
Proc. of the Alife XII Conference, Odense, Denmark, 2010 607

Multisensory Perceptual Discrimination in Evolved Networks and Agents

Marieke Rohde1

1Max Planck Institute for Biological Cybernetics, Tübingen, Germany
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Abstract

The fact that humans and animals have several sensory
modalities and use them together to make sense of the world
imbues their behaviour with an immense richness and robust-
ness. In this study, recurrent neural networks and minimal
agents with active vision are evolved for a perceptual dis-
crimination task (unimodal and bimodal). The purpose of this
study is mainly exploratory: to test which of the characteris-
tics of human perceptual discrimination evolve easily (with
a focus on statistically optimal integration), how they arere-
alised and what active perception does in this process. Whilst
some of the systems evolved to perform perceptual discrim-
ination well, they did not conform to the predictions from
statistical optimality. Analyses of the systems point towards
a number of relevant issues, noticeably towards the lack of
a good account of ‘unimodality’ in existing models of multi-
sensory perception.

Introduction
Humans and animals use several sensory modalities to make
sense of the world and to judge on and distinguish objects
in the environment. For instance, the size of an object can
be judged both by touching the object or by looking at it,
or by doing both at the same time. In humans, it could
be shown that subjects, when estimating object size, inte-
grate visual and tactile cues in a statistically optimal fashion
to decrease uncertainty (Ernst and Banks, 2002). Similar
findings were reported from other multisensory tasks, e.g.,
audio-visual sound localization (Alais and Burr, 2004).

These kinds of results are usually obtained using a psy-
chophysics approach, where subjects are asked to perform
perceptual judgments on stimuli that are varied systemati-
cally along a physical dimension. Comparing the human be-
haviour to that of an ‘ideal observer’ using maximum like-
lihood estimation (MLE), the mentioned findings of opti-
mality are derived. This approach isprima faciebehaviour-
based; the underlying mechanisms of (optimal) multisensory
integration are not yet well understood. Under the domi-
nant representationalist paradigm, we would expect a ded-
icated internal neural mechanism to implement MLE. Ac-
cordingly, Knill and Pouget (2004) rephrase the problem of
statistically optimal multisensory integration as follows: “(i)

how do neurons, or rather populations of neurons, represent
uncertainty, and (ii) what is the neural basis of statistical in-
ferences?” and review candidate neural correlates.

By contrast, Artificial Life and dynamical approaches in
cognitive science have repeatedly shown that efficient, ro-
bust or plausible models exist that do not rely on local com-
putation but on agent morphology, contingencies in agent-
environment interaction or on non-linear dynamics in neural
control. Examples of such models in perception research in-
clude active vision to solve a non-Markovian visual discrim-
ination task with feed-forward control (Floreano et al., 2004;
Izquierdo-Torres and Di Paolo, 2005), agency detection by
emergent behavioural coordination (Di Paolo et al., 2008) or
olfactory perception through chaotic neural dynamics (Free-
man, 1987). These models do not just point out alternatives,
they also show that, if global dynamics are taken into con-
sideration, many phenomena that appear complex emerge
effortlessly.

For the study presented, recurrent neural network con-
trollers and minimal agents with an active vision system
were evolved to solve a size discrimination task. Such
an evolutionary robotics (ER) approach has been argued to
minimise prior assumptions about underlying mechanisms
by outsourcing the design to an automated search procedure
(Harvey et al., 2005). The purpose was mainly exploratory:
if no constraints of optimality are imposed, which, if any of
the hallmarks of MLE optimal integration evolve? How do
the systems realize perceptual discrimination? How do they
integrate their senses and how do they deal with varying lev-
els of uncertainty? Comparing a disembodied network and
an embodied agent, what are the differences and commonal-
ities? Are there advantages associated with active perception
in this task?

The results presented can be seen as work in progress.
They point out issues that require a rethinking of the ap-
proach taken here. While some of these difficulties are of a
more technical nature, others proved to be insightful with re-
spect to the overarching question of (optimal) multisensory
integration. In particular, the question of what unimodal-
ity means in a system with several sensory channels is of
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Figure 1: Evolved networks for the direct condition (1.1)
and for the active vision condition (1.2).

potential importance for the study of multisensory integra-
tion in general. The results confirm that emphasizing the
non-obvious is one of the key characteristics and merits of
generative ER modelling.

