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A Kernel Method for the Two-Sample Problem

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Scholkopf, and Alexander Smola

Abstract. We propose a framework for analyzing and comparing distributions, allowing us to design statistical
tests to determine if two samples are drawn from different distributions. Our test statistic is the largest difference
in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS). We present two tests
based on large deviation bounds for the test statistic, while a third is based on the asymptotic distribution of this
statistic. The test statistic can be computed in quadratic time, although efficient linear time approximations are
available. Several classical metrics on distributions are recovered when the function space used to compute the
difference in expectations is allowed to be more general (eg. a Banach space). We apply our two-sample tests to a
variety of problems, including attribute matching for databases using the Hungarian marriage method, where they
perform strongly. Excellent performance is also obtained when comparing distributions over graphs, for which
these are the first such tests.




1. Introduction

We address the problem of comparing samples from two probability distributions, by propos-
ing statistical tests of the hypothesis that these distributions are different (this is called the
two-sample or homogeneity problem). Such tests have application in a variety of areas. In
bioinformatics, it is of interest to compare microarray data from identical tissue types as
measured by different laboratories, to detect whether the data may be analysed jointly, or
whether differences in experimental procedure have caused systematic differences in the data
distributions. Equally of interest are comparisons between microarray data from different
tissue types, either to determine whether two subtypes of cancer may be treated as sta-
tistically indistinguishable from a diagnosis perspective, or to detect differences in healthy
and cancerous tissue. In database attribute matching, it is desirable to merge databases
containing multiple fields, where it is not known in advance which fields correspond: the
fields are matched by maximising the similarity in the distributions of their entries.

We test whether distributions p and ¢ are different on the basis of samples drawn from
each of them, by finding a well behaved (e.g. smooth) function which is large on the points
drawn from p, and small (as negative as possible) on the points from gq. We use as our test
statistic the difference between the mean function values on the two samples; when this is
large, the samples are likely from different distributions. We call this statistic the Maximum
Mean Discrepancy (MMD).

Clearly the quality of the MMD as a statistic depends on the class F of smooth functions
that define it. On one hand, F must be “rich enough” so that the population MMD
vanishes if and only if p = ¢q. On the other hand, for the test to be consistent, F needs
to be “restrictive” enough for the empirical estimate of MMD to converge quickly to its
expectation as the sample size increases. We shall use the unit balls in universal reproducing
kernel Hilbert spaces (Steinwart, 2001) as our function classes, since these will be shown to
satisfy both of the foregoing properties (we also review classical metrics on distributions,
namely the Kolmogorov-Smirnov and Earth-Mover’s distances, which are based on different
function classes). On a more practical note, the MMD has a reasonable computational cost,
when compared with other two-sample tests: given m points sampled from p and n from
q, the cost is O(m + n)? time. We also propose a less statistically efficient algorithm
with a computational cost of O(m + n), which can yield superior performance at a given
computational cost by looking at a larger volume of data.

We define three non-parametric statistical tests based on the MMD. The first two, which
use distribution-independent uniform convergence bounds, provide finite sample guarantees
of test performance, at the expense of being conservative in detecting differences between
p and ¢. The third test is based on the asymptotic distribution of the MMD, and is in
practice more sensitive to differences in distribution at small sample sizes. The present
work synthesizes and expands on results of Gretton et al. (2007a,b), Smola et al. (2007),
and Song et al. (2008)! who in turn build on the earlier work of Borgwardt et al. (2006).
Note that the latter addresses only the third kind of test, and that the approach of Gretton
et al. (2007a,b) employs a more accurate approximation to the asymptotic distribution of
the test statistic.

1. In particular, most of the proofs here were not provided by Gretton et al. (2007a)



We begin our presentation in Section 2 with a formal definition of the MMD, and a
proof that the population MMD is zero if and only if p = ¢ when F is the unit ball of a
universal RKHS. We also review alternative function classes for which the MMD defines a
metric on probability distributions. In Section 3, we give an overview of hypothesis testing
as it applies to the two-sample problem, and review other approaches to this problem. We
present our first two hypothesis tests in Section 4, based on two different bounds on the
deviation between the population and empirical MMD. We take a different approach in
Section 5, where we use the asymptotic distribution of the empirical MMD estimate as the
basis for a third test. When large volumes of data are available, the cost of computing the
MMD (quadratic in the sample size) may be excessive: we therefore propose in Section 6
a modified version of the MMD statistic that has a linear cost in the number of samples,
and an associated asymptotic test. In Section 7, we provide an overview of methods re-
lated to the MMD in the statistics and machine learning literature. Finally, in Section 8,
we demonstrate the performance of MMD-based two-sample tests on problems from neu-
roscience, bioinformatics, and attribute matching using the Hungarian marriage method.
Our approach performs well on high dimensional data with low sample size; in addition, we
are able to successfully distinguish distributions on graph data, for which ours is the first
proposed test.

2. The Maximum Mean Discrepancy

In this section, we present the maximum mean discrepancy (MMD), and describe conditions
under which it is a metric on the space of probability distributions. The MMD is defined in
terms of particular function spaces that witness the difference in distributions: we therefore
begin in Section 2.1 by introducing the MMD for some arbitrary function space. In Section
2.2, we compute both the population MMD and two empirical estimates when the associated
function space is a reproducing kernel Hilbert space, and we derive the RKHS function that
witnesses the MMD for a given pair of distributions in Section 2.3. Finally, we describe the
MMD for more general function classes in Section 2.4.

2.1 Definition of the Maximum Mean Discrepancy
Our goal is to formulate a statistical test that answers the following question:

Problem 1 Let p and q be Borel probability measures defined on a domain X. Given
observations X := {x1,...,xpm} andY = {y1,...,yn}, drawn independently and identically
distributed (i.i.d.) from p and q, respectively, can we decide whether p # q?

To start with, we wish to determine a criterion that, in the population setting, takes on a
unique and distinctive value only when p = ¢. It will be defined based on Lemma 9.3.2 of
Dudley (2002).

Lemma 1 Let (X, d) be a metric space, and let p, q be two Borel probability measures defined
on X. Then p = q if and only if Egp(f(2)) = Ey~y(f(y)) for all f € C(X), where C(X) is
the space of bounded continuous functions on X.

Although C(X) in principle allows us to identify p = ¢ uniquely, it is not practical to work
with such a rich function class in the finite sample setting. We thus define a more general



class of statistic, for as yet unspecified function classes &, to measure the disparity between
p and ¢ (Fortet and Mourier, 1953; Miiller, 1997).

Definition 2 Let F be a class of functions f : X — R and let p,q, X,Y be defined as above.
We define the maximum mean discrepancy (MMD) as

MMD [, p, q] := ?lelg(Esz[f(x)] —Ey[f ) (1)

Miiller (1997) calls this an integral probability metric. A biased empirical estimate of the

MMD is
MMD; [, X, Y] _sup< Zf —%Zf(yi)) (2)
i=1

feg

The empirical MMD defined above has an upward bias (we will define an unbiased statistic
in the following section). We must now identify a function class that is rich enough to
uniquely identify whether p = ¢, yet restrictive enough to provide useful finite sample
estimates (the latter property will be established in subsequent sections).

2.2 The MMD in Reproducing Kernel Hilbert Spaces

If & is the unit ball in a reproducing kernel Hilbert space H, the empirical MMD can be
computed very efficiently. This will be the main approach we pursue in the present study.
Other possible function classes F are discussed at the end of this section. We will refer to H
as universal whenever H, defined on a compact metric space X and with associated kernel
k:X? — R, is dense in C(X) with respect to the Lo, norm. It is shown in Steinwart (2001)
that Gaussian and Laplace kernels are universal. We have the following result:

Theorem 3 Let F be a unit ball in a universal RKHS H, defined on the compact metric
space X, with associated kernel k(-,-). Then MMD [F,p,q| = 0 if and only if p = q.

Proof It is clear that MMD [, p, q] is zero if p = q. We prove the converse by showing
that MMD [C(X), p,q] = D for some D > 0 implies MMD [F, p, ¢] > 0: this is equivalent to
MMD [T, p, q] = 0 implying MMD [C(X), p,q] = 0 (where this last result implies p = ¢ by
Lemma 1, noting that compactness of the metric space X implies its separability). Let H be
the universal RKHS of which J is the unit ball. If MMD [C(X), p, q] = D, then there exists
some f € C(X) for which E,, [ﬂ -E, [ﬂ > D/2. We know that 3 is dense in C'(X) with
respect to the Lo, norm: this means that for e = D/8, we can find some f* € H satisfying
i fH < €. Thus, we obtain ‘Ep [f*]—Ep [f” < e and consequently
e}

Ep [f*] — Eq [f7]] > ‘Ep [f] —Eq; [f”_26>%_2%:%>0'
Finally, using || f*||4 < 0o, we have

[Ep [f*] = Eq [ /11f* 9 = D/ (411 f*llg) > 0

and hence MMD [, p, q] > 0. [ |



We now review some properties of H that will allow us to express the MMD in a more
easily computable form (Scholkopf and Smola, 2002). Since H is an RKHS, the operator
of evaluation 0, mapping f € H to f(z) € R is continuous. Thus, by the Riesz represen-
tation theorem, there is a feature mapping ¢(x) from X to R such that f(z) = (f, ¢(2)) 4
Moreover, (¢(x), p(y))qc = k(z,y), where k(x,y) is a positive definite kernel function. The
following lemma is due to Borgwardt et al. (2006).

Lemma 4 Denote the expectation of ¢(x) by p, = E,[p(z)] (assuming its existence).?
Then MMDF.p.q] = sup {ulp] = la: £) = lalr) =l 3)
Proof
_ 2
MMD?[F,p,q] = | sup (E,[f(z)]—E, [f(y)])]
[ fll5c<1

i (Ep [(0(2), F)gd — Eq [(0(v), f>&c])]

2
2
= sup <Mp_ﬂq7f>9(] = ”Mp_ﬂq”}c
LIfllgc<1

Given we are in an RKHS, the norm ||p, — ,uqHz}f may easily be computed in terms of kernel
functions. This leads to a first empirical estimate of the MMD, which is unbiased.

Lemma 5 Given x and 2’ independent random variables with distribution p, and y and v’
independent random variables with distribution q, the population MMD? is

MMD? T, p,q] = E; »p [k‘(x,a:')] —2E;py~q (k(z,y)] + Eyynq [k(yay/)] . (4)

Let Z := (z1,...,2m) be m i.i.d. random variables, where z; := (x;,y;) (i.e. we assume
m =n). An unbiased empirical estimate of MMD? is

1 m
MMD;} [F, X, Y] = ———— ) h(z, 2 5
u[ ) ) ] (m)(m_l)g (ZZ>ZJ)7 ( )
which is a one-sample U-statistic with h(z;, zj) == k(x;, x;) + k(vi, yj) — k(xi, y5) — k(xj, i)
(we define h(z;,zj) to be symmetric in its arguments due to requirements that will arise in
Section 5).

