of submitted and received ultrasonic sound sig-
nals with multiple microphones (CMS 70P from
Zebris) performing triangulation calculations on
the data to calculate position. Optical systems pro-
vide the best performance, but due to the need for

13



wheel
model

wheel server

simulation loop

stack

motor amplifier
poti filter

analog card
wheel

TCP/IP

poti

motor

apply force

read anglepop velocity

push angle

comedi lib

Figure 11: The control of the steering wheel: The wheel server gets data via the TCP/IP connection and updates
its internal model of the steering wheel. Afterwards the actual angle is read and a force calculated based on the
steering parameters. The force is applied to the wheel via an analog card and an amplifier. The steering angle is
read out from the potentiometer coupled to the wheel. The angle is converted from analog current to digital values
by the analog card. In the simulation loop of the wheel server, this value is transfered back to the stack and send of
to the main simulation.

high speed cameras, also have the highest price
(Optotrak from Nordern Digital Inc.).

For the Motion-Lab we use the IS600-mk2
tracking system from Intersense. This tracking de-
vice combines two principles for tracking mo-
tions: an ultrasonic system and inertial sensors.
Both systems have several advantages which are
combined to come up with a six DOF measure-
ment for up to four tracking units. One track-
ing unit (see Fig 13.a) traditionally consists of
one inertial cube and two ultrasonic sources (bea-
cons)13. The inertial systems are updated at a
rate of 400 Hz and therefore provide fast feed-
back for rotations, but not for linear accelera-
tions. The device has a low acceleration detec-
tion threshold under which it cannot record move-
ments. The inertial system is therefore suscepti-
ble to slow drifts. The ultrasonic subdevice, on
the other hand, works on an absolute scale. Each
beacon is triggered by an infrared LED flash and
shortly afterwards produces an ultrasonic sound.
This sound is recorded by four microphones lo-
cated at the end of the cross bar mounted on the

13Other combinations can be configured with a special
configuration language via the serial line.

ceiling (see Fig 13.b). As the beacons are trig-
gered in a sequential order, each additional bea-
con reduces the tracking speed14. An individual
distance estimate is calculated, from the time dif-
ference between the infrared trigger and the first
sound arriving in each of the four microphones.
For each beacon, the four values are combined
into one measured position in space. The positions
of the two beacons of one tacking unit are com-
bined with the data of the inertial cube to yield all
six DOF’s.

Our tracker has two tracking units which can,
for example, be used for tracking the movements
of the HMD and the platform in all six DOF’s.
The difference vector between the platform and
the subject’s head can be used to move a vir-
tual camera for the VR simulation. Naturally,
the tracking device can be used for other things
as well. For example, one could track pointing
movements of an arm or hand.

The communication between the tracking box
(see Fig 13.c), which integrates the different mea-
surements, and the simulation computer is done
via a serial line which causes some additional

14A new version of the system overcame this limitation

14



(a) Standard model
with two axes

(b) Microsoft
Sidewinder with force
feedback

(c) Helicopter control

Figure 12: Collection of joysticks which could be con-
nected to one of the game-ports and used for experi-
ments.

(a) Tracking unit (two
beacons + one inertial
cube)

(b) Cross-bar

(c) Communication
unit

Figure 13: The six DOF tracking device IS600-mk2.

latency. The overall latency of the system can
be improved by separating the translational and
the rotational signal. Since rotations cause bigger
changes in the rendered picture, it is more im-
portant to integrate them with minimal latency.
Luckily, the rotations are mostly based on the in-
tegrated signal of the inertial cubes which oper-
ate independently of the number of units at a high
speed. The rate at which the system is currently
used depends on the configuration and lies be-
tween 60 and 200 Hz.

4.6 Sound cards

Figure 14: The Sound
Blaster Live! is used for
sound effects, speech
synthesis, and for the
connection of joysticks.

Sound is generated by
a standard sound card
(Sound Blaster Live!
from Creative) which is
shown in Fig. 14. The
Linux driver is currently
able to control the sound
stream at a rate of 22kHz
for both stereo channels.
If needed, sound can
be sampled in parallel at the same rate. Up
to 32 sounds effects or speech outputs can be
overlaid at the same time providing a complex
auditory scene. We use multiple cards in the
Motion-Lab to control speech and other sound
effects. Different channels, for example, are used
to control vibrations of force transducers (see
section 4.8). In addition, the sound cards provide
the game-port connector for the joysticks (see
section 4.4).

4.7 Headphones

Figure 15: Aviation Head-
set HMEC 300 with high
noise reduction

As sound is an impor-
tant feature in VR simu-
lations, it has to be care-
fully presented to the
user. In addition, it is im-
portant not to let the user
perceive sounds from the
real world. Beside the
disruption of the im-
mersive feeling, external
spatialized sound could
provide auditory room
context from the real environment. The Aviation

15



Headset HMEC 300 from Sennheiser (see Fig. 15)
is used to provide sound to the user in the Motion-
Lab. These kind of headphones are normally used
by helicopter pilots to reduce the noise of the en-
gine. These special active noise cancellation head-
phones effectively reduce the environmental noise
during the simulation, and make the use of ex-
ternal sound sources as spatial references points
(auditory landmarks) impossible. High frequency
noise is passively reduced by special ear cush-
ions. As the low frequency part of the noise can-
not be reduced passively, active noise cancella-
tion is used. The active noise cancellation uses the
principle of canceling waves: Fitting the incoming
noise, the systems adds the exact same sound with
a temporal phase shift of 180◦ (opposite phase)
so that the sound waves cancel out. In addition to
the noise cancellation, the headset provides a mi-
crophone mounted on a flexible boom. In exper-
iments where a verbal response from the subject
is needed, sound can be recorded and provided to
the operator.

4.8 Force transducer

Vibrations are sensed by the human skin. In ve-
hicles, vibrations are often connected to motion.
To simulate motion in VR we integrate special
vibration devices into the system. In the Motion-
Lab, vibrations can either be simulated by the mo-
tion platform or by the Virtual Theater 2 (VT2)
from RHB which includes the amplifier SAM-200
and two Tactile Transducers FX-80 (see Fig. 16).
Force transducers function like normal speakers,
but without a membrane, transmitting the sound
directly to the base plate of the transducer. One
can compare them with powerful subwoofers, but
force transducers do not generate a sound wave.
The motion platform itself can simulate vibrations
with high precision in independent six DOF but
only up to 25 Hz. The force transducers on the
other hand simulate vibrations from about 10 Hz
up to 150 Hz. The direction of vibration is per-
pendicular to the mounting plate of the transduc-
ers and therefore only in one direction. Ampli-
fying a normal mono sound source for low fre-
quencies allows the simulation of car vibrations
and other “natural” or technical noise realisti-
cally. The force transducers can also be used to

(a) Amplifier SAM-200

(b) Tactile Transducers FX-80

Figure 16: The force transducers of the Virtual Theater
2 are used for high frequency vibration simulation.

cover the micro-vibrations from the platform ef-
fectively.

