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Multivariate Regression with Stiefel Constraints

Gokhan H. Bakir, Arthur L. Gretton, Matthias O. Franz, and Bernharddabpf

Abstract. We introduce a new framework for regression between multi-dimensional spaces. Standard methods
for solving this problem typically reduce the problem to one-dimensional regression by choosing features in the
input and/or output spaces. These methods, which include PLS (partial least squares), KDE (kernel dependency
estimation), and PCR (principal component regression), select features based on different a-priori judgments as
to their relevance. Moreover, loss function and constraints are chosen not primarily on statistical grounds, but
to simplify the resulting optimisation. By contrast, in our approach the feature construction and the regression
estimation are performed jointly, directly minimizing a loss function that we specify, subject to a rank constraint.

A major advantage of this approach is that the loss is no longer chosen according to the algorithmic requirements,
but can be tailored to the characteristics of the task at hand; the features will then be optimal with respect to
this objective. Our approach also allows for the possibility of using a regularizer in the optimization. Finally, by
processing the observations sequentially, our algorithm is able to work on large scale problems.




1 Introduction

The problem of regressing between a high dimensional input space and a con-
tinuwous, univariate output has been studied in considerable detail: classical
methods are described in [1], and methods applicable when the input is in a
reproducing kernel Hilbert space are discussed in [2]. When the output dimen-
sion is high (or even infinite), however, it becomes inefficient or impractical
to apply univariate methods separately to each of the outputs, and specialized
multivariate techniques must be used. Examples include

e regression to subsets of R? for large d, where for instance we might wish to
predict properties of a manufactured product on the basis of the machinery
settings [3];

e regression to a reproducing kernel Hilbert space, which can be used to
recover images from incomplete or corrupted data; or as a means of clas-
sification, through mapping to a suitable output space [4];

e regression between discrete spaces, such as finite state automata [5] and
graphs [6], on which similarity measures may be defined via kernels.

We propose a novel method for regression between two spaces F, and F,, where
both spaces can have arbitrarily large dimension. Our algorithm works by choos-
ing low dimensional subspaces in both F, and F,,and finding the mapping be-
tween these subspaces for which a particular loss is small." There are several
reasons for learning a mapping between low dimensional subspaces, rather than
between F, and F, in their entirety. First, 7, and F, may have high dimension,
yet our data are generally confined to smaller subspaces. Second, the outputs
may be statistically dependent, and learning all of them at once allows us to
exploit this dependence. Third, it is common practice (for instance in principal
component regression (PCR)) to ignore certain directions in the input and/or
output spaces, which decreases the variance in the regression coefficients (at the
expense of additional bias): this is a form of regularization.

Given a particular subspace dimension, classical multivariate regression meth-
ods use a variety of heuristics for subspace choice.? The mapping between sub-
spaces is then achieved as a second, independent step. By contrast, our method,
Multivariate Regression via Stiefel Constraints (MRS), jointly optimises over
the subspaces and the mapping; its goal is to find the subspace/mapping com-
bination with the smallest possible loss. Drawing on results from differential
geometry [7], we represent each subspace projection operator as an element
on a Stiefel manifold. Our method then conducts gradient descent over these
projections.

On small-scale problems, the subspace/mapping estimation problem may be
solved using a batch method, in which optimisation is carried out over the en-
tire data set. When the data set is large, however, this can have prohibitive

IThe loss is specified by the user.

2For instance, PCR generally retains the input directions with highest variance, whereas
partial least squares (PLS) approximates the input directions along which covariance with
the outputs is high.



computational and memory requirements. For such cases, we propose an online
variant of our algorithm, called Sequential Multivariate Regression via Stiefel
Constraints (S-MRS), which processes a series of small subsets of the data,
rather than requiring all of it at once. The sequential approach has two ad-
vantages: it allows us to easily update our prediction in the light of new ob-
servations, and to learn from large data sets by breaking the problem down
into smaller learning tasks. The choice of subspaces and mapping must then
be constrained, in that both are not permitted to change too much from those
previously learned. This ensures we do not disregard past observations when
given new data. The similarity of the new solution to the prior solutions is
enforced using a regularizing term,® which is added to the original batch-based
loss.

We begin our discussion in Section 2 with some basic definitions, and give a
formal description of the multivariate regression setting (both batch and sequen-
tial). We then summarise various classical methods for multivariate regression
(PLS, PCR, and KDE) in Section 3. In each case, the relevant subspaces in
Fr and F, are described, and the heuristics used to determine these subspaces
are elucidated. Next, in Section 4, we introduce the MRS procedure for both
the L; and L, losses, and the S-MRS procedure for the Ly loss. The sets X
and Y in which our inputs and outputs respectively exist may not correspond
to F, and F,; thus, in Section 5, we describe mappings from X to F,, and
from F, to Y. Finally, in Section 6, we apply our method in three settings: an
inverse kinematics problem for a robot arm, a (relatively) low dimensional im-
age denoising application (restoring partly corrupted hand-written digits), and
a high dimensional image denoising transformation (restoring corrputed images
of faces). The first two experiments are a test of the batch algorithm, while the
final one demonstrates the sequential version.