Proof Starting from the expression for MMD2[EF,p, g] in Lemma 4,

MMDQ[fﬂp’ Q] = Hﬂp - Mquc
= {fup, tp) g + (g ) g — 2 (kip, g) 3¢
= Ep(¢(x), ¢(z)) g+ Eq (), (y')) g — 2Ep g (D(2), 0(y)) g

2. A sufficient condition for this is ||up||3c < 0o, which is rearranged as Ep[k(z,z’)] < co, where = and z’
are independent random variables drawn according to p. In other words, k is a trace class operator with
respect to the measure p.
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Figure 1: Ilustration of the function maximizing the mean discrepancy in the case where
a Gaussian is being compared with a Laplace distribution. Both distributions
have zero mean and unit variance. The function f that witnesses the MMD has
been scaled for plotting purposes, and was computed empirically on the basis of
2 x 10* samples, using a Gaussian kernel with o = 0.5.

The proof is completed by applying (¢(x), ¢(z')) 4 = k(x, z); the empirical estimate follows
straightforwardly. |

The empirical statistic is an unbiased estimate of MMD?, although it does not have mini-
mum variance, since we are ignoring the cross-terms k(x;,y;) of which there are only O(n).
The minimum variance estimate is almost identical, though (Serfling, 1980, Section 5.1.4).

The biased statistic in (2) may also be easily computed following the above reasoning.
Substituting the empirical estimates p[X] := L 57 ¢(z;) and p[Y] := L 377 | ¢(y;) of the
feature space means based on respective samples X and Y, we obtain

2

1 m 9 m,n 1 n
MMD, [, X, Y] = — > k(i zj) — — > k(wi,yg) + = > k(wiy)| - (6)
1,j=1 1,5=1 1,j=1

Intuitively we expect the empirical test statistic MMDI[F, X, Y], whether biased or un-
biased, to be small if p = ¢, and large if the distributions are far apart. Note that it costs
O((m + n)?) time to compute both statistics.

Finally, we note that Harchaoui et al. (2008) recently proposed a modification of the
kernel MMD statistic in Lemma 4, by scaling the feature space mean distance using the
inverse within-sample covariance operator, thus employing the kernel Fisher discriminant as
a statistic for testing homogeneity. This statistic is shown to be related to the x? divergence.

2.3 Witness Function of the MMD for RKHSs

It is also instructive to consider the witness f which is chosen by MMD to exhibit the
maximum discrepancy between the two distributions. The population f and its empirical



estimate f(x) are respectively

fA(I') X <¢(x)vlu[p] - M[QD - Eac’rvp [k(l’,l‘/)] - Em’wq [k(x,x')]
fl@) o (@), ulX] = plY)) = 530 k(ai,o) — 5 0 ki, o).

This follows from the fact that the unit vector v maximizing (v, ), in a Hilbert space is
v=a/al-

We illustrate the behavior of MMD in Figure 1 using a one-dimensional example. The
data X and Y were generated from distributions p and g with equal means and variances,
with p Gaussian and ¢ Laplacian. We chose F to be the unit ball in an RKHS using
the Gaussian kernel. We observe that the function f that witnesses the MMD, in other
words, the function maximizing the mean discrepancy in (1) is smooth, positive where
the Laplace density exceeds the Gaussian density (at the center and tails), and negative
where the Gaussian density is larger. Moreover, the magnitude of f is a direct reflection of
the amount by which one density exceeds the other, insofar as the smoothness constraint
permits it.

2.4 The MMD in Other Function Classes

The definition of the maximum mean discrepancy is by no means limited to RKHS. In
fact, any function class F which comes with uniform convergence guarantees and which is
sufficiently powerful will enjoy the above properties.

Definition 6 Let F be a subset of some vector space. The star S[F] of a set F is
S[F] :={azlxr € F and a € [0,00)}

Theorem 7 Denote by F the subset of some vector space of functions from X to R for which
S[F] N C(X) is dense in C(X) with respect to the Loo(X) norm. Then MMD [F,p,q] = 0 if
and only if p = q.

Moreover, under the above conditions MMD|F, p, q] is a metric on the space of probability
distributions. Whenever the star of F is not dense, MMD is a pseudo-metric space.’

Proof The first part of the proof is almost identical to that of Theorem 3 and is therefore
omitted. To see the second part, we only need to prove the triangle inequality. We have

sup |Epf — Eyf| +sup |Eyg — Erg| > sup [|Epf — Eof| + |Eyf — Er|]
fesF geF fesF

> sup |Epf — E,f|.
fex

The first part of the theorem establishes that MMD[F, p, ¢] is a metric, since only for p = ¢
do we have MMDI[F, p, q] = 0. [ |

Note that any uniform convergence statements in terms of F allow us immediately to char-
acterize an estimator of MMD(F, p, q) explicitly. The following result shows how (we will
refine this reasoning for the RKHS case in Section 4).

3. According to Dudley (2002, p. 26) a metric d(z,y) satisfies the following four properties: symmetry,
triangle inequality, d(z,x) = 0, and d(z,y) =0 = = = y. A pseudo-metric only satisfies the first three
properties.



Theorem 8 Let 6 € (0,1) be a confidence level and assume that for some €(6,m,F) the

following holds for samples {x1,...,zy} drawn from p:
1 m
Prsup (Ep[f] — — Y f(zi)| > e(6,m,F) p <. (7)
fes i3

In this case we have that
Pr{|MMDIZ, p, g] — MMD, [, X, ]| > 2¢(6/2,m, F)} < 4. (®)
Proof The proof works simply by using convexity and suprema as follows:

‘MMD[SF’p’ q] - MMDb[SF7 X, Y”

m 1 n

= |sup [Ep[f] = Eq[fl| —sup |— > flzi) — =) f(vi)

feg ? ! feF|m ZZ_; ZZ:;

1 & 1<

<sup |Ep[f] = Eo[f] = — > f(@) + =) f(y)

yex| " ! m ZZ; " ;
<sup|Bylf] - =3 fan)| +sup [Bls] - 23 s
<sup - — ;)| + sup - = Yi)| -

reF| " mi= sez| [

Bounding each of the two terms via a uniform convergence bound proves the claim. |

This shows that MMD,[F, X, Y] can be used to estimate MMDI[J, p, q] and that the quantity
is asymptotically unbiased.

Remark 9 (Reduction to Binary Classification) Any classifier which maps a set of
observations {z;,l;} with z; € X on some domain X and labels l; € {£1}, for which uniform
convergence bounds exist on the convergence of the empirical loss to the expected loss, can
be used to obtain a similarity measure on distributions — simply assign l; = 1 if z; € X and

l; = —1 for z; € Y and find a classifier which is able to separate the two sets. In this case
mazimization of Ey[f] — Eq[f] is achieved by ensuring that as many z ~ p(z) as possible
correspond to f(z) = 1, whereas for as many z ~ q(z) as possible we have f(z) = —1.

Consequently neural networks, decision trees, boosted classifiers and other objects for which
uniform convergence bounds can be obtained can be used for the purpose of distribution
comparison. For instance, Ben-David et al. (2007, Section 4) use the error of a hyperplane
classifier to approximate the A-distance between distributions of Kifer et al. (2004).

2.5 Examples of Non-RKHS Function Classes

Other function spaces F inspired by the statistics literature can also be considered in defining
the MMD. Indeed, Lemma 1 defines an MMD with F the space of bounded continuous real-
valued functions, which is a Banach space with the supremum norm (Dudley, 2002, p.
158). We now describe two further metrics on the space of probability distributions, the
Kolmogorov-Smirnov and Earth Mover’s distances, and their associated function classes.



2.5.1 KOLMOGOROV-SMIRNOV STATISTIC

The Kolmogorov-Smirnov (K-S) test is probably one of the most famous two-sample tests in
statistics. It works for random variables € R (or any other set for which we can establish
a total order). Denote by Fj,(z) the cumulative distribution function of p and let Fx(x) be
its empirical counterpart, that is

F,(2) :=Pr{z <z for x ~ p(z)} and Fx(z): |X\ Z lo<a,.

It is clear that F), captures the properties of p. The Kolmogorov metric is simply the L,
distance ||F'x — Fy ||, for two sets of observations X and Y. Smirnov (1939) showed that
for p = q the limiting distribution of the empirical cumulative distribution functions satisfies

o0

lim Pr { {m+n} |Fx — Fy | > ﬂ:} = 22 1)7- 1o=2%% g1 2 > 0. (9)

m,n— 00
7=1

This allows for an efficient characterization of the distribution under the null hypothesis
Ho. Efficient numerical approximations to (9) can be found in numerical analysis handbooks
(Press et al., 1994). The distribution under the alternative, p # ¢, however, is unknown.

The Kolmogorov metric is, in fact, a special instance of MMDI[J,p,q| for a certain
Banach space (Miiller, 1997, Theorem 5.2)

Proposition 10 Let F be the class of functions X — R of bounded variation* 1. Then
MMDITF, p, q] = HFp - Fquo

2.5.2 EARTH-MOVER DISTANCES

Another class of distance measures on distributions that may be written as an MMD are
the Earth-Mover distances. We assume (X, d) is a separable metric space, and define P;(X)
to be the space of probability measures on X for which [ d(z, z)dp(z) < oo for all p € P1(X)
and xz € X (these are the probability measures for which E |z| < co when X = R). We then
have the following definition (Dudley, 2002, p. 420).

Definition 11 (Monge-Wasserstein metric) Letp € P1(X) and g € P1(X). The Monge-
Wasserstein distance is defined as

W(pq) = inf / d(e,y)du(z,y),
nEM (p,q)

where M (p,q) is the set of joint distributions on X x X with marginals p and q.

4. A function f defined on [a, b] is of bounded variation C if the total variation is bounded by C, i.e. the

supremum over all sums
>0 1f@) = fioa)l,
1<i<n

where a < z9 < ... <z, < b (Dudley, 2002, p. 184).



We may interpret this as the cost (as represented by the metric d(x,y)) of transferring mass
distributed according to p to a distribution in accordance with ¢, where p is the movement
schedule. In general, a large variety of costs of moving mass from x to y can be used, such
as psychooptical similarity measures in image retrieval (Rubner et al., 2000). The following
theorem holds (Dudley, 2002, Theorem 11.8.2).