4.9 Computer and special graphics

There are several computers in the Motion-Lab
with different duties. They are special, either in
terms of their OS and library combination or for
their special hardware and the corresponding li-
brary or both. Not all of the computers are used in
all experiments, since it depends on the interface
and devices used for interactions.

4.9.1 Sprout

This machine is running IRIX 6.5 and recently
replaced an older machine running IRIX 6.2. Both
OS’s are supported with different combinations of
o32 , n32 , andn64 library styles. IRIX is used
in the lab for the driving dynamics, which are
not included in this technical report. Furthermore,
IRIX is used in the VE-Lab of the MPI for the
Onyx2 computer displaying VR simulations on
the 180◦ screen. Since the steering wheel could
also be used in that lab, IRIX is one of the main
clients for the steering wheel devices.

16



4.9.2 Cantaloupe

This is the Linux computer for the steering
wheel control. It moves with the wheel between
the two labs mentioned before. The high speed
analog/digital card is built in as special equip-
ment for the control of the steering wheel (see
section 4.3). In addition, the computer can pro-
duce sound with the functions from the Motion-
Lab sound scripts (see section 5.1.2, p. 19).

4.9.3 Cucumber

This Linux box is the main computer for most
of the simulations. It also connects to the track-
ing system and to one of the joysticks. It hosts the
same sound cards as mentioned before for Can-
taloupe. The main simulation is not demanding in
terms of calculational power, but in the sense of
high reliability of timing: The main loop should
run between 10 and 100 Hz depending on the pre-
cision and latency one would like to achieve in the
simulation.

4.9.4 Borage

This computer hosts the Motion Control Card
(MCC) for the motion platform and uses the li-
brary provided by Motionbase. In the beginning,
this library was only available for Windows95 but
was recently extended to WindowsNT. However,
we decided to let the system run the old version,
since we did not experience any complications15.
The task is not very demanding, but constant tim-
ing for providing new data to the library, and
therefore for the platform, has to be guaranteed.

4.9.5 Soy and Tofu

Both machines are identical in most of the tech-
nical data and are handled as twins in the Motion-
Lab. They run WindowsNT since the graphics
driver has the best quality for this OS16. The
graphics system is designed to provide high res-
olution images with full screen anti-aliasing in
60 Hz for most of the virtual scenes used in
the lab. The graphics power is provided by four
graphics cards per machine connected by a spe-
cialized board to calculate the anti-aliasing. The
graphics system is called Obsidian graphics and is

15The system had once an uptime of more than 180 days!
16They also could run Linux, but the support from the

manufacturer has its emphasis on WindowsNT.

delivered from Quantum3D in combination with
the machines, called not without reason Heavy
Metal.

4.10 Security features

Some security features ensure the safe usage of
the lab. It is obligatory to use the seat belt (see
Fig. 17.a) any time the platform is operated. In
the unexpected case of an emergency, the subject
can use the emergency switch (see Fig. 17.c) to
stop the platform at any time during the simula-
tion. The switch is directly connected to the MDU
(the amplifier) and activates the security function.
Because of the unknown position of the platform
at the moment when the security circuit is inter-
rupted, it is not sufficient to turn off the actuators
immediately. The platform could in this case sink
to an oblique position due to the mass distribu-
tion. Instead, the platform is driven back to the
park position (all cylinders short) and after a de-
lay of two seconds after the detection of the emer-
gency halt is physically switched off. The same
security circuit can be disrupted by the light beam
(see Fig. 17.b) which detects persons entering the
simulation space around the platform or by the op-
erator himself at the console. More switches can
easily be added on demand.

4.11 Network and other devices

Beside all the specialized hardware, there are
some general devices which are necessary to
make the whole setup work. The computers are
locally connected in the lab via a high speed
switch (3com SuperStack II Switch 3300 with 12
switched 10/100BASE-TX ports). The switch is
integrated into the campus net via fiber optics
connections. Therefore, the equipment is theoreti-
cally usable from all over the internal net given the
above mentioned OS platforms and the Motion-
Lab Library (see section 5.6).

To handle several computers with one set of
monitor, mouse, and keyboard, we use a PolyCon
console switch. Due to limited space and simplic-
ity reasons, this solution was chosen instead of a
whole range of monitors and keyboards for con-
trolling the different computers. Most of the cur-
rent work could be done via the network, but espe-
cially for graphics and quick status overview it is

17



(a) seat belt for the sub-
ject

(b) light beam at the
door makes sure no one
enters the danger zone

(c) emergency break
for the subject on the
platform

Figure 17: Security features are used in the Motion-
Lab to ensure a secure usage of the lab. The subject has
to use the seat belt which is built into the seat (a). In
case of an emergency, the subject can stop the platform
at any moment without the help of an operator with the
emergency break (c). The operator has a similar switch
to stop the platform. The light beam (b) is stopping the
platform as soon as a person is entering the close space
around the platform.

more comfortable to have the actual console close
by. The computers in the lab are secured against
power failure up to several minutes by means of
a Smart-UPS 2200. This device uses batteries to
provide 220V power even when the power net-
work fails. For safety reasons it is important to
have the control computers running, even when
the platform itself stops. The behavior of the mo-
tion platform during a simulation where just the
control PC fails would be unpredictable.

5 Software

Since the software is a central part of the func-
tioning system, it is necessary to describe the un-
derlying principles which enabled us to achieve
certain goals. This section of the report therefore
presents the basic principles of the implementa-
tion of the Motion-Lab Library. They can either
stand for themselves or – even better – be real-
ized and thereby proven to work. In this case, it
makes sense to talk about the concept and the re-
alization together. A certain style of software de-
velopment guided the implementation and con-
cepts which will be introduced. Last but not least,
this section documents which software was nec-
cessary for the development of the experiments
and programs running the lab. This project would
not have been successful without a lot of different
tools and libraries.

