1 Appendix A Indices excluded by Criteria C1-C7

2 Table 1 shows the indices excluded by C1 to C7, their abbreviation, references and the reason for their exclusion.

Table 1: Indices excluded from further analysis with the first criterion (C) they do not meet. Indices are given

- 4 with their abbreviations (Abbr.) and reference in alphabetical order per failed criterion. Reasons for exclusion
- and comments include equations for the calculation of the indices if they are short enough. Indices for which
 differences are found in our literature review and the one by de Freitas and Grigorieva (2016) are marked with a
- star (*). Details on the differences are given in the Appendix. The air temperature design range of indices (ΔT)
- 8 are taken from de Freitas and Grigorieva (2016). The following abbreviations of human body related parameter
- 9 are used: *clo* is clothing, E_{sk} is evaporative heat loss from skin surface, *HR* is heart rate, *HB* is heart beats, *M* is
- 10 metabolic heat, PEx is physical exertion, R is thermal resistance of clothing, SR is sweat rate, T_b is body
- 11 temperature, T_{cr} is core temperature, T_{rect} is rectal temperature, T_{sk} is skin temperature, $T_{sk,init}$ is initial skin
- 12 temperature, TS is thermal sensation, WL is water loss. Additional parameters: a is a general function e is water
- vapour pressure, e_s is saturation water vapor pressure, f is vapor tension of air, F is vapor tension at 36.5 °C [mmHg], h is hour of the day, h_c is convective heat transfer coefficient, L is longwave radiation, n is elevation,
- 15 N is cloudiness, p is pressure, P is precipitation, p_d is diurnal pressure range, q is absolute humidity, S is solar
- 16 radiation, T is air temperature, T_d is diurnal temperature range, T_{dp} is dew-point temperature, T_g is globe
- 17 temperature, T_{gr} is ground temperature, T_w is mean temperature of surroundings, T_{wall} is wall temperature, T_{wb}
- 18 is wet-bulb temperature, Tu is turbulence intensity, v is wind speed.

С	Index	Abbr.	Reference	Reason / Comments
1	Air Cooling Power	ACP	McPherson (1992)	Requires T_{sk}
1	Cold strain Index	CSI	Moran et al. (1999)	Requires T_{cr}, T_{sk}
1	Cumulative Heat Strain index	CHSI	Frank et al. (1996)	Requires HB, HR, T _{rect}
1	Grade of Heat strain	GHSI	Hubac et al. (1989)	Requires HR
1	Heat tolerance index	HTI	Hori (1978)	Requires T_{rect} , salt loss, WL
1	Increment Temperature Equivalent to Radiation Load	ITER	Lee and Vaughan (1964)	Requires SR
1	Index of Physiological Effect	E _P	Robinson et al. (1944)	Requires HR , T_{sk} , T_{rect} , SR
1	Maximum Exposure Time	MET _B	Brauner and Shacham (1995)	Requires T _{sk,init}
1	Perceptual Hyperthermia Index*	PHI	Gallagher et al. (2012)	Requires TS , PEx or T_c
1	Perceptual strain index*	PeSI	Tikuisis et al. (2002)	Requires TS, PEx
1	Physiological index of Strain	Is	Hall and Polte (1960)	Requires HR, T _{rect} , SR
1	Physiological Strain Index	PSI	Moran et al. (1998)	Requires HR, T _{rect}
1	Q_s -index (correct name: ΔQ_d -index, see Table 6)*		Rublack et al. (1981)	Requires T _{sk}
1	Quotient of heat stress	Q _{dif,H}	Hubac et al. (1989)	Requires HR
1	Skin Temperature	SKT	Mehnert et al. (2000)	Requires T _{rect}
1	Skin wettedness	SkW	Gonzalez et al. (1978)	Requires E_{sk} / in original publication measurements were used. However, E_{sk} could be estimated from thermophysiological models (e.g. Gagge et al. (1986)) including all six variables. Nonetheless the index characterizes stress only for warm conditions and is thus rejected due to C7
1	Required Clothing Insulation	I _{req}	Holmer (1988)	Requires T_{sk} and SR / Except for minimum I_{req} ($I_{req,min}$), which is calculated for $T_{sk} = 30$ °C and

С	Index	Abbr.	Reference	Reason / Comments
				SR = 0.06. However, design
				range $(-35 \le \Delta T \le 10)$ is
				smaller than required (rejected
				due to C7)