2 Problem setting and motivation

2.1 General description, batch setting

We first describe our regression framework in more detail, and introduce the
variables we will use. We begin in the present section with the batch method,
and then describe the online setting in Section 2.2. We are given m pairs of input
and output variables, z := ((x1,¥1),...,(Xm,¥m)), where x; € F, y; € Fy,
and J, and Fy are reproducing kernel Hilbert spaces with respective dimension
I, and I, (we assume for the moment that these are finite; the implications of
these being infinite, as in the RKHS associated with the Gaussian kernel, will
be addressed later in Section 5). We write the matrices of centered observations
as
X := [ X] ... Xm ]H, Y = [ Yi .- ¥Ym ]H,

3This regularization should not be confused with the regularizer used in ridge regression,
which can also be used to constrain the solution obtained for each data subset; or indeed for
the entire data set in the batch case.



where H :=1 — %11—'—, and 1 is the m x 1 matrix of ones.

We now specify our batch learning problem: given observations X and Y, a
loss function L(Y, X, F(,)), and a regularizer Q  (this can for instance be a 2-
norm as in ridge regression: see Section 4.4), we want to find the best predictor
F(;), defined as

Foy = guin L(Y, X, G) + Q(G), (2.1)
where
Hiy:={F € F,7 |rank F = r} (2.2)

and F,”* denotes the set of mappings from F, to F,. This rank constraint is
crucial to our approach: it allows us to restrict ourselves to subspaces smaller
than those spanned by the input and/or output observations, which can reduce
the variance in our estimate of the mapping F(,) while increasing the bias.
We select the rank that optimises over this bias/variance tradeoff using cross
validation.

As we shall see in Section 4, our approach is not confined to any particular
loss function. That said, in this study we address only the least squares loss
function,

L(Y,X,F(y) = [[Y —F X7, (2.3)
and the L; loss,
L(Y,X,Fi)) = > llyi—Fxill (2.4)
=1

We now transform the rank constraint in (2.1) and (2.2) into a form more
amenable to optimisation. By diagonalizing the predictor F,) via its singular
basis, we obtain

Foy = ViSmWem ', (2.5)
where
V(T)TV(T) = L, (2.6)
W(T)TW(T) = I, (2.7)
S € diagonal R™*". (2.8)

In other words, W, € S(I,,r) and V() € S(I;,r), where S(n,r) is called the
Stiefel manifold, and comprises the matrices with n rows and r orthonormal
columns. In the L, case, finding a rank constrained predictor (2.5) is thus
equivalent to finding the triplet 6 = (V (., S(,), W) for which

0 = arg min ||Y - V(T)S(T)W(T)TX”%, (2.9)
Vir)iS)sWir)



subject to constraints (2.6)-(2.8)*. We will refer to W,y and V., as feature
matrices.

It is clear from (2.9) that W,y and V(,) determine particular subspaces
in F, and F, respectively, and that the regression procedure is a mapping be-
tween these subspaces. A number of classical multivariate regression methods
also have this property, although the associated subspaces are not determined
according to the criteria we propose. In Section 3, we will review the subspace
selection methods used in three established regression algorithms, before return-
ing in Section 4 to the solution of (2.9). First, however, we describe the online
framework used in S-MRS.

2.2 Online setting

In the sequential case, we do not observe the examples all at once: rather, at
every time instance k, we obtain only m observations. These are written as

Xk = |: Xk, cer Xp,, :| , Yk = |: Yk, e Yio, :| y and Zk = [Xk;Yk].

The online setting requires (2.1) and (2.2) to be slightly modified: thus, for a
particular G € H,), we can define a loss L(Zg,G) measuring the prediction

error of G on Zj, and a regularization functional Q,(G, FE’:)_ 1)) that penalises

large differences between G and a reference mapping Fgf)_ D We then want to

find the best predictor FE':)) , defined as

F() = argmin £(Z,G,F{5 ") (2.10)
GEH(T)

= argmin L(Z;, G) + (G, Fi5 V). (2.11)
GEH(T)

We may understand the purpose of Q, by reference to the (non-sequential)
ridge regression method, for which Fgf)_ D~ 0 and

Q,(G,0) = |G| = Q(G) :

in this case the regularization prevents the norm ||G||% from growing too large
(see (2.1), in which Q4(G) is used in this manner). In the online case, the
reference mapping is the solution FE’;)_ D obtained previously, in keeping with
our goal of choosing a new mapping close to the former solution. By way
of comparison, the Kalman-Bucy filter can also be written in the form (2.10)
with an analogous reference mapping [9]. The specific form taken by Q, in our
multivariate regression setting will be described in Section 4.5.

We again transform the rank constraint in (2.10) using the decomposition in
(2.5) and (2.6)-(2.8). Thus, for the kth set of observations, finding a rank con-
strained predictor (2.5) is equivalent to finding the triplet 8 = (V(,, S(ry, Wy))

4This is a more general form of the Procrustes problem [8], for which F(,) is orthogonal
rather than being rank constrained.



for which

6 = arg min ,C(V(T)S(T)W(T)T,ng_l)) (2.12)

T)
V)sSe) Wi

subject to constraints (2.6)-(2.8).

3 [Existing Multivariate Techniques

In this section, we describe PCR, PLS, and KDE, paying particular attemtion
to the way in which a small number r of features is chosen, and how these
are used to construct the mapping F(,) (the features may be chosen in the
input or output spaces, depending on the algorithm; the rank of the mapping
is unaffected). We consider only the batch case for each algorithm. Since each
of these methods relies on the Ly loss in (2.3), we begin with a description of
the least squares solution associated with this loss, and demonstrate how this
solution changes when the inputs are projected onto a small number of features.
This solution is then used as a basis for principal component regression (PCR)
and partial least squares (PLS), although the choice of features differs between
these algorithms. Finally, we describe kernel dependency estimation (KDE), in
which features are chosen in the output space.