Theorem 12 (Kantorovich-Rubinstein) Let p € P1(X) and ¢ € P1(X), where X is
separable. Then a metric on P1(S) is defined as

Wp.g) = lp—al;, = wp\/fd p—a)

1l <1

where

Iflly == sup ————==
L z#yeX d(.’IJ,y)

is the Lipschitz seminorm® for real valued f on X.
A simple example of this theorem is as follows (Dudley, 2002, Exercise 1, p. 425).

Example 1 Let X = R with associated d(x,y) = |v — y|. Then given f such that || f||, <1,
we use integration by parts to obtain
< [15 - B @)da

[ 1i0-0| =| [~ @) )i

where the mazimum is attained for the function g with derivative g = 21p,~r, —1 (and for
which ||g||;, =1). We recover the Ly distance between distribution functions,

vwa@z/ﬂ&—amwm

One may further generalize Theorem 12 to the set of all laws P(X) on arbitrary metric
spaces X (Dudley, 2002, Proposition 11.3.2).

Definition 13 (Bounded Lipschitz metric) Let p and q be laws on a metric space X.
B(p,q) == sup

Then
/ fdp—g ‘
£l <1

is a metric on P(X), where f belongs to the space of bounded Lipschitz functions with norm

Iz = Al + 1l

3. Background Material

We now present three background results. First, we introduce the terminology used in
statistical hypothesis testing. Second, we demonstrate via an example that even for tests
which have asymptotically no error, one cannot guarantee performance at any fixed sample
size without making assumptions about the distributions. Finally, we briefly review some
earlier approaches to the two-sample problem.

5. A seminorm satisfies the requirements of a norm besides ||z|| = 0 only for z = 0 (Dudley, 2002, p. 156).

10



3.1 Statistical Hypothesis Testing

Having described a metric on probability distributions (the MMD) based on distances be-
tween their Hilbert space embeddings, and empirical estimates (biased and unbiased) of
this metric, we now address the problem of determining whether the empirical MMD shows
a statistically significant difference between distributions. To this end, we briefly describe
the framework of statistical hypothesis testing as it applies in the present context, following
Casella and Berger (2002, Chapter 8). Given i.i.d. samples X ~ p of size m and Y ~ ¢ of
size n, the statistical test, T(X,Y") : X x X™ +— {0,1} is used to distinguish between the
null hypothesis Hy : p = g and the alternative hypothesis H; : p # ¢. This is achieved by
comparing the test statistic® MMD[J, X, Y] with a particular threshold: if the threshold is
exceeded, then the test rejects the null hypothesis (bearing in mind that a zero population
MMD indicates p = ¢q). The acceptance region of the test is thus defined as the set of real
numbers below the threshold. Since the test is based on finite samples, it is possible that an
incorrect answer will be returned: we define the Type I error as the probability of rejecting
p = q based on the observed sample, despite the null hypothesis having generated the data.
Conversely, the Type II error is the probability of accepting p = ¢ despite the underlying
distributions being different. The level « of a test is an upper bound on the Type I error:
this is a design parameter of the test, and is used to set the threshold to which we compare
the test statistic (finding the test threshold for a given « is the topic of Sections 4 and 5).
A consistent test achieves a level «, and a Type II error of zero, in the large sample limit.
We will see that the tests proposed in this paper are consistent.

3.2 A Negative Result

Even if a test is consistent, it is not possible to distinguish distributions with high probability
at a given, fixed sample size (i.e., to provide guarantees on the Type II error), without prior
assumptions as to the nature of the difference between p and ¢. This is true regardless
of the two-sample test used. There are several ways to illustrate this, which each give
different insight into the kinds of differences that might be undetectable for a given number
of samples. The following example” is one such illustration.

Example 2 Assume that we have a distribution p from which we draw m iid observa-
tions. Moreover, we construct a distribution q by drawing m? d observations from p and
subsequently defining a discrete distribution over these m? instances with probability m™2
each. It is easy to check that if we now draw m observations from q, there is at least a
(7:;2) m";,; > 1 —e ! > 0.63 probability that we thereby will have effectively obtained an m
sample from p. Hence no test will be able to distinguish samples from p and q in this case.
We could make the probability of detection arbitrarily small by increasing the size of the

sample from which we construct q.

6. This may be biased or unbiased.
7. This is a variation of a construction for independence tests, which was suggested in a private communi-
cation by John Langford.

11



3.3 Previous Work

We next give a brief overview of some earlier approaches to the two sample problem for
multivariate data. Since our later experimental comparison is with respect to certain of these
methods, we give abbreviated algorithm names in italics where appropriate: these should
be used as a key to the tables in Section 8. A generalisation of the Wald-Wolfowitz runs
test to the multivariate domain was proposed and analysed by Friedman and Rafsky (1979);
Henze and Penrose (1999) (FR Wolf), and involves counting the number of edges in the
minimum spanning tree over the aggregated data that connect points in X to points in Y.
The resulting test relies on the asymptotic normality of the test statistic, and this quantity
is not distribution-free under the null hypothesis for finite samples (it depends on p and q).
The computational cost of this method using Kruskal’s algorithm is O((m+n)?log(m+n)),
although more modern methods improve on the log(m + n) term. See Chazelle (2000)
for details. Friedman and Rafsky (1979) claim that calculating the matrix of distances,
which costs O((m + n)?), dominates their computing time; we return to this point in our
experiments (Section 8). Two possible generalisations of the Kolmogorov-Smirnov test to
the multivariate case were studied in (Bickel, 1969; Friedman and Rafsky, 1979). The
approach of Friedman and Rafsky (FR Smirnov) in this case again requires a minimal
spanning tree, and has a similar cost to their multivariate runs test.

A more recent multivariate test was introduced by Rosenbaum (2005). This entails
computing the minimum distance non-bipartite matching over the aggregate data, and using
the number of pairs containing a sample from both X and Y as a test statistic. The resulting
statistic is distribution-free under the null hypothesis at finite sample sizes, in which respect
it is superior to the Friedman-Rafsky test; on the other hand, it costs O((m + n)3) to
compute. Another distribution-free test (Hall) was proposed by Hall and Tajvidi (2002):
for each point from p, it requires computing the closest points in the aggregated data, and
counting how many of these are from ¢ (the procedure is repeated for each point from ¢
with respect to points from p). As we shall see in our experimental comparisons, the test
statistic is costly to compute; Hall and Tajvidi (2002) consider only tens of points in their
experiments.

Yet another approach is to use some distance (e.g. L or L) between Parzen window
estimates of the densities as a test statistic (Anderson et al., 1994; Biau and Gyorfi, 2005),
based on the asymptotic distribution of this distance given p = ¢. When the Ls norm is
used, the test statistic is related to those we present here, although it is arrived at from
a different perspective. Briefly, the test of Anderson et al. (1994) is obtained in a more
restricted setting where the RKHS kernel is an inner product between Parzen windows.
Since we are not doing density estimation, however, we need not decrease the kernel width
as the sample grows. In fact, decreasing the kernel width reduces the convergence rate
of the associated two-sample test, compared with the (m + n)*l/ 2 rate for fixed kernels.
We provide more detail in Section 7.1. The L; approach of Biau and Gyorfi (2005) (Biau)
requires the space to be partitioned into a grid of bins, which becomes difficult or impossible
for high dimensional problems. Hence we use this test only for low-dimensional problems
in our experiments.
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3.4 Outlier Detection

An application related to the two sample problem is that of outlier detection: this is the
question of whether a novel point is generated from the same distribution as a particular
i.i.d. sample. In a way, this is a special case of a two sample test, where the second sample
contains only one observation. Several methods essentially rely on the distance between a
novel point to the sample mean in feature space to detect outliers.

For instance, Davy et al. (2002) use a similar method to deal with nonstationary time
series. Likewise Shawe-Taylor and Cristianini (2004, p. 117) discuss how to detect novel
observations by using the following reasoning: the probability of being an outlier is bounded
both as a function of the spread of the points in feature space and the uncertainty in
the empirical feature space mean (as bounded using symmetrisation and McDiarmid’s tail
bound).

Instead of using the sample mean and variance, Tax and Duin (1999) estimate the center
and radius of a minimal enclosing sphere for the data, the advantage being that such bounds
can potentially lead to more reliable tests for single observations. Schélkopf et al. (2001)
show that the minimal enclosing sphere problem is equivalent to novelty detection by means
of finding a hyperplane separating the data from the origin, at least in the case of radial
basis function kernels.

4. Tests Based on Uniform Convergence Bounds

In this section, we introduce two statistical tests of independence which have exact perfor-
mance guarantees at finite sample sizes, based on uniform convergence bounds. The first,
in Section 4.1, uses the McDiarmid (1989) bound on the biased MMD statistic, and the
second, in Section 4.2, uses a Hoeffding (1963) bound for the unbiased statistic.

4.1 Bound on the Biased Statistic and Test

We establish two properties of the MMD, from which we derive a hypothesis test. First, we
show that regardless of whether or not p = ¢, the empirical MMD converges in probability
at rate O((m + n)_%) to its population value. This shows the consistency of statistical
tests based on the MMD. Second, we give probabilistic bounds for large deviations of the
empirical MMD in the case p = ¢q. These bounds lead directly to a threshold for our
first hypothesis test. We begin our discussion of the convergence of MMD,[F, X, Y] to
MMD[F, p, q].

Theorem 14 Let p,q, X,Y be defined as in Problem 1, and assume 0 < k(z,y) < K. Then

Pr {|MMDb[9, X,Y] — MMD[7, p, ]| > 2 ((K/m)% + (K/n)%) v e} < 2exp (%) .

See Appendix A.2 for proof. Our next goal is to refine this result in a way that allows us

to define a test threshold under the null hypothesis p = ¢q. Under this circumstance, the
constants in the exponent are slightly improved.

13



Theorem 15 Under the conditions of Theorem 14 where additionally p = q and m = n,

MMD,[T, X, Y] < m™ 3y /2B, [k(z, o) — K(z,a")] + ¢ < 2K/m)"? + ¢,
N———

Bl (S:J)) BQ(S:J))

both with probability at least 1 — exp ( ) (see Appendix A.3 for the proof).

