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Abstract

We develop a methodology for solving high di-
mensional dependency estimation problems be-
tween pairs of data types, which is viable in the
case where the output of interest has very high
dimension, e.g. thousands of dimensions. This is
achieved by mapping the objects into continuous
or discrete spaces, using joint kernels. Known
correlations between input and output can be de-
fined by such kernels, some of which can main-
tain linearity in the outputs to provide simple
(closed form) pre-images. We provide examples
of such kernels and empirical results on mass
spectrometry prediction and mapping between
images.

1 Introduction

We begin with the problem of linear regression. Given a
training set of paired objects{(x1,y1), .., (xm,ym)} iden-
tically and independently sampled from a distribution P
over the product spaceX × Y, we wish to find a function
W that maps fromX intoY such that:

∫
X×Y

‖y − Wx‖2
YdP(x,y)

is minimized.

This is a classical learning problem that has been widely
studied whenY ∈ �

q has a small dimension. When the
output dimension becomes very high, in order to gener-
alize well one must take into account (i) correlation be-
tween output variables (ii) correlation between input vari-
ablesX ∈ �

p and (iii) correlation between inputand output
variables.

If prior knowledge about such correlations exists, it can be
encoded into a regularizer. For example, a minimization

scheme could be adopted that minimizes

1
m

m∑
i=1

‖yi − Wxi‖ +
dim(X )∑

i,j=1

dim(Y)∑
s,t=1

WijWstSijst.

Here,Sijst encodes the correlation between inputsi,j with
outputss andt.

For example, suppose one is learning a mapping between
two spaces of equal and large dimension, e.g. pairs of im-
ages or spectra. Then the most obvious prior knowledge
one has is that, e.g., pixels in images that are close in the
input are also close in the output. This knowledge can be
encoded intoS. The challenge is to rewrite such an opti-
mization problem in the general case so that (i) it can be
solved in a dual form to make it tractable for high dimen-
sion and (ii) it can be generalized with kernels to also solve
nonlinear problems.

In this work we will show how to encode such prior knowl-
edge by defining appropriate joint kernel functions and sub-
sequent minimization in dual variables, building on work
such as [1] and [2]. The subsequent algorithm will solve
much more than linear regression: it will generalize non-
linear support vector machines for classificationand re-
gression, and will be also be able to deal with structured
outputs such as strings, trees and graphs via kernels [2–4].

We demonstrate the joint kernel map approach by predict-
ing peptides given an observed mass spectrum and by map-
ping between related pairs of images. For the latter we
choose a simple problem of mapping from the image of
a person with a plain expression to the image of them smil-
ing.

2 Linear Maps

We start by learning the linear mapW such that a predic-
tion on data is

y(x) = argminy∈Y‖Wx− y‖2 = Wx.



Note that if the argmin is taken over a linear space, then
y(x) = Wx, but in more general settings, it will be nec-
essary to compute it using other means. We consider an
ε-insensitive loss approach, as in support vector regres-
sion [5]. We choose the W that minimizes

‖W‖2
FRO (1)

using the Frobenius norm, subject to

‖Wxi − y‖2 ≥ ‖Wxi − yi‖2 + ε2/2, (2)

∀i, {∀y ∈ Y : ‖yi − y‖ > ε}.
We note that this generalizes support vector classification
and Regression:

• For y ∈ � one obtains support vector re-
gression (SVR) [5] without threshold, and
for y ∈ �

q one obtains vector-valuedε-
insensitive SVR [6]. We rewrite (2) as
miny∈Cε(yi) ‖Wxi − y‖2 ≥ ‖Wxi − yi‖2 + ε2/2
whereCε(yi) is the complement of the ball of radius
ε centered atyi. If Wxi is not in the latter ball, the
value of this minimum is zero and the problem does
not have any solution. On the other hand, ifWx i is
in the ball, then this minimum is not zero and can
be computed directly. Its value is attained for the
following y:

y = yi +
Wxi − yi

‖Wxi − yi‖ ε.

