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Abstract 

When people reason formally, they often make use of special 
notations—algebra and arithmetic are familiar examples. 
These notations are often treated as mere shorthand—a 
concise way of referring to meaningful mathematical 
concepts.  Other authors have argued that people treat 
notations as pictures—literal diagrams of an imagined set of 
objects (Dörfler, 2003; Landy & Goldstone, 2009). If 
notations depict objects that exist in space, then it makes 
sense to wonder how they are arranged not just in the two 
visible dimensions, but in depth. In four experiments, we find 
a consistent pattern: properties that increase mathematical 
precedence also tend to make objects appear closer in space. 
This alignment of formal pressures and informal pressures 
suggests that perceived depth may play a role in supporting 
computational reasoning processes. Although our primary 
focus is documenting the existence of depth illusions in 
notations, we also evaluate several sources of information that 
might guide depth judgments: availability of an object for 
computational actions, formal syntactic structure, relative 
symbol salience and voluntary attention shifts. We consider 
relationships between these nonexclusive possible sources of 
information in guiding how people judge depth in 
mathematics.  

Keywords: Mathematical cognition, embodied cognition, 
depth perception 

Introduction 
Special notations are ubiquitous markers of mathematical 

thinking. Often, these notations are treated as mere 
conventional patterns, which serve as the target of rule-
learning systems such as generic production systems (e.g., 
(Koedinger, Alibali, & Nathan, 2008; Anderson, 2005; 
Koedinger & MacLaren, 2002).  From this perspective, the 
exact format and layout of the expression doesn’t much 
affect how reasoning happens—what makes learning 
difficult is the rules, not the layout.  However, growing 
evidence suggests a different account.  It seems formal 
operations—from reasoning to logic to simple 
mathematics—are not always computed through the action 
of an abstract reasoning system, but instead make use of 
perceptual-motor systems typically involved in real-world 
perception and action. 

In the case of mathematics in particular, reasoning that on 
the surface appears to require formal operations can be 
simplified if reasoners treat notations as pictures of a 
physical scene (Dörfler, 2003; Landy & Goldstone, 2009).  
For instance, algebraic syntax has a hierarchical structure 

partially described by the order of operations. In any 
equation, operations bind in the following order: 
parentheses, exponents, multiplications and divisions, 
additions and subtractions. This apparently arbitrary system 
appears to require explicit memorization, but in fact can be 
computed using basic perceptual-motor mechanisms such as 
grouping (Landy & Goldstone, 2007) and automatic 
attentional biases (Landy, Jones, & Goldstone, 2008).  On 
this account, computing the answer to a math problem 
involves taking physical actions to transform abstract forms. 

If notations really are fundamentally abstract, then their 
implied physical structure is entirely given by their surface 
form: there is no sense in which any of the symbols are 
‘close’ or ‘far away.’  However, if people indeed often 
reason by treating symbols as pictures of objects in space, 
then these objects must be laid out in some three-
dimensional arrangement.  Thus, it is at least possible that 
different symbols would be seen as closer or further away 
than others.  In the next section, we outline some reasons to 
expect such differences.   

Reasons to Expect Illusions of Differential Depth  
Actual equations and expressions are of course purely 

two-dimensional; thus actual depth experience should not 
directly inform perceived depth judgments with 
mathematical forms. Furthermore, accounts that treat 
notation as basically abstract predict no particular 
differences in apparent depth of different symbols.  
However, several factors might affect the perceived depth of 
symbols seen as objects that exist in space, which can be 
acted on in particular kinds of ways.   

One clear prediction is that symbols that afford action 
appear proximal relative to those that do not. Several studies 
have found that depth perception can be affected by the 
action capabilities of the observer (Linkenauger, Witt, 
Stefanucci, Bakdash, & Proffitt, 2009; Witt, Linkenauger, 
Bakdash, & Proffitt, 2008; Witt & Proffitt, 2005; Witt, 
Proffitt, & Epstein, 2005). Therefore, if solving a 
mathematical equation requires actions on the part of the 
solver, high precedence terms—those most available for 
actions—should generally seem most proximal in arithmetic 
expressions.  Put simply, years of experience acting first on 
multiplications in expressions like  will lead 
the multiplication to appear closer than the addition. 