In this theorem, we illustrate two possible bounds By (F,p) and Bo(F,p) on the bias in the
empirical estimate (6). The first inequality is interesting inasmuch as it provides a link
between the bias bound B (&, p) and kernel size (for instance, if we were to use a Gaussian
kernel with large o, then k(x,z) and k(z,2’) would likely be close, and the bias small).
In the context of testing, however, we would need to provide an additional bound to show
convergence of an empirical estimate of Bi(F,p) to its population equivalent. Thus, in the
following test for p = ¢ based on Theorem 15, we use Bz(F,p) to bound the bias.®

Corollary 16 A hypothesis test of level o for the null hypothesis p = q, that is, for
MMDI[F, p, q] =0, has the acceptance region MMDy[F, X, Y] < \/2K/m (1 ++/2log a—l)

We emphasise that Theorem 14 guarantees the conswtency of the test, and that the Type
IT error probability decreases to zero at rate O(m™ 2), assuming m = n. To put this con-
vergence rate in perspective, consider a test of whether two normal distributions have equal
means, given they have unknown but equal variance (Casella and Berger, 2002, Exercise
8.41). In this case, the test statistic has a Student-¢ distribution with n 4+ m — 2 degrees of
freedom, and its error probability converges at the same rate as our test.

It is worth noting that bounds may be obtained for the deviation between expectations
wu[p] and the empirical means p[X] in a completely analogous fashion. The proof requires
symmetrization by means of a ghost sample, i.e. a second set of observations drawn from
the same distribution. While not the key focus of the present paper, such bounds can be
used in the design of inference principles based on moment matching (Altun and Smola,
2006; Dudik and Schapire, 2006; Dudik et al., 2004).

4.2 Bound on the Unbiased Statistic and Test

While the previous bounds are of interest since the proof strategy can be used for general
function classes with well behaved Rademacher averages, a much easier approach may be
used directly on the unbiased statistic MMD% in Lemma 5. We base our test on the following
theorem, which is a straightforward application of the large deviation bound on U-statistics
of Hoeffding (1963, p. 25).

Theorem 17 Assume 0 < k(z;,z;) < K, from which it follows —2K < h(z;,zj) < 2K.
Then

—t2m2
Pr {MMDZ (¥, X,Y) — MMD?*(¥,p,q) >t} < exp < Ve >

where mg 1= |m/2] (the same bound applies for deviations of —t and below).

8. Note that we use a tighter bias bound than Gretton et al. (2007a).
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A consistent statistical test for p = ¢ using MMD% is then obtained.

Corollary 18 A hypothesis test of level afor the null hypothesis p = q has the acceptance
region MMD?2 < (4K /\/m) y/log(a~1).

We now compare the thresholds of the two tests. We note first that the threshold for the
biased statistic applies to an estimate of MMD, whereas that for the unbiased statistic
is for an estimate of MMD?2. Squaring the former threshold to make the two quantities
comparable, the squared threshold in Corollary 16 decreases as m ™!, whereas the threshold
in Corollary 18 decreases as m~'/2. Thus for sufficiently large® m, the McDiarmid-based
threshold will be lower (and the associated test statistic is in any case biased upwards), and
its Type II error will be better for a given Type I bound. This is confirmed in our Section
8 experiments. Note, however, that the rate of convergence of the squared, biased MMD
estimate to its population value remains at 1/,/m (bearing in mind we take the square of
a biased estimate, where the bias term decays as 1/y/m).

Finally, we note that the bounds we obtained here are rather conservative for a number
of reasons: first, they do not take the actual distributions into account. In fact, they
are finite sample size, distribution free bounds that hold even in the worst case scenario.
The bounds could be tightened using localization, moments of the distribution, etc. Any
such improvements could be plugged straight into Theorem 8 for a tighter bound. See
e.g. Bousquet et al. (2005) for a detailed discussion of recent uniform convergence bounding
methods. Second, in computing bounds rather than trying to characterize the distribution of
MMD (&, X,Y) explicitly, we force our test to be conservative by design. In the following we
aim for an exact characterization of the asymptotic distribution of MMD(F, X,Y) instead
of a bound. While this will not satisfy the uniform convergence requirements, it leads to
superior tests in practice.

5. Test Based on the Asymptotic Distribution of the Unbiased Statistic

We now propose a second test, which is based on the asymptotic distribution of the unbiased
estimate of MMD? in Lemma 5.

Theorem 19 We assume E (h2) < 00. Under Hq, MMD% converges in distribution (see
e.g. Grimmet and Stirzaker, 2001, Section 7.2) to a Gaussian according to

m? (MMD?2 — MMD? [F,p, q]) 2 N (0,02)
where 02 = 4 (EZ [(E.h(z,2))?] - [EZ,Z/(h(z,z’))f), uniformly at rate 1/\/m (Serfling,

1980, Theorem B, p. 193). Under Hy, the U-statistic is degenerate, meaning E,/h(z,2") =
0. In this case, MMDZ converges in distribution according to

o
mMMD2 2 37\ [22 - 2], (10)
=1

9. In the case of a = 0.05, this is m > 12.
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Figure 2: Left: Empirical distribution of the MMD under Hy, with p and ¢ both Gaussians
with unit standard deviation, using 50 samples from each. Right: Empirical
distribution of the MMD under H;, with p a Laplace distribution with unit
standard deviation, and ¢ a Laplace distribution with standard deviation 3v/2,
using 100 samples from each. In both cases, the histograms were obtained by
computing 2000 independent instances of the MMD.

where z; ~ N(0,2) i.i.d., \; are the solutions to the eigenvalue equation
[ Fe@inta) = A,

and k(zi,z;) = k(z;,x;) — Bpk(ri, ) — Egk(x,2;) + Epwk(z,2') is the centred RKHS
kernel.

The asymptotic distribution of the test statistic under H; is given by (Serfling, 1980, Section
5.5.1), and the distribution under Hy follows Serfling (1980, Section 5.5.2) and Anderson
et al. (1994, Appendix); see Appendix B.1 for details. We illustrate the MMD density under
both the null and alternative hypotheses by approximating it empirically for both p = ¢
and p # q. Results are plotted in Figure 2.

Our goal is to determine whether the empirical test statistic MMDZ is so large as to
be outside the 1 — o quantile of the null distribution in (10) (consistency of the resulting
test is guaranteed by the form of the distribution under H;). One way to estimate this
quantile is using the bootstrap on the aggregated data, following Arcones and Giné (1992).
Alternatively, we may approximate the null distribution by fitting Pearson curves to its first
four moments (Johnson et al., 1994, Section 18.8). Taking advantage of the degeneracy of
the U-statistic, we obtain (see Appendix B.2)

E ([MMD2]%) = ﬁE [h2(,2')] and (11)
8(m — 2)

| D [h(z, 2NVE,n (h(z,z”)h(z’,z”))] +O0(m™). (12)

E ([MMD@P) =1
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The fourth moment E ([MMDZF) is not computed, since it is both very small, O(m~%),

and expensive to calculate, O(m4). Instead, we replace the kurtosis'® with a lower bound
due to Wilkins (1944), kurt (MMD32) > (skew (MMD2))? + 1.

Note that MMD? may be negative, since it is an unbiased estimator of (MMDI[F, p, ¢])?.
However, the only terms missing to ensure nonnegativity are the terms h(z;, z;), which were

removed to remove spurious correlations between observations. Consequently we have the
bound

m

! Z k(zi, i) + k(yi, vi) — 2k(xi,9:) > 0. (13)

MMD2 + ——
wt m(m — 1) <

6. A Linear Time Statistic and Test

While the above tests are already more efficient than the O(m?logm) and O(m?) tests
described earlier, it is still desirable to obtain O(m) tests which do not sacrifice too much
statistical power. Moreover, we would like to obtain tests which have O(1) storage require-
ments for computing the test statistic in order to apply it to data streams. We now describe
how to achieve this by computing the test statistic based on a subsampling of the terms in
the sum. The empirical estimate in this case is obtained by drawing pairs from X and Y
respectively without replacement.

Lemma 20 Recall mgy := |m/2]|. The estimator

1
ma2

Z h((z2i—1,Y2i-1), (T2:, Y2:))

=1

MMD?[F, X,Y] :=

can be computed in linear time. Moreover, it is an unbiased estimate of MMD? [F,p,q].

While it is expected (as we will see explicitly later) that MMD? has higher variance than
MMD%, it is computationally much more appealing. In particular, the statistic can be used
in stream computations with need for only O(1) memory, whereas MMD? requires O(m)
storage and O(m?) time to compute the kernel h on all interacting pairs.

Since MMDZ2 is just the average over a set of random variables, Hoeffding’s bound
and the central limit theorem readily allow us to provide both uniform convergence and
asymptotic statements for it with little effort. The first follows directly from Hoeffding
(1963, Theorem 2).

Theorem 21 Assume 0 < k(z;,z;) < K. Then

— 42
Pr {MMD} (%, X,Y) — MMD?*(F,p,q) >t} < exp < 8K”;2>

where mg == |m/2| (the same bound applies for deviations of —t and below).

o . 5 E([MMDZF)
10. The kurtosis is defined in terms of the fourth and second moments as kurt (MMDu) = W —3.
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Note that the bound of Theorem 17 is identical to that of Theorem 21, which shows the
former is rather loose. Next we invoke the central limit theorem.

Corollary 22 Assume 0 < E(hQ) < 00. Then MMDl2 converges in distribution to a
Gaussian according to

m? (MMD? — MMD? [F,p, q]) 2 N (0,07)
where 02 =2 |E, h?(z,2") — [E, ./h(z, 2 2 , uniformly at rate 1/\/m.
l ) ) , Y

The factor of 2 arises since we are averaging over only |m/2] observations. Note the
difference in the variance between Theorem 19 and Corollary 22, namely in the former
case we are interested in the average conditional variance E,Var,/[h(z, 2')|z], whereas in the
latter case we compute the full variance Var, ./[h(z,2’)].

We end by noting another potential approach to reducing the computational cost of the
MMD, by computing a low rank approximation to the Gram matrix (Fine and Scheinberg,
2001; Williams and Seeger, 2001; Smola and Schoélkopf, 2000). An incremental computation
of the MMD based on such a low rank approximation would require O(md) storage and
O(md) computation (where d is the rank of the approximate Gram matrix which is used
to factorize both matrices) rather than O(m) storage and O(m?) operations. That said, it
remains to be determined what effect this approximation would have on the distribution of
the test statistic under Hy, and hence on the test threshold.

7. Similarity Measures Related to MMD

Our main point is to propose a new kernel statistic to test whether two distributions are
the same. However, it is reassuring to observe links to other measures of similarity between
distributions.