2	Climate Index	CI	Becker (2000)	Requires monthly averages of hot
				and cold days estimated from
_	~ ~ ~			Predicted Mean Vote values
2	Heat Stress Index	HSI _{WK}	Watts and Kalkstein	Requires, among others, daily
			(2004)	maximum and minimum
				Apparent Temperature values and
				humbers of consecutive days of
2	Mahoney scale	MS	Koonigsborger et al	Requires monthly mean air
2	Wanoney searc	1015	(1971)	temperature and humidity to
			(1)/1)	estimate daytime and nighttime
				thermal stress
2	Spatial Synoptic	SSC	Kalkstein and Nichols	Requires long-term input (about
	Classification		(1996); Sheridan	30-year) to determine seed days
			(2002)	for weather classification
2	Summer Severity Index	SSI /	McLaughlin and	Requires, among others, air
		Io	Shulman (1977)	temperature deviations from a 30-
				year average period
2	Weather Stress Index	WSI	Kalkstein and	Requires deviations from 40-year
			Valimont (1986)	average of Apparent Temperature
3	Black sphere actinograph		Poschmann cited by	No fitted equation
2			Brüner (1959)	
3	Classification of Weather	CWM/	Golovina and Rusanov	No fitted equation / Table to read
	in Moments	KPM	(1995)	T D H N m
3	Comfort Inday	CI	Toriung (1066):	No fitted equation / Only
5	Connort maex	CI	Terjung (1968)	available as nomogram
3	Corrected Effective	CET	Bedford (1964)	No fitted equation / Only
U	Temperature	021		available as nomogram
3	Cylinder		Brown and Gillespie	No fitted equation
			(1986)	
3	Daily Weather Types	DWT	Lecha Estela (1998)	No fitted equation / Table to read
				weather classification from
				T, e, N, P
3	Ellipsoid Index		Blazejczyk et al.	No fitted equation
			(1998)	
3	Eupathescope		Bruner (1959); Dufton (1020)	No fitted equation
2	Evens Seele	ES	(1929)	No fitted equation / Table to read
5	Evalis Scale	Еð	Evalis (1960)	comfort conditions from T PH:
				comfort ranges derived from
				¹² M clo
3	Frigorimeter		Thilenius and Dorno	No fitted equation
5	ingonneter		(1925)	
3	Metal man (Thermal		Pedersen (1948) cited	No fitted equation
	manikin)		by Brüner (1959)	
3	Modified Effective	MET _s	Smith (1952)	No fitted equation / Only
	Temperature			available as nomogram
3	Resultant thermometer		Missenard (1935) cited	No fitted equation
			by Brüner (1959)	
3	Thermal Resistance of	TRC /	Jokl (1982)	If $T \neq T_{mrt}$, h_c must be read from
	Clothing	R _{t,wa}		a diagram. Otherwise TRC is only
				a function of v and the number of
2	Thomas into ante a		Window at (1025)	No fitted equation
3	1 nermo-integrator		winsiow et al. (1935)	no fitted equation

С	Index	Abbr.	Reference	Reason / Comments
3	Effective Temperature	ET	Houghten and Vaglegieu (1022) aited	No fitted equation / Only
			by Givoni (1925) cited	avanable as nonlogram
3	Heat Tolerance Limits	HTL	Vogt et al. (1982)	No fitted equation / Only
				available as nomogram
3	Mean Equivalence Lines	MEL	Wenzel (1978)	No fitted equation / Only
				available as nomogram
3	Predicted four hour	P4SR	McArdle et al. (1947)	No fitted equation / Basic four
	sweat rate			hour sweat rate (input of P4SR)
3	Still Shade Temperature	SST	Burton and Edholm	No fitted equation / The insulation
5	Still Shude Temperature	551	(1955): Parsons (2014)	decrement is only available in a
				table
3	Wind Effect Index	WEI	Terjung (1966)	No fitted equation / Only
				available as nomogram
4	Acclimatization Thermal	ATSI	de Freitas and	Thermal stress due to abrupt
	Strain Index		Grigorieva (2009)	ATSI = 100(0 - 0')/0
				Ω_{rh} is respiratory heat loss at
				home and Q'_r at destination
4	Adaptation Strain index	ASI	Blazejczyk and	Thermal stress due to abrupt
	-		Vinogradowa (2014)	change of climates
4	Bioclimatic Contrast	BCI	Blazejczyk (2011)	Thermal stress due to abrupt
	Index			change of climates /
				$BCI = (\Delta UICI + \Delta PSI + \Delta WL + \Delta I)/4$
				for parameter names see this table
4	Bioclimatic Distance	BDI	Mateeva and Filipov	Thermal stress due to abrunt