3.1 Least squares regression in a restricted basis

The multivariate least squares solution is equivalent to I, separate univariate
problems; thus, we first describe the univariate case. We wish to solve

b{, = arg mgn ||y - XTW(,,)bH2 , (3.1)

wherey” = [ y1 ... ym ] H, and the solution f,y* := Wby, is expressed
in terms of a linear combination of the columns of W,y (i.e., the features) with
coefficients b. Taking the derivative with respect to b and setting this to zero
yields

* T -t T
bl = (Wi " XXTW() W) "Xy,

and thus
£, = Wiy (W, TXXTW _lw ™x 2
(n = (r)( (r) (r)) () &Y. (3.2)

It helps in interpreting the features if the columns of Wy, are orthogonal or
conjugate, but this is certainly not required. In particular, all that matters is
the subspace spanned by the columns of W(,), in that we can replace W, by
U, := W(,,C for any invertible matrix C and still get the same f(T)*.



We now describe the multivariate case. In the absence of any restriction of
the input to a subspace, we would solve

F* = arngin||Y—FX||§, (3.3)
lCU

= Y llvi —£7x° (3.4)
k=1

where y, and f;] denote the kth row of Y and F respectively, and F is I, x .
An important point to note in (3.4) is that each coordinate in the output y is
predicted entirely using a particular row in F. A least squares solution is thus

F) " = (xXXT) XY,

which is the concatenation of the separate least squares solutions for the I,
individual rows of Y. We can again project the input X onto W,; the least
squares solution is then

T -1
()" =Wy (W 'XXTW(y) Wiy TXYT, (3.5)
which has rank at most r.

3.2 Principal component regression

The simplest method of selecting features in the input space is principal com-
ponent regression. We write the singular value decomposition of X as

S 0 U,
X=[ W, W, () H o) ]
[ (r) (r) 1 ] [ 0 S(r)J_ U(T)J_T

where the r largest singular values are in S(;), and the [, — r smallest in S, .
We can approximate X using only

X T
X=WuSnUe >

where we retain the directions of X with highest variance (which are assumed
to have greatest significance in predicting y). The features W, are then used
in (3.5).

3.3 PLS in one and more dimensions

The method of partial least squares [10] is widely applied in chemometrics, where
it is known to perform particularly well in cases where the input data are highly
colinear. Our discussion in this section largely follows [11, 3]. A modification in
which PLS is performed in the dual was proposed in [12], and the algorithm was
kernelised in [13, 14] for use when F, is a reproducing kernel Hilbert space. To



our knowledge the present paper is the first that deals with kernelised multiple
outputs.

We again start with the one-dimensional case, since it forms the basis of
the multidimensional algorithm. We give two descriptions of the feature matrix
W :=[ w1 ... w; | obtained: the first, which is by far the best known,
uses orthogonal features, whereas in the second the features are conjugate with
respect to XXT. The subspaces spanned by the features are in both cases
identical, however. We initialise with X, := X, and begin at ¢ = 1. We then
iterate the following steps over 4.

w; = X;1y (36)
ti = X;';lwz (37)
tit]
X; = X (I-—= .
7 i—1 ( t;rti) (3 8)

A useful result is that the t; are mutually orthogonal.® In addition (3.8) can be
rewritten more compactly as

X; = [1- T, (T Tw) TH] X (3.9)

It is proved in [11] that following r iterations, PLS predicts the output at new
observations using (3.2).

A motivating heuristic often employed to justify PLSE is that the covariance
between input and output is used to weight each component of x when predicting
y. This is certainly true of the choice of the first feature w; = X Ty, which is
equal to this covariance. This explanation is less useful in subsequent iterations,
however, since the features w; are not chosen by projecting out W;_; from X,
and computing the covariance’ using this deflated X (that said, it is easy to
prove® X; is orthogonal to w; for all j < i, and that the w; are mutually
orthogonal).

i to k!
5 Proof: After j > 1 steps, X(i+j—1) — X(i—l) H;;zﬂ 1 (I— t%;?&)). Thus the rows

of X(;4;-1) are orthogonal to each of {t(i), e ,t(i+j,1)} (a special case being j = 1, and
X (;) having rows orthogonal to t(;)). Then since t(; ;) is a linear combination of the rows of
X (i4j—1) (from (3.7)), it follows that t(;) is orthogonal to t(; ;) for all j > 1.
6Note that PLS was originally derived in terms of a factor model, in which an underlying
variable t is assumed to generate x and y. This motivation justifies the deflation procedure,
but gives an incomplete view of the predictive performance.
"If we did project out the previous w, our update (3.8) would become X@ =
W(i)WT- y(i)f-T NN
<I - T—(’)) Xi-1) = X@-1) (I - T—”), thus the intuition that the features max-
Wi W) Yt
imise the covariance is only true to the extent that t approximates y. The SIMPLS algorithm
[15] in fact updates X by projecting out w, although this algorithm also uses a deflation on
y which causes it to return the same features w as NIPALS.
toot toot
8 Proof: After one step, X?;)w(i) = (I — tiﬁ%) Xz;_l)w(i) = (I — tif;i’(i)
follows from (3.6) that w; ;) is orthogonal to w ;).