The value of the minimum is then
(ε − ‖Wxi − yi‖)2. We then have the constraint:
(ε − ‖Wxi − yi‖)2 ≥ ‖Wxi − yi‖2 + ε2/2 which
gives, after some algebra,‖Wxi − yi‖ ≤ ε/4.

• For y ∈ {±1} and0 ≤ ε < 2 we obtain two-class
SVMs [5] (W is a1 × p matrix). Expanding the con-
straint (2) for eachi gives−2yWxi+2yiWxi ≥ ε2/2.
For y, yi ∈ {±1}, ‖yi − y‖ > ε only occurs for
y = −yi, in which case we haveyiWxi ≥ ε2/8,
the usual SVM constraints, disregarding scaling and
thresholdb.

• Similarly, for y ∈ {0, 1}q, where thecth
i entry is 1

when examplei is in classci, and 0 otherwise, and
0 ≤ ε <

√
2 we can obtain multiclass SVMs [7]. As

||y|| = 1 we have the constraintsy�
i Wxi−y�Wxi ≥

ε2/4 where theq rows of W =


 w1

. . .
wq


 corre-

spond to theq hyperplanes of multi-class SVMs (W
is a q × p matrix). Because only one constraint is
switched on at one time due to the zeros iny we have
to minimize ‖W‖FRO =

∑
i ||wi||2 subject to∀i,

wcixi − wjxi ≥ ε2/4, ∀j ∈ {1, . . . , q} \ ci which
is the same as in [7], again disregarding scaling and
thresholds.

Generalizing to the non-separable case in the usual man-
ner [2, 5] should be straightforward. Note that the con-
straints can also be written as:∀i{∀y ∈ Y : ‖yi − y‖ >
ε} : 2(yi − y)Wxi ≥ ε2/2 + ‖yi‖2 − ‖y‖2. Let us now
restrict ourselves slightly to the situation where the outputs
are normalized so∀y ∈ Y : ‖y‖ = 1. (Obviously this
is only useful in the multi-dimensional case.) Hence, we
rewrite our optimization problem as: minimize

‖W‖2
FRO (3)

subject to

∀i, {∀y ∈ Y : ‖yi−y‖ > ε} : y�
i Wxi−y�Wxi ≥ ε2/4.

(4)

We can regardF (x,y) = y�Wx as a function that returns
the degree of fit betweenx andy. The output on a test
point can now be written

y(x) = argminy∈Y‖Wx − y‖2

= argmaxy∈Yy�Wx =
Wx

‖Wx‖ . (5)

because, by Cauchy-Schwarz, the function
argmaxyy

�Wx is maximal if y
‖y‖ is parallel toWx∗.

With this optimization problem for the case of discreteY
andε → 0, we obtain the support vector machine for in-
terdependent and structured output spaces (SVM-ISOS) of
[2]. In practice, one could relax the restriction upon the nor-
malization ofy during training because separability could
still be obtained. However, if one is dealing with continu-
ous outputs without this restriction then the preimage given
by argmaxy∈Yy�Wx would not be well defined. This is
the reason why in the work of [2] normalization was not an
issue, as only the discrete output case was considered1.

We now show how to develop our method for joint kernels.

3 Joint Kernel Maps

We can rewrite the last optimization problem by consid-
ering W as a vectorw of dimension dim(X )dim(Y), and
choosing the feature map

ΦXY(x,y) = 〈(xy�)ij〉 i = 1, . . . , dim(Y)
j = 1, . . . , dim(X ).

1In practice, in our experiments with joint kernels, we normal-
ize the joint kernel itself, not the outputs, becasue the output in
this case is not easily accessible.



The optimization problem then consists of minimizing2

‖w‖2 (6)

subject to

〈w, ΦXY(xi,yi) − ΦXY(xi,y)〉 ≥ ε2/2, (7)

∀i, {∀y ∈ Y : ‖yi − y‖ > ε}.
However, we are free to choose another mapping, as we
shall see later (indeed, choosing a mapping which incor-
porates prior knowledge is the whole point of using this
approach). We callΦXY the joint kernel map (JKM), and
J((x,y), (x̂, ŷ)) = ΦXY(x,y)�ΦXY(x̂, ŷ) the joint ker-
nel. This relates our method to the work of [8] and [9].

