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Simultaneous Implicit Surface Reconstruction and
Meshing

Joachim Giesen, Markus Maier, Bernhard Schölkopf

Abstract. We investigate an implicit method to compute a piecewise linear representation of a surface from a
set of sample points. As implicit surface functions we use the weighted sum of piecewise linear kernel functions.
For such a function we can partition Rd in such a way that these functions are linear on the subsets of the partition.
For each subset in the partition we can then compute the zero level set of the function exactly as the intersection of
a hyperplane with the subset.

1 Introduction
A classic problem in point based graphics is to turn point cloud data in R3 into a continuous surface model—the
so-called surface reconstruction problem. Besides its practical aspects this problem has spurred the development
of many new and interesting mathematical and computational techniques in topology, sampling theory and level
set methods.

Two of the most important continuous surface representations used in surface reconstruction are triangle meshes
and implicit surfaces. Both representations have their advantages and disadvantages.

In the implicit representation a surface is given by the zero level set of a function mapping the space in which
the surface is embedded to the reals. There are a number of editing operations that can be computed efficiently
on level set surface models (see, for example, [MBWB02]). If our goal is an implicit surface representation of
the surface, the surface reconstruction problem reduces to the estimation of an implicit surface function that fits
the point cloud data. There is a vast literature about the definition and computations of implicit surface functions
from point cloud data using variational level set methods ( [MT93]; [ZOMK00]; [ZOF01]; [ZO02]). [CBC∗01] use
radial basis functions, which are centered on the data points, to estimate the implicit surface function. Since the
problem of finding a good implicit surface function from a set of data points is very similar to regression problems
considered in machine learning, this problem recently also received some attention from the machine learning
community. [SSB05] propose an approach which is based on modified Support Vector regression. [WSC06] use
multi-scale compactly supported basis functions and a novel regularization method, in order to obtain globally
smooth implicit surface functions.

Also the representation of a surface as a (triangle) mesh has advantages. For many operations on surfaces like
smoothing or rendering a mesh representation is better suited than an implicit surface representation. Also for
some applications, notably plotting on a 3D printer, a mesh representation is more convenient than an implicit
one. Thus, algorithms that compute an (approximate) mesh representation of a surface given by an implicit surface
function are essential. The most famous of these is the marching cubes algorithm by [LC87]. But obviously it
would be desirable to have an implicit method that directly computes a mesh representation from the sample points
while keeping all the advantages of implicit methods.

In this work we present first steps to achieve this goal by working with implicit surface functions whose zero
level set is also piecewise linear and can be computed exactly. Unfortunately at the moment our approach is not
practical in terms of running time and memory consumption, but it might lead the way to a more efficient approach
to combine the advantages of the implicit and the mesh representation. We will present a reasonable upper bound
on the theoretical complexity of our approach, which demonstrates that such hopes are not completely unjustified.

This paper is organized as follows: In Section 2 we give a short overview of the problem of computing an
implicit surface function from point cloud data. The section contains two optimization problems that define the
solutions to the surface reconstruction problem. The optimization problems are parameterized by a kernel function.
The flexibility in choosing the kernel function in the end makes it possible to compute a mesh representation from
a point cloud by these implicit methods. Section 3 makes up the main part of the paper. It introduces a family of
kernel functions that allows to compute a mesh representation from a point cloud. In this section we show how
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to compute the faces of the mesh that corresponds to the zero level set of the implicit surface function and derive
some theoretical complexity bounds. Finally, in Section 4 we report on some preliminary experiments before we
conclude the paper in Section 5 with a discussion of the advantages and disadvantages of our approach.

2 Implicit Surface Reconstruction
In this section we review implicit surface reconstruction and show how it naturally leads to optimization problems.
We will discuss two such optimization approaches that are parameterized by a so-called kernel function. Later
the right choice of kernel will lead to our goal of providing an implicit approach that leads to a piecewise linear
reconstruction.

An implicit surface S in Rd is defined as the zero-level set of some function f : Rd → R:

S =
{

x ∈ Rd : f (x) = 0
}

.