We hypothesized, more generally, that terms and 
operation signs that were most immediately available for 
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action would be seen as more proximal. In some cases, 
general syntactic factors do not align with action. That is, 
unlike in the stimuli in Figure 1, in some cases low-
precedence operations afford more immediate action than 
high-precedence operations.  This issue is taken up again in 
Experiment 3.   

Another reason to expect systematic biases in perceived 
depth of arithmetic signs comes from the salience structure 
of those signs. As mentioned above, typical multiplication 
signs (the dot and the cross) are more salient and readily 
attended than addition signs.  Salience and attention present 
conflicting pressures in the paradigm employed here. 
Voluntary attention has been shown to influence the 
perceived depth of ambiguous figures (Kawabata, 1986).  In 
the case of arithmetic expressions, attention shifts 
systematically from high-precedence operations to low-
precedence over the course of problem solution.  Since 
participants made depth judgments after solving the 
problem, attention would most recently have been primarily 
allocated to additions, potentially causing addition signs to 
seem closer immediately after computation.   

Salience also affects perception of figure and ground such 
that highly salient parts tend to be interpreted as parts of 
figures (Hoffman & Singh, 1997). Generally speaking, this 
may imply that salient objects will tend to be seen as 
proximal (though see Huang  & Pashler 2009). The higher 
salience of multiplications should then also cause them to be 
perceived as proximal. 

In three of the experiments reported below, participants 
were asked to solve simple mathematical problems, 
superimposed over two views of a baseball (see Figure 1). 
After solving the problem, they judged the relative distance 
of the two baseballs. If the relative availability of 
computational action affects perceived depth, the baseball 
associated with the high-precedence sign (the multiplication 
sign) should appear closer than the baseball under the low-
precedence sign. The baseballs were used to ground the 
participants’ judgments and make clear the nature of the 
task; our assumption is that judged distance of the baseball 
reflects primarily the relative perceived depth of the symbol 
superimposed on it.  

 

Figure 1: Sample stimuli used in Experiment 1. 

 
Figure 2: Results of Experiments.  Errors represent 95% 

confidence intervals on proportions. 

Experiment 1 
Method 
 
Participants Forty-eight students from the University of 
Richmond received partial course credit for participation.  
All participants had normal or corrected to normal vision. 
 
Materials Participants viewed simple two-operation 
arithmetic expressions superimposed over images of a 
baseball (see Figure 1).  The same image that appeared 
under the plus sign appeared under the multiplication sign, 
rotated 90°. Instructions informed participants that one 
baseball was close, and approaching, while the other 
baseball was farther away, and receding. 
 
Procedure Participants were asked to solve the arithmetic 
problem. After doing so, they were asked to decide the 
relative distance of the two baseballs.  Half of the 
participants were asked to circle the baseball that was 
closer; the other half to circle the baseball that was farther. 
Each participant responded to two expressions; one was in 
the format , the other .  The order of 
presentation of the problems was counterbalanced across 
participants, as was which image orientation appeared on 
the left (thus image orientation and operation sign were 
independent). The task was performed as part of a distracter, 
between two phases of an unrelated experiment.  Several 
other short problems appeared in between the two baseball 
judgments. 
 
Results On each trial, the participant circled either the 
multiplication sign or the addition sign (see Figure 2).  
These choices were analyzed using two repeated measures 
logistic regressions: one included just an intercept, while the 
other also included judgment type (closer vs. farther) as a 
between-participants factor. Including judgment type 
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significantly improved the quality of the fit over the 
baseline model, (χ2(1) = 10.2, p<.01). 
 
Discussion The primary purpose of Experiment 1 was to 
evaluate whether there was consistency in how depth would 
be judged in a simple arithmetic expression. The results 
demonstrated that there is. In a simple two operation 
problem, multiplications are seen as closer than additions. In 
simple arithmetic processes, the higher precedence 
operation is perceived as more proximal to the reasoner than 
is the lower precedence operation. 