7.1 Link with L, Distance between Parzen Window Estimates

In this section, we demonstrate the connection between our test statistic and the Parzen
window-based statistic of Anderson et al. (1994). We also show that a two-sample test
based on Parzen windows converges more slowly than an RKHS-based test, which is also
due to Anderson et al. (1994). Before proceeding, we motivate this discussion with a short
overview of the Parzen window estimate and its properties, as drawn from Silverman (1986).
We assume a distribution p on R%, which has an associated density function also written p
to minimise notation. The Parzen window estimate of this density from an i.i.d. sample X
of size m is

1
p(x) = — Zli (z; — ) where k satisfies / k(x)dr =1 and K (z) > 0.
i3 X

We may rescale x according to h%/ﬁ (%) Consistency of the Parzen window estimate

requires
lim A% =0 and  lim mhd = cc. (14)

m—00 m—00
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We now show that the Lo distance between Parzen windows density estimates (Anderson
et al., 1994) is a special case of the biased MMD in equation (6). Denote by D,(p,q) :=
lp — ql|, the L, distance. For r = 1 the distance D,(p,q) is known as the Levy distance
(Feller, 1971), and for r = 2 we encounter distance measures derived from the Renyi entropy
(Gokcay and Principe, 2002).

Assume that p and § are given as kernel density estimates with kernel x(x — '), that
is, p(z) = m~ 1Y, k(x; — x) and §(y) is defined by analogy. In this case

2

Ds(p, )2 = / li Sl —2) = =3 i — )| ds (15)

m & n &
(A A
1 ™ 1 9 m,n
=3 Z k(mz‘—%‘)ﬂLﬁ Z k(yi—yj)—% k(zi —y5), (16)
ij=1 ij=1 ij=1

where k(z —y) = [ k(x — 2)k(y — z)dz. Note that by its definition k(z — y) is a Mercer
kernel (Mercer, 1909), as it can be viewed as inner product between k(z — z) and k(y — 2)
on the domain X.

A disadvantage of the Parzen window interpretation is that when the Parzen window
estimates are consistent (which requires the kernel size to decrease with increasing sample
size), the resulting two-sample test converges more slowly than using fixed kernels. Accord-
ing to Anderson et al. (1994, p. 43), the Type II error of the two-sample test converges

as m~1/ thnd/ 2, Thus, given the schedule for the Parzen window size decrease in (14), the
convergence rate will lie in the open interval (0,1/2): the upper limit is approached as h,,
decreases more slowly, and the lower limit corresponds to h,, decreasing near the upper
bound of 1/m. In other words, by avoiding density estimation, we obtain a better con-
vergence rate (namely m~Y 2) than using a Parzen window estimate with any permissible
bandwidth decrease schedule. In addition, the Parzen window interpretation cannot ex-
plain the excellent performance of MMD based tests in experimental settings where the
dimensionality greatly exceeds the sample size (for instance the Gaussian toy example in
Figure 4B, for which performance actually improves when the dimensionality increases; and
the microarray datasets in Table 1). Finally, our tests are able to employ universal kernels
that cannot be written as inner products between Parzen windows, normalized or otherwise:
several examples are given by Steinwart (2001, Section 3) and Micchelli et al. (2006, Section
3). We may further generalize to kernels on structured objects such as strings and graphs
(Scholkopf et al., 2004): see also our experiments in Section 8.

7.2 Set Kernels and Kernels Between Probability Measures

Gartner et al. (2002) propose kernels to deal with sets of observations. These are then used
in the context of Multi-Instance Classification (MIC). The problem MIC attempts to solve
is to find estimators which are able to infer from the fact that some elements in the set
satisfy a certain property, then the set of observations has this property, too. For instance,
a dish of mushrooms is poisonous if it contains poisonous mushrooms. Likewise a keyring
will open a door if it contains a suitable key. One is only given the ensemble, however,
rather than information about which instance of the set satisfies the property.

19



The solution proposed by Gértner et al. (2002) is to map the ensembles X; := {x;1,. .., Zim, },
where ¢ is the ensemble index and m; the number of elements in the ith ensemble, jointly
into feature space via
1 m;

P(Xi) == — ) o(zij), (17)
mi

and use the latter as the basis for a kernel method. This simple approach affords rather

good performance. With the benefit of hindsight, it is now understandable why the kernel

m;,m;

> k@i, z50) (18)

u,v

1

mimj

k(X;, X;) =

produces useful results: it is simply the kernel between the empirical means in feature space
(u(Xi), w(X;)) (Hein et al., 2004, Eq. 4). Jebara and Kondor (2003) later extended this
setting by smoothing the empirical densities before computing inner products.

Note, however, that property testing for distributions is probably not optimal when
using the mean u[p| (or u[X] respectively): we are only interested in determining whether
some instances in the domain have the desired property, rather than making a statement
regarding the distribution of those instances. Taking this into account leads to an improved
algorithm (Andrews et al., 2003).

7.3 Kernel Measures of Independence

We next demonstrate the application of MMD in determining whether two random variables
x and y are independent. In other words, assume that pairs of random variables (z;,y;)
are jointly drawn from some distribution p := Pr,,. We wish to determine whether this
distribution factorizes, i.e. whether ¢ := Pr, Pry is the same as p. One application of
such an independence measure is in independent component analysis (Comon, 1994), where
the goal is to find a linear mapping of the observations x; to obtain mutually independent
outputs. Kernel methods were employed to solve this problem by Bach and Jordan (2002);
Gretton et al. (2005a,b). In the following we re-derive one of the above kernel independence
measures using mean operators instead.
We begin by defining
ulPr] = Eqy [u((z,y), )]
and u[f;r X P;r] =E.E, [v((z,y),)].

Here we assumed that V is an RKHS over X x Y with kernel v((z,y), («',v)). If z and
y are dependent, the equality p[Pry,| = p[Pry; x Pry] will not hold. Hence we may use
A = ||p[Prgy| — p[Pry x Pry]|| as a measure of dependence.

Now assume that v((z,y), (2',y')) = k(x,2")l(y,y’), i.e. that the RKHS V is a direct
product H ® G of the RKHSs on X and Y. In this case it is easy to see that

A = ||Byy [k, )iy, )] — B [k(z, )] By [1(y, )]
= E;E,y, [k:(a:,x')l(y,y')] - 2E,E,E,, [k:(x,x')l(y,y')}
+E.E,E.Ey [k(z,2)l(y,y)]
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The latter, however, is exactly what Gretton et al. (2005a) show to be the Hilbert-Schmidt
norm of the cross-covariance operator between RKHSs: this is zero if and only if x and y
are independent, for universal kernels. We have the following theorem:

Theorem 23 Denote by Cy,y, the covariance operator between random wvariables x and y,
drawn jointly from Pry,, where the functions on X and Y are the reproducing kernel Hilbert
spaces F and G respectively. Then the Hilbert-Schmidt norm ||Cyy|lyg equals A.

Empirical estimates of this quantity are as follows:

Theorem 24 Denote by K and L the kernel matrices on X and Y respectively, and by
H = I — 1/m the projection matriz onto the subspace orthogonal to the vector with all
entries set to 1. Then m~2tr HKHL is an estimate of A? with bias O(m~'). With high

probability the deviation from A? is O(m_%).

Gretton et al. (2005a) provide explicit constants. In certain circumstances, including in the
case of RKHSs with Gaussian kernels, the empirical A? may also be interpreted in terms
of a smoothed difference between the joint empirical characteristic function (ECF) and the
product of the marginal ECFs (Feuerverger, 1993; Kankainen, 1995). This interpretation
does not hold in all cases, however, e.g. for kernels on strings, graphs, and other structured
spaces. An illustration of the witness function f € F from Definition 2 is provided in Figure
3. This is a smooth function which has large magnitude where the joint density is most
different from the product of the marginals.

We remark that a hypothesis test based on the above kernel statistic is more complicated
than for the two-sample problem, since the product of the marginal distributions is in effect
simulated by permuting the variables of the original sample. Further details are provided
by Gretton et al. (2008).

7.4 Kernel Statistics Using a Distribution over Witness Functions

Shawe-Taylor and Dolia (2007) define a distance between distributions as follows: let H
be a set of functions on X and r be a probability distribution over F. Then the distance
between two distributions p and ¢ is given by

D(p,9) := Efror(p) [Banplf(2)] = Eong[f(2)]] (19)

That is, we compute the average distance between p and g with respect to a distribution of
test functions.

Lemma 25 Let H be a reproducing kernel Hilbert space, f € H, and assume r(f) =
(|| fllgc) with finite Epor[||flla]. Then D(p,q) = C||u[p] — plalllsc for some constant C
which depends only on H and r.

Proof By definition E,[f(z)] = (u[p], f)4,. Using linearity of the inner product, Equa-
tion (19) equals

/ ulp] - pld)s Fhad dr(f)

= el [ '<%J>%\dm,
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Figure 3: Tllustration of the function maximizing the mean discrepancy when MMD is used
as a measure of independence. A sample from dependent random variables x and
y is shown in black, and the associated function f that witnesses the MMD is
plotted as a contour. The latter was computed empirically on the basis of 200
samples, using a Gaussian kernel with ¢ = 0.2.
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plpl—pld]

where the integral is independent of p, g. To see this, note that for any p, g, Talpl=rlallo is a
unit vector which can turned into, say, the first canonical basis vector by a rotation which
leaves the integral invariant, bearing in mind that r is rotation invariant. |

8. Experiments

We conducted distribution comparisons using our MMD-based tests on datasets from three
real-world domains: database applications, bioinformatics, and neurobiology. We investi-
gated both uniform convergence approaches (MMD; with the Corollary 16 threshold, and
MMD% H with the Corollary 18 threshold); the asymptotic approaches with bootstrap
(MMD? B) and moment matching to Pearson curves (MMD? M), both described in Sec-
tion 5; and the asymptotic approach using the linear time statistic (MMD?) from Section
6. We also compared against several alternatives from the literature (where applicable):
the multivariate t-test, the Friedman-Rafsky Kolmogorov-Smirnov generalisation (Smir),
the Friedman-Rafsky Wald-Wolfowitz generalisation (Wolf), the Biau-Gyorfi test (Biau),
and the Hall-Tajvidi test (Hall). See Section 3.3 for details regarding these tests. Note
that we do not apply the Biau-Gyorfi test to high-dimensional problems (since the required
space partitioning is no longer possible), and that MMD is the only method applicable to
structured data such as graphs.