Note that the properties of S (even whether it is manifold at all) depend on the function f . In the surface recon-
struction problem f has to be defined by a surface sample {x1, . . . ,xn} ⊂ Ŝ ⊂ Rd from an unknown surface Ŝ. Of
course there are many ways to define f from a sample—most of them do not lead to “good” reconstructions of Ŝ
from the sample. One way to control the quality of reconstruction is to regularize, i.e., to restrict the choice of f .
We will consider expansions of kernel functions centered at the training points, i.e., elements of

H=

{
f (x) =

n

∑
i=1

αik(xi,x)+b : αi ∈ R, i = 1, . . . ,n

}
,

with a symmetric kernel function k : Rd ×Rd → R and an offset b ∈ R. Not any function from H provides an
equally well reconstruction. We want to find a function in H that, on the one hand, is close to the given points,
and on the other hand has so-called regularity properties, such as smoothness. That is, we want to formulation the
implicit reconstruction problem as an optimization problem whose objective function has two terms: a term that
measures how close a function is to the desired function values in the points is called fidelity term. A term that
measures regularity is called regularization term. Note that by our choice ofH the only parameters to optimize are
the weights αi and the offset b. In the following we only want to optimize the αi and keep the offset b fixed.

Before we state the objective functions for implicit surface reconstruction we need to address one technicality.
Clearly, the desired value of the implicit surface function for points on the surface is 0. However, if we only
used these points, for both of the considered regularizers an optimal function would be the constant 0 function,
which is clearly not the solution we want. Here information on the surface normals in the sample points can be
used. The normals often can be estimated from the sample points themselves [AB99]. One approach to utilize
normal information is described in [SSB05]: for every point x on the surface one creates off-surface points on
the normal line through x in a distance ±d from x and sets the function value to ±d. This ensures that one does
not obtain the trivial solution f (x) ≡ 0 as a solution. In the following we assume that we are given a set of
pairs (x1,y1), . . . ,(xn,yn) where x1, . . . ,xn are the given surface and off-surface points and y1, . . . ,yn are the desired
function values in these points We chose yi = 0 if xi is on the surface and yi =±d if xi is an off-surface point. This
choice of the function values is motivated by the signed distance function corresponding to the surface (i.e., the
estimated function should be a local approximation to the signed distance function).

We will now derive two fairly general optimization approaches to pick an implicit reconstruction function from
H. Both optimization problems have two terms: a fidelity and a regularization term. The first problem is linear
in the optimization variables (the weights αi), whereas the second problem is a convex quadratic function of these
variables.

2.1 Linear Optimization Problem
Here our choice for the fidelity term is

d ( f ;(x1,y1), . . . ,(xn,yn)) =
1
n

n

∑
i=1
| f (xi)− yi| .

Plugging in f (x) = ∑
n
i=1 αik(x,xi)+b we get

d ( f ;(x1,y1), . . . ,(xn,yn)) =
1
n

n

∑
i=1

∣∣∣∣∣b− yi +
n

∑
j=1

α jk(xi,x j)

∣∣∣∣∣ .
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For the regularization term we choose ∑
n
i=1 |αi|, i.e., the sum of the absolute values of the coefficients αi. Note

that it is well known that this regularizer favors sparse solutions (cf. [SS02] and [BV04]).
Minimizing a weighted sum of the fidelity and the regularization term above, we get the following unconstrained

optimization problem:

min
α1,...,αn

1
n

n

∑
i=1

∣∣∣∣∣b− yi +
n

∑
j=1

α jk(xi,x j)

∣∣∣∣∣+λ

n

∑
i=1
|αi| ,

where λ > 0 is a weight parameter that determines the relative importance of fidelity and regularization term. Using
standard methods from linear optimization (cf. [BT97]), this optimization problem can easily be transformed to
a constrained linear optimization problem with 3n variables and 3n constraints: first we introduce new variables
t1, . . . , tn, replace the sum ∑

n
i=1
∣∣b− yi +∑

n
j=1 α jk(xi,x j)

∣∣ by ∑
n
i=1 ti and introduce the constraints

b− yi +
n

∑
j=1

α jk(xi,x j)≤ ti

−
(

b− yi +
n

∑
j=1

α jk(xi,x j)

)
≤ ti.