	Index		(2003) cited by	change of climates /
			Blazejczyk (2011)	$BDI = (ECI_h - ECI)/13 \cdot 100$
				<i>ECI</i> is effective clothing
				insulation, <i>h</i> indicates home
4	Integral Load Index	TT T	Motuukhin and	Incation
4	Integral Load Index	ILI	Kushnirenko (1986)	change of climates /
				methodology can be used for
				different meteorological
				parameters
4	Weather-Climate-	WCC	Rusanov (1987)	Thermal stress due to abrupt
	Contrasts			difference in clo units between
				two climates in relation to
				maximum difference
5	Air Enthalpy	AirE	Gregorczuk (1968)	Does not consider all 6 variables /
		i		$i = 0.24 \left(T + \frac{1.555}{2} c \right)$
				$\frac{1-0.24}{p} \left(\frac{1_{wb}}{p} + \frac{1}{p} \right)$
5	Air temperature		MacPherson (1962)	Does not consider all 6 variables /
5	A	۸T	A = a 1 d a (10(2))	Considers T
3	Apparent Temperature	AI	Arnoldy (1962)	Considers T 12
5	Apparent Temperature*	AT/	Steadman (1979):	Does not consider all 6 variables /
	or Heat Index	HI	Steadman (1984)	Considers T, e, v, S, M, Clo
5	Belgian Effective	BET	Bidlot and Ledent	Does not consider all 6 variables /
	Temperature	TEL	(1947) cited by Brüner	$TEL = 0.9 T_{wb} [^{\circ}C] + 0.1 T [^{\circ}C]$
		DIGGE	(1959); Eissing (1995)	
5	Bioclimatic Index of the	BISCR	Belkin (1992)	Does not consider all 6 variables / Considers $T = m P P T$
	Regime			Considers I, p, v, KH, n
5	Biometeorological	BCI	Rodriguez et al. (1985)	Does not consider all 6 variables /

С	Index	Abbr.	Reference	Reason / Comments
	Comfort Index			$BCI = \frac{t_a + T_{wb}}{t_a + T_{wb}}$
-		DUIGU	D 1 (1000)	$t_a = t_a(T_b, T, v)$
5	Bodman's Weather	BWSI/	Bodman (1908)	Does not consider all 6 variables / $k(T, n)$
	Seventy index	3		$S = \frac{\kappa(1, \nu)}{\nu(m_{\rm exc})}$
				$K(T_0, v_0)$
				$=\frac{506(1-0.047)(1+0.2720)}{100}$
				506 Heat loss for specific situation
				k(T, y) compared to reference
				situation $k(T_a, v_a)$: usually
				$T_{0} = 0$ °C. $v_{0} = 0$ m/s
5	Body-atmosphere Energy	BIODEX	de Freitas and Ryken	Does not consider all 6 variables /
	Exchange Index		(1989)	Considers T, e, v, S, M, Clo
5	Clothing Insulation	I _c	Mount and Brown	Does not consider all 6 variables /
			(1985)	Considers T, v, S, N, P
5	Clothing Thickness	Clo	Steadman (1971)	Does not consider all 6 variables /
_				Considers T, v, S
5	Comfort Chart	CmCh	Mochida (1979)	Does not consider all 6 variables /
				Considers I, e, v, L, clo, M
				Calculates T_{mrt} from surrounding
5	Comfort Vote	CmV	Bedford (1936).	Does not consider all 6 variables /
5	Connort vote	S	Bedford (1961)	S
		~		$= 11.16 - 0.0556 T[^{\circ}F]$
				$-0.538 T_{a}$ [°F]
				– 0.0372 e[mmHg]
				1000144 10.5 $\left[\begin{array}{c} \text{ft} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$
				$+ 0.00144 0^{-10} \left[\frac{\min}{\min}\right]$ (100
				$-T[^{\circ}F])$
				From questionnaires in winter
				season in Great Britain for
5	Cumulative Discomfort	CumDI	Tennenbaum et al	Does not consider all 6 variables /
5	Index	CumDi	(1961)	hend
			(-, -,	$\sum \frac{T(h) - T_{wb}(h)}{1 - 24}$
				$\sum_{h=1}^{2}$ 2
				Hourly summation over period
5	Dew point temperature		Bruce (1916) cited by	Does not consider all 6 variables /
			Brüner (1959); Eissing	Considers T_{dp}
5		DI	(1995)	
5	Discomfort Index	DI_K	Kawamura (1965) cited	Does not consider all 6 variables / $D_{L} = 0.00 \text{ T}[90] + 0.20 \text{ T}[90]$
			(1991)	$DI_K = 0.99 I [^{\circ}C] + 0.36 I_{dp} [^{\circ}C]$
			(1771)	+ 41.5
5	Discomfort Index	DI _m /	Thom (1957) and	Does not consider all 6 variables /
5	or Temperature	THI	Thom (1958) cited by	$THI = T[^{\circ}F]$
	Humidity Index		Landsberg (1972):	$-(0.55 - 0.55RH)(T[^{\circ}F] - 58)$
			Tromp (1966)	$DI_T = 0.4(T[^{\circ}F] + T_{wh}[^{\circ}F])$
			· · · ·	+ 15
				$DI_T = 0.4(T[^{\circ}C] + T_{wb}[^{\circ}C])$
				+ 4.8
5	Draught Risk Index* /	PD	Fanger et al. (1988)	Does not consider all 6 variables /