In the univariate case, there is a more satisfying explanation for PLS pefor-
rmance than the above heuristic, which is that PLS yields an indentical solution
to conjugate gradient (CG) descent [16] on ||y -XTf ||2 , with respect to the
mapping f. The CG method builds a feature matrix D(;) by setting each dit1
as close as possible to the direction of steepest descent at the present solution

-1
fs) = Dg (DZ;)XXTD(,-)) D&)Xy, subject to being conjugate to all the

columns in D(; with respect to XX . The solution returned after r steps is
then obtained by setting W,y = D, in (3.2). The choice of conjugate features
D(,) helps to explain the good performance of PLS when the inputs are highly
colinear,? and these features serve a clear purpose in minimising the loss (being
approximately aligned with the directions of steepest descent). A property of
the CG method is that the columns of W, are equal to the terms of the rth
order Krylov sequence K(,)(X "X, X Ty), meaning

Wiy =] (XTy) (XTX)(XTy) ... (X7X)7'(XTy) |.

The simplest method for generalising to the multivariate case is to perform
univariate regression on each output variable: indeed, this was found to outper-
form the multivariate NTPALS algorithm in [3]. This approach is obviously not
feasible when [, is very large; thus regression to a lower dimensional subspace
in Fy is required. There are several multivariate PLS methods that accomplish
this task. We describe NIPALS, which is the most widely used. Features are
generated as follows:

w; = arg”rvrvllzlliclw—rxi,lYTYX;r_lw (3.10)

ti = X ,w (3.11)
it

X, = X, (I—t;;’) (3.12)
i Ui

We note that w; is equal to the left singular vector of the empirical covariance
X;_1YT, rather than using (3.6). Thus, writing as 1; the corresponding right
singular vector, the projections of X; and Y onto w; and 1; respectively have
the largest covariance of any possible such projections. This conforms to a
common intuition behind PLS in a single dimension, namely that features are
chosen so as to maximise covariance between input and output. The deflation
procedure again belies this interpretation, however, in that we do not project
the features w out of X. We again set W(,) = W, after r iterations, and
use (3.5) in predicting y* for a test point x* [3, Theorem 3.2]. The w; remain
mutually orthogonal (as do the t;), which is shown using the same method as in
the univariate proofs. To our knowledge, however, there is no established link
between multivariate PLS and conjugate gradient descent.

9A conceptually similar method to improve performance on colinear data is to use orthog-
onal features following a pre-whitening step. This is not always numerically stable, however.



Finally, we remark that the maximum singular value of the covariance be-
tween input and output has a useful interpretation when F, and F, are RKHSs
with universal kernels (that is, the RKHSs must be dense in the space of con-
tinuous functions on X and Y respectively, which is true for instance of those
induced by the Gaussian kernel; see [17]). This property is described in the
following theorem.

Theorem 1 (The maximum singular value is zero at independence).
Defining the unit balls F : {f € F : ||fII<1} and G : {g€G : ||g]| <1},
where the reproducing kernel Hilbert spaces F and G have universal kernels,
then

sup _cov(f(x)g(y)) =0 (3.13)
fEF,9€G

if and only if the random variables x,y are independent.

This theorem is proved for the case of the Gaussian kernel in [18], and for the
general case in [19]. This result implies that PLS chooses its features so as to
maximise a general measure of statistical dependence, when mapping between
universal RKHSs.

3.4 KDE

The kernel dependency estimation method [4] differs from the previous algo-
rithms in that the features are defined in the output space. These features,
which we denote as the r columns of a matrix V), correspond to the left
singular vectors of Y with r largest singular values; it is thus assumed that
the directions of Y with largest variance will most easily be predicted from X.
This projection reduces our problem to an r dimensional multivariate setting,
where we wish to predict C := V(T)TY; the output y* at some new x* is found
by first computing ¢*, and then setting ¥* = V(yc*. Since r < [, the pre-
diction of ¢ may accomplished via univariate ridge regression on each of its r
dimensions. The ith output projection ¢} is thus found using ¢} = x " b}, where

b} := argminy, ||c, — Xsz-||2 + Qq4(b;), and Qg is a regularizer. The mapping
T
from F, to Fy is then F()" := V() (By,)) , where By, == b ... b;].

4 Multivariate Regression via Stiefel Constraints

We return now to the original multivariate regression setting in Section 2, and
present a direct solution of the optimisation problem defined in (2.1) and (2.2).

We begin by noting that the alternative statement of the rank constraint
(2.2), which consists in writing the mapping F, in the form (2.5), still leaves
us with a non-trivial optimisation problem (2.9). To see this, let us consider an
iterative approach to obtain an approximate solution to (2.9), by constructing
a sequence of predictors F(,) ,..., F(,), such that

L(X7Y7F(r)z) > L(XaYaF(r)H_l)' (41)



We might think to obtain this sequence by updating V;i1,S;4+1 and W,
according to their free matrix gradients % 0;5 % 0;, and % ; respectively,
where 6; denotes the solution (V;, W;,S;) at the ith iteration (i.e., the point
at which the gradients are evaluated). This is unsatisfactory, however, in that
updating V and W linearly along their free gradients does not result in matrices
with orthogonal columns.