Constructing the corresponding dual problem we obtain:
maximize3

ε2

4

∑
i,y:‖yi−y‖>ε

αiy − (1/2)
∑

i, y : ‖yi − y‖ > ε
j, ŷ : ‖yi − ŷ}| > ε

αiy αjŷ〈ΦXY(xi,yi)

−ΦXY(xi,y), ΦXY(xj ,yj) − ΦXY(xj , ŷ)〉
subject to

αij ≥ 0, i = 1, . . . , m, {∀y ∈ Y : ‖yi − y‖ > ε}.

The objective can be rewritten with kernels:

ε2

4

∑
i,y:‖yi−y‖>ε

αiy − (1/2)
∑

i, y : ‖yi − y‖ > ε
j, ŷ : ‖yi − ŷ}| > ε

αiyαjŷ[J((xi,yi), (xj ,yj))

−J((xi,yi), (xj , ŷ)) − J((xi,y), (xj ,yj))

+J((xi,y), (xj , ŷ))].

The standard linear map therefore requires
J((xi,yi), (xj ,yj)) = 〈xi,xj〉〈yi,yj〉 =

2Note that we could also simplify the optimization problem
further by splitting the constraints: i.e. minimize‖w‖2 subject to

∀i : 〈w, ΦXY(xi,yi)〉 + b ≥ ε2/8

{∀y ∈ Y : ‖yi − y‖ > ε} : 〈w, ΦXY(xi,y)〉 + b ≤ −ε2/8.

If this problem is linearly separable, then its solutionw is also a
feasible solution of (6)-(7).

3Note that with infinitely many constraints, standard duality
does not apply for our optimization problem. However, for the
purposes of the present paper, we are not concerned with this. For
practical purposes, we may assume that for anyε > 0, our data
domain has a finiteε-cover (e.g., our domain could be a compact
subset of�n). Since on a computer implementation, a constraint
can only be enforced up to machine precision, we can thus imag-
ine choosing a sufficiently smallε, which reduces our setting to
one with a finite number of constraints. Furthermore, we find ex-
perimentally that the number of active constraints is small and
scales sublinearly with the number of examples or output dimen-
sion (see Figure 1).

K(xi,xj)L(yi,yj), where K(xi,xj) = 〈xi,xj〉
andL(yi,yj) = 〈yi,yj〉 are kernel maps for input and
output respectively.

Now

w =
∑

i,y:‖yi−y‖>ε

αij [ΦXY(xi,yi) − ΦXY(xi,y)].

For certain joint kernels (that are linear in the outputs) we
can compute the matrix W explicitly to calculate the map-
ping. However, for general nonlinear mappings of the out-
put (or input) we must solve the pre-image problem (cf.
(5)):

y(x∗) = argmax
y∈Y

〈W, ΦXY(x∗,y)〉

= argmax
y∈Y

∑
i,y:‖yi−y‖>ε

αijJ((xi,yi), (x∗,y∗))

− αijJ((xi,y), (x∗,y∗)).

In the next section we discuss joint kernels, and consider
several examples that do not require one to solve the gen-
eral pre-image problem. First, let us discuss related work,
and practical implementation considerations.

Optimization Finding a solution to the above equations,
which contain an infinite number of constraints, is feasible
because in practice the solution tends to be very sparse. In
fact, the solution can be found in polynomial time if the
pre-image can be computed in polynomial time. An ef-
ficient method for the SVM for Interdependent and Struc-
tured Output Spaces was developed in [2] and can be analo-
gously implemented for Joint Kernel Maps by using an iter-
ative scheme: add the most violating example to the work-
ing set and reoptimize, repeating until completion. One
can then show that on each iteration the objective function
strictly improves and is guaranteed to terminate if the prob-
lem is separable. In practice, in our experiments we also
start withε large, and decrease it upon separability.