Thus ti ≥
∣∣b− yi +∑

n
j=1 α jk(xi,x j)

∣∣ ≥ 0, and since ∑
n
i=1 ti is minimized, we have equality in the minimum. Then

we introduce βi,γi ≥ 0, set αi = βi− γi (i = 1, . . . ,n) and replace ∑
n
i=1 |αi| by ∑

n
i=1 (βi + γi). Since we minimize

∑
n
i=1 (βi + γi) we must have either βi = 0 or γi = 0 in the minimum (otherwise, if βi ≥ γi > 0, we could decrease

∑
n
i=1 (βi + γi) further by replacing βi by βi−γi and setting γi = 0). Thus, in the minimum, |αi|= βi +γi. These two

steps yield the following minimization problem:

min
t1,...,tn,

β1,...,βn,
γ1,...,γn

1
n

n

∑
i=1

ti +λ

n

∑
i=1

(βi + γi)

subject to (for all i = 1, . . . ,n),
∑

n
j=1 (β j− γ j)k(xi,x j)+b− yi ≤ ti

∑
n
j=1 (γ j−β j)k(xi,x j)−b+ yi ≤ ti

βi,γi ≥ 0

Given a solution t∗1 , . . . , t∗n ,β∗1 , . . . ,β
∗
n ,γ
∗
1 , . . . ,γ

∗
n to this optimization problem, the optimal approximation function

is given by

f ∗(x) =
n

∑
i=1

α
∗
i k(x,xi)+b

with α∗i = β∗i − γ∗i for i = 1, . . . ,n.

2.2 Quadratic Optimization Problem
In this approach we choose the fidelity term to be

d ( f ;(x1,y1), . . . ,(xn,yn)) =
1
n

n

∑
i=1

( f (xi)− yi)
2
.

Using ∑i α2
i as a regularizer, we obtain the following (unconstrained) optimization problem:

min
α1,...,αn

1
n

n

∑
i=1

(
yi−b−

n

∑
j=1

α jk(xi,x j)

)2

+λ

n

∑
i=1

α
2
i .

We can write the fidelity term
n

∑
i=1

(
yi−b−

n

∑
j=1

α jk(xi,x j)

)2
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as

n

∑
i=1

(
n

∑
j=1

α jk(xi,x j)+b

)2

− 2
n

∑
i=1

yi

(
n

∑
j=1

α jk(xi,x j)+b

)

+
n

∑
i=1

y2
i .

With 1n = (1, . . . ,1)T , y = (y1, . . . ,yn), α = (α1, . . . ,αn) and K = ((ki j)), ki j = k (xi,x j) we can write the first term
in matrix form as

n

∑
i=1

(
n

∑
j=1

α jk(xi,x j)

)2

+2b
n

∑
i=1

n

∑
j=1

α jk(xi,x j)+nb2,

which is the same as

α
T KT Kα+2b1T

n Kα+nb2.

We can write the second term as

2
n

∑
i=1

yi

(
n

∑
j=1

α jk(xi,x j)+b

)
= 2yT Kα+2yT b

Ignoring all the constant terms, we have the following minimization problem

min
α

1
n

(
α

T KT Kα+2b1T
n Kα+2yT Kα

)
+λα

T
α,

and thus

min
α

α
T
(

1
n

KT K +λIn

)
α+

2
n

(
b1T

n K + yT K
)

α.

Since K is symmetric, KT K = K2 is symmetric and positive semi-definite, and thus 1
n KT K +λIn is positive definite.

That means, we can find a solution to this problem analytically in analogy to the derivation of least squares methods.
This yields the following solution:

α =
(

1
n

KT K +λIn

)−1

K (b1n + y) .

3 A Kernel Function for Piecewise Linear Reconstruction

As we mentioned earlier the properties of the implicit surface S depend on the function f that we use in its
definition. For the function class H this boils down to that many properties of S depend on the choice of kernel
function k. Here we study a kernel function that can be used with both optimization approaches that we discussed
before and allows for piecewise linear reconstruction. The kernel function is given as

k(x,y) = max
{

0,h− h
r
‖ x− y ‖∞

}
where h ∈ R and r ∈ R are parameters. Clearly, this kernel function is continuous, because norms are continuous
and the maximum of two continuous functions is continuous. However, it is not positive definite. The support
of the kernel functions is an (axis-aligned) cube with side length 2r. In two dimensions the graph of k(.,y) is a
pyramid centered at y with height h. An example can be seen in Figure 1. In the following we will often call h the
height parameter of the kernel and r the width parameter of the kernel.