5.1 General software environment

The commercial operating systems (OS) used are
Windows95, WindowsNT, IRIX 6.2, and IRIX
6.5, and were bought from the respective com-
panies (Microsoft or Silicon Graphics). The low-
level library (for Windows95) for controlling the
platform was included in the delivery of the Max-
cue motion platform from Motionbase. For the de-
velopment of the simple 3D model of the second
experiment (see section 5.7.3) the program Multi-
gen was used. The rendering of the model on the
specialized graphics systems (see section 4.9) in-
volved the usage of several commercial 3D graph-
ics libraries. At the moment, the Motion-Lab Li-
brary supports rendering with Performer from Sil-
icon Graphics for IRIX, Vega which is distributed
by Paradigm, and OpenGVS, a product of Quan-
tum3D. Vega and OpenGVS are running mainly

18



on WindowsNT, but IRIX libraries are also avail-
able.

The other software parts of the system (open
source or freeware) are freely available on the
Internet. Mainly, the Debian GNU/Linux Distri-
bution and ACE as a general base for the soft-
ware development have to be mentioned. The
Performer graphics library is also free for use
on Linux. Since the freely available parts pro-
vided the base of this project, the author will con-
sider making the Motion-Lab Library public un-
der GNU Library General Public License with ap-
pearance of this technical report.

The Motion-Lab Library was designed and
mainly implemented by the author. Under his su-
pervision, Tobias Breuer helped with the imple-
mentation of smaller parts as documented in the
source code. Documentation (apart from this tech-
nical report) is done in DOC++ which provides
HTML and LATEXversions of the C/C++ structures
and class descriptions.

Before we go into the details of Motion-Lab
software, the main tools and packages are intro-
duced to the reader in case they are not known.
Without some of these packages and programs,
the development would have taken much more
time and it might have been impossible for the au-
thor alone to complete the system and reach this
high level of abstraction and perfection in the in-
terfaces within just two years.

5.1.1 ACE - Application Communication
Environment

Without ACE, most programming for different
OS is much more difficult, error prone, and tire-
some. System calls differ across OS in details and
interface. When it comes to multi-threaded pro-
gramming and socket communication, the pro-
grammer is forced to learn a lot of small dif-
ferences for each and every OS. ACE, on the
other hand, provides one single interface for most
system calls, multi-threaded programming and
socket communication. One has to learn only the
specialties of ACE instead of those of 4-5 differ-
ent OS. Since the realization is mostly done with
inline statements17, saving all the costs for addi-

17Of course, only in those OS and compiler combinations
which allow those statements.

tional function calls, ACE does not add signifi-
cant overhead when the programs are run. ACE
simplifies the realization of software for multiple
OS concerning plain C++ code. When it comes to
direct access to hardware, such as serial ports or
even more special things like analog cards, ACE
admittedly does not help any further.

5.1.2 sox and all the other well-sounding
names

The sound is realized by a collection of ten
small programs, each doing part of the job and
solving one small problem. The main part for the
actual replay issox which works together with
the kernel sound module. The program converts
different sound formats into the format which can
be played by the low level sound driver imple-
mented in the kernel module. The scriptplay
wraps the more complicated and tiresome options
of sox and makes the handling easier. For the re-
play of sound files, two more helpers allow play-
ing a loop without sudden breaks in the sound
stream. The buffering is done bybag and the rep-
etitions are controlled byrepeat . For the other
application, speech synthesis, more scripts are re-
quired. Four filters modify the letter stream by
speaking ’@’ as ’at’ (done withsed ), removing
line breaks withpipefilt , replacing numbers
with spelled-out numbers (realized withnum-
filt ), and subst. abbr. w| the l. vers. they st.
418 (included inpreproc ). The actual transla-
tion of text with the corresponding phonemes is
done intxt2pho so these can be pronounced by
mbrola . Multiple speakers are available in the
database for the pronunciation which allow, in ad-
dition, the usage of speed and mean frequency as
independent parameters. In the end, the combina-
tion of play and sox plays the sounds for the
given low-level sound driver. Both functionalities
were summarized in two scripts by Michael Ren-
ner with some help of the author.

5.1.3 CVS - Concurrent Versions System

The CVS, like other version control systems, is
a tool that provides a database which keeps old
versions of files along with a log of all changes.

18substituting abbreviations with the long version they
stand for

19



It operates on the hierarchical structure of the file
system containing version controlled files and di-
rectories. It enables multiple authors to edit the
same files at the same time and tries to resolve
conflicts, if possible. The single copy of the mas-
ter source contains all information to permit the
extraction of previous versions of the files at any
time either by name of a symbolic revision tag
or by a date in the past. There are versions of
CVS available for all OS used in the Motion-Lab.
All files (source, configuration, models, and docu-
mentation) are managed with CVS. Working with
one master source code enables the Motion-Lab
users to share latest versions and avoids keeping
bugs in different versions of the same functions.
Commonly used functionality therefore becomes
more stable and powerful over time.

5.1.4 DOC++

The DOC++ documentation system generates
both LATEX output for high quality printouts as
well as HTML output for comfortable online
browsing of the source code. The program di-
rectly extracts the documentation from the C/C++
header file or Java class files. For the Motion-Lab,
additional files are included in the documentation
for the description of devices. The source code
containing the DOC++ tags provides two versions
of documentation: The complete developers doc-
umentation with all inside functions of the library
and a user version as a subset that concentrates on
the parts which are “seen” – that means usable –
from the outside.

5.1.5 GNU-tools: gcc, gmake, emacs, and
others

The famous collection of GNU-tools is the base
of every Linux system. Furthermore, most of the
tools are available for IRIX and some even for
Windows. The compilers gcc and g++ provide
useful hints when struggling with errors. Without
gmake, the ACE package would not be able to
compile easily. Finally, all the source code, doc-
umentation, and this technical report were written
with the help of emacs. The useful aids and tools
help a lot and make programming in an UNIX en-
vironment enjoyable.

5.2 Distributed programming for multiple
OS

The above section gave an overview of which
software was used in the development of the
Motion-Lab Library and which software is still
running hidden inside some scripts. However,
having great libraries like ACE and powerful tools
like CVS is not the complete story of how dis-
tributed programming for multiple OS becomes
successful. In this section, some general guide-
lines introduce a more general concept than “take
this and that and it will work”.

5.2.1 What is the general flow of information
in the project?

This question leads back to an old principle of
software design in which one has to draw a lot of
boxes with the information flowing between those
boxes. Those diagrams help us to get the big pic-
ture of a process or program. Main sources and
destinations of information need to be identified
and put into the framework of informational flow.
Surprisingly, programmers rarely do those draw-
ings – but why?