Related Algorithms The idea of learning maps by em-
bedding both input and output spaces using kernels was
first employed in the Kernel Dependency Estimation algo-
rithm [1], where the kernels were defined separately. This
allowed correlations to be encoded between output fea-
tures, nonlinear loss functions to be defined, and for out-
puts to be structured objects such as strings and trees [2–4]
(however, one must then solve an often difficult pre-image
problem). The method first decorrelates the outputs via
performing a kernel principal component analysis (kPCA).
kPCA yields principal componentsvl ∈ �

q, l = 1 . . . n
and corresponding variancesλl. Henceforth the output la-
bels{yi}m

i=1 are projected to the column vectorsv l to re-
trieve them principal coordinateszi ∈ �

n. This projection



results in the new estimation task

argmin
W∈�n×p

m∑
i=1

‖zi − Wxi‖2.

KDE for example performs a ridge regression on each com-
ponentzij , 1 ≤ j ≤ n to overcome overfitting. Predictions
for a new pointx� are made via predicting first the prin-
cipal coordinatesz� = Wx�, and then using the principal
components.

y� = V z�.

HereV ∈ �
q×n consists of then principal componentsvl.

In the case wheren = q the prediction performance will
only depend on the basic regression used for estimatingz �

sinceV acts as a basis transformation.

If one assumes that the main variation in the output are
according to signal and the small variances according to
noise, then it is reasonable to take the firstn principal com-
ponents corresponding to the largest varianceλ l. Alterna-
tively, instead of cutting off it is also possible toshrink the
directions according their variance.

Compared to the current work and work such as SVM-
ISOS [2], KDE has the advantage during training of not re-
quiring the computation of pre-images. On the other hand,
it requires an expensive matrix inversion step, and does not
give sparse solutions. The inability to use Joint Kernels in
KDE means that prior knowledge cannot be so easily en-
coded into the algorithm. In our experiments (see Section
5) the difference between using this prior knowledge or not
in real applications can be large, at least for small sample
size.

The authors of [10] also provide a method of using kernels
to deal with high-dimensional output regression problems
using vector-valued kernel functions. One defines a predic-
tion function as follows:

f(x) =
m∑

i=1

K(xi,x)ci

whereK(xi,xj) is aq by q matrix which in positionKs,t

encodes the similarity between training pointsi andj with
respect to outputss andt. The weightsci are henceq by
1 vectors. Although at first sight this approach seems very
complicated in terms of defining kernels, there are some
natural examples where known correlation across outputs
can be encoded. However, simply minimizing

∑
i ||yi −

f(xi)||2 yields a large, non-sparse optimization problem
with qm variables.

Considering once again classification problems, the current
work also turns out to have strong relations with the work
of [9] who employed a ranking perceptron algorithm and
a specific joint kernel on the natural language problem of
parsing (outputting a parse tree). In this case, the difficult
pre-image problem was avoided by only selecting among

n pre-selected experts (parsing algorithms). The algorithm
they used is thus similar to the one given in footnote 2,
except in their case not all possible negative constraints are
enforced, but onlyn−1 per example. Using the multi-class
SVM formulation of [5,7]:

f(xi,yi) > f(xi,y), ∀{y ∈ Y \ yi} (8)

and consideringY as some large set, e.g. of structured ob-
jects, one arrives at the formulation of SVM-ISOS [2]. Es-
sentially, this is a special case of our algorithm, where the
output is structured (discreteY) andε = 04. The authors
apply the algorithm to problems of label sequence learning,
named entity recognition and others. Our work comple-
ments this last one in helping to understand the role of joint
kernels in learning problems where one can supply prior
knowledge by way of the similarity measure. The authors
of [11] also provide a similar formulation to [2] but with a
probabilistic interpretation.