An important issue in the practical application of the MMD-based tests is the selection
of the kernel parameters. We illustrate this with a Gaussian RBF kernel, where we must
choose the kernel width o (we use this kernel for univariate and multivariate data, but not
for graphs). The empirical MMD is zero both for kernel size 0 = 0 (where the aggregate
Gram matrix over X and Y is a unit matrix), and also approaches zero as ¢ — oo (where the
aggregate Gram matrix becomes uniformly constant). We set o to be the median distance
between points in the aggregate sample, as a compromise between these two extremes: this
remains a heuristic, similar to those described in Takeuchi et al. (2006); Scholkopf (1997),
and the optimum choice of kernel size is an ongoing area of research.

8.1 Toy Example: Two Gaussians

In our first experiment, we investigated the scaling performance of the various tests as a
function of the dimensionality d of the space X C R?, when both p and ¢ were Gaussian.
We considered values of d up to 2500: the performance of the MMD-based tests cannot
therefore be explained in the context of density estimation (as in Section 7.1), since the
associated density estimates are necessarily meaningless here. The levels for all tests were
set at @ = 0.05, m = 250 samples were used, and results were averaged over 100 repetitions.
In the first case, the distributions had different means and unit variance. The percentage of
times the null hypothesis was correctly rejected over a set of Euclidean distances between
the distribution means (20 values logarithmically spaced from 0.05 to 50), was computed
as a function of the dimensionality of the normal distributions. In case of the t-test, a
ridge was added to the covariance estimate, to avoid singularity (the ratio of largest to
smallest eigenvalue was ensured to be at most 2). In the second case, samples were drawn
from distributions N(0,I) and N(0,02I) with different variance. The percentage of null
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Figure 4: Type II performance of the various tests when separating two Gaussians, with test
level « = 0.05. A Gaussians have same variance, different means. B Gaussians
have same mean, different variances.

rejections was averaged over 20 ¢ values logarithmically spaced from 10°°! to 10. The
t-test was not compared in this case, since its output would have been irrelevant. Results
are plotted in Figure 4.

In the case of Gaussians with differing means, we observe the t-test performs best in low
dimensions, however its performance is severely weakened when the number of samples ex-
ceeds the number of dimensions. The performance of MM D2 M is comparable to the t-test
for low sample sizes, and outperforms all other methods for larger sample sizes. The worst
performance is obtained for MM D? H, though MM Dj, also does relatively poorly: this
is unsurprising given that these tests derive from distribution-free large deviation bounds,
whereas the sample size is relatively small. Remarkably, M M D12 performs quite well com-
pared with classical tests in high dimensions.

In the case of Gaussians of differing variance, the Hall test performs best, followed closely
by MMD2. FR Wolf and (to a much greater extent) FR Smirnov both have difficulties in
high dimensions, failing completely once the dimensionality becomes too great. The linear
test M M Dz2 again performs surprisingly well, almost matching the M M D2 performance in
the highest dimensionality. Both MM D2H and M M D,, perform poorly, the former failing
completely: this is one of several illustrations we will encounter of the much greater tightness
of the Corollary 16 threshold over that in Corollary 18.

8.2 Data Integration

In our next application of MMD, we performed distribution testing for data integration:
the objective is to aggregate two datasets into a single sample, with the understanding that
both original samples are generated from the same distribution. Clearly, it is important to
check this last condition before proceeding, or an analysis could detect patterns in the new
dataset that are caused by combining the two different source distributions, and not by real-
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world phenomena. We chose several real-world settings to perform this task: we compared
microarray data from normal and tumor tissues (Health status), microarray data from
different subtypes of cancer (Subtype), and local field potential (LFP) electrode recordings
from the Macaque primary visual cortex (V1) with and without spike events (Neural Data I
and II, as described in more detail by Rasch et al., 2008). In all cases, the two data sets have
different statistical properties, but the detection of these differences is made difficult by the
high data dimensionality (indeed, for the microarray data, density estimation is impossible
given the sample size and data dimensionality, and no successful test can rely on accurate
density estimates as an intermediate step).

We applied our tests to these datasets in the following fashion. Given two datasets A
and B, we either chose one sample from A and the other from B (attributes = different); or
both samples from either A or B (attributes = same). We then repeated this process up to
1200 times. Results are reported in Table 1. Our asymptotic tests perform better than all
competitors besides Wolf: in the latter case, we have greater Type II error for one neural
dataset, lower Type II error on the Health Status data (which has very high dimension
and low sample size), and identical (error-free) performance on the remaining examples.
We note that the Type I error of the bootstrap test on the Subtype dataset is far from its
design value of 0.05, indicating that the Pearson curves provide a better threshold estimate
for these low sample sizes. For the remaining datasets, the Type I errors of the Pearson
and Bootstrap approximations are close. Thus, for larger datasets, the bootstrap is to be
preferred, since it costs O(m?), compared with a cost of O(m?) for Pearson (due to the cost
of computing (12)). Finally, the uniform convergence-based tests are too conservative, with
MMDy finding differences in distribution only for the data with largest sample size, and
MMD?2 H never finding differences.

Dataset | Attr. | MMD, | MMD H | MMD: B | MMD3 M | t-test | Wolf | Smir | Hall |
Neural Data I | Same 100.0 100.0 96.5 96.5 [ 100.0 [ 97.0 | 95.0 [ 96.0
Different [ 38.0 100.0 0.0 0.0 42.0| 0.0 ] 10.0 [ 49.0
Neural Data I | Same 100.0 100.0 94.6 95.2 [ 100.0 [ 95.0 | 94.5 [ 96.0
Different | 99.7 100.0 33 34[100.0 [ 0.8] 31.8] 5.9
Health status Same 100.0 100.0 95.5 94.4 | 100.0 | 94.7 | 96.1 | 95.6
Different [ 100.0 100.0 1.0 0.8 [ 100.0 | 28] 44.0 | 35.7
Subtype Same 100.0 100.0 99.1 96.4 [ 100.0 [ 94.6 | 97.3 [ 96.5
Different [ 100.0 100.0 0.0 0.0 [ 100.0 | 0.0 [ 284 | 0.2

Table 1: Distribution testing for data integration on multivariate data. Numbers indicate
the percentage of repetitions for which the null hypothesis (p=q) was accepted,
given « = 0.05. Sample size (dimension; repetitions of experiment): Neural I 4000
(63; 100) ; Neural II 1000 (100; 1200); Health Status 25 (12,600; 1000); Subtype
25 (2,118; 1000).
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8.3 Computational Cost

We next investigate the tradeoff between computational cost and performance of the various
tests, with particular attention to how the quadratic time MMD tests from Sections 4 and 5
compare with the linear time MMD-based asymptotic test from Section 6. We consider two
1-D datasets (CNUM and FOREST) and two higher-dimensional datasets (FOREST10D
and NEUROII). Results are plotted in Figure 5. If cost is not a factor, then the MMD? B
shows best overall performance as a function of sample size, with a Type II error dropping
to zero as fast or faster than competing approaches in three of four cases, and narrowly
trailing FR Wolf in the fourth (FOREST10D). That said, for datasets CNUM, FOREST,
and FOREST10D, the linear time MMD achieves results comparable to MMD?2 B at a far
smaller computational cost, albeit by looking at a great deal more data. In the CNUM
case, however, the linear test is not able to achieve zero error even for the largest data set
size. For the NEUROII data, attaining zero Type II error has about the same cost for both
approaches. The difference in cost of MMD% B and MMD,, is due to the bootstrapping
required for the former, which produces a constant offset in cost between the two (here 150
resamplings were used).

The t-test also performs well in three of the four problems, and in fact represents the best
cost-performance tradeoff in these three datasets (i.e. while it requires much more data than
MMDZ B for a given level of performance, it costs far less to compute). The t-test assumes
that only the difference in means is important in distinguishing the distributions, however,
and it fails completely on the NEUROII data. We emphasise that the Kolmogorov-Smirnov
results in 1-D were obtained using the classical statistic, and not the Friedman-Rafsky
statistic, hence the low computational cost. The cost of both Friedman-Rafsky statistics is
therefore given by the FR Wolf cost. The latter scales similarly with sample size to the
quadratic time MMD tests, confirming Friedman and Rafsky’s observation that obtaining
the pairwise distances between sample points is the dominant cost of their tests. We also
remark on the unusual behaviour of the Type II error of the FR Wolf test in the FOREST
dataset, where it worsens for increasing sample size.

We conclude that the approach to be recommended when testing homogeneity will
depend on the data available: for small amounts of data, the best results are obtained using
every observation to maximum effect, and employing the quadratic time MMD% B test.
When large volumes of data are available, a better option is to look at each point only once,
which can yield greater accuracy for a given computational cost. It may also be worth doing
a t-test first in this case, and only running more sophisticated non-parametric tests if the
t-test accepts the null hypothesis, to verify the distributions are identical in more than just
mean.

8.4 Attribute Matching

Our final series of experiments addresses automatic attribute matching. Given two databases,
we want to detect corresponding attributes in the schemas of these databases, based on their
data-content (as a simple example, two databases might have respective fields Wage and
Salary, which are assumed to be observed via a subsampling of a particular population,
and we wish to automatically determine that both Wage and Salary denote to the same
underlying attribute). We use a two-sample test on pairs of attributes from two databases
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Figure 5: Linear vs quadratic MMD. First column is performance, second is runtime. The
dashed grey horizontal line indicates zero Type II error (required due log y-axis)
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to find corresponding pairs.!'! This procedure is also called table matching for tables from
different databases. We performed attribute matching as follows: first, the dataset D was
split into two halves A and B. Each of the n attributes in A (and B, resp.) was then rep-
resented by its instances in A (resp. B). We then tested all pairs of attributes from A and

from B against each other, to find the optimal assignment of attributes Aq,..., A, from A
to attributes Bi,..., B, from B. We assumed that A and B contain the same number of
attributes.

As a naive approach, one could assume that any possible pair of attributes might cor-
respond, and thus that every attribute of A needs to be tested against all the attributes of
B to find the optimal match. We report results for this naive approach, aggregated over
all pairs of possible attribute matches, in Table 2. We used three datasets: the census
income dataset from the UCI KDD archive (CNUM), the protein homology dataset from
the 2004 KDD Cup (BIO) (Caruana and Joachims, 2004), and the forest dataset from the
UCI ML archive (Blake and Merz, 1998). For the final dataset, we performed univariate
matching of attributes (FOREST) and multivariate matching of tables (FOREST10D) from
two different databases, where each table represents one type of forest. Both our asymptotic
MMD?2-based tests perform as well as or better than the alternatives, notably for CNUM,
where the advantage of MMD? is large. Unlike in Table 1, the next best alternatives are not
consistently the same across all data: e.g. in BIO they are Wolf or Hall, whereas in FOR-
EST they are Smir, Biau, or the t-test. Thus, MMDZ appears to perform more consistently
across the multiple datasets. The Friedman-Rafsky tests do not always return a Type I
error close to the design parameter: for instance, Wolf has a Type I error of 9.7% on the
BIO dataset (on these data, MMD? has the joint best Type II error without compromising
the designed Type I performance). Finally, MMD);, performs much better than in Table 1,
although surprisingly it fails to reliably detect differences in FOREST10D. The results of
MMD% H are also improved, although it remains among the worst performing methods.