Small projects tend to work out after a couple of
attempts and redesign stages. Small projects grow
slowly enough to forget about structure on the
way, but tend to grow too fast to let real structure
build up. Small projects start all over again, af-
ter reaching the point where “small” additions be-
come more and more the purpose of a whole new
project. The general mismanagement of all three
assumed scenarios is the missing general flow of
information, which should guide the project from
the beginning. Therefore, one has to start with the
question:

5.2.2 Where does the information come from
and where should it go to?

If at least the points where information comes
from and where it should go to are known, the
parts in between very often become trivial. It is re-
duced to the question of conversion, recalculation,
and managing information. Sometimes, it looks
like the information is necessary at all points at
once. In a distributed network, but also in a sin-
gle computer, this leads to enormous data trans-
fer which will slow the system down. The anal-

20



ysis should focus on the question of whether the
complete set of data is necessary or if are there
points where a smaller part would be sufficient.
Following this question, one could come up with
a structure of necessary data pools which might
divide the project into different units/parts. This
structure might be different from the one obtained
from analysis of the source and destination of in-
formation.

5.2.3 How do special OS/library
requirements split up the project?

Yet another structure might become clearer by
looking into the need for special libraries or hard-
ware which are involved in the project. As men-
tioned in the hardware section of this report, spe-
cial devices often come with special libraries.
Since most of those libraries are not binary com-
patible, they have to be used on the given OS
platform or re-implemented on a different one.
The re-implementation very often is made im-
possible by the manufacturer for reasons of fear:
They fear the loss of knowledge and their position
on the market by making interfaces documented
and open to public19. Even if the interface is well
documented, it will take a while to re-implement
everything from scratch. Therefore, it is generally
easier to take a look into the given libraries and
design the structure of the project in parts around
those libraries. The client-server concept (see sec-
tion 5.3) provides an additional layer of abstrac-
tion.

5.2.4 Is it necessary to run the parts under
several OS and on different
computers?

One is lucky, if one can answer this question
with a “no”. On the other hand: Use the oppor-
tunity to stay flexible and gain the advantages
of independence! A system which is based on
parts that do not care about system requirements is
more likely to be used by a lot of people. Not only
the power of multiple users working on the same
project, but also the power of parallelly working

19As the development of graphics support in the Linux
community has shown, the manufacturers might very well
profit from the community by giving the interface to am-
bitious programmers and participate in distribution of their
products.

machines should be persuasive. The disadvantage
of missing load-balancing in a situation where one
computer does one job could be overcome by hav-
ing several computers doing similar jobs and dis-
tributing the work load among them. Being able
to use multiple computers for the same job, de-
creases the probability that none of the computers
work.

5.2.5 Combine all the above structures to
come up with a plan!

In the process of planing a new project that in-
volves different hardware and software require-
ments, the above thoughts might help one come
up with different solutions for the future structure.
Depending on the importance of different require-
ments for a given project, one has to combine the
results from the above questions. It could actually
help to design the project in multiple ways and
join those parts into a final concept which share
the common structure of multiple solutions. With
this approach one can almost be sure not to miss
an important part which becomes obvious once
started with the implementation.

5.3 Client - server architecture

The communication, library, and hardware struc-
ture of the equipment in the Motion-Lab sug-
gested a client - server architecture based on
the following requirements. Some of the libraries
were explicitly designed for one OS and therefore,
at least three different OS had to be used (Max-
cue low-level access on Windows95, graphics like
Vega/OpenGVS on WindowsNT and the driving
dynamics20 on IRIX). The control proposed by
Motionbase for the Maxcue motion platform is
based on UDP broadcast calls, which were un-
acceptable in our local network for two reasons.
First and most import, the protocol had no secu-
rity check and anybody could simply add data to
the stream by opening a telnet like program on
the specific port with the result of unpredictable
behavior of the platform. The other reason was to
reduce overall traffic and not to disturb others by
using the platform inside our local network. In the

20The driving dynamics done by M̈uller System Technik
is not part of this technical report, but had to be considered
in the design.

21



Tracking Visualization

InterfaceMotion

Simulation

Figure 18: The general client - server framework for a
distributed VR simulation.

process of solving the security issues, it became
clear that a constantly running server controlling
the platform and accepting only authorized con-
nections, one connection at a time, would enforce
a more deterministic behavior and control for se-
curity risks. Similar requirements had to be con-
sidered for the control of the steering wheel, since
subjects in the experiments directly interact with
the device and should not face any kind of risk.
Even in cases were the VR simulation fails due to
errors in the program, the server can still run and
guarantee a safe shutdown of the device.

The idea of server programs controlling the dif-
ferent input and output devices is powerful not
only for security issues. It also forces the imple-
mentation of a strict layer of abstraction between
a client who wants to have some data from a de-
vice or send it towards the device, and the con-
trolling server that implements the specific input
and output behavior. Having this abstraction layer
established not only for the platform and steer-
ing wheel, but also for all the other devices like
joystick, tracker and visual display, the simula-
tion logic becomes quite independent of special
hardware and the actual physical realization. It is
now possible to exchange the graphical rendering
without affecting the simulation of a virtual ob-
server, which is quite unusual for most VR sys-
tems. The advantage of this became clear when
the actual machines were exchanged and we had
to move from the Vega libraries to the OpenGVS
rendering. The main simulation was not subject
to any changes, only the graphical rendering had

to be re-implemented based on the new library.
This example illustrates the flexibility of this ap-
proach enabling the integration of new hardware,
which very often comes with specialized libraries.
The server implements the abstract device layer,
based on the interface of the specific physical re-
alization, and the clients just stay the same. This
enables multiple users to program for the abstract
interface rather than for a specific device, which
enhances the overall usability of software. Even
changes in the OS or the physical device do not
affect the VR simulation.

It also became easier to add new services for
all simulations. Since the main part, the direct
handling of the devices, is outside the actual VR
simulation of the user, the changes in the simula-
tion program necessary in order to use additional
services are reduced to a minimum21. Taking the
client server concept together with asynchronous
communication, it is easy to have devices work at
different update rates. Each device can work at its
necessary speed and provide either local feedback
(like the steering wheel) or global feedback (like
the visual display reacting on a turn of the head).
The information flow is depicted in Fig. 18 for a
simple VR simulation based on the client - server
concept.

5.4 Use of templates

Having introduced the client - server architecture,
it becomes obvious where one should use dif-
ferent classes and which functionality should be
shared between different streams of information.
In order to make the communication between the
client and the server as simple and efficient as pos-
sible, one step for confining the communication
was taken. The data packages themselves should
contain only similar things in sense of data type
lengths. The allowed types for the data inside data
packages were fixed tolong int and dou-
ble , both containing four bytes and sharing the
same conversion for changes between processor
types22.