	Percent dissatisfied			PD = 3.143(34 - T)
				$(v - 0.05)^{0.0223} + 0.3696v$
5	Effective Tomperature	FT	Missenard (1022) sited	$\cdot Iu(34 - I)(v - 0.05)^{0.0223}$
5	Encouve remperature	LIM	by Gregorezuk and	Does not consider an o variables /
			Cena (1967)	
L		1		

ET $T = T[^{\circ}C] - 0.4(T]$ $-10) \left(1 - \frac{H}{100}\right)5Environmental StressIndexESIMoran et al. (2001)Does not consider all 6 varESI = 0.637 - 0.037M- 0.073(0.1 + S)^{-1}5Equatorial ComfortIndex orSingapore IndexECIWebb (1959)Does not consider all 6 varECI = 0.574 + 1 - 4.4- 0.231w^{0.5} + 2.13Sensations for Singapore cindoors5Equivalent EffectiveTemperatureEETAizenshtat andAizenshtat (1974)Does not consider all 6 varET = T[1 - 0.003(100 - h - 0.385w^{0.59}] (36.6 - T + 0.662(v - 1)] + (0.0015v + 0.0008) - T) - 0.0167] (100 - Does not consider all 6 varET = 0.522T [^{\circ}F] + 0.478T_{1}- 0.0015v + 0.0008) - T) - 0.0167] (100 - Does not consider all 6 varEquivalent RectalTemperature*ERT /EqTGivoni and GoldmanT_{cc}Does not consider all 6 varEqT= 0.522T [^{\circ}F] + 0.478T_{1}- 0.01474 \sqrt{v} [\frac{ft}{minl}] (10 - T [^{\circ}F])T_{mrt} from T_g= 0.522T [^{\circ}F] + 0.478T_{1}- 0.01474 \sqrt{v} [\frac{ft}{minl}] (10 - T [^{\circ}F])T_{mrt} from T_g= 0.522T [^{\circ}F] + 0.478T_{1}- 0.01474 \sqrt{v} [\frac{ft}{minl}] (10 - T [^{\circ}F])T_{mrt} from T_g= 0.522T [^{\circ}F] + 0.478T_{1}- 0.01474 \sqrt{v} [\frac{ft}{minl}] (10 - T [^{\circ}F])T_{mrt} from T_g= 0.522T [^{\circ}F] + 0.478T_{1}- 0.01474 \sqrt{v} [\frac{ft}{minl}] (10 - T [^{\circ}F])T_{mrt} from T_g= 0.522T [^{\circ}F] + 0.478T_{1}- 0.01474 \sqrt{v} [\frac{ft}{minl}] (10 - T [^{\circ}F])T_{mrt} from T_g= 0.522T [^{\circ}F] + 0.478T_{1}- 0.01474 \sqrt{v} [\frac{ft}{minl}] (10 - T [^{\circ}F])T_{mrt} from T_g= 0.522T [^{\circ}F] + 0.478T_{1}- 0.01474 \sqrt{v} [\frac{ft}{minl}] (10 - T [^{\circ}F])T_{mrt} from T_g= 0.522T [^{\circ}F] + 0.478T_{1}- 0.01474 \sqrt{v} [\frac{ft}{minl$	
Image: Second systemImage: Second systemImage: Second systemImage: Second system5Environmental Stress IndexESIMoran et al. (2001)Does not consider all 6 var $ESI = 0.637 - 0.03RH$ $+ 0.00228 + 0.00247 + 0.043R$ $- 0.073(0.1 + S)^{-1}$ 5Equatorial Comfort Index or Singapore IndexECIWebb (1959)Does not consider all 6 var $ECI = 0.574 T + 0.48$ $- 0.231w^{0.5} + 21.23$ Sensations for Singapore c indoors5Equivalent Effective TemperatureEETAizenshtat and Aizenshtat (1974)Does not consider all 6 var $EI = -0.033(100 - K$ $- 0.385y^{0.59}(366 - T)$ $+ 0.062(y - 1)]$ $+ (0.0015y + 0.0008)$ $- T) - 0.0167] (100 - Gond ser 3, e, y, M, CloDoes not consider all 6 varEqT5Equivalent RectalTemperatureERT /T_{mc}Givoni and GoldmanBedford (1936);Bedford (1936);Bedford (1936);Bedford (1936);Bedford (1936)Does not consider all 6 varEqT= 0.522 T [°F] + 0.478 T,- 0.01474 \sqrt{y} \left[\frac{f_{1}}{min}\right] (10 - T[°F])T_{mrt} from T_g or Euptheos5Equivalent Warmth*EqWBedford (1936)Bedford (1936)Does not consider all 6 varEqT= 0.522 T [°F] + 0.478 T,- 0.01474 \sqrt{y} \left[\frac{f_{1}}{min}\right] (10 - T[°F])T_{mrt} from T_g or Euptheos5Equivalent Warmth*EqWBedford (1936)Bedford (1936)Does not consider all 6 varEqT5Heart Rate IndexHRIq(1973)Givoni and Goldman(1973)Does not consider all 6 varEqT5Heart Rate IndexHRIq(1973)Givoni and Goldman(1973)Does not consider all 6 varEqT$	[°C]