Thus, to define a sequence along the lines of (4.1), we must first show how to
optimise over V and W in such a way as to retain orthogonal columns. As we
saw in Section 2, the feature matrices are elements on the Stiefel manifold; thus
any optimisation procedure must take into account the geometrical structure
of this manifold. The resulting optimisation problem is non-converz, since the
Stiefel manifold S(n,r) is not a convex set.

In the next section, we describe how to update V and W as we move along
geodesics on the Stiefel manifold S(n,r); in the two sections that follow, we use
these updates to conduct the minimisation of the Ly and L; losses respectively
in the absence of regularization. We introduce regularisation for the batch case
in Section 4.4, and describe the online algorithm in Section 4.5.

4.1 Dynamics on stiefel manifolds.

We begin with a description of the geodesics for the simpler case of S(n,n),
followed by a generalisation to S(n,r) when n > r. Let O(n) denote the group of
orthogonal matrices. Suppose we are given a matrix V(¢) € O(n) that depends
on a parameter ¢, where V(t) describes a geodesic on the manifold O(n). Our
goal in this subsection is to describe how V(¢) changes as we move along the
geodesic. Since O(n) is not only a manifold but also a Lie group (a special
manifold whose elements form a group), there is an elegant way of moving
along geodesics which involves an exponential map. We will give an informal
but intuitive derivation of this map; for a formal treatment, see [7, 20]. We
begin by describing a useful property of the derivative of V(t);

I = V@#)TV(Q®),
d

0 = E(V(t)TV(t)),
0 = (%V(t))TV(t)+V(t)T(%V(t))a
0 = Z(t)' +Z(@),
with
7t = V)T (Lv)). (4.2)

dt

The matrix Z(t) is skew symmetric, which we write as Z(t) € s(n,n), where s
consists of the set of all skew symmetric matrices of size n X n.

We next consider curves corresponding to 1-parameter subgroups of O(n); in
other words, curves satisfying V(0) =T and V(t+s) = V(t)V(s) (in particular,

10



V(t)~! = V(=t)) for all s,t. For our group O(n), we can obtain such a subgroup
by fixing an n-dimensional axis and considering all matrices describing rotations
around that axis. In this case, the parameters ¢, s can be thought of as rotation
angles. Returning to (4.2) with V(¢) in this 1-parameter subgroup, we have

Z6) = VT (V(t-l—dt)—V(t))

dt
O VO)TV(@E+d) -1 V(=t)V(t+dt) -1
B dt B dt
V(dt) — V(0

- dt ) - %‘ov(t) =2(0),

which means Z(t) is constant. Multiplying (4.2) with V(¢) from the left yields
an ordinary differential equation of the form

%V(t) = V(@)Z (4.3)
with V(0) = V,
which has solution
V() = V(0)e?, (4.4)

where eZ denotes the matrix exponential [21].1° We can see from (4.3) that the
skew-symmetric matrix Z specifies a tangent at the point V(0) on the Stiefel
manifold S(n,n).

We now generalize to the case where V does not have full rank, i.e. V €
S(n,r) and r < n. We can embed S(n,r) into O(n) by extending any V € S(n,r)
with an n —r matrix V; € S(n,n —r) such that R® =V @ V. Therefore V.
spans the orthogonal complement to the space spanned by the columns of V.
Two orthogonal matrices A, B in O(n) are considered to be the same from the
viewpoint of S(n,r) if they relate as

B = [I.,,P]A (4.5)
for any matrix P € S(n,n —r). Therefore (4.3) can be written as

SOVl = VO, V.0]Z (46)
t=0

and
V() = [V(0),V.(0)]e?[L,,,0]. (4.7)

To conduct gradient descent, we need to find the tangent direction G (for use
in (4.4)) which is as close as possible to the free gradient G, since G does

10When verifying that (4.4) is indeed a solution for (4.3) note that the skew-symmetric
matrix Z is normal, i.e. ZZ" = ZT Z.

11



not in general have the factorization (4.3). The constrained gradient G can
be calculated directly by projecting the free gradient onto the tangent space of
V; see [7]. Intuitively speaking, we do this by removing the symmetric part
of GTV, leaving the skew symmetric remainder.!! The constrained gradient is
thus

G = G-VG'V. (4.8)

Finally, the skew symmetric matrix Z € R"*" is given by (4.2) as

(4.9)

5 _ ( GV —(GTVLT
- \GTV, 0 '

We can now describe the nonlinear update operator Tsgjefel-

Algorithm 1 (7stiefe1(V, G, t)). Given a free gradient G € R™", an orthogonal
matriz V € S(n,r) and a scalar step parameter vy, the update of V specified by
G and v can be calculated as follows:

1) Calculate constrained gradient in (4.8).

2) Calculate orthogonal basis V 1 for the orthogonal complement of V.
3) Calculate the tangent coordinates Z in (4.9),

4) V() = [V, V.i]e" (L, 0].