4



Figure 1: The kernel function for piecewise linear reconstruction in two dimensions, centered at (0,0).

3.1 Decomposition of a single Kernel Function into Linear Functions

In this section we will show how to decompose Rd into regions, such that a single kernel function k(.,y) is linear
in each of these regions. For a kernel function in two dimensions these regions are shown in Figure 2. Let
y =

(
y(1), . . . ,y(d)

)
∈ Rd be a point and r > 0. For i = 1, . . . ,d denote x =

(
x(1), . . . ,x(d)

)
and

Qy,i =
{

x ∈ Rd : r > x(i)− y(i) > max
j 6=i

∣∣∣x( j)− y( j)
∣∣∣}

Qy,−i =
{

x ∈ Rd : r > y(i)− x(i) > max
j 6=i

∣∣∣x( j)− y( j)
∣∣∣}

and set

Qy,0 =
{

x ∈ Rd : max
1≤ j≤d

∣∣∣x( j)− y( j)
∣∣∣> r

}
.

That means, for i = 1, . . . ,d a point x =
(

x(1), . . . ,x(d)
)

is in Qy,i, if ||x− y||∞ < r,
∣∣∣x(i)− y(i)

∣∣∣ = ||x− y||∞ and

x(i) ≥ y(i), and it is in Qy,−i, if the last condition is replaced by y(i) ≥ x(i). On the other hand, x∈Qy,0 if ||x− y||∞ >
r.

The kernel function k(.,y) centered at y can be expressed as a linear function on these regions:

k(x,y) =


0, x ∈ Qy,0

h− h
r

(
x(i)− y(i)

)
, x ∈ Qy,i for i ∈ {1, . . . ,d}

h− h
r

(
y(i)− x(i)

)
, x ∈ Qy,−i for i ∈ {1, . . . ,d}

y

Q1

Q2

Q−1

Q−2

Q0

2r

2r

Figure 2: Regions in R2 in which the kernel function k(.,y) is linear.
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Clearly the regions Qy,i (i =−d, . . . ,d) are disjoint, and

Rd =
d[

i=−d

Qy,i.

Thus, it is enough to give the kernel function in the regions Qy,i (i =−d, . . . ,d), because we can extend it to Rd by
continuity of k(.,y).

Remark 1 We have seen, that we can decompose Rd into 2d + 1 regions, such that a kernel function k(.,y) is
linear on these regions. However, if we require the regions to be convex, we have to decompose the region Qy,0
further. The easiest possibility would be to introduce regions Q′y,−1,Q

′
y,1, . . . ,Q

′
y,−d ,Q

′
y,d , where

Q′y,i ={
x ∈ Rd : x(i)− y(i) > r,x(i)− y(i) > max

j 6=i

∣∣∣x( j)− y( j)
∣∣∣}

Q′y,−i ={
x ∈ Rd : y(i)− x(i) > r,y(i)− x(i) > max

j 6=i

∣∣∣x( j)− y( j)
∣∣∣} .

In our work we did not require the regions to be convex, and thus will not give further details here. It is straight-
forward to transfer the methods we used to this case.

3.2 Decomposition of the Implicit Surface Function

Now we do not consider a single kernel function anymore, but a set of kernel functions centered at sample points
{y1, . . . ,yn} ⊆ Rd . We show that Rd can be decomposed into regions such that the implicit surface functions that
we consider are linear in each region. Remember that the implicit surface functions we consider are of the form

f (x) =
n

∑
i=1

αik(x,yi)+b.

In the last section we have seen that for every point yi we can find regions Qyi,−d , . . . ,Qyi,d , such that k(.,yi) is
linear in these regions and the closure of the union of these regions is Rd . Thus

Rd =
[

( j1,..., jn)∈{−d,...,d}n

n\
i=1

Qyi, ji

and for all ( j1, . . . , jn) ∈ {−d, . . . ,d}n, the implicit surface function f is linear on the region

Q( j1,..., jn) :=
n\

i=1

Qyi, ji .

Note that the form of these regions does not depend on the weight parameters α1, . . . ,αn.