Though predicted by the idea that multiplication is more 
available than addition in this expression, these results could 
be produced by any combination of an effect of the higher 
salience of cross signs over plus signs, the syntactic order of 
operations, and the relative availability of multiplication in 
this expression. The prediction that voluntary attention 
toward the plus sign at the end of solving the problem 
would dominate proximity judgment was not borne out.  

Experiment 2a 
In this experiment, we tested whether the bias in perceived 
depth revealed in Experiment 1 was due to particular 
salience differences between the addition and multiplication 
sign rather than order of operations.  In Experiment 2a, we 
used the same stimuli and design as in Experiment 1, except 
that we used parentheses to make the plus sign the first 
operation rather than the multiplication.  If the result in 
Experiment 1 was due simply to perceptual differences 
between the multiplication and addition signs, then we 
should expect to replicate Experiment 1.  However, if the 
result is due to order of operations, adding the parentheses 
should result in either a null effect or the opposite effect. 
 
Method 
 
Participants Forty-eight students from the University of 
Virginia received partial course credit for participation.  All 
participants had normal or corrected to normal vision. 
 
Materials Packets were created using the same stimuli as in 
Experiment 1, except the stimuli were modified so that the 
two numbers adjacent to the plus sign were enclosed by 
parentheses.  
 
Procedure The procedure was the same as in Experiment 1 
except that rather than serving as a distracter in an unrelated 
task, these judgments served as the primary experiment. In 
between the two trials, participants completed a distracter 
task which involved solving a maze. 
 
Results and Discussion Participant choices were analyzed 
using a repeated measures logistic regression (see Figure 2). 

Including judgment type did not improve the fit by a 
likelihood ratio test over the null model (χ2(1) = .12, p~.68).   

Unlike Experiment 1, there was no sign of a consistent 
relationship between perceived relative depth and operation 
sign in simple expressions with parentheses.  One plausible 
interpretation of the disparity is that the higher precedence 
of multiplication sign interacts with a pressure to see 
parenthesized terms as closer.  There are (at least) two 
plausible reasons why this would occur: first, as 
hypothesized, terms that can be computed early may appear 
closer than they otherwise would. Second, visual factors 
intrinsic to parentheses may make them things inside 
parentheses appear differentially closer. 

Consider Figure 3.  In the top part, the circle on the left 
appears to be in front of (and consequently partially 
occluding) the illusory oval induced by the curved lines.  
This, in turn, causes it to appear closer than the circle on the 
right.  In a similar manner, it may well be that the 
parentheses create a (relatively weak) illusory oval.  If the 
symbols are interpreted by the visual system as being in 
front of that oval, then they may be perceived as being 
closer than the symbols not inside the parentheses. 
 

Experiment 2b 
One difference between Experiment 1 and 2a is that the 
populations differed, one being drawn from University of 
Richmond students and the other from the University of 
Virginia. Therefore, to eliminate the possibility that the null 
results in Experiment 2a were due to differences between 
the student populations, a second experiment was run at the 
University of Virginia to ensure that similar perceptual 
effects as in Experiment 1 could be  

 
 

Figure 3: Visual factors could influence the relative 
perceived proximity of terms inside parentheses.  Just as the 
circle on the left appears to be closer than the circle on the 

right, so apparent occlusion may cause the 5 on the left to be 
in closer than the 5 on the right. 
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Figure 4. Example Stimuli from Experiment 2b.                                             

found in this population.  In addition, this experiment offers 
a more indirect judgment of relative proximity. 

 
Method 
 
Participants Twenty-two students from the University of 
Virginia received partial course credit for participation.  All 
participants had normal or corrected to normal vision. 
 
Stimuli and Apparatus Mathematical equations were 
superimposed onto an illustration of the vase-face illusion 
so that either the multiplication sign was on the vase and the 
plus on the face or vice versa (see Figure 4). Instructions 
printed above the picture directed participants to solve the 
equation and then indicate whether or not they saw a vase or 
faces.  The equation was either on the right side of the 
illustration, as in Figure 4, or on the left.   