Although in this paper we do not consider structured out-
put problems, the algorithm we develop could indeed be
applied to such problems. Let us consider one such prob-
lem, machine translation: translating a sentence into an-
other language. The relation between regression and clas-
sification in this framework is an interesting one. On the
one hand, one could argue that one desires separability, to
return the correct pre-image (sentence) on the training set.
This is the approach of [2]. On the other hand, to classify
one sentence as correct, and all others as wrong as in the
constraints of (8) could be dangerous because it ignores the
distance measure in the output space (other sentences may
also be plausible.) Thus even when the embedding is dis-
crete, it may make sense to treat it as regression if outputs
close in output space have the same “label.” Although the
authors of [2] try to fix this problem with an adaptive soft
margin approach, theε-insensitive approach of the current
paper would preserve sparsity.

4 Joint Kernels

A joint kernel is a nonlinear similarity measure between
input-output pairs, i.e.,J((x,y), (x′,y′)) where(x,y) and
(x′,y′) are labeled training examples,5

J((x,y), (x′,y′)) = 〈ΦXY(x,y), ΦXY(x′,y′)〉,
whereΦXY is a map into a dot product space. All functions
J((x,y), (x′,y′)) that take this form are positive definite,
and all positive definite kernelsJ((x,y), (x′,y′)) can be
written in this form. This follows directly from the cor-
responding statements for kernelsk(x,x′) (see, for exam-
ple, [12]). The point of a joint kernel is to describe the

4Ignoring the normalization conditions on the output which
come from our original derivation, as discussed previously.

5Note there is nothing stopping us considering not just pairs
here but also kernels onn-tuples, e.g., of the form(x,y, z).



similarity between input-output pairs by mapping pairs into
a joint space. A joint kernel can encode more than just
information about inputs or outputs independent of each
other: it can also encode known dependencies/correlations
between inputs and outputs. Joint Kernels have already be-
gun to be studied ( [8], [2]); however, so far only discrete
output spaces and structured outputs (such as sequences)
were considered. One of the problems with Joint Kernels
is that only for a subset of possible kernels can one com-
pute the pre-image easily. In [2] kernels on sequences are
chosen that are amenable to dynamic programming. Al-
though some methods for speeding up pre-image computa-
tions exist [13, 14], this remains a difficult problem. In the
following we describe some kernels which avoid complex
pre-image problems.

Tensor Product Kernels A kernel that does not encode
any correlations can be obtained by using the product

JLINEAR((x,y), (x′,y′)) = K(x,x′)L(y,y′)

= 〈ΦX (x), ΦX (x′)〉〈ΦY(y), ΦY (y′)〉
whereK andL are respectively kernels on the inputs and
outputs. IfK andL are positive definite, thenJ will be,
too; moreover, the associated feature space is known to be
the tensor product of the individual feature spaces.

An interesting special case is whenL is a linear kernel. In
that case

WLINEAR =
∑

i,y:‖yi−y‖>ε

αijΦX (xi)y�
i − αijΦX (xi)y�.

When dim(X ) or dim(Y) are very large it can be more ef-
ficient to avoid the calculation of W and calculate a test
prediction directly:

WLINEARx =
∑

i,y:‖yi−y‖>ε

αijK(xi,x)y�
i −αijK(xi,x)y�.

Hence we avoid difficult pre-image problems in this case.

Diagonal Regularization Consider the case where
dim(X ) = dim(Y), and it is known that one is looking for
a linear map where the true matrix W is close to the identity
map. Slightly more generally, one may know that then th

dimension of the input is correlated with then th dimension
of the output. Instances of such problems include decoding
mass spectrometry (mapping from observed to theoretical
spectra) and image mapping problems (deblurring, morph-
ing, etc.). This correlation can be directly encoded:

JDIAG((x,y), (x′,y′)) =

(1 − λ)K(x,x′)〈y,y′〉 + λ
[ q∑

k=1

xkx′
kyky′

k

]
(9)

whereλ controls the amount of encoded correlation. Ifλ
is large, then thenth dimension in the input is presumed
highly correlated with thenth dimension in the output, and
the similarity measure is dominated by these relationships.
Algorithms that minimize the Frobenius norm choose these
dimensions as relevant. Furthermore, the solution is still
linear (does not require a pre-image) because we can write

WDIAGx = (1 − λ)WLINEARx +

λ
∑

i,y:‖yi−y‖>ε

αij [DIAG(xiy�
i ) − DIAG(xiy�)]x.

whereD = DIAG(M) is a diagonal matrix withDii =
Mii.