21For example, it was possible to add head tracking into a
simulation by adding less than 20 lines of C++ code into a
normal simulation.

22see differences of big and small endians in the SGI ABI
or the ntoh* man pages.

22



All those points do not connect to template dis-
cussions at first glance. Templates in C++ enable
programming for unknown types to some degree.
The concept is nearly as powerful as libraries are
for sharing functionality for known types. It al-
lows implementation of general functions in a
type safe way at compile time23. In combina-
tion with inheritance, it becomes powerful, as the
reader can see in section 5.6.2 where the realiza-
tion of the different devices clients is discussed.
Another example of efficient usage of templates
can be seen in the stack implementation24.

Connecting both ideas, it became fast and easy
to send data packages over a TCP/IP connec-
tion with the above restrictions. General template
functions were used to pack and unpack data
packages and store the data on stacks. Since all
data could be handled in the same way, there
were no functions necessary for extracting special
things like pointers of strings. Avoiding dynamic
memory calls made the implementation efficient
and safe to memory leaks. Extending the known
data types with additional variables is easy since
only initialization and print routines have to be
changed due to their additional text output nam-
ing the data; the data communication routines stay
untouched.

5.5 What is real-time?

Defining “real-time” is highly dependent on pur-
pose and context. “Only reality runs at real-time”
could be one statement, which could be opposed
by some consideration about the brain of a bee
and a CRAY high end computer with eight proces-
sors. Both the bee and the computer have roughly
106 neurons or transistors respectively. For the
bee one “operation” is quite slow with10−3s
compared to6∗10−9s for the computer. Nonethe-
less, due to the high parallel execution in the bee’s
brain, the bee theoretically executes1012 opera-
tions per second while the CRAY stays behind
with only 1010 operations per second. What is
real time for the bee and the CRAY? The bee be-
haves in the world with a considerably high la-

23This is not true for void pointer concepts, which test
class membership during runtime.

24The stack implementation is special for not keeping ev-
erything on the stack, as the concept normally suggests.

tency, particularly if one compares it to the pos-
sible high precision of the CRAY. However, the
speed of the bee’s reaction is sufficient to do nav-
igation, pattern recognition, social interaction and
more specialized things. The CRAY computer is
faster for very specific and simplified tasks but
could not reach the complexity of the bee’s per-
ception and interaction with the world. This con-
sideration holds for humans as well as for the bee.
Looking into different modalities, the latency and
time accuracy of perception differs widely. The
time lag which would be acceptable, that means
which would not be noticeable as additional off-
set to the “true” point in time, is different from
the overall time resolution in each modality. Pro-
gramming a VR setup, where things should be-
have “normally” and allow us to perform without
previous training, has to consider both time con-
strains: The update rate and the latency. The goal
is therefore not to define real-time in yet another
way, but to provide sufficient fast interaction in
the sense of update rate and latency.

A number of studies have shown either the neu-
ral latencies of the human system or the neces-
sary update rate which should be provided by a
simulation. For example, Dell’Osso and Daroff
(1990) refer to several interactions between the
vestibular and visual system. The latency for head
movements which result in the vestibulo-ocular
reflex appears to be less than 15 ms. The same
study specifies that the latency for eye stabiliza-
tion control is larger than 100 ms for field mo-
tion and more than 125 ms for corrective saccades
for positional errors. The latency for extraction
of optic flow seams to be greater than 300 ms
(Berg, 1999). The eye stabilization mechanisms
therefore react to changes in the vestibular system
much quicker than to the perceived visual stim-
ulus. The effect of apparent motion is visible for
image changes faster than 18 Hz. Normally, up-
date rates of 25 to 30 Hz are used for computer
rendered pictures. The accuracy of audio localiza-
tion also depends on the frequency of the provided
stimulus. King and Oldfield (1997) described the
necessary spectrum of the sound stimulus: “Re-
sults show that broadband signals encompassing
frequencies from 0 to (at least) 13 kHz are re-
quired in order for listeners to accurately localize

23



signals actually presented from a range of spatial
locations”. The human skin is known to be sensi-
tive for vibrations faster than 2 kHz. For vestibu-
lar stimulation, update rates of 250 Hz were used
to create a smooth path (Berthoz, Israël, Georges-
francois, Grasso, & Tsuzuku, 1995). VR simula-
tions have to match these numbers, and provide
sufficiently fast update rates, and react to changes
like the turn of the head with minimal latency. In
addition, it is important to keep the time offset
between stimuli presented to different modalities
sufficiently small in order to not disturb the natu-
ral integration process.

5.6 Motion-Lab Library

The realization of the above concepts in the frame
of a technical report will stay away from printing
pages and pages of source code. The general im-
plementational details are given without referring
to actual code. The code, the actual data struc-
tures, and the respective documentation can be
found at the author’ website. All the actual C++
code compiles on all five OS platforms involved,
as long as it does not concern special hardware
libraries.

The overall structure of the Motion-Lab Li-
brary is simple. The library provides clients
classes for all devices in the Motion-Lab. Those
clients control the communication to the device
servers, making the communication transparent to
the user. In addition, some useful tools and func-
tions for matrix and vector handling, and key-
board control are provided, but not discussed here
in detail.

5.6.1 Stacks

Generally a stack is considered to be a struc-
ture which keeps information in a “last in, first
out” (LIFO) fashion. The stack for the Motion-
Lab communication works exactly with this prin-
ciple, but with one unusual addition to it. There
is only one “last” for output available and pack-
ages pushed earlier will be lost. In exchange, the
stacks provide information about how often the
last record had actually been popped. Of course, a
template class is used for the realization of this
concept, since the data are not touched at any
point in the stack. In addition, the implementa-

tion is thread-safe for multiple readers and one
writer without locking write or read access. Writ-
ing processes add new information and simulta-
neous reading processes are guaranteed to get the
most recent data available. Internally, the stack
class uses a ring structure for the storage of in-
formation.

This behavior is required for one simple reason.
The asynchronous communication explicitly de-
mands high speeds which may include dropping
of whole packages. Locking would reduce effi-
ciency, and always providing the newest package
reduces latencies in the system. A queue concept
would force the accepting process in a commu-
nication to check whether there is more informa-
tion waiting to be processed. The stack concept
on the contrary provides the most recent informa-
tion available and drops other packages without
the risk of increasing queue length.