Image: Second state indexImage: Second state indexImage: Second state index5Equatorial Comfort Index orECI Image: Second state indexWebb (1959)Does not consider all 6 var ECI = 0.574 + 0.44 - 0.028 + 0.0028 + 0.0028 (T = 0.0574 + 0.44 - 0.2319 ¹⁰⁵ + 21.23 Sensations for Singapore c indoors5Equivalent Effective TemperatureEET Image: Algorithm of the image indoor sing approxement indoorsDoes not consider all 6 var ECI = 0.574 + 0.44 - 0.2319 ¹⁰⁵ + 21.23 Sensations for Singapore c indoors5Equivalent Effective TemperatureEET Image indoorsAlzenshtat and Alzenshtat (1974)Does not consider all 6 var Consider all 6 var Considers T, e, v, M, Clo Does not consider all 6 var Considers T, e, v, M, Clo5Equivalent Rectal TemperatureERT / TaccGivoni and Goldman (1972)Does not consider all 6 var Considers T, e, v, M, Clo5Equivalent Temperature*EqT EqTBedford (1936): Bedford (1951)Does not consider all 6 var Considers T, e, v, M, Clo5Equivalent Warmth*EqW EqWBedford (1936)Does not consider all 6 var Considers T, e, v, M, Clo5Equivalent Warmth*EqW EqWBedford (1936)Does not consider all 6 var Considers T, e, v, S5Exposed skin Temperature*TrTrTrom Tacc (1932)5Heart Rate Index ModelHRIq (Sivoni and Goldman (1953)Does not consider all 6 var Considers T, e, v, S, Clo Considers T, e, v, S, Clo Considers T, e, v, S, Clo Considers T, e, v, S, M, Clo Considers T, e, v, S, M, Clo <br< td=""><td></td></br<>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
IndexESI = $0.63T - 0.03RH$ + $0.002S + 0.0025(T)$ - $0.073(0.1 + S)^{-1}$ 5Equatorial Comfort Index orECIWebb (1959)Does not consider all 6 var $ECI = 0.574 T + 0.46$ - $0.321v^{0.5} + 21.23$ Sensations for Singapore c indoors5Equivalent Effective TemperatureEETAizenshtat and Aizenshtat (1974)Does not consider all 6 var $ET = -0.035v^{0.59}$ [(36.6 - T + $0.662(v - 1)]$ + (0.0015v + 0.0008) - $T) - 0.0167] (100 - T+ 0.662(v - 1)]+ (0.0015v + 0.0008)- T) - 0.0167] (100 - T+ 0.662(v - 1)]+ (0.0015v + 0.0008)- T) - 0.0167] (100 - T- 0.035v^{0.59} [(36.6 - T+ 0.662(v - 1)]+ (0.0015v + 0.0008)- T) - 0.0167] (100 - T) - 0.0167] (100 - T- 0.015v + 0.0008)- T) - 0.0167] (100 - T) - 0.0167] (100 - T- 0.0127 + \sqrt{v} \left[\frac{ft}{min} \right] (10 - T[°F])Tmert from T_g or EupathcosDoes not consider all 6 varEqT= 0.522 T [°F] + 0.478 T_i- 0.01474 \sqrt{v} \left[\frac{ft}{min} \right] (10 - T[°F])Tmert from T_g or Eupathcos5Equivalent Warmth*EqWEqWBedford (1936)Bedford (1936)5Equivalent Warmth*EqTTemperature*5Exposed skinTemperature*ESTtype on and Shacham(1995)5Globe ThermometerTemperature*T_gDimiceli et al. (2011);Vernon and Warmer(1923)5Heat Stress Index*HSIBHHSIBH6Heat Stress PredictionModel / Heat StrainModelHSM/ARIEM5Heat Stress PredictionModel / Heat StrainHSM/ARIEM5Heat Stress PredictionModel / Heat StrainHSM/ARIEM5Heat Stress Pr$	ariables /
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Н
Image: construct on the construct of the construct on the	. <i>RH</i>)
5Equatorial Comfort Index or Singapore IndexECIWebb (1959)Does not consider all of var $ECI = 0.574 T + 0.44$ $- 0.231v^{0.5} + 21.23$ Sensations for Singapore c indoors5Equivalent Effective TemperatureEETAizenshtat and Aizenshtat (1974)Does not consider all of var $ET = 711 - 0.003(100 - F$ $- 0.385v^{0.59}$ [(36.6 - T) $+ 0.0662(v - 1)]$ $+ (0.0015v + 0.0080)$ $- 0.0167] (100 - 5000000000000000000000000000000000$	(III)
5Equatorial Comfort Index or Singapore IndexECIWebb (1959)Does not consider all 6 var $= Cl = 0.574 T + 0.44$ $- 0.231 v^{0.5} + 21.23$ Sensations for Singapore c indoors5Equivalent Effective TemperatureEETAizenshtat and Aizenshtat (1974)Does not consider all 6 var EET 5Equivalent Rectal TemperatureERT / mee Givoni and Goldman Bedford (1936); Bedford (1951)Does not consider all 6 var EqT 5Equivalent Rectal Temperature*EqTBedford (1936); Bedford (1951)Does not consider all 6 var EqT 5Equivalent Warmth*EqWBedford (1936); Bedford (1951)Does not consider all 6 var EqT 5Equivalent Warmth*EqWBedford (1936) T_{met} from T_g or Eupatheos T_{met} from T_g or Eupatheos T_mret from T_g or in approxi $Considers T, v, S5Exposed skinTemperature*ESTT_gBrauner and Shacham(1995)Does not consider all 6 varEqT= 0.522 T [°F] + 0.478 T_i- 0.01474 \sqrt{v} [\frac{ft}{min}] (10 -- T[°F])T_{met} from T_g= 0.522 T [°F] + 0.478 T_i- 0.01474 \sqrt{v} [\frac{ft}{min}] (10 -- T[°F])T_{met} from T_g= 0.522 T [°F] + 0.478 T_i- 0.01474 \sqrt{v} [\frac{ft}{min}] (10 -- T[°F])T_{met} from T_g= 0.522 T [°F] + 0.478 T_i- 0.01474 \sqrt{v} [\frac{ft}{min}] (10 -- T[°F])T_{met} from T_g= 0.522 T [°F] + 0.478 T_i- 0.01474 \sqrt{v} [\frac{ft}{min}] (10 -- T[°F])T_{met} from T_g= 0.522 T [°F] + 0.478 T_i- 0.01474 \sqrt{v} [\frac{ft}{min}] (10 -- T[°F])T_{met} from T_g= 0.522 T [°F] + 0.478 T_i- 0.01474 \sqrt{v} [\frac{ft}{min}]$	