Methods
Simulation and Genetic Algorithm
Continuous-time recurrent neural networks (CTRNNs; e.g.,
Beer, 2003) are evolved to solve a two-alternative forced-
choice (2AFC) size discrimination task. The decision, which
of two objectsox, oy ∈ [1, 2.5] is larger is either generated
by an agent controlled by a CTRNN or by a CTRNN di-
rectly. The dynamics of units in a CTRNN is governed by

τi

dai(t)

dt
= −ai(t) +

N
∑

j=1

wijz(aj(t) + θj) + Ii(t) (1)

where z(x) is the standard sigmoidal function
z(x) = 1/(1 + e−x), ai(t) is the activation of uniti at
time t, θi is a bias term,τi is the activity decay constant,
wij is the strength of a connection from unitj to unit i.
The structure of the network is partially layered, network
sizes vary between conditions (see Fig. 1). Neural and
environmental dynamics were simulated using the forward
Euler method with a time step ofh = 1ms.

For all controllers, input signals are fed into input units
ni by Ii(t) = Sgi · inp + νǫ, whereSgi is the evolved
sensory gain,inp is the input signal,ǫ is a normally dis-
tributed random variable andν ∈ [0, 3, 6, 9, 12] is the level
of sensory noise that modulates channel reliability acrosstri-
als. In the network condition, the inputsinp = ox, oy are
fed directly into the network (see Fig. 1, 1.1). The active
vision agent, inspired by (Beer, 2003), can move left and
right by v = Mg · (z(nl) − z(nr)) units/s in an arena

of random widtharw ∈ [3.5, 4] and depthard ∈ [4.5, 5]
(see Fig. 1, 1.2). The agent has a vision system comprised
of four rays with angles[−7.5◦,−2.5◦, 2.5◦, 7.5◦] and per-
ceives distance byinpi = di/5 wheredi is the distance
at which a rayi is intercepted. All controllers are evolved
for both a ‘unimodal’ and a ‘bimodal’ condition. In the bi-
modal condition, controllers are given a redundant direct in-
put channel and two additional hidden units (see Fig. 1).

An output unit np generates a perceptual estimate:
z(ap) > 0.5 means a perceivedox > oy at the end of a
trial. This leads to the following performance criterion for
pairs of objects(ox, oy)

P (ox, oy) =

{

1 if (z(ap) > 0.5) = (ox > oy)
0 else

(2)

Fitness for individual controllers is computed according to

F =
(1 − RB)

16

16
∑

i=0

P (ox, oy) · P (oy, ox) (3)

whereox, oy ∈ [1, 2.5] are drawn from a uniform distribu-
tion. As pairs are presented in both orders forF , evaluation
involves2×16 = 32 trials. The response biasRB ∈ [0, 1] is
proportional to the amount by whichz(ap) > 0.5 has a bias
stronger than75% to either side. The multiplicative term and
the punishment for response bias were included after pilot-
ing because evolved systems tended to be very accurate but
strongly biased towards one side. Object presentation lasts
T ∈ [3000, 4000ms] for networks (+tpre ∈ [100, 500ms]
without stimulus) andT ∈ [16000, 18000ms] for agents.
Networks are initialised randomly and agents are positioned
on the mid point of the line along which they can move.

CTRNNs are evolved using a generational GA with a
population of 30 and are selected using truncation selec-
tion (1/3). Genes are real-valued∈ [0, 1] with vector mu-
tation r ∈ [0.3, 0.5] and reflection at gene boundaries.
Evolved gene values are linearly mapped onto the target
range forwij ∈ [−8, 8], θi ∈ [−3, 3] and exponentially for
Sg ∈ [0.1, 20], Mg ∈ [0.1, 100] and τi ∈ [30, 3000ms]
(networks) orτi ∈ [30, 10000ms] (agents) respectively. For
the hidden and output layer,θi = −0.5