A more principled approach to attribute matching is also possible. Assume that ¢p(A) =
(p1(A1), p2(A2), ..., n(Ay)): in other words, the kernel decomposes into kernels on the
individual attributes of A (and also decomposes this way on the attributes of B). In this
case, MM D? can be written > 1, [|ui(A;) — pi(B;)]|?, where we sum over the MMD terms
on each of the attributes. Our goal of optimally assigning attributes from B to attributes
of A via MMD is equivalent to finding the optimal permutation 7 of attributes of B that
minimizes >, ||pi(Ai) — pi(BW(Z-))H?. If we define Cj; = ||pi(A;) — wi(B;)||?, then this is
the same as minimizing the sum over Cj ~(;). This is the linear assignment problem, which
costs O(n?) time using the Hungarian method (Kuhn, 1955).

While this may appear to be a crude heuristic, it nonetheless defines a semi-metric on
the sample spaces X and Y and the corresponding distributions p and ¢g. This follows
from the fact that matching distances are proper metrics if the matching cost functions are
metrics. We formalize this as follows:

Theorem 26 Let p,q be distributions on R? and denote by p;,q; the marginal distribu-
tions on the i-th variable. Moreover, denote by I1 the symmetric group on {1,...,d}. The

11. Note that corresponding attributes may have different distributions in real-world databases. Hence,
schema matching cannot solely rely on distribution testing. Advanced approaches to schema matching
using MMD as one key statistical test are a topic of current research.

28



following distance, obtained by optimal coordinate matching, is a semi-metric.
d
A[S’r,p’ Q] = Ernelllillzl MMD[:;v D, QW(i)]
1=

Proof Clearly A[F,p,q] is nonnegative, since all of its summands are. Next we show the
triangle inequality. Denote by r a third distribution on R and let Tp,q» Tg,r and m,  be the
distance minimizing permutations between p, ¢ and r respectively. It then follows that

d d
A[Stapv Q] + A[?, q, T] = Z MMD[?’pZa Qﬂ'p’q(i)] + Z MMD[SFa qi, Tﬂq,r(i)]
=1 =1
d
> S MMD[F, py, 7|
1=1

> A[F,p,r].

”p,qoﬂq,r](i)]

Here the first inequality follows from the triangle inequality on MMD, that is
MMDI(F, pi, gr,, ,(iy] + MMDIF, ¢, (i) 7| )] = MMDI(F, pi, 7, somg.01(0)]-

Tp,q°Tq,r] (i

The second inequality is a result of minimization over . |
| Dataset | Attr. [ MMD, | MMD; H | MMD; B | MMD; M | t-test | Wolf | Smir | Hall | Biau |
BIO Same 100.0 100.0 93.8 94.8 95.2 | 90.3 | 95.8 | 953 | 99.3
Different 20.0 52.6 17.2 17.6 36.2 | 17.2 | 18.6 | 17.9 | 42.1
FOREST Same 100.0 100.0 96.4 96.0 974 | 94.6 | 99.8 | 95.5 | 100.0
Different 3.9 11.0 0.0 0.0 0.2 3.8 0.0 | 50.1 0.0
CNUM Same 100.0 100.0 94.5 93.8 94.0 | 984 | 97.5 | 91.2 98.5
Different 14.9 52.7 2.7 2.5 | 19.17 | 225 | 11.6 | 79.1 50.5
FOREST10D | Same 100.0 100.0 94.0 94.0 | 100.0 | 93.5 | 96.5 | 97.0 | 100.0
Different 86.6 100.0 0.0 0.0 0.0 0.0 1.0 | 72.0 | 100.0

Table 2: Naive attribute matching on univariate (BIO, FOREST, CNUM) and multivariate
data (FOREST10D). Numbers indicate the percentage of accepted null hypothesis
(p=q) pooled over attributes. « = 0.05. Sample size (dimension; attributes;
repetitions of experiment): BIO 377 (1; 6; 100); FOREST 538 (1; 10; 100); CNUM
386 (1; 13; 100); FOREST10D 1000 (105 2; 100).

We tested this 'Hungarian approach’ to attribute matching via MMD% B on three
univariate datasets (BIO, CNUM, FOREST) and for table matching on a fourth (FOR-
EST10D). To study MMD? B on structured data, we obtained two datasets of protein
graphs (PROTEINS and ENZYMES) and used the graph kernel for proteins from Borg-
wardt et al. (2005) for table matching via the Hungarian method (the other tests were not
applicable to this graph data). The challenge here is to match tables representing one func-
tional class of proteins (or enzymes) from dataset A to the corresponding tables (functional
classes) in B. Results are shown in Table 3. Besides on the BIO and CNUM datasets,
MMD? B made no errors.
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‘ Dataset ‘ Data type ‘ No. attributes ‘ Sample size ‘ Repetitions ‘ % correct matches ‘
BIO univariate 6 377 100 90.0
CNUM univariate 13 386 100 99.8
FOREST univariate 10 538 100 100.0
FOREST10D | multivariate 2 1000 100 100.0
ENZYME structured 6 50 50 100.0
PROTEINS | structured 2 200 50 100.0

Table 3: Hungarian Method for attribute matching via MMD? B on univariate (BIO,
CNUM, FOREST), multivariate (FOREST10D), and structured data (EN-
ZYMES, PROTEINS) (a = 0.05; ‘% correct matches’ is the percentage of the
correct attribute matches detected over all repetitions).

9. Conclusion

We have established three simple multivariate tests for comparing two distributions p and g,
based on samples of size m and n from these respective distributions. Our test statistic is the
maximum mean discrepancy (MMD), defined as the maximum deviation in the expectation
of a function evaluated on each of the random variables, taken over a sufficiently rich function
class: in our case, a universal reproducing kernel Hilbert space (RKHS). Equivalently, the
statistic can be written as the norm of the difference between distribution feature means
in the RKHS. We do not require density estimates as an intermediate step. Two of our
tests provide Type I error bounds that are exact and distribution-free for finite sample
sizes. We also give a third test based on quantiles of the asymptotic distribution of the
associated test statistic. All three tests can be computed in O((m + n)?) time, however
when sufficient data are available, a linear time statistic can be used, which employs more
data to get better results at smaller computational cost. In addition, a number of metrics
on distributions (Kolmogorov-Smirnov, Earth Mover’s, Lo distance between Parzen window
density estimates), as well as certain kernel similarity measures on distributions, are included
within our framework.

While our result establishes that statistical tests based on the MMD are consistent for
universal kernels on compact domains, we draw attention to the recent introduction of char-
acteristic kernels by Fukumizu et al. (2008), these being kernels for which the mean map
is injective. Fukumizu et al. establish that Gaussian and Laplace kernels are characteristic
on RY, and thus the MMD is a consistent test for this domain. Sriperumbudur et al. (2008)
further explore the properties of characteristic kernels, providing a simple condition to de-
termine whether convolution kernels are characteristic, and describing characteristic kernels
which are not universal on compact domains. We also note (following Section 7.2) that the
MMD for RKHSs is associated with a particular kernel between probability distributions.
Hein et al. (2004) describe several further such kernels, which induce corresponding dis-
tances between feature space distribution mappings: these may in turn lead to new and
powerful two-sample tests.

Two recent studies have shown that additional divergence measures between distribu-
tions can be obtained empirically through optimization in a reproducing kernel Hilbert
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space. Harchaoui et al. (2008) build on the work of Gretton et al. (2007a), considering a
homogeneity statistic arising from the kernel Fisher discriminant, rather than the difference
of RKHS means; and Nguyen et al. (2008) obtain a KL divergence estimate by approximat-
ing the ratio of densities (or its log) with a function in an RKHS. By design, both these
kernel-based statistics prioritise different features of p and ¢ when measuring the divergence
between them, and the resulting effects on distinguishability of distributions are therefore
of interest.

Finally, we have seen in Section 2 that several classical metrics on probability distri-
butions can be written as maximum mean discrepancies with function classes that are not
Hilbert spaces, but rather Banach, metric, or semi-metric spaces. It would be of particular
interest to establish under what conditions one could write these discrepancies in terms of
norms of differences of mean elements. In particular, Der and Lee (2007) consider Banach
spaces endowed with a semi-inner product, for which a General Riesz Representation exists
for elements in the dual.

Appendix A. Large Deviation Bounds for Tests with Finite Sample
Guarantees

A.1 Preliminary Definitions and Theorems

We need the following theorem, due to McDiarmid (1989).

Theorem 27 (McDiarmid’s inequality) Let f : X™ — R be a function such that for
all i € {1,...,m}, there exist ¢; < oo for which

sup  |f(x1,. . xm) — (21, i1, T Tt 1y - )| < G
XeX7rl7i€x

Then for all probability measures p and every € > 0,

62
pun (F(0) = Bun(F()) > £) < exp (—EiTz> |

We also define the Rademacher average of the function class F with respect to the m-sample
X.