3.3 Representing the regions by Nef polyhedra

From a computational point of view it is interesting to observe that the regions from the last section can be repre-
sented by Nef polyhedra, which are point sets generated from a finite number of open half spaces by set comple-
ment and set intersection operations (cf. [HK05]). For a kernel function k(.,y) based at a point y we have

Qy,0 =
d[

j=1

{
x : x( j)− y( j) > r

}
∪

d[
j=1

{
x : y( j)− x( j) > r

}
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y2

y1

Figure 3: Intersection regions of two points in two dimensions.

and for i = 1, . . . ,d

Qy,−i =\
j 6=i

{
x, : y(i)− x(i) > x( j)− y( j)

}
∩

\
j 6=i

{
x : y(i)− x(i) > y( j)− x( j)

}
∩
{

x : y(i)− x(i) < r
}

Qy,i =\
j 6=i

{
x : x(i)− y(i) > x( j)− y( j)

}
∩

\
j 6=i

{
x : x(i)− y(i) > y( j)− x( j)

}
∩
{

x : x(i)− y(i) < r
}

.

Thus, all the regions Qy,−d , . . . ,Qy,d , where the kernel function k(.,y) is linear, can be represented as Nef polyhedra.
Using the computational geometry algorithms library CGAL, one can readily compute unions and intersections of
Nef polyhedra in two and three dimensions (cf. [HK05]).

3.4 Computing all Intersection Regions
So far we discussed how to define and represent (by Nef polyhedra) the subdivision of Rd into regions on which
the implicit surface function is linear—the regions Q( j1,..., jn) for ( j1, . . . , jn)∈ {−d, . . . ,d}n as defined above. Note
that many of the intersections will be empty, see for example in Figure 3 the intersection regions for a special
configuration of two points in two dimensions. In this section we give an algorithm to actually compute the non-
empty intersection regions.

The following algorithm computes all (nonempty) intersection regions:

• Given:

– points x1, . . . ,xn

– kernel widths r1, . . . ,rn

• Keep a list L of intersection regions.

• Initialize: L = Qx1,−d , . . . ,Qx1,d

• For all j = 2, . . . ,n

– Compute Qx j ,−d , . . . ,Qx j ,d

– For all Q ∈ L
∗ Remove Q from L
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∗ Compute intersection of Q with Qx j ,−d , . . . ,Qx j ,d .
∗ For all l ∈ {−d, . . . ,d} for which Q∩Qx j ,l 6= ∅, add Q∩Qx j ,l to L.

• Output: L

Note that the regions do not depend on the kernel heights and the weights α1, . . . ,αn and that usually not all of the
regions will contain a part of the implicit surface. How the implicit surface can be computed exactly using the list
of nonempty intersection regions is the topic of the next section.

3.5 Computing the Zero Level Set within a Region
Once we have computed the non-empty intersection regions (what we did in the last section), we basically already
have computed the whole piecewise linear reconstruction since the implicit reconstruction function is linear on
each of these regions.

Within a region Q( j1,..., jn), we have

f |Q( j1 ,..., jn) (x) = b+ ∑
{i: ji<0}

αi

(
h− h

r

(
y(− ji)

i − x(− ji)
))

+

∑
{i: ji>0}

αi

(
h− h

r

(
x( ji)− y( ji)

i

))
= b+ ∑

{i: ji<0}
αi

(
h− h

r
eT
− ji (yi− x)

)
+

∑
{i: ji>0}

αi

(
h− h

r
eT

ji (x− yi)
)

= b+ ∑
{i: ji 6=0}

αih+αi
h
r

sgn( ji)eT
| ji| (yi− x)

= b+ ∑
{i: ji 6=0}

αi

(
h+

h
r

sgn( ji)eT
| ji|yi

)
−

(
∑

{i: ji 6=0}
αi

h
r

sgn( ji)e| ji|

)T

x,

where el denotes the l-th unit vector and sgn the sign function. Obviously f |Q( j1 ,..., jn) is a linear function and thus
{ f |Q( j1,..., jn) = 0} defines a hyperplane. Computing the intersection of the hyperplane { f |Q( j1 ,..., jn) = 0} with the
region Q( j1,..., jn), we can find the intersection of the zero level set of f with the region Q( j1,..., jn), and thus the part of
the surface that is within the region Q( j1,..., jn). Since a hyperplane can easily be represented by the intersection of
two closed half spaces and the region can be represented by a Nef polyhedron, the zero level set can be represented
as a Nef polyhedron as well. An obvious algorithm to compute the (piecewise linear) zero level set of the implicit
surface function is to go through the list of all nonempty regions and compute the patch of the surface that is within
the region.