Patch-Wise Correlation. The natural generalization of
the previous kernel is when you know that then th dimen-
sion of the output is strongly correlated with a known set
of dimensions in the input; e.g., for mappings between im-
ages, one could know that a region in the output image is
strongly correlated with a region in the input image. This
knowledge can be encoded with the kernel

JPATCH((x,y), (x′,y′)) = (1 − λ)K(x,x′)〈y,y′〉

+λ

|P|∑
k=1

[ ∑
p∈Pk

xpx′
p

∑
p∈Pk

ypy′
p

]
(10)

whereP is the set of known correlated patches. This en-
codes patch correlation between dimensions inx, between
dimensions iny, and correlation between input and output,
i.e. betweenx andy.6 The evaluation on a test example
can be expressed as:

WPATCHx = (1 − λ)WLINEARx

+λ
∑

i,y:‖yi−y‖>ε

αij [
|P|∑
k=1

Pk(xiy�
i ) −

|P|∑
k=1

Pk(xiy�)]x

whereP = Pk(M) is a matrix such thatPij = Mij if
i ∈ Pk or j ∈ Pk (if i or j are in thekth patch), orPij = 0,
otherwise.

Image Reconstruction. Consider the problem of image
reconstruction. For example, in a problem of digit recon-
struction one should predict the bottom half of a digit given
its top half. The authors of [1] solved such a problem with
the KDE algorithm. The input and output kernels,K and
L, used by that algorithm are separate and the algorithm is
not given in advance prior knowledge that the two images
are related, i.e. that their concatenation creates a single im-
age. The kernels used were

K(x,x′) = exp(−‖x− x′‖2/(2σ2))
6One can introduce a weighting function over the patches, cor-

responding to the assumption that the closer the pixels are, the
more reliable is their correlation, cf. [12, Eq. (13.21)].



L(y,y′) = exp(−‖y − y′‖2/(2(σ∗)2)) (11)

In that work it was apparent that sometimes in the middle of
the digit this approach can cause some “glitches” when the
two halves are connected together. A simple joint kernel
such as

JRBF((x,y), (x′,y′)) = exp(−‖(x,y)−(x′,y′)‖2/(2σ2))

(i.e. concatenating the images together, and then taking
the RBF kernel) could capture more of the problem than
taking the product of the kernels in (11). The joint ker-
nel given here would take into account nonlinearities be-
tween pixels of input and output dimensions. To improve
this method further, invariances could also be encoded into
the kernel, e.g. by concatenating the input and output im-
ages and then taking into account rotations, translations,
etc. A local polynomial kernel [5] which takes encodes
spatial information within the image would also help to en-
code the mapping between input and output; i.e., it would
encode that the pixels at the very bottom of the input are
highly correlated with the pixels on the top of the output,
as before.

5 Experiments

As said before, JKM reduces to support vector classifica-
tion and regression for particularY. We therefore only test
our algorithm on regression problems of multiple outputs,
and show how employing joint kernels can benefit in this
case. Aside from the results described in this paper, some
additional experiments in digit reconstruction can be found
on the supplemental website athttp://www.kyb.
tuebingen.mpg.de/bs/people/weston/jkm.

5.1 Artificial Problem : The Identity Map

We performed a first experiment on toy data to demonstrate
the potential of the approach. We chose a very simple prob-
lem: the input arexi ∈ Rp, each dimension drawn inde-
pendently from a normal distribution of mean 0, standard
deviation 1. The output is the same as the input,y i = xi,
i.e. the task is to learn the identity map.

dim(X ) = dim(Y) 20 30 50 75 100
JKMDIAG (λ = 1) 0.00 0.00 0.01 0.02 0.02
JKMDIAG (λ = 0.5) 0.03 0.14 0.34 0.50 0.62
JKMDIAG (λ = 0) 0.06 0.40 0.78 1.00 1.14
RR (bestγ) 0.06 0.43 0.82 1.07 1.21
k-NN (bestk) 0.92 1.09 1.27 1.40 1.47

Table 1: Mean squared error for different joint kernels en-
coding the identity map (first three rows) compared to ridge
regression (RR) andk-nearest neighbors. Incorporating
prior knowledge in the joint kernel approach(λ > 0) im-
proves generalization performance.