5.6.2 Communication & devices

The communication itself is hidden (as com-
puter scientists like to say, “transparent”) to the
user. It involves a collection of templates realiz-
ing thesendandreceiveasclient andservervia a
TCP/IP socket. Gathered as a virtual device, those
templates implement the transparent communica-
tion with one specific server. As a result, the actual
implementation of the abstract device for the user
is done in the library by defining the data struc-
ture for the communication for one type of client.
Therefore, the user does not have to worry about
the actual template usage or class instantiation for
the communication. The user is addressing a de-
vice by instantiation of the specific client for this
device. Naturally, the server for that device has to
run beforehand25.

5.6.3 Sound scripts & functions

There are two simple scripts enabling the use of
sound in programs running on Linux machines in
the Motion-Lab. The corresponding functions for
C++ programs are available in the Motion-Lab Li-
brary. There is not yet a sound server which could
be used for programs running on different ma-
chines and OS. In general, the sound is realized

25Since those servers can run all the time, one should con-
sider running those as daemons starting at normal system
startup.

24



by a collection of small tools (see page 19) which
are available for free on the Internet.

• ml play : Replays all well known sound
formats either as an infinite loop or a given
number of times. Internally, the sound is
buffered for the loop to guarantee break free
replay even under high load of the computer.

• ml say : Speaks a given string with Ger-
man pronunciation. The string could include
numbers and abbreviations. The speech syn-
thesis is done online, so status messages or
other feedback could be given to the user.

5.6.4 Device servers

At the moment, there are several device servers
available, some running on multiple OS plat-
forms, but most of them are confined to a specific
one due to hardware and library constellations. In
general, it makes sense to run the server on one
specific machine, since the server has to connect
to some physical device. Different ways of con-
necting the actual device are handled inside those
servers. Additional servers can easily be imple-
mented by using the existing servers as examples.

• platform:
The control for the vestibular simulation runs
on Windows95 and connects to an analog
card with specialized library from the man-
ufacturer.

• hmdvega, hmdperformer, and hmdgvs:
The visual simulation runs on WindowsNT,
Linux or IRIX and displays the rendered 3D
model via the normal graphics output. On
WindowsNT and Linux the output of the
graphics card can be connected to the HMD.
Stereo vision is possible by using two ma-
chines which synchronize their output.

• wheel:
The force feedback steering wheel control
runs on Linux with the help of an analog card
and a library from the LinuxLabProject.

• joystick:
It is currently possible for Linux to control
up to two joysticks at a time via the game-
port of one sound card.

• tracker:
The tracker server reads out the serial port of
a Linux machine and interprets the binary or
ASCII output.

5.7 Applications

Several applications run in the Motion-Lab with
different goals. A simple driving demo will be
presented after explaining the concept of the vir-
tual observer for VR simulations based on the
client - server architecture. In addition, two ex-
perimental programs are sketched to give an im-
pression of how things might look for open- and
closed-loop programs. Nonetheless, the general
structure of all programs is nearly identical since
the tasks are quite similar.

The overall structure works around a central
simulation loop as depicted in Fig. 19. The in-
put devices provide information which is used to
update the status of the virtual observer. Based
on a time difference∆t in the main simulation
loop the observer’s movement status is updated
describing a discrete version of what happens in
the real world (velocity:Vt+1 = Vt + ∆t ∗At and
position:Pt+1 = Pt + ∆t ∗ Vt+1). Naturally, one
could add friction, wind resistance, surface slant
and other factors here to slow down or acceler-
ate the observer, based on the model of the world.
For simplicity, those factors are assumed to slow
down the observer (like sliding on a flat horizontal
plain) a little bit and change, therefore, the veloc-
ity by a damping factor. After having updated the
observer’s internal status, the output devices get
new data from the simulation. At that point, we
can have a short time delay before we start all over
again, in order to control the speed/update rate of
this simulation loop.

5.7.1 Simple driving demo

The driving demo incorporats joystick and/or
steering wheel control. Therefore, most of the
above described equipment is actually involved
in this simulation (see Fig 20). The car dynam-
ics are kept as simple as possible, since it should
soon be replaced by the professional one as men-
tioned earlier in this report. However, it is just a
demo and not used for experiments in its current
state. The general structure is exactly as described

25



observer

pop wheel
data data

pop joystick
data

pop tracker

data
push hmd

data
push platform

keyboard input
handle

simulation time
update

wheel-
server server

joystick-
server

tracker-

server
platform-

server
hmd-

start

end

simulation program

simulation loop

Figure 19: The general feed forward simulation loop shows the general input in the upper left-hand corner and the
output in the lower right-hand corner. The virtual observer in the middle gets influenced by the input from steering
wheel or joystick and the head tracker. Based on the internal representation of the observer’s movement status
output data are generated for the platform and visualization.

above. The virtual observer gets input from the
different input devices and sends commands to
the visualization (HMD server) and the vestibu-
lar simulation (platform server). The data for the
visual simulation are the actual position and ve-
locity of the observer. In contrast, the data sent
to the platform could not be transformed into a
movement of the actual distances in meters, but
had to be reduced or scaled (see “motion cue-
ing” in section 3.1). One simple solution is to send
the actual speed of the observer as positional data
for forward movements and negative pitch. If the
observer gains speed, the platform pitches back-
wards to substitute for some of the linear forward
accelerations. As a cue for higher velocity, vi-
brations are simulated with increasing amplitude.
The combination of both results in a quite realis-
tic feeling for driving without sudden changes in
velocity. Since the platform can only rotate a cer-
tain angle, simulated turns have to incorporate the
same principle. Adding some roll motion to sim-
ulate tangential forces enhances the realistic feel-
ing. Nonetheless, psychophysical tests have to be
performed to match data from real drives to sim-

Figure 20: Driving setup with force feedback steering
wheel.

ulated ones and to equalize both at the perceptual
level.

5.7.2 Experiment 1: Distance, velocity and
acceleration judgements

Before we can start to program realistic driv-
ing simulations on the motion platform, we have
to know which parameters are actually perceived
by humans sitting on the platform. Therefore, an
experiment was designed focusing on the ques-
tion of perceptual parameters (see von der Heyde,

26



Riecke, Cunningham, and Bülthoff (2000) for de-
tailed experimental design). Concentrating here
on the software issues, it should be mentioned that
this experiment was explicitly done with an open
loop paradigm. The subjects had no influence on
the performed movement, but had to report ver-
bally on their perception of distance, velocity and
acceleration. The simulation was, therefore, in-
dependent of user’s input. The movements were
predefined with Gaussian shaped velocity pro-
files by a parameter setting the controlling dis-
tance and the maximum acceleration. The posi-
tions for the movement were calculated before-
hand and played back with the appropriate timing.
This program shows that the client server concept
can also be used in feed forward (open loop) con-
ditions where no interaction is required.