Packets were created which consisted of two face-vase 
trials.  A maze was inserted in between the vase-face trials, 
which acted as a distracter task. Half of the packets 
contained vase-face illusions in which equations were 
located on the right; the other half had the equations located 
on the left.  Within each packet, one illusion had the 
multiplication sign on the vase, and the other had the 
multiplication sign on the face.  Order was counter-balanced 
across packets.  
 
Procedure Participants were given a packet and told to 
complete it in full.  They were asked to follow the 
instructions written on each sheet, and not to look at the 
subsequent sheets until they had completed their task on the 
current sheet.  
 
Results and Discussion  Arbitrarily, each trial was coded as 
positive if the participant chose the faces as the foreground.  
A significantly better fit was found for a logistical 
regression including position of the multiplication sign as a 
factor, than for the null model (χ2(1) = 5.1, p<0.05). Overall, 
when the multiplication sign was over the vases, participants 
chose the face interpretation less often (M=.5, CI=0.28-
0.71) than when the multiplication sign was over the faces 
(M=.82, CI=0.60-0.95). 

These results show that the effect in Experiment 1 can 
generalize across populations and across tasks.  This finding 
is also a less direct manipulation of perceived depth and is 
less likely to be affected by demand characteristics.  
Whether the face or vase is seen in the foreground is 

indicative of the depth relationship between the vase and the 
face. Therefore, participants determined which figure they 
saw instead of directly specifying the depth relationship 
between the mathematical operators.  Interestingly, order of 
operations influenced the figure-ground and therefore, the 
depth relationship in an ambiguous figure illusion. 

Prior results have shown that fixations (Gibson & 
Peterson, 1994) and exogenous cues (Vecera, Flevaris, & 
Filapek, 2004) guide figure-ground segmentation, as long as 
the cues appear inside figures (as was done here).  Thus, 
these results could result from the greater salience of 
multiplication signs. However, once again, voluntary 
attention shifts are unlikely to account for these effects, as 
voluntary attention is most likely directed toward the 
addition at the end of computation (when participants were 
instructed to make their judgments).   

The first two experiments indicated that syntactic 
precedence, available formal actions (computations), and 
perceived proximity tend to go together.  Experiment 3 
distinguishes between syntactic precedence and action 
structure by repeating the structure of Experiments 1 and 2A 
in the context of an algebraic rather than an arithmetic task.  
Because linear equations are solved starting from the lowest, 
rather than the highest precedence operations, in Experiment 
3 the two theories make opposite predictions.  If availability 
of formal actions guides perceived depth, then lower 
precedence items should be seen as proximal in Experiment 
3; if syntactic precedence predicts or guides depth, then high 
precedence operations should appear proximal, as in 
Experiments 1 and 2B. 

Experiment 3: Linear Equations 
 
Method 
 
Participants Twenty students from the University of 
Virginia received partial course credit for participation.  All 
participants had normal or corrected to normal vision. 
 
Materials  Packets were created using a format identical to 
Experiment 2A.  Similar stimuli were used, except the 
stimuli were modified from an arithmetic computation to the 
solution of a linear equation (see Figure 5).  Participants 
were instructed to solve the equation before deciding which 
ball was closer (further). 

 
 
 

 
 
 

Figure 5. Example Stimulus from Experiment 3.                                             
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Two other changes were made to the stimuli: first, the dot 
notation was used for multiplication in place of the cross.  
This sign is much more typical in algebraic contexts, and is 
less likely to be confused for a variable than the cross.  
Furthermore, crosses and dots have similar salience 
advantages in mathematical contexts (Landy et al., 2008).  
Second, the baseballs were moved from behind the 
operations to behind the operands.  This was done because, 
in an equation solution context, the operands are more 
relevant units of action. That is, one solves the problem 
illustrated by cancelling the b, and then the a.  Thus, the 
effect of perceived action was predicted to be strongest in 
this configuration.  
 
Procedure The procedure was identical to Experiment  2A. 
 