Index or Singapore IndexEETAizenshtat and Aizenshtat (1974) $ELT = 0.3/4 \ 1^{4} + 0.4 \ 2.123$ Sensations for Singapore c indoors5Equivalent Effective TemperatureEETAizenshtat and Aizenshtat (1974)Does not consider all 6 var $ET = T[1 - 0.003(100 - F \ -0.385v^{0.59}](36.6 - T \ +0.662(v - 1)] \ +(0.0015v + 0.0008) \ -T - 0.0167](100 - T \ -0.0167](100 - T \ -0.0127) \ -0.0167](100 - T \ -0.0127) \ -0.0167](100 - T \ -0.0127 \ \sqrt{v} \ \left\lfloor \frac{ft}{min} \right\rfloor (10 \ -T \ T^{eFJ}) \ T_{mrt} \ from T_g \ or Eupatheos5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 varEqT \ = 0.522 T \ F^{FJ} + 0.478 \ T_{0} \ -0.01474 \ \sqrt{v} \ \left\lfloor \frac{ft}{min} \right\rceil (10 \ -T \ F^{eFJ}) \ T_{mrt} \ from T_g \ or Eupatheos5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 varEqT \ = 0.522 T \ F^{FJ} + 0.478 \ T_{0} \ -0.01474 \ \sqrt{v} \ \left\lfloor \frac{ft}{min} \right\rceil (10 \ -T \ F^{eFJ}) \ T_{mrt} \ from T_g \ Does not consider all 6 var \ EqT \ = 0.522 \ T \ F^{eJ} \ -0.01474 \ \sqrt{v} \ \left\lfloor \frac{ft}{min} \right\rceil (10 \ -T \ F^{eJ}) \ T_{mrt} \ from T_g \ Does not consider all 6 var \ EqT \ = 0.522 \ T \ F^{eJ} \ -0.01474 \ \sqrt{v} \ \left\lfloor \frac{ft}{min} \right\rceil (10 \ -T \ F^{eJ}) \ T_{mrt} \ from T_g \ Does not consider all 6 var \ EqT \ EqT \ F^{eJ} \ -0.0174 \ \sqrt{v} \ \left\lfloor \frac{ft}{min} \right\rceil (10 \ -T \ F^{eJ}) \ T_{mrt} \ from T_g \ Does not consider all 6 var \ Considers T_{e}, v, S \ S^{eJ} \$	irladies /
Singapore Index $-0.23 Ip^{0.5} + 21.23$ Sensations for Singapore c indoors5Equivalent Effective TemperatureEETAizenshtat and Aizenshtat (1974)Does not consider all 6 var EET $= T[1 - 0.003(100 - K - 0.385v^{0.59}] [36.6 - T + 0.662(v - 1)] + (0.0015v + 0.0008) - T) - 0.0167] (100 - T + 0.662(v - 1)] + (0.0015v + 0.0008) - T) - 0.0167] (100 - T + 0.662(v - 1)] + (0.0015v + 0.0008) - T) - 0.0167] (100 - T + 0.662(v - 1)] + (0.0015v + 0.0008) - T) - 0.0167] (100 - T + 0.662(v - 1)] + (0.0015v + 0.0008) - T) - 0.0167] (100 - T + 0.662(v - 1)] + 0.478 T + 0.522 T [°F] + 0.478 T + 0.01474 \sqrt{v} [\frac{ft}{min}] (10 - T [°F]) T_{mrt}$ from T_g or Eupatheos5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT 5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT 5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT 5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT 5Haut Rate IndexHRI (1995)Gonsiders T, v, S Considers T, v, S 5Heat Stress Index*HSI _{BH} Belding and Hatch (1973)Does not consider all 6 var $Considers T_g, v, M, Clo5Heat Stress PredictionModelHSPM/ARIEMCadarette et al. (1999);Pandolf et al. (1985)Does not consider all 6 varConsiders T_g, v, M, Clo5Heat Stress PredictionModelHSPM/ARIEMCadarette et al. (1999);Pandolf et al. (1985)Does not consider all 6 varConsiders T, e, v, S, $	1886
Sensations for Singapore c indoors5Equivalent Effective TemperatureEETAizenshtat and Aizenshtat (1974)Does not consider all 6 var ET = $T[1 - 0.003(100 - F$ $- 0.385y^{0.59}](36.6 - T$ $+ 0.662(y - 1)]$ $+ (0.0015y + 0.0008)$ $- T) - 0.0167](100 - T) - 0.01474 \sqrt{v} [\frac{ft}{min}](10 - T) - T) - 0.01474 \sqrt{v} [\frac{ft}{min}](10 - T) - T) - 0.01474 \sqrt{v} [\frac{ft}{min}](10 - T) - T] - 0.01474 \sqrt{v} [\frac{ft}{min}](10 - T) - 0.01474 \sqrt{v} [\frac{ft}{min}](10 - T) - T] - 0.01474 \sqrt{v} [\frac{ft}{min}]5Exposed skinTemperature*ESTBrauner and Shacham(1995)Does not consider all 6 varEqT5Heat Stress Index #HRIG(1925)Givoni and Goldman(1973)Does not consider all 6 varEqT5Heat Stress Index #HSIBHModel / Heat StrainModelHSI - MARIEMDoes not consider all 6 varConsiders T, e, v, S, CloDoes not consider all 6 varConsiders T, e, v, S, CloDoes not cons$)