∑N

j=0
wij (center-

crossing).
ν is drawn randomly each trial from the available range of

noise levels. Evolution starts noiseless (ν=0) and the maxi-
mum level of noise is increased every time average top per-
formance over 50 generation exceedsF̄ = 0.5 till the full
range (ν ∈ [0, 3, 6, 9, 12]) is reached. In the bimodal con-
dition, two quarters of the trials were unimodal trials (one
quarter for each channel) to avoid specialization. This means
that one modality received no signal but instead strong noise
with ν = 15. Otherwise, noise in the first channel was ran-
dom as in the unimodal condition, whereas noise in the sec-
ond channel was fixed atν = 6.
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Analysis
Perceptual discrimination and integration is analysed just as
in human psychophysics (e.g., Ernst, 2005). Perceptual re-
sponse probability is described as a cumulative probability
function (‘psychometric curve’) of real differences in ob-
ject sizes. Evaluation is performed presenting a standard
stimulusos = 1.75 to one side and a comparison stimu-
lus oc ∈ [0.3os, 1.7os] to the other side. Each measurement
is repeated 20 times. This procedure is repeated for both
sides and for all levels of noiseν. Cumulative Gaussians are
fitted to the responses using the Matlab toolbox psignifit for
maximum likelihood fitting (Hill, 2005). The50% level of
a psychometric curve is called the PSE (point of subjective
equality) and corresponds to the mean of the fitted Gaussian.
It indicates perceptual bias. The difference between the50%
and the84% is called the JND (just-noticeable-difference)
and corresponds to

√
2σ of the underlying Gaussian. It indi-

cates perceptual accuracy.
Optimal integration is assessed by comparing the evolved

system’s perceptual discrimination with an ideal observer
model using MLE and an independent channel model. In
such a model, a bimodal perceptual estimateS∗ is gen-
erated as a weighted sum of unimodal estimates (i.e.,
S∗ = w1S1 + w2S2) in a way that minimizes uncertainty.
MLE generates the following testable predictions (cf. Ernst,
2005; Ernst and Banks, 2002):

w1 + w2 = 1 wi =
1/σ2

i

1/σ2

1
+ 1/σ2

2

σ∗2 =
σ2

1
σ2

2

σ2

1
+ σ2

2

(4)

The first term indicates multisensory integration in gen-
eral, whereas the second and third term are characteristic of
optimal integration in particular. These criteria also clar-
ify the significance of the noise levelν as the parameter
that should modulateσi. According to the predictions, the
weightswi andσ∗ should change withσi (in particular, bi-
modal discrimination should be more accurate than each of
the unimodal discriminations).

To compute the weights, crossmodal conflicts
c ∈ [−.25os, .25os] are introduced during testing, i.e.,
for one modalityo1

s = os − 0.5c and for the other modality
o2

s = os + 0.5c. Integration occurs if, in the presence of
conflicts, PSEs are shifted along the[os − 0.5c, os + 0.5c]
interval according to the weights.σi can be computed by
JND =

√
2σi.

Perceptual Discrimination in Recurrent
Neural Networks

Evolving perceptual discrimination in recurrent neural net-
works is a less biased approach to the study of perceptual
integration because it allows for the evolution of dynami-
cally complex solutions and functional intertwinement: so-
lutions evolved may not employ separate populations of neu-
rons to perform different tasks, such as unimodal estimation,
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Figure 2: Unimodal networks. Psychometric curves for the
different noise levelsν, data pooled from all 7 networks and
both orders. Inlay: mean and s.e.m. for fitting parameters
PSE (bias) and JND (accuracy) from individual fits (average
of both stimulus orders;N = 7).

integration and measuring uncertainty. Also, given that the
fitness function Eq. (3) does not require optimal integra-
tion, there is the possibility that optimality spontaneously
emerges.

Unimodal Networks

The purpose of the unimodal condition was primarily to ver-
ify that the task is suitable for the study of perceptual dis-
crimination. In order to allow the evolution of optimal inte-
gration, controllers have to perform perceptual discrimina-
tion sufficiently well. Their accuracy should decrease with
the level of noise (JND should increase) to make it possible
to test for statistically optimal integration.

CTRNNs were evolved in 20 evolutionary runs with 1000
generations. 7 of the 20 networks evolved performed suf-
ficiently well according to these criteria. The main exclu-
sion criterion pointed towards a very successful but trivial
local maximum for this task (up toF ≈ 0.6): 7 networks
were excluded because they considered only one stimulus
and judged if it is ‘big or not’, which means that perfor-
mance is good during testing for the standardos on one side,
but at chance level or substandard for the other side.