20 40 60 80 100
0

100

200

300

400

500

Output Dimension

N
um

be
r 

of
 S

V
s

λ=0
λ=0.5
λ=1

20 40 60 80 100
0

100

200

300

400

Training points

N
um

be
r 

of
 S

V
s

λ=0
λ=0.5
λ=1

Figure 1: Number of Active Constraints (Support Vec-
tors) on Artificial data varying output dimension (left)
and training set size (right).

We comparedk-nearest neighbor and ridge regression with
our approach. For the former (k-NN and RR) we chose the
best possible parameters, for the latter (JKM) we show the
results for the identity-map regularizing joint kernel (9) for
λ = 0, 1

2 and1, with ε = 0.5√
p . Forλ = 0 the set of possible

linear maps is free; forλ = 1 only linear maps that are
diagonal matrices are considered.

The mean squared error forp = 20, . . . , 100 features are
given in Table 1, with 20 examples for training and 100 for
testing, averaged over 20 runs. A Wilcoxon signed ranked
test confirms that the two kernels withγ > 0 outperform
the other techniques. Further experiments adding noise to
the dataset (not shown) yielded similar conclusions. Fig-
ure 1 shows the number of active constraints (support vec-
tors) for varying output dimensions with training size 20
(left) and varying training set sizes with output dimension
20 (right). The solutions are relatively sparse (consider that
dual ridge regression [15] usespm variables forp outputs
andm examples). Note that larger values ofλ (where the
capacity of the set of functions is lower) have less active
constraints.

5.2 Mass Spectrometry : Prediction of Peptides

An important application of protein mass spectrometry
(MS) is to identify proteins in a complex mixture, e.g.
blood taken from a patient. In this technique, proteins are
ionized and transferred to the gas phase. Their mass to
charge ratio can be measured by directing them to an ion
detector using an electric field, and this measurement can
be used to infer protein identity. In practice, the protein is
first dissolved into peptides using an enzyme. These pep-
tides are of varying lengths up to about 20 amino acids.
The peptides are run through an MS device, further frag-
mented, and subjected to a second MS analysis. The final
result is one spectrum per peptide, in which the x-axis is the
mass-to-charge ratio (m/z) and the y-axis reflects the abun-
dance of subpeptides with the given m/z. This spectrum
thus contains information about the peptide sequence, and
can be used to identify the protein from which the peptide
was cleaved.



INPUT OUTPUT JKMPATCH JKMLINEAR RR (bestγ) k-NN (bestk)

Figure 2: Prediction of smiling face given plain expression
by joint kernel maps (patch and linear) and ridge regression
andk-NN. The large dimensionality means there are many
solutions with low empirical error, RR (after choosing the
optimal regularization constant) selects one that uses many
(irrelevant) inputs due to its regularizer||w||2 which favors
non-sparse solutions. Only the Patch-Kernel Joint Kernel
Map is successful, as the choice of (joint) kernel limits the
possible choice of functions to ones which are close to the
identity map.

The problem is, given such a spectrum, to infer the peptide
that generated it. Hence the problem is to map from a spec-
trum to a string. We used a dataset taken from [16] with a
training set of 290 spectra, and a test set of 1277 spectra.

JKM− JKM−
PATCH LINEAR RR k-NN

(λ = 0.95) (λ = 0) (bestγ) (bestk)
Test error 10.98 40.7 29.6 49.7

±0.50 ±0.96 ±0.78 ±1.28

Table 2: Test error (mean rank of true peptides) on the Mass
Spectrometry Problem.