4.2 Multivariate regression with L, loss

Now that we have defined mstietel, we can apply a gradient descent approach to
(2.9). We first calculate the free gradients,

OLs

8—V 0; = —YXTWiSi; (4-10)
L.
g—‘;’ 9; = —XYTVZS, + XXTWZSE, (411)
oL
6_; o, = —L;0 WzTXYTVi
+ 1, 0 W/ XXTW,S,, (4.12)

where @ denotes the Hadamard (element-wise) product. The multivariate re-
gression algorithm for the L, loss is then:
Algorithm 2. MRS for Ly loss function.
Initialization
Vo=lgimr,r So=Lr» Wo=lgimz,r
60 = (Vo, S0, Wo) Firy, = WoSoVo =0

Repeat until convergence:

11 Any square matrix can be expressed as a unique sum of a symmetric and a skew-symmetric
matrix.
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1) Calculate free gradients, equations (4.10)-(4.12)
2) t;/:ﬁ%ﬁiv = arg min LQ(V(tv),S(t),W(tw))

taots b
with W (tw) = Tsticfer (Wi, 2% o, tw),
V(tv) = mstieset(Vi, 3o, tv), and
S(t) = Si +ts %),
8) Vip =V(ty), Witn=W(tw), Sit1 =5(t5)
4) Foyipr = Vi SipaWi
5) 0iv1 = (Vig1, Sit1, Wiyg1)
6) i=i+1
After convergence : F(py = F(y,

4.3 Multivariate regression with L; loss

The L, loss,'? given in (2.4), has the advantage that it does not weight outliers as
strongly as the Ly loss. Therefore it is significantly more robust in applications
requiring resistance to outliers, compared with Ly based methods. This loss can
be written

Li(Y,X,Fy) =1L (E© (€)1 (4.13)
with
1 x>0
£:=Y -FX, and o(z) := 0 z=0 (4.14)
-1 z<0

where the signum function o is applied to each matrix entry. Note that the
L, loss is not differentiable. To calculate the gradient, an approach taken in
the neural network literature is to replace the o function by a differentiable
approximation, which we denote as 6. A possible ¢ function and its derivative
are

6(z) :=tanh(az) and &'(z) := asech®(az) (4.15)

respectively, where a > 0 is a scaling parameter which controls the slope of the
¢ function. We can thus approximate the L; (Y, X, F(,)) function as

Li(Y,X,F() ~ Li(Y,X,F(»)) = 1, (E ©6(E)) 1. (4.16)

The free gradients can be identified as

12This loss is also known as least absolute deviation (LAD) loss.
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oL,

- = — T
5V lo Y tanh(af)
+aY (£ sech2(ozc€'))T , (4.17)
L
%|9 = _Ir,r ® (tanh(aE)XT WO
+a€ @ sech®(a€)X W) , (4.18)
oL
ﬁb = —Xtanh(aE)TSO
— aX (€ ®sech’(a&)) " So. (4.19)

We can use a monotone increasing sequence (g )g=1..., for a to make ¢ approach
0. The multivariate regression algorithm for the L; loss is then:

Algorithm 3. Stiefel regression for L
Initialization
Vo=liimr,,r So=L,;, Wo=Ilimz,
6o = (Vo, So, Wo) F(T)O =WoSoVyg 2=0
For a € (aa,...,a,) repeat until convergence:
1) Calculate free gradients, equations (4.17)-(4.19)
2) 5,5, tiw = argminl (V(tv), S(t), W(tw))

tvsts,tw
with W (tw) = Tstie fet (Wi, %W,-JW),
V(tv) = mstieset(Vi, 2£ |6, ,tv), and
S(t) = Si +tsg5le:
8) Vg1 =V(ty), Witn=W(tw), Siy1=S(ts)
4) By = Vi SipaWi
5) 0iv1 = (Vig1,Si41, Wig1)
6) i=i+1
After convergence : F(,y = F(,),

4.4 Regularization

It is easy to incorporate a regularizer Q; into the batch algorithm which pe-
nalizes the squared norm ||F(,y||* (in a manner analogous to ridge regression),
since |[F (|| = ||S||% - In the Ly case, (2.9) becomes

= argmin |[Y - VSW'X|% + )|S||%, (4.20)
F(,,.,):VSWT

subject to constraints (2.6-2.8). The only change in Algorithm 2 is to replace

the gradient %w by

o _ o
as'’ — s
In the same way, it is possible to add a regularizer in the L; case.

,TAS. (4.21)
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4.5 Online variant: S-MRS

In this section, we describe the sequential implementation of MRS, known as
S-MRS. The main difference, compared with the batch method, is the addition
to the loss of a regularizing functional'® Q,, which controls the tradeoff between
fit to the newly observed data block Z; = [Xj, Y] (presently measured with
the L, loss), and distance to the predictor Fék) D obtained from previous data
Z; with j < k (see (2.11) in Section 2.2 for more detail). Thus the regularization
functional takes the form

2
v k=1 g1 yps (k—1) T . T _ k=1 g1y (k—1)T
Q2 (V(T)S(T)W(r) (r) S(r) (7') ) = VHV(T)S(T)W(T) - (r) S(r) (r)

oL

Since Q, (and thus £) is differentiable, the free gradients %
can be calculated analytically.

The regularization parameter y controls convergence behaviour. For ex-
ample, we can increase 7y for every new block k to progressively decrease the
influence of new observations. On the other hand, a fixed v can be used to
implement adaptive behaviour if the distribution generating the observations
changes over time.

Given this choice of €,, and starting with F(,j) = I at k = 0, we can adapt

Algorithm 2 to solve (2.12) for each & > 0 and associated observation sequence
Xk,Yk:

Algorithm 4. Sequential Multivariate Regression via Stiefel Constraints (S-MRS)
T
Given data Xy, Y, a learning rate v and a reference mapping Fgf) VEf) I)S((f) I)WEf) 2
Initialization
(k—1) (k—1) (k—1)

Vo=V, " So=S5;, " Wo=Wg,

6o = (VO; SO;WO) Fo=WoSoVy 1=0
Repeat until convergence:

1) Calculate free gradients 2= o, 2 1o, and 2% 1o, .