5.7.3 Experiment 2: Holding balance, and
coding vestibular and visual heading
changes

The second experiment involves, in contrast to
the first one, continuous feedback from the sub-
ject. It therefore uses a closed loop paradigm. All
the details are described in von der Heyde (2001).
Concerning the program itself, the structure is in
principle quite similar to the driving demo. Be-
cause of the experimental conditions and differ-
ent stages during the experiment, the conditions
had to be scheduled based on the performance
of the subject. Parameter files describe thresholds
and dynamic changes in the level of difficulty for
the task. The task itself was to stabilize the plat-
form for roll movements based on vestibular cues.
The visual simulation was not providing any roll
information. The disturbances increase in speed
and amplitude for higher levels of difficulty. In the
end, the subjects had actually performed heading
changes based on the paths they had learned. The
relationship between visual and vestibular head-
ing change was controlled and changed only in
the test condition. Therefore it became possible
to ask whether the vestibular or the visual turns
where encoded in the learning stage. Changing
those relationships is easily achieved in VR and
would otherwise be very difficult to perform.

6 Summary of system characterization

In sum, the Motion-Lab implements a VR setup
that enables psychophysical experiments with a
variety of hardware in order to simulate multi-
ple sensory inputs. The complex simulation is
distributed across a network of specialized com-
puters enabling input and output for intense in-
teraction. Different experimental paradigms can
easily be implemented with the Motion-Lab Li-
brary which effectively hides from the program-
mer problems that are imposed by the distributed
systems approach.

The lab uses a network of standard PCs ex-
tended by special VR equipment. The different
units of the networks are exchangeable and share
multiple resources. The system can therefore be
classified as distributed system. The general archi-
tecture realizes a client/server approach in which
each hardware device is managed by a special-
ized server. The servers implement abstract de-
vices, which efficiently hides the differences of
various connected hardware. The multi-threaded
library provides the clients for the abstract de-
vice interfaces. Therefore, these clients connect to
the servers, hidden from the VR application pro-
grammers view. The bidirectional communication
is asynchronous and done via TCP/IP with low
latency. Specialized stacks circumvent problems
with different frequencies which are imposed on
the system by the demands of different sensory
modalities. Smoothness of the data stream is es-
tablished where needed by inter- or extrapolation
methods. The library is available and used for
multiple OS, hiding again OS specific interface
differences of Windows95/NT, IRIX and Linux.
Distributed development techniques were used for
concurrent access by multiple programmers.

VR simulations are bound to include multiple
senses. The goal typically is an immersive simu-
lation which allows the user to interact with the
environment with acceptable latency and high de-
gree of realism. The observer’s movements are
usually unnaturally done in the simulation. Due to
the lack of spatial updating, users do not feel that
they are moving in space. In contrast, the present
lab realizes realistic and immersive simulations
for multiple senses. The latency between an ac-

27



observer simulation program

wheel−
server

server
joystick−

server
tracker−

server
hmd−

server
sound−

server
platform−

vestibular

vison

acoustics

proprioception

haptics

server
tracker−

server
joystick−

server
platform−

server
sound−

server
hmd−

vibration

sound

Figure 21: Overview of the Motion-Lab (see description in the text).

28



tion of a user and the feedback of the system is re-
duced by multiple layers of feedback loops within
and between modalities. Specifically, vestibular,
visual, acoustic, vibration, and haptic stimuli can
jointly be used by the applications:

• The vestibular stimulation is realized by a
six degree of freedom (DOF) motion plat-
form with can perform high accelerations;

• Stereo vision is presented via a head
mounted display with high resolution real-
ized by different graphic libraries rendering
the virtual scenery;

• Acoustic simulation is not yet presented in
3D, but already includes synthetic speech
generation for multiple speakers and numer-
ous stereo sound effects;

• The sound generation can be employed for
low frequenciesvibration stimulation;

• The simulation ofhaptic force feedback for
the steering wheel delivers a realistic experi-
ence for driving simulations.

Other input devices can be used for typical
VR interaction. Joysticks allow analog multi-
axes control of quantities coupled to immediate
changes in the virtual environment. Trackers for
six DOF are used for the input of pointing move-
ments as well as head tracking for the control of
the virtual camera.

Figure 21 summarizes the client server archi-
tecture of the VR simulation in the Motion-Lab.
The top part of the diagram shows the equipment
of the lab as well as the senses of the human ob-
server that are involved. The lower part depicts
the implementing architecture on three levels: The
inner software level of the VR simulation of the
virtual observer, the outer hardware level of the
VR equipment and the level in between formed
by the distributed device servers implementing
the abstract layer of I/O devices. The interaction
of observer and virtual observer is realized by
multiple feedback loops connecting different lev-
els. The human observer perceives the virtual en-
vironment through multiple senses and interacts
with the simulation via tracking, joysticks and the

steering wheel. The virtual observer sends and re-
ceives data from the devices and simulates the
VR environment as a discrete version of world.
In sum, the Motion-Lab is usable for closed and
open-loop experiments. Therefore, various psy-
chophysical experiments in VR were made pos-
sible by this distributed system.

Acknowledgement

The author would like to thank Heinrich Bülthoff
for his generous support at the institute. He is
grateful to Bernhard Riecke and Douglas Cun-
ningham for long fruitful discussions. Last but not
least special thanks to Stephan Braun and Michael
Renner for intense technical support.

References

Arthur, K. W. (2000). Effects of field of
view on performance with head-mounted
displays. Unpublished doctoral dis-
sertation, Department of Computer
Science, University of North Carolina,
Chapel Hill. ([Online] Available:
http://www.cs.unc.edu/ arthur/diss/)

Beall, A. C., & Loomis, J. M. (1997). Optic flow
and visual analysis of the base-to-final turn.
Int. J. Aviat. Psychol., 7(3), 201 – 223.

Begault, D. R. (1994).3-d sound for virtual re-
ality and multimedia. Boston: Academic
Press Professional.

Berg, A. V. van den. (1999). Predicting the
present direction of heading.Vision Res.,
39(21), 3608 – 3620.

Berthoz, A., Isräel, I., Georgesfrancois, P.,
Grasso, R., & Tsuzuku, T. (1995). Spatial
memory of body linear displacement: What
is being stored?Science, 269(5220), 95–98.

Bülthoff, H. H., Riecke, B. E., & Veen, H. A. H. C.
van. (2000). Do we really need vestibular
and proprioceptive cues for homing.Invest.
Ophthalmol. Vis. Sci., 41(4), 225B225.