Figure 2 depicts the psychometric curves for the differ-
ent noise levelsν for all 7 successful networks together, as
well as the JNDs and PSEs from individual fits. Increase
in ν leads to a clear increase in JND (1 factor ANOVA:
F (4, 2) = 7.55, p < 0.001), while PSEs are not influenced
by noise (F (4, 2) = 0.25, p = 0.91). The successfully
evolved networks show that, given the task and the fitness
criterion, artificial systems can evolve to generate behaviour
and simulated data that can be compared to human data and
that can be analysed the same way.
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Figure 3: Unimodal, bimodal and predicted PSE (top) andσ
(width of fitted Gaussians, bottom) for all networks evolved
to perform (partial) bimodal discrimination.

Bimodal Networks

In the bimodal condition, the emphasis is on the kind of in-
tegration behaviour that the networks exhibit and if it con-
forms to the predictions from MLE in Eq. (4).

Controllers for the bimodal condition were evolved in 20
evolutionary runs with 2000 generations. Only one network
evolved to successfully discriminate between objects for all
orders in both the unimodal and the bimodal conditions.
The simulated data was fitted and analysed like in the previ-
ous simulation. When comparing the JND of the unimodal
and the bimodal condition for the successfully evolved net-
work, at first glance it appeared to exhibit the most impor-
tant hallmark of MLE, i.e., that the probability distribution
of bimodal estimates was more accurate than either of the
unimodal estimates. However, testing the exact predictions
from MLE (Eq. (4)) on this controller, the network proved
to besuper-optimal, i.e., the accuracy (in terms ofσ of the
fitted Gaussian) was dramatically better than expected from
MLE (Fig. 3, bottom left).

7 of the other controllers evolved performed satisfactorily
for both modalities if the standardos was presented to one
side only. They were analysed and compared to the predic-
tions of MLE as well. Even if lateral specialization is un-
satisfactory concerning the main question, it involves some
degree of integration. Figure 3 (bottom) depictsσ for the
bimodal condition, averaged over noise levelsν, in compar-
ison to the lower of the unimodalσ and the predictedσ using
Eq. (4). All controllers were either grossly super-optimalor
less accurate than the better of the uni-modal conditions, i.e.,
there was no evidence for optimal integration.

Why is it so easy to be ‘better than optimal’? Is it be-
cause of the noiseν = 15 of the inactive channel disturbs
the network in the unimodal condition? Controllers were
tested again withν = 0 in the unimodal condition to test
this assumption. Contrary to the expectations, taking out the
noise, in most cases (5 of the 8 networks), did not improve
unimodal accuracy, but led to a complete break-down of uni-

-0.8 -0.4 0 0.4 0.8

0

1

os-oc

p
ro

p
o
rt

io
n
 o

s
 l
a
rg

e
r bimodal PSE

unimodal2 PSE

unimodal1 PSE

MLE prediction

0

con�ict

Figure 4: Example psychometric curves for the most suc-
cessful network withν = 0 in the silent channel.c = −0.25,
all noise levelsν. Data pooled forcs left/right. Unimodal
curves are shifted along the x-axis according to the conflict.

modal discrimination. This indicates that the noise serveda
functional purpose in integration.

Defining the unimodal condition as noise withν = 15
and the absence of a signal had been an arbitrary design de-
cision. However, as it is the case in biological evolution,
the GA worked with what was there and thus incorporated
this noise functionally into the solution, with surprisingef-
fects on perceptual accuracy across conditions. This result
raises the question of what ‘uni-modality’ means in a multi-
modal system which will be picked up in the discussion. For
those networks that also worked in the absence of noise, dis-
crimination during unimodal trials became better than dur-
ing bimodal case, eliminating the super-optimality. This re-
sult supports the hypothesis that noise in the silent channel
is the reason for bimodal super-optimality.