Definition 28 (Rademacher average of ¥ on X) Let F be the unit ball in a universal
RKHS on the compact domain X, with kernel bounded according to 0 < k(z,y) < K. Let X
be an i.i.d. sample of size m drawn according to a probability measure p on X, and let o; be
i.i.d and take values in {—1,1} with equal probability. We define the Rademacher average

L > oif(w:)
-1

m <
1=

R,(F,X) := Egsup
fesx

< (K/m)'?,

where the upper bound is due to Bartlett and Mendelson (2002, Lemma 22). Similarly, we

define
1 m
Rm(gjap) = Ep,a sup E Zo'zf(xz) .
i=1

fexF
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A.2 Bound when p and ¢ May Differ

We want to show that the absolute difference between MMD (&, p, ¢) and MMD(F, X,Y) is
close to its expected value, independent of the distributions p and ¢. To this end, we prove
three intermediate results, which we then combine. The first result we need is an upper
bound on the absolute difference between MMD(F, p, ¢) and MMD,(F, X,Y"). We have

IMMD (5, p, q) — MMDy (5, X, Y)I

sup (E,(f) — Eq(f) —SUP< Zf x; ——Zf(yi)>‘

fesF fesx
1 & 1 «
< sup|By(f) ~ By(f) - o ; flai)+— ; i) (20)
A(p,g,X,Y)

Second, we provide an upper bound on the difference between A(p,q, X,Y’) and its expec-
tation. Changing either of x; or y; in A(p,q, X,Y) results in changes in magnitude of at
most 2K /2 /m or 2K 1/2 /n, respectively. We can then apply McDiarmid’s theorem, given
a denominator in the exponent of

m <2K1/2/m)2 +n <2K1/2/n)2 — 4K (i + 1) — 4T

to obtain

2

Pr(Apg.X.Y) - By (80 X V)] > 9 <o (- 200 ) )

For our final result, we exploit symmetrisation, following e.g. van der Vaart and Wellner
(1996, p. 108), to upper bound the expectation of A(p,q, X,Y). Denoting by X’ an i.i.d
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sample of size m drawn independently of X (and likewise for Y”), we have

EX,Y [A(pv q, X’ Y)]

= By s By() — Y fle) ~By(f) 4 D)
€ i=1 i=1
— Exysup |Ex (i 3 f(w§)> ~ LS fw) — By (1 3 f(y;>> 15 fy)
fes mi3 mia i i
Il &, ,. 1& R
(%) Exyx/ .y f:‘éﬁi - izlf(%) - izlf(l“i) - izlf(yj) +o ;f(yj)
1 = / 1 . / /
= Exyvx vy oo ?1611; m ;Uz‘ (f(xi) - f(mi)) + n ; 0; (f(yj) - f(yj))‘
1 & ) 1o )
(%) Ex xo ?ctelg . ;Ui (f(@)) = f(z:))| + Eyyro ?1611; - ;Uz‘ (fly;) — f(%))‘
(S) 2[Rn(F,p) + Ra(F,9)] .
< 2[(/m)"2 + (K /) (22)
(d)

where (a) uses Jensen’s inequality, (b) uses the triangle inequality, (c¢) substitutes Definition
28 (the Rademacher average), and (d) bounds the Rademacher averages, also via Definition
28.

Having established our preliminary results, we proceed to the proof of Theorem 14.
Proof [Theorem 14] Combining equations (21) and (22), gives

Pr (A(p,q,X, Y)—2|(K/m)"/? + (K/n)l/ﬂ > e) < exp <—%) :

Substituting equation (20) yields the result.

A.3 Bound when p=qg and m=n

In this section, we derive the Theorem 15 result, namely the large deviation bound on the
MMD when p = ¢ and m = n. Note also that we consider only positive deviations of
MMDy(F, X,Y) from MMD (&, p, q), since negative deviations are irrelevant to our hypoth-
esis test. The proof follows the same three steps as in the previous section. The first step
n (20) becomes

MMD,(F, X,Y) — MMD(F,p,q) = MMDy(F,X,X') -0

= sup (i > (flw) - f(d))) : (23)

m
FeF \" =1
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The McDiarmid bound on the difference between (23) and its expectation is now a function

of 2m observations in (23), and has a denominator in the exponent of 2m (2K 1/2 /m)2 =
8K/m. We use a different strategy in obtaining an upper bound on the expected (23),
however: this is now

feFm =1
1 m
= _EX,X’ ((b(qf'z) - ¢(x;)) ‘
i=1
_ %EX,X’ Z Z (k(g;“x]) + k:(m;,x') - k(.%'l,-%';) - k([]ﬁ;,(lﬁj))
| i=1 j=1
< % [2mEgk(z, z) 4+ 2m(m — 1)Ey yk(x,2") — 2m2Ez,z'k($7x/)]%
2 ! 2
= EEx,x’ (ki(m,m) - k($,$ )):| (24)
< QK/m)“2. (25)

We remark that both (24) and (25) bound the amount by which our biased estimate of the
population MMD exceeds zero under Hy. Combining the three results, we find that under
:H:()v

2 2 —e2m
px | MMDy(F, X, X') — [EEQMI (k(z,z) — k(;v,:z;'))} >e| < exp < > and

2
px (MMDb(?, X, X') - 2K/m)"? > e) < exp < ¢ m> .

Appendix B. Proofs for Asymptotic Tests

We derive results needed in the asymptotic test of Section 5. Appendix B.1 describes the
distribution of the empirical MMD under Hy (both distributions identical). Appendix B.2
contains derivations of the second and third moments of the empirical MMD, also under
Ho.

B.1 Convergence of the Empirical MMD under H

We describe the distribution of the unbiased estimator MMD?2[, X, Y] under the null hy-
pothesis. In this circumstance, we denote it by MMD%[I}', X, X'], to emphasise that the
second sample X' is drawn independently from the same distribution as X. We thus obtain
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the U-statistic

1
MMD2[F, X, X'] = ﬁkal,x])—kk( bah) = k(xs, @) — k(xj,27)  (26)
7]
mim=1) Zh iy 25), (27)
Z#J
where z; = (z;,2}). Under the null hypothesis, this U-statistic is degenerate, meaning
E. h(zi,2) = Eek(vi, ;) + E /k( Lis ]) /k(xu ]) Ey, k(zj,x7)
= 0.

The following theorem from Serfling (1980, Section 5.5.2) then applies.

Theorem 29 Assume MMD2[F, X, X'] is as defined in (27), with E,h(z,2') = 0, and fur-
thermore assume 0 < E, ./h%(z,2') < co. Then MMDZ[F, X, X'] converges in distribution
according to

mMMD2[F, X, X'] ZW x5 — 1)

where X%l are independent chi squared random variables of degree one, and v, are the solu-
tions to the eigenvalue equation

Y (u) = /h(u,v)M(v)dlir.

While this result is adequate for our purposes (since we do not explicitly use the quantities ~;
in our subsequent reasoning), it does not make clear the dependence of the null distribution
on the kernel choice. For this reason, we provide an alternative expression based on the
reasoning of Anderson et al. (1994, Appendix), bearing in mind the following changes:

e we do not need to deal with the bias terms S;; seen by Anderson et al. (1994, Ap-
pendix) that vanish for large sample sizes, since our statistic is unbiased (although
these bias terms drop faster than the variance);

e we require greater generality, since we deal with distributions on compact metric
spaces, and not densities on R%; correspondingly, our kernels are not necessarily inner
products in Ly between probability density functions (although this is a special case).

Our first step is to express the kernel h(zi, zj) of the U-statistic in terms of an RKHS kernel
k(x;,x;) between feature space mappings from which the mean has been subtracted,

k(zix) = (@) — pulpl, ¢(a;) — plp])
= k(zi,zj) — Bgk(zi,v) — Egk(z, zj) + By pwk(z, 2').

The centering terms cancel (the distance between the two points is unaffected by an identical
global shift in both the points), meaning

h(zi,zj) = k:(xz-,xj) + l;:(yi,yj) — l;(xi,yj) — ];(Ij,yz)
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Next, we write the kernel /E(xi,xj) in terms of eigenfunctions ;(z) with respect to the
probability measure Pry,

k(z,z') = Z () (2),
=1

where
/x (2 () d Pr(e) = Ats(o)
and
[ @y @iprta) =5, (28)
Since
Ex/;:(a:,v) = E,k(z,v) — Ew,gg/k(x,x') —E k(z,v) + E%m/k(x,x')

then when \; # 0, we have that
NE (') = / B, k(x, 2" );(x)d Pr(z)
x €T

and hence
E, ¢i(z) = 0. (29)

We now use these results to transform the expression in (26). First,
1 - 1 -
Ez:k(xi,acj) = EZZNM(%)T/H(%)
i#j i#j 1=1
1 & ’
= - >N (Z ¢z($i)> = vi()
=1 i i

oo

2_
5 ;)\l(yl 1),

where y; ~ N(0, 1) are i.i.d., and the final relation denotes convergence in distribution, using
(28) and (29), following Serfling (1980, Section 5.5.2). Likewise

1 - > )
EZ/{@C;’@“;’) 5 Z)\z(zl - 1),
1#£j =1

where z; ~ N(0,1), and

1 ~ ~ oo
m;(/ﬂ(wi,w%rk(fﬁj’yi)) = QEAzym-
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Combining these results, we get

o0
mMMD?2(F, X, X) - SN+ —2-2yz)
=1

= ) Nlw—=)’-2].
=1

Note that y; — z;, being the difference of two independent Gaussian variables, has a normal
distribution with mean zero and variance 2. This is therefore a quadratic form in a Gaussian
random variable minus an offset 23,7, ;.

B.2 Moments of the Empirical MMD Under H,

In this section, we compute the moments of the U-statistic in Section 5, under the null
hypothesis conditions

E..h(z2) =0, (30)
and, importantly,
E.h(z,2') =0. (31)

Note that the latter implies the former.
Variance/2nd moment: This was derived by Hoeffding (1948, p. 299), and is also
described by Serfling (1980, Lemma A p. 183). Applying these results,

E ([MMD2]2)

- n(n -1 > [ (n2_ 2 (n—2)(2)E. [(E.h(z,2))*] + @Ez,y [h?(2,2)]
= (n »N(z, 2 2 L , 2 P Z,

= e )E [(E.h( ))]~I—n(n_1)Em [h2(2,2)]

= L IR2 (2. 2

- n(n— 1)EZ’Z [17(2,2)]

where the first term in the penultimate line is zero due to (31). Note that variance and 2nd
moment are the same under the zero mean assumption.

3rd moment: We consider the terms that appear in the expansion of E ([MMD?JS)

These are all of the form 5
2
(7)) E(habhcdhef)a

n(n —1

where we shorten hg, = h(zq, 2p), and we know z, and z, are always independent. Most of
the terms vanish due to (30) and (31). The first terms that remain take the form

(ﬁ)g E(haphpchea),
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and there are
n(n —1)

2
of them, which gives us the expression

(n —2)(2)

3 i
( 2 )> nin 1)(n —2)(2)E. s [h(z, 2" )E (h(z,2")h(Z',2"))]

n(n—1 2
- %E [h(2, 2 ) B (h(z,2")h(2, 2"))] . o

Note the scaling % ~ n_13

b=d = f, take the form
9 3
——— | E.. [h3z,7
<n(n1)> Z,2 [ (272)]7

of them, which gives

The remaining non-zero terms, for which a = ¢ = e and

and there are @

(%) : E.. [13(z )] (33)

n—1

2
However (ﬁ) ~ n~* so this term is negligible compared with (32). Thus, a reasonable

approximation to the third moment is

E ([MMD2]*) ~ 8(n—2)

® 2 1 e [ 2B ((z 2)A(, 1))
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