5Equivalent Effective TemperatureEETAizenshtat and Aizenshtat (1974)Does not consider all 6 var ET 5Equivalent Rectal TemperatureERT / TemperatureGivoni and Goldman (1972)Does not consider all 6 var $Considers T, e, v, M, Clo$ 5Equivalent Rectal TemperatureEqTGivoni and Goldman (1972)Does not consider all 6 var Considers T, e, v, M, Clo5Equivalent Temperature*EqTBedford (1936); Bedford (1951)Does not consider all 6 var EqT 5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var Considers T, e, v, M, Clo5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT 5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var Considers T, v, S5Globe Thermometer Temperature*TgDimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers Tg, or in approxi Considers Tg, or in approxi consider all 6 var Considers Tg, v, M, Clo5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Consider Tg, e, v, M, Clo5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et a	climates
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
TemperatureAizenshtat (1974) ET = $T[1 - 0.003(100 - K - 0.385v^{0.59}] (36.6 - T + 0.662(v - 1)] + (0.0015v + 0.0008) - (7) - 0.0167] (100 - T) - 0.0167] (101 - T) - 0.01474 \sqrt{v} \begin{bmatrix} ft \\ min \end{bmatrix}Does not consider all 6 var EqT - 0.01474 \sqrt{v} \begin{bmatrix} ft \\ min \end{bmatrix}Considers T, e, v, M, Clo5Equivalent Temperature*EqTBedford (1936);Bedford (1951)Does not consider all 6 var EqT - 0.01474 \sqrt{v} \begin{bmatrix} ft \\ min \end{bmatrix}(10 - T[°F])Tmrt from Tg or Eupatheos5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT - 0.01474 \sqrt{v} \begin{bmatrix} ft \\ min \end{bmatrix}(10 - T[°F])Tmrt from Tg or Eupatheos5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT - 0.01474 \sqrt{v} \begin{bmatrix} ft \\ min \end{bmatrix}(10 - T[°F])Tmrt from Tg5Exposed skinTemperature*ESTBrauner and Shacham(1995)Does not consider all 6 var Considers T, v, S5Globe ThermometerTemperatureTgDimiccli et al. (2011);Vernon and Warner(1932)Does not consider all 6 var Considers T, e, v, M, Clo5Heat Stress Index*HSIBHBelding and Hatch(1955)Does not consider all 6 var Considers T, e, v, M, Clo5Heat Stress PredictionModelHSPM/ARIEMCadarette et al. (1999);Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, M, Clo5Heat Stress PredictionModelHSPM/ARIEMCadarette et al. (1985)Does not consider all 6 $	ariables /
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RH)]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$) (36.6
5Equivalent Rectal TemperatureERT / T_{rec} Givoni and Goldman (1972)Does not consider all 6 var Considers T, e, v, M, Clo5Equivalent Temperature*EqTBedford (1936); Bedford (1951)Does not consider all 6 var EqT5Equivalent Temperature*EqTBedford (1936); Bedford (1951)Does not consider all 6 var EqT5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT6Exposed skin Temperature*ESTBrauner and Shacham (1995)Does not consider all 6 var Considers T, v, S5Globe Thermometer TemperatureTgDimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers Tg, or in approxi equation T, v, e, S5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, M, Clo Does not consider all 6 var Considers T, e, v, S, M, Clo Does not consider all 6 var (1955)5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo Different versions f	-RH
10Equivalent RectarTreeTreeConsiders T, e, v, A, Clo5Equivalent Temperature*EqTBedford (1936); Bedford (1951)Does not consider all 6 var EqT5Equivalent Temperature*EqTBedford (1936); Bedford (1951)Does not consider all 6 var EqT5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT5Exposed skin Temperature*ESTBrauner and Shacham (1995)Does not consider all 6 var Considers T, v, S5Globe Thermometer TemperatureTgDiminceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T, e, v, M, Clo5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, S, M, Clo Does not consider all 6 var (1955)5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1995)Does not consider all 6 var Considers T, e, v, S, M, Clo Different versions for lapt pocket calculator and desk exist. Based on HRI _G and T pocket calculator and desk exist. Based on HRI _G and T	priables /