Maybe more surprising still is the fact that the controllers
did not evolve to integrate the two estimates. Introducing a
cross-modal conflict, networks would be expected to gener-
ate PSEs in between the PSEs that the unimodal data pre-
dicts. Figure 3 (top) shows that, in the large majority of
cases, the PSE of bimodal networks is far outside this range
and, therefore, also far away from the PSE predicted from
MLE. Figure 4 shows this behaviour for the most success-
ful network (with ν = 0 in the inactive channel): the dis-
crimination is successful for all noise levels for both the uni-
modal and the bimodal stimuli. Accuracy for the bimodal
trials is comparable to the unimodal trials. However, the
PSE is far outside the range that would indicate integration.
Rather than to integrate uni-modal estimates, the networks
had evolved to perform a different and comparably viable
way of discriminating size in the presence of redundant sig-
nals. The result indicates that multi-modal integration, as
it is characteristic of humans, is not a process that simply
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emerges as an epiphenomenon of the existence of redundant
sensory channels but probably evolved due to more specific
adaptive needs. The previously mentioned tendency of net-
works to evolve solutions with strong perceptual biases in
this task is likely to also play a role in this result.

The solutions evolved do not make use of the dynamic
complexity afforded by the recurrent network structure -
they rely mainly on feed-forward principles. The passive
open-loop nature of the task for disembodied recurrent net-
works does not encourage the use of dynamic complexity.

Perceptual Discrimination in Simple Agents
Living organisms are always in dynamic interaction with the
environment. The surge of sensorimotor approaches in per-
ception research (e.g., O’Regan and Noë, 2001) reflects an
increasing awareness that such closed-loop dynamics afford
alternative and clever ways of solving perceptual tasks. Ex-
isting models of optimal integration assume that integration,
as well as estimation of channel certainty and weight ad-
justment are performed internally. The objective of evolving
simple vision agents for this task was to explore if and how
active perceptual strategies can play a role in multisensory
integration and perceptual discrimination.

To bootstrap the evolution of active perceptual strategies,
the performance criterion Eq. (2) was amended such that
agents receiveP = 0.1 if their visual system perceives both
objects at least once, even if the wrong decision is made. If
they do not move to see both objects, they receiveP = 0,
even if the right decision was made. In 20 evolutionary runs
with 1000 generations, not one controller evolved that could
reliably distinguish objects of different sizes for the whole
problem space: local maxima, in most cases the mentioned
solution to only pay attention to one of the stimuli, could not
be overcome. Variations of the task were explored to miti-
gate this problem, including a punishment for lateral special-
ization and the administration of an extra position sensor,but
performance never exceeded the stable local maximum, i.e.,
to focus just on one side. This suggests that a more radical
change of fitness criterion/task may be necessary.

Controllers were also evolved for the bimodal condition
in 16 runs for 2000 generations. The possibility exists that
the presence of a direct sensory channel serves as a guid-
ance for the evolution of active visual discrimination. In-
stead, the agents evolved rely heavily on their second (di-
rect) input channel (see Fig. 1) and did not evolve to use
their active sense according to demand. Where partially vi-
able behaviour evolved, it replicates the general results from
disembodied networks.

While these performance deficits mean that the predic-
tions of the ideal observer model could not be tested, it is
still interesting to test whether the partial solutions evolved
exhibit sensorimotor strategies for sub-parts of the problem
space. If agents evolve to base their decision on one input
only, they could just evolve to move over to one side (pass-
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ing the other side briefly to fulfill the revised performance
criterion) and, otherwise, act as if they had a direct input
channel. Instead, nearly all agents exploit their capacityto
act in the closed-sensorimotor loop in order to make the ‘big
or not’ strategy more effective. The remainder of this section
presents examples of such active sub-strategies.

Active decision making.Figure 5 depicts the motion, in-
puts and decision output over time for an agent evolved. The
agent evolved, under some circumstances, to steer towards
the smaller of the two objects and to then make the decision
contingent on the output velocity (using internal activation
like an efference copy). This active decision making capac-
ity is the most straight-forward one of the ones evolved and
is an exception to the trend to pay attention to one input only.

Active decision expression.The agent depicted in Fig. 6
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evolved to only pay attention to the second inputoy . If the
agent deems it large (Fig. 6 left), it comes to a halt and
constantly outputs its decision (z(ap) < 0.5). If, however,
it deems the object small (Fig. 6 right), it initiates an os-
cillation towards and away from the object. Driven by this
oscillation, the decision output starts oscillating around the
decision boundary atz(ap) = 0.5. This kind of behaviour
evolved very frequently. It provides the agents with a way
of expressing uncertainty: depending on when the trial ends,
the same input would lead to different answers, and slight
differences in object size may bias the proportion of such de-
cisions by modulating the oscillations. Probably, such strate-
gies evolved at least partially in response to theRB term in
the fitness function Eq. (3) that punishes a strong response
bias: if some of the decisions are random, it is unlikely that
more than 75% of decisions would be of one kind.