As stated before, JKM generalizes to the case of non-
vectorial outputs via the (joint) kernel trick, effectively
defining an embedding space via the joint map. For each
peptide in our database the peaks that could be observed in
a mass spectrum are known, and are represented as 1000-
dimensional vectors. Similarly, the input (the observed
spectra) is a vector of the same length. We therefore use
the diagonal regularization kernel (9) to encode the prior
knowledge that the input vector is a noisy variant of the
output vector. The quality of a given predictor is inversely
proportional to the rank assigned to the true peptide in the
ranked output. We use this rank as our performance met-
ric. Here,Y is the set of known spectra in the database,
|Y| = 1567, andε = 0. As shown in Table 2, the diago-
nal kernel outperforms conventional regression techniques
(RR andk-NN) even when using their best choice of hyper-
parameters chosen using the testing set. This preliminary
result gives us a hint at the improvement one can get from
both encoding information about the known classes in the
output space and via encoding knowledge about the map.
Note that using existing kernels such as the string kernels
used in [2] to represent the outputs would be unlikely to im-
prove this result, because then the joint representation with
the inputs would not be possible. We aim to more deeply
explore this application in future work.

5.3 Image Mapping: Learning to smile

We consider the problem of mapping from the image of a
face with a plain expression to an image of the same person
smiling using images from the MPI face database [17, 18].
We use 20 examples for training, and 50 for testing. The
images are156 × 176 = 27456 pixels. We selected a
small number of training examples because in this setting
the weakness of existing methods was further exposed.

We applied a joint kernel mapping using the tensor product
(linear) kernel (ε = 0.05) and the patch-wise kernel (10)
with γ = 0.95, ε = 0.1 and patches of size10 × 10 which
overlap by 5 pixels. Training took 344 and 525 steps of
adding a single violating example for the linear and patch
kernels, resulting in 150 and 162 support vectors, respec-
tively. Again, we compared with conventional regression



techniques, choosing their best possible hyperparameters.
A naive employment of ridge regression on this task fails,
outputting a kind of “average” face image, independent of
the input, see Figure 2. The large dimensionality means
there are many solutions with low empirical error, RR (after
choosing the optimal regularization constant) selects one
that uses many (irrelevant) inputs due to its regularizer.
Similarly, k-NN cannot solve this problem well for small
sample size. See Figure 2 for example images, and Table 3
for mean squared error rates comparing all these methods.
By way of comparison, the baseline of simply predicting
the input image as the output (the plain expression) gives a
test error of0.1823 ± 0.003. The complete test set can be
viewed at the supplementary web site.

JKM− JKM−
PATCH LINEAR RR k-NN

(ε = 0.1) (ε = 0.05) (bestγ) (bestk)
Test error 0.142 0.227 0.222 0.244
Test error ±0.002 ±0.006 ±0.006 ±0.006

Table 3: Test error on the smiling problem of the MPI face
database.

5.4 Conclusions

In this work we presented a general method of supervised
learning via joint kernel mappings, and showed how such
kernels can encode certain regularization properties which
reflect prior knowledge in mappings. While the experi-
ments shown here used only simple types of joint kernels
taking advantage of patch-wise information, these exam-
ples are only an instantiation of our approach, to show its
validity and to bring insight into why and how joint ker-
nels are useful. Joint kernels are mainly useful in cases
where their pre-image is easily computable, and are extend-
able to complex outputs such as strings, trees and graphs.
Indeed, we believe the gain of joint kernel methods is in
employing such complex structured outputs that go beyond
standard classification and regression such as in parsing,
machine translation and other applications. In those cases
the difference between coding prior knowledge into a joint
kernel and using two separate kernels for input and output
could potentially be large, at least in the small sample size
case. Although first studies in some of these areas have
been completed [2, 9], no study that we know of has yet
directly compared this benefit.

Future work should also address issues of efficiency (effi-
ciency of training, pre-images for more complex nonlinear
and structured kernels), and to more deeply explore appli-
cations of these results.
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