TemperatureTree(1972)Consider $1 \neq e, r, M, Clo$ 5Equivalent Temperature*EqTBedford (1936); Bedford (1951)Does not consider all 6 var EqT5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT5Exposed skin Temperature*ESTBrauner and Shacham (1995)Does not consider all 6 var Considers T, v, S 5Globe Thermometer TemperatureTgDimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T_g, v, M, Clo 5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T_g, v, M, Clo 5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T_e, v, S, M, Clo Does not consider all 6 var Considers T_e, v, S, M, Clo Does not consider all 6 var Considers T_e, v, S, Clo 5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T_e, v, S, M, Clo Does not consider all 6 var Considers T_e, v, S, M, Clo Does not consider all 6 var Considers T_e, v, S, M, Clo Does not consider all 6 var Considers $T_e, v,$	undones /
5Equivalent Temperature*Eq1Bediord (1956); Bedford (1951)Does not consider all 6 var EqT = 0.522 T [°F] + 0.478 T; - 0.01474 $\sqrt{v} \left[\frac{ft}{min}\right]$ (10 - T[°F]) Tmrt from T_q or Eupatheos5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT = 0.522 T [°F] + 0.478 T; - 0.01474 $\sqrt{v} \left[\frac{ft}{min}\right]$ (10 - T[°F]) Tmrt from T_g 5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT = 0.522 T [°F] + 0.478 T; - 0.01474 $\sqrt{v} \left[\frac{ft}{min}\right]$ (10 - T[°F]) Tmrt from T_g 5Exposed skin Temperature*ESTBrauner and Shacham (1995)Does not consider all 6 var Considers T, v, S5Globe Thermometer TemperatureTgDimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T_g, or in approxi equation T, v, e, S5Heart Rate IndexHRIG (1973)Does not consider all 6 var Considers T_g, v, M, Clo5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Consider T, e, v, S, Clo Does not consider all 6 var Consider T, e, v, S, M, Clo5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Consider ST, e, v, S, M, Clo Does not consider all 6 var Does not consider all 6 var Consider ST, e, v, S, M, Clo Does not consider all 6 var does not consider all 6 var Consider ST, e, v, S, M, Clo Does not consider all 6 var does	
Bedford (1951)Eq1 = 0.522 T [°F] + 0.478 T; - 0.01474 $\sqrt{v} \left[\frac{ft}{min}\right]$ (10 - $T[°F]$) T_{mrt} from T_g or Eupatheos5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var EqT = 0.522 T [°F] + 0.478 T; - 0.01474 $\sqrt{v} \left[\frac{ft}{min}\right]$ (10 - $T[°F]$) T_{mrt} from T_g 5Exposed skin Temperature*ESTBrauner and Shacham (1995)Does not consider all 6 var Considers T, v, S 5Globe Thermometer TemperatureTgDimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T, v, S 5Heart Rate IndexHRIG Glivani and Goldman (1973)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, S, M, Clo 5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo 5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo 5HumidexHDMasterson andDoes not consider all 6 var Considers T, e, v, S, M, Clo	inables /
$ = 0.522 T [F] + 0.478 T; = 0.01474 \sqrt{v} \left[\frac{ft}{min}\right] (10) = -T[°F]) T_{mrt} from T_g \text{ or Eupatheos} \\ T_{mrt} from T_g \text{ or Eupatheos} \\ T_{mrt} from T_g \text{ or Eupatheos} \\ T_{g} T = 0.522 T [°F] + 0.478 T; \\ = 0.01474 \sqrt{v} \left[\frac{ft}{min}\right] (10) \\ -T [°F]) T_{mrt} from T_g \\ T_{mrt} from T$	
I_{min} <td>I_{mrt}[°F]</td>	I _{mrt} [°F]
Image of the sector of the	00
Image: Solution of the second systemThe transform T_g or Eupatheos5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var