Temporal decision making.Figure 7 depicts an agent’s
dynamics during the presentation of a single pair of objects.
The agent’s strategy makes active use of the time allocated
for making a decision. One hidden unit (Fig. 7, third) con-
trols the position of the agent: it decreases activity dramati-
cally in the beginning (steering to the right) and then slowly
increases. When it reaches a certain threshold, the agent
starts moving to the left. Reaching the gap between the ob-
jects, the agent starts oscillating between the two objects,
which is reflected in the activity of the hidden unit, too. The
output unit always decidesox is larger (z(ap) > 0.5), un-
less the oscillations pull it below this threshold. Therefore,
oscillation stands in correlation with the decision thatox is
smaller. The oscillation can only be stopped in time before

the trial ends if the second object is small enough, otherwise
it will go on indefinitely or at least till the end of the trial.
In that sense, this controller can be seen as a variant of the
oy only strategy. The length of the oscillatory phase is, how-
ever, not just contingent onoy. The size ofox appears to
take influence on the time of onset of the oscillations as well
as its offset in ways that are not obvious.

These are just three examples of the ways in which agents
used their motion capacities in their size discrimination ac-
tivity, not all of which are easy to understand. In depth anal-
ysis of only partially functional agents is an endeavour of
limited value. The fact that an abundance of active strategies
evolved, however, is a result worth mentioning. In systems
that discriminate stimuli exploiting the agent-environment
interaction dynamics, processes of multisensory integration
would rely on these closed-loop dynamics. How (optimal)
integration could work in the absence of explicit represen-
tation of perceptual estimates remains an intriguing open
question.

Discussion
Using ER for this kind of multisensory perceptual discrim-
ination task is a novel approach and as such the research
presented has mainly exploratory character. Both technical
and conceptual difficulties were encountered. Most dramat-
ically, minimal agents could not be evolved to perform per-
ceptual discrimination and the predictions from MLE could
not be tested for the second part of the project. ER simula-
tion modelling serves as a tool for thinking, and as such, the
simulation results here presented have pointed out a number
of issues that are worth reporting.

Unimodality in a Bimodal System
Possibly the most important insight gained from the simu-
lation models is that existing models of optimal integration
have a gap to fill: as humans, it is obvious for us what a uni-
modal and what a bimodal stimulus is. It is, however, not
clear how the MLE circuits proposed (e.g. Knill and Pouget,
2004; Ernst and Banks, 2002; Alais and Burr, 2004) or a lo-
calized brain area would be able to recognise the absence
of a signal in one channel and what possible noise entering
through that channel can do to the decision making process.
MLE assumes independent channels and independent pro-
cesses of unimodal estimation and multisensory integration
(cf. Method section). How the same process of generating
perceptual judgments in human observers can be indicative
of either of the stages is not made clear in existing mod-
els. In the model presented, the administration of random
noise in the silent channel led to the evolution of apparent
‘super-optimality’ in bimodal trials: not because networks
accurately estimate the levels of noise present, but just be-
cause additional noise sources were absent during bimodal
trials. The fact that performance breaks down in most con-
trollers when the noise is removed shows that the definition
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of what ‘uni-modal’ means in a system is not an arbitrary
one. Existing models of optimal integration would benefit
from making explicit the behaviour of the inactive channel
during unimodal trials and incorporating mechanisms into
their models that distinguish between multimodal and bi-
modal trials. Testing for their existence can then confirm
that the reported increase in accuracy in bimodal trials is not
due to the influence of the silent channel during ‘unimodal’
trials.