2) ty,ts, tw = argmin L(Zy, V(tv) S(ts) W (tw), Flk- 1))

tvots tw r)
with W (tw) = Tstiefel (Wi, %lﬂiatw)’

V(tv) = mstiefer( Vi, g—6|6“tV); and

S(t) = Si +ts55le:
8) Vi1 =V(ty), Wit1=W(tyw), Sit1=5(t5)
4) Fiy1 =Vi1SitiWip
5) Oix1 = (Vit1, Sit1, Wit1)
6) i=i+1

After convergence : F,y =F;, k=k+1

13This should not be confused with the regularizer Q introduced in the previous section,
which controls ||F(,)||? for a solution obtained with a particular batch of data.
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Algorithm 4 describes a gradient descent procedure on the quantities W,V
and S. The updates of the orthogonal matrices W,V are performed using
Tstiefer defined in Algorithm 1, where 7g4;0f01 ensures that W and V always
remain in the Stiefel manifold. Note that it is possibly to similarly modify
Algorithm 3, which would yield a sequential algorithm for the L; case.

5 Nonlinear multivariate regression

So far, we have only described linear implementations of the MRS algorithm.
We now address the kernelization of this algorithm, for use when the input and
output spaces are both reproducing kernel Hilbert spaces of possibly infinite
dimension, with respective kernels k£ and I.

5.1 Nonlinear input features

One convenient way to deal with high dimensional RKHSs is to apply the kernel
PCA map [22]. That is, we calculate a new data representation x; € R™ for all
1=1...m, given as

x; = Kx?kg(zi), (5.1)

where k,(x) € R™ is a vector containing k(z,x;) for all training inputs z;.
The linear dot product xz-ij equals the nonlinear dot product k(z;,z;) by
construction, i.e. the Gram matrix Kx = XTX is equal to the kernel matrix
K x obtained with the kernel k on the training data.

5.2 Nonlinear output features

Nonlinear output features corresponding to the output kernel I can be generated
in the same way as the input features; this was proposed in [4]. As in the input
case, we use the kernel PCA map to construct explicit representations of the
outputs in RY,

vi = Ly*1,(y), (5.2)

where 1,(y) € R™ is a vector containing I(y, y;) for each training label y;. Since
we are interested in points in Y rather than in F,, we have to reconstruct
the pattern § from its estimated feature representation y € F,. The problem of
learning a mapping I' : F, — ) is known as the pre-image problem, and possible
solutions are described in [23, 24]. An overview over the final regression scheme
is given in Figure 5.1.

6 Applications

In this section, we give three examples demonstrating multivariate regression
with Stiefel constraints. The first two experiments are on relatively small-scale
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$(X) C Fo —s 4(V) C F,
¢T ¢T lr (5.3)

X Yy

Figure 5.1: Mappings between original sets &X’,) and corresponding feature
spaces JF5, Fy.

a |a|d|@
100[0[0]0
100 1(0]0
30000
2000[010
/ 200 %(0]0
2001010
100[0(0]0

Table 1: Simulated Manipulator and its Denavit-Hartenberg specification.

problems (respectively an inverse kinematics problem for a robot arm and a
hand-written digit reconstruction task), so we use MRS initialised by PLS. The
final problem is concerned with the reconstruction of face images, and involves
substantially larger data sets than the previous tasks: consequently, we apply
S-MRS.

6.1 Inverse Kinematics

We begin by demonstrating the usage of MRS on a robot control task, where
we want to predict the joint angles given a desired manipulator posture. The
kinematic chain of the robot manipulator is given by its Denavit-Hartenberg
parameters [25]; see Table 1.

We randomly generated 5000 robot postures, of which we reserevd 500 for
training. We defined our input as the complete posture information given by
the elbow position e; € R? and manipulator tip p; € R?, so x; = [e;, pi] € RS. As
output, we used the 7 joint values ¢; € R”. The input space F, was an RKHS
with an RBF kernel, k(x;, z;) = exp%””“_“”f”i while no kernel was used on the
outputs. To determine the kernel width « and the number r of features, we used
threefold cross validation over the training set. This led to v = 42 and r = 4
PLS iterations.

We initialised our algorithm using the NIPALS training scheme for PLS (see
3.10), which returned a predictor F,) prg- To do this, we decomposed F,) ,; o
into USVT via the singular value decomposition, and set Vg, Sg, and Wy to
U, 14,4, and V respectively. We see in Table 2 that MRS improves on the PLS
performance, both in terms of training error and generalization. We also see the
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Algorithm | MSE (Training) | MSE (Testing)
PLS(4) 13.57+£0.01 58.0+0.1
MRS(4) 8.96 + 0.01 53.5+0.1

RR 8.60 £ 0.01 54.0+0.1

Table 2: Comparison of PLS, MRS, and ridge regression (RR) on the inverse
kinematics task. The numbers in parentheses in the first column constitute the
rank r of the mapping.

Algorithm | MSE (Training) | MSE (Testing)
PLS@) 6.71 £ 0.01 1200 £ 4
MRS() (L) | 1.41%0.01 151+4

Table 3: Robust regression behavior due to Ly minimisation. Note that the
training error is evaluated on the uncorrupted training points.

training error obtained using ridge regression (RR) is slightly better than that
of MRS, although the test error of MRS is slightly lower than RR.