3.6 An Upper Bound on the Number of Intersection Regions
The complexity of our implicit reconstruction scheme is essentially determined by the number of (non-empty)
intersection regions (on which the implicit surface function is linear) and the complexity of the optimization scheme
to obtain the weights αi. Here we derive an upper bound for the number of intersection regions, which essentially
provides an upper bound for the complexity of the whole reconstruction scheme.

For a point y let Ay be the set containing the following d2 +d hyperplanes:

Ay =
{

x(i) = y(i) + sr,x(i) + sx( j) = y(i) + sy( j) :

i = 1, . . . ,n; j = i+1, . . . ,n;s =±1} .
Clearly the number of intersection regions for a set of points x1, . . . ,xn can be bounded from above by the number
of regions of the hyperplane arrangement

A=Ax1 ∪ . . .∪Axn.
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There are (d +1)dn hyperplanes in the arrangement and thus the number of regions can be bounded by the number
of regions in a hyperplane arrangement of the same number of hyperplanes in general position, which is

1+(d +1)dn+
(

(d +1)dn
2

)
+ . . .+

(
(d +1)dn

d

)
and therefore in O(nd) (cf. [Sta06]). Note that in three dimensions that bounds the complexity of our reconstruction
scheme essentially by O(n3), which is reasonable from a theoretical point of view (polynomial time algorithm), but
unfortunately not sufficient in practice. Note though that this bound is too pessimistic because, due to the compact
support of the kernel functions, a point will only influence the regions of neighboring points.

4 Preliminary Experiments
We performed some preliminary experiments that unfortunately show that our method is not practical for large
datasets at the moment. While we were able to solve the optimization problems for computing the kernel expan-
sions for moderately sized datasets of several thousand points, the exact mesh computation became impractical
already for a few hundred points.

For the solution of the linear optimization problem we used the CPLEX solver, whereas the closed form solution
of the quadratic optimization problem can be computed with Matlab. Better (visual) results were obtained using
the quadratic optimization problem. In both cases, results were dependent on the choice of the parameters b, λ,
kernel height and kernel width, as well as on the distance d in which the off-surface points were constructed.

In order to compute the meshes according to the algorithm above we used the computational geometry algo-
rithms library CGAL (cf. [CGA06]) together with the GMP multi-precision library.

5 Discussion
We used piecewise linear implicit surface functions in order to approximate a surface that is given by a set of
points and the surface normals in these points (which in most cases can be estimated well just from the sample
points). The (piecewise linear) zero level set of this implicit surface function can then be computed exactly,
thus giving an (exact) mesh representation. That means that in contrast to the common method of applying the
marching cubes algorithm to an arbitrary implicit surface function, the only approximate step is the estimation
of the implicit surface function (if desired, and if the data are noise-free, this step can be made very precise by
decreasing the regularization strength). We found that it is in principle possible to apply this method to compute a
mesh representation from the sample points and surface normals. However, there are a number of disadvantages
to this method that we do not want to sweep under the rug:

The kernel functions (and thus the implicit surface function) are not differentiable. Therefore it is not clear how
smoothness of the implicit function can be measured and used in regularization. However, it might be possible to
use the knowledge of the surface normals.

Since we cannot control the size and the shape of the intersection regions, we cannot give any guarantees on the
quality of the resulting mesh representation, i.e., the mesh may be quite irregular.

But the greatest drawback of our method are the time and memory requirements for computing the intersection
regions. The high time and memory requirements are due to the excessive number of intersection regions that have
to be considered and the fact that it becomes increasingly difficult to describe the intersection regions when more
kernel functions have to be intersected. One possibility to accelerate these computations at the cost of exactness
would be to use fixed precision arithmetic instead of arbitrary precision arithmetic. Since only a fraction of the
intersection regions actually contain a part of the surface, another possibility would be to implement a surface
following procedure.

Nevertheless, these are first steps in a new direction: combining the power (and different advantages) of implicit
and explicit (mesh) reconstruction approaches. Our work demonstrates that in principle it is possible to combine
these two paradigms. Furthermore, it does not look hopeless that out of the ideas that we have presented here a
practical reconstruction scheme can arise.
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