Results and Discussion Participant choices were analyzed 
using a repeated measures logistic regression (see Figure 2).  
Including judgment type significantly improved the fit over 
the baseline model (χ2(1) = 6.0, p<0.05).  Participants were  
more likely to judge the baseball under the multiplicative 
term as closer than the baseball under the additive term. 

The results of Experiment 3 contradicted our original 
hypothesis that perceived depth would align with available 
actions, instead supporting the idea that syntactically central 
symbols appear to be closer than syntactically peripheral 
symbols in mathematical expressions.   

The results of Experiment 3 are to some degree 
compatible with the interpretation that low-level visual 
features guide perceived proximity. In this case, perceived 
depth of the baseball images would be affected by the terms 
adjacent to the judged baseballs, rather than those directly 
behind it.  In a pre-cuing task, Baylis and Driver (1995) 
reported that exogenous cues to attention did not affect 
figure-ground segregation (which tends to align with depth 
perception in most cases, though see Huang & Pashler, 
2009), when the cue appeared outside the area in which the 
figure appeared (see also Vecera et al., 2004).  Nonetheless, 
in this case, it is possible that the highly salient dot adjacent 
to the baseball increases its apparent proximity. It is also 
possible that the multiplicative terms and the multiplication 
sign are visually grouped and therefore that the salience of 
one part of the group (the multiplication sign) causes the 
entire group to appear closer.  

General Discussion 
Although mathematical notation is a formal language, and 

is inherently two dimensional, readers of these notations 
come to quite consistent judgments about the relative 
proximity of terms in formal expressions. Three 
experiments demonstrated that factors that determine formal 
precedence (operation sign and parentheses) also 
systematically influence perceived depth. 

Variations in perceived depth aligned in our stimuli with 
formal precedence. The current results do not distinguish 
between the possibilities that syntactic precedence directly 
affects perceived depth, and that the low-level visual 

features of typical mathematical notation determine 
apparent depth.  Although future work should distinguish 
these two possibilities, we think it notable that mathematical 
notation is structured in such a way that there is a systematic 
relationship between low-level visual features affecting and 
mathematical syntax.  This alignment raises the possibility 
that perceived three-dimensional structure may be used as a 
cue to mathematical ordering. 

As long as episodes of formal reasoning are indeed 
typically organized by attention-based interactions with 
external environments (Landy et al., 2008; Patsenko & 
Altmann), the alignment of perceptual factors such as visual 
grouping, salience, and depth may be significant factors in 
making symbolic mathematical notation such a powerful 
and successful system for supporting reasoning. 

Three limitations of the current work are worth noting: 
one is that it does not indicate the strength of the judgment.  
Although judgments were significant and consistent in 
Experiments 1, 2A, and 3, participants made forced choice 
binary judgments. Thus, while we can conclude that people 
generally perceive multiplications as closer than additions, 
the current experiments give no indication of the magnitude 
of the perceived difference.   

Another limitation is that there is no indication in the 
current studies of whether this perceived difference in depth 
has any effect on mathematical judgments.  Future work 
should explore whether explicit manipulations of apparent 
depth disrupt mathematical reasoning processes. Finally, 
there is a possibly important confound in Experiment 1. In 
these stimuli, the laces on the baseballs overlap, and are 
obscured by, the addition sign slightly more than the 
multiplication sign.  This might provide a stronger depth 
cue, causing subjects to see the baseball under the addition 
sign as farther away. This confound could not explain the 
difference between Experiment 1 and 2a, nor could it 
explain the effect in Experiment 3. In Experiment 3, the 
baseballs appeared under the letters.  These were 
counterbalanced across condition, and so could not have led 
to differences in judgment. 

Recognizing these limitations, nevertheless the existence 
of consistent depth cues in mathematical notations bolsters 
interpretations that treat mathematical reasoning as 
(sometimes) a form of spatial reasoning over symbolic 
objects. Accounts that treat symbolic reasoning as abstract 
rule learning cannot make systematic predictions about 
depth, such as those seen here. Understanding how and 
when such factors matter for reasoning promises to further 
illuminate our understanding of general formal reasoning 
processes.  
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