As a second example we illustrate the power of using the L; loss when out-
liers are present. We perturb joint value ¢; of a single data entry by setting
it to a very large number (1000). As a sequence in Algorithm 3, we chose
[0.25,0.5,1, 5,10, 50, 100, 500, 1000]. Results are shown in Table 3.

6.2 Image Restoration

We next demonstrate the application of MRS to an artificial image restoration
task. The goal is to restore the corrupted part of an image, given examples of
corrupted images and the corresponding clean images. The images are taken
from the USPS postal database, which consists of 16 x 16 grayscale patches
representing handwritten digits. We independently perturbed the gray values
of each pixel in the lower half of each image with Gaussian noise having standard
deviation 0.1. Our data consisted of 2000 digits chosen at random, with 1000
reserved for training.

To perform restoration, we first applied kernel PCA to extract 500 nonlinear
features from the noisy digits,'* using a Gaussian kernel of width 10. Thus the
restoration task is a regression problem with a 500 dimensional input space F,,
where we predict the entire clean digits in a 256 dimensional output space F.

In our experiments, we compared ridge regression (RR), PLS, and MRS.
We used the ridge parameter le — 6, which we optimised using 5-fold cross
validation. For our PLS solution, we used a rank 123 mapping, again finding
this optimal rank with 5-fold cross validation. We initialised MRS using a low
rank approximation to the predictor F,) .. found by ridge regression. To do

M For more detail on this feature extraction method, see [22].
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RR RR(110) | PLS(123) | MRS(110)
RMSE | 5525 0.1 | 554.9+£0.1 | 6485+ 0.1 | 550.53 + 0.1

Table 4: Test error (using squared loss) of MRS, PLS, and RR for the digit
restoration problem, with results averaged over 1000 digits. The first column
gives the performance of RR alone. The second column uses a low rank (i.e.
rank 110) approximation to the RR solution. The third and fourth columns
respectively show the PLS and MRS results with the rank in parentheses, where
MRS was initialised using the low rank RR solution.

NEr<ll
NEkEEN
HiEkil<il

Figure 6.1: Example of image denoising using MRS. Each column contains a
hand-written digit chosen at random from the 1000 images in our test set. The
first row displays the original images, the second row contains the noisy images,
and the third row shows the images as reconstructed using MRS.

this, we decomposed F(; . as USVT via the singular value decomposition, and
set Ug and Vj to be the first 110 components (determined by cross validation
on the MRS solution) of U and V respectively, while initialising Sop = I. We
give sample results in Figure 6.1.

Table 4 shows that MRS improves on the RR generalization performance.
We also give the result obtained by simply using the first 110 components of the
SVD of F () the performance is worse than both ridge regression and MRS.
In this image restoration task, it appears that MRS has a small advantage in
eliminating irrelevant features from the subspaces used in prediction, as opposed
to ridge regression (which shrinks the weights assigned to all the features).

6.3 Face denoising: a large-scale problem

In our final experiment we apply sequential MRS (S-MRS) to a larger image
denoising task than in the previous section, where we draw our data from the
face database in [26]. This database contains a training set of 2429 faces and
4548 non-faces, where every face is a 19 x 19 grayscale image. We perturbed
the gray values of each pixel with univariate random noise of magnitude 0.01.
The noisy images served as input, and our goal was to reconstruct the original
unperturbed image.
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BEEME HEEEE
REEREE XXEZEES
HEEME SEEEE

Figure 6.2: a) Denoising performance on 5 face images of the testing set. The
original images are on the first row, the noisy images on the second row, and
the predicted noise-free images on the third row. b) Illustration of three output
feature vectors v; in V, one in each row (in a nutshell, the feature vectors span
the subspace of the output relevant to the regression process). The significance
of these features is shown by perturbing a particular image in the direction pa-
rameterised by each of the vectors. The middle column corresponds to the mean
image over all faces in the training set, while to the left and right we add «a v; for
a small a. The columns correspond respectively to « € [—0.2,—0.1,0,0.1,0.2].

To perform denoising, we first applied kernel PCA to extract 500 nonlin-
ear features from 2400 randomly sampled images, using a Gaussian kernel of
width 5. Each input to S-MRS was then given by projecting an image onto
these features, yielding a 500 dimensional input space F,. We set the rank r
of the mapping to 50, and trained the algorithm for 50 epochs. In each epoch
we trained S-MRS with m = 50 randomly chosen images (projected onto the
500 dimensional kernel PCA basis). The training outputs were simply the cor-
responding unperturbed face images of size 19 x 19.

Denoising performance is shown in Figure 6.3-a. Since our output space is
linear and corresponds to 19 x 19 images, it is possible to visualise the output
basis V by perturbing the mean image in the direction parameterised by each
of the column vectors in V (see Figure 6.3-b).

7 Conclusion

We have introduced a new framework, MRS, and a sequential variant, S-MRS,
for regression between multi-dimensional spaces. The complexity of MRS is
O(m?), which is of the same order as multivariate PLS (with worse constants,
though — in the experiments, our method was slower than PLS). Future work
will explore relaxation methods to find a convex approximation to our optimiza-
tion criteria, and regression between discrete spaces, such as graphs [6, 27], on
which similarity measures may be defined via kernels. Finally, different regular-
ization and loss functions should be investigated, so as to obtain sparse input
and sparse output multivariate regression methods.
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