Perception vs. Perceptual Judgments

Unlike humans, the evolved systems were surprisingly inca-
pable to integrate their senses in a coherent way. This prob-
lem may well be due to the fact that the controllers were
evolved for a laboratory task. 2AFC perceptual discrimina-
tion tasks, like the size discrimination task used here, make
it possible to measure perceptual accuracy, as well as per-
ceptual bias. The fitness criterion Eq. (3) emphasises this
accuracy component. Therefore, the systems evolved tend
to favour being accurate over the absence of perceptual bi-
ases (as evident from the large and variable PSEs in Fig. 3)
and are rewarded for this tendency. Humans, on the other
hand, develop their perceptual skills not for this kind of psy-
chophysics task, but in real-world situations, where percep-
tion has behavioural relevance. In many real-world contexts,
strong or variable perceptual biases would be extremely dis-
advantageous. In future research, therefore, systems willnot
be evolved for 2AFC tasks exclusively, but for perceptual ca-
pacities more generally (e.g., the approach taken here can be
combined with a magnitude estimation task or with a senso-
rimotor control task that involves perceptual decision mak-
ing).

Ideal Observing vs. Active Sensing

Ideal Observer Models of perceptual integration strongly
draw on the assumptions of the dominant representationalist
paradigm in cognitive science: MLE is a dedicated process
that combines unimodal estimates and noise estimates. Even
though behavioural approaches (e.g. Ernst and Banks, 2002;
Alais and Burr, 2004) areprima facieagnostic about the un-
derlying mechanisms, it is easy to jump to conclusions and
assume that internal dedicated neural process perform MLE,
represent the noise, represent the unimodal estimates, etc.
(e.g. Knill and Pouget, 2004). Evolving embodied agents
to integrate their senses optimally (on a behavioural level)
can potentially challenge such underlying assumptions (on
the level of the underlying mechanism). The active vision
agents presented here did not arrive at a level of behaviour
that would allow drawing strong conclusions about multi-
sensory integration. However, even superficial analysis of
their behaviour revealed an abundance of active sensing in
the accomplishment of aspects of perceptual discrimination,
including but not limited to active decision making and the
expression of uncertainty through motion patterns.Thinking

of the human hand and the human eye as agents, it is not
unlikely that active sensing principles are exploited in a task
like visuo-haptic size estimation. It is by no means clear that
the introduction of noise or the variation of physical param-
eters, like in psychophysics, would have the same impact on
such embodied processes as they have on decoupled systems
that are passively cruncing representations. Even though
limited in their own significance, the present results provide
a good incentive to proceed with a revised version of the
research on perceptual discrimination in simulated agents.

Noise and Uncertainty
The question of noise estimation, independent noise sources
and reduction of uncertainty is one of the cornerstones of
optimal multisensory integration research. Given that no
system evolved to confirm the predictions from MLE, this
question could not be direclty addressed. The first simu-
lation confirmed that the introduction of different levels of
Gaussian noise led to the expected deterioration of percep-
tual accuracy (cf. Fig. 2). It is arguable if adding Gaussian
noise at any time step to a signal that is then fed into a rate
code neural network is the most suitable approach for the
evolution of systems whose behaviour is contingent on lev-
els of noise. As a lot of the noise is filtered directly by the
neurons, that have a minimal time constant ofτ = 30ms,
such systems may have a hard time to develop sensitivity to
levels of noise. In future models, noise may instead be added
to a physical stimulus, which, at least in theory, would allow
agents to use active strategies not just to perform perceptual
discrimination, but also to perform noise estimation. Gen-
erally, it was a long shot to expect that optimal integration
would evolve in evolved systems by merely adding the re-
quirement to be accurate in perceptual discrimination. Even
if the outlined technical and conceptual problems can be
solved in future research, it may be necessary as a next step
to explicitly require agents to integrate optimally in order to
tackle this question.

Conclusion
The ambitious goal to evolve optimal multisensory integra-
tion in networks and agents has not been met in the cur-
rent research. However, the difficulties encountered were
informative about hidden prior assumptions on several lev-
els: about ideal observer models (what is ‘unimodal’ in a
bimodal system? Can noise in the silent channel explain
an increase in bimodal perceptual accuracy?), about using a
psychophysics task for evolution (does success in a 2AFC
task equal perceptual capacity?) and about the role of action
in perceptual discrimination (if active sensing is beneficial
for perceptual discrimination, how does it figure in multi-
sensory integration?). Rather than answering one question,
the study generated more digestible sub-questions, which is
characteristic of generative ER models. The outlined av-
enues for future research will be pursued to further elucidate
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the relevant question of (optimal) multisensory integration
from an embodied and Artificial Life point of view.
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