Burdea, G. (1993). Virtual Reality Systems and
Applications. InElectro’93 international
conference(p. 164 pp). Edison, NJ.

29



Burdea, G., & Coiffet, P. (1994).Virtual Real-
ity Technology. New York: John Wiley &
Sons. Inc.

Cobb, S. V. G., Nichols, S., Ramsey, A., & Wil-
son, J. R. (1999). Virtual reality-induced
symptoms and effects (vrise). Pres-
ence: Teleoperators & Virtual Environ-
ments, 8(2), 169 – 186.

Cunningham, D. W., von der Heyde, M., &
Bülthoff, H. H. (2000a). Learning to
drive with delayed visual feedback. In
H. Bülthoff, M. Fahle, K. Gegenfurtner, &
H. Mallot (Eds.),Beiträge der 3. ẗubinger
wahrnehmungskonferenz(p. 164). Max-
Planck-Institute for Biological Cybernetics,
Germany: Knirsch Verlag, Kirchentellins-
furt, Germany.

Cunningham, D. W., von der Heyde, M., &
Bülthoff, H. H. (2000b). Learning to drive
with delayed visual feedback.Invest. Oph-
thalmol. Vis. Sci., 41(4), S48.

Dell’Osso, L. F., & Daroff, R. B. (1990).
Eye movement characteristics and record-
ing techniques. In J. S. Glaser (Ed.),Neuro-
ophthalmology (2 ed., pp. 279 – 297).
Philadelphia, PA: J. B. Lippincott Com-
pany.

Fichter, E. F. (1986). A stewart platform-based
manipulator: General theory and practical
construction.The International Journal of
Robotics Research, 5(2), 157 – 182.

Gilkey, R., & Weisenberger, J. (1995). The
sense of presence for the suddenly deaf-
ened adult: Implications for virtual environ-
ments. Presence: Teleoperators & Virtual
Environments, 4(4), 357 – 363.

Heilig, M. (1960, oct). Stereoscopic-Television
Apparatus for Individual Use.US Patent
No. 2,955,156.

Hendrix, C., & Barfield, W. (1996). The sense
of presence within auditory virtual environ-
ments. Presence: Teleoperators & Virtual
Environments, 5(3), 290–301.

Hlavacka, F., Mergner, T., & Bolha, B. (1996).
Human self-motion perception during
translatory vestibular and proprioceptive
stimulation. Neurosci. Lett., 210(2), 83 –
86.

King, R., & Oldfield, S. (1997). The impact
of signal bandwidth on auditory localiza-
tion: Implications for the design of three-
dimensional audio displays. HUMAN-
FACTORS, 39(2), 287 – 295.

Mergner, T., & Rosemeier, T. (1998). Interaction
of vestibular, somatosensory and visual sig-
nals for postural control and motion percep-
tion under terrestrial and microgravity con-
ditions - a conceptual model.Brain Res.
Rev., 28(1-2), 118 – 135.

Mergner, T., Siebold, C., Schweigart, G., &
Becker, W. (1991). Human perception
of horizontal trunk and head rotation in
space during vestibular and neck stimula-
tion. Exp. Brain Res., 85(2), 389 – 404.

Riecke, B. E. (1998).Untersuchung des men-
schlichen Navigationsverhaltens anhand
von Heimfindeexperimenten in virtuellen
Umgebungen. Unpublished master’s the-
sis, Eberhard-Karls-Universität Tübingen,
Fakulẗat für Physik.

Ryan, M. D., & Sharkey, P. M. (1998). Distortion
in distributed virtual environments. In J.-C.
Heudin (Ed.),Virtual worlds 98(Vol. 1434,
pp. 42 – 48). Berlin – Heidelberg – New
York: Springer-Verlag.

Viirre, E. (1996). Virtual reality and the vestibu-
lar apparatus.IEEE Eng. Med. Biol. Mag.,
15(2), 41 – 44.

von der Heyde, M. (2001).A distributed virtual
reality system for spatial updating: Con-
cepts, implementation, and experiments.
Unpublished doctoral dissertation, Univer-
sität Bielefeld – Technische Fakultät, Max-
Planck-Institute for Biological Cybernetics,
Germany. (in press)

30



von der Heyde, M., & Ḧager-Ross, C. (1998).
Psychophysical experiments in a complex
virtual environment. In D. J. K. Salisbury
& D. M. A. Srinivasan (Eds.),Proceedings
of the third phantom users group workshop,
mit artificial intelligence report no. 1643,
mit r.l.e. tr no.624(pp. 101 – 104). Cam-
bridge: MIT Press.

von der Heyde, M., Riecke, B. E., Cunningham,
D. W., & Bülthoff, H. H. (2000). Hu-
mans can extract distance and velocity from
vestibular perceived acceleration.J. Cogn.
Neurosci., 1, 77.

Witmer, B. G., & Singer, M. J. (1998). Mea-
suring presence in virtual environments: A
presence questionnaire.Presence: Teleop-
erators & Virtual Environments, 7(3), 225–
240.

31


	Spatial Updating
	Virtual Reality
	Motion-Lab
	Overview and purpose
	VR systems integrate simulations for multiple modalities
	Distributed system or stand alone computer?
	The ``big solution'':
	The distributed solution:

	Distributed components and asynchronous communication structure
	Synchrony, and closed- or open-loop functionality

	Hardware
	Motion platform
	Head Mounted Display (HMD)
	Force feedback steering wheel and analog control
	Joysticks
	Tracker
	Sound cards
	Headphones
	Force transducer
	Computer and special graphics
	Sprout
	Cantaloupe
	Cucumber
	Borage
	Soy and Tofu

	Security features
	Network and other devices

	Software
	General software environment
	ACE - Application Communication Environment
	sox and all the other well-sounding names
	CVS - Concurrent Versions System
	DOC++
	GNU-tools: gcc, gmake, emacs, and others

	Distributed programming for multiple OS
	What is the general flow of information in the project?
	Where does the information come from and where should it go to?
	How do special OS/library requirements split up the project?
	Is it necessary to run the parts under several OS and on different computers?
	Combine all the above structures to come up with a plan!

	Client - server architecture
	Use of templates
	What is real-time?
	Motion-Lab Library
	Stacks
	Communication & devices
	Sound scripts & functions
	Device servers

	Applications
	Simple driving demo
	Experiment 1: Distance, velocity and acceleration judgements
	Experiment 2: Holding balance, and coding vestibular and visual heading changes


	Summary of system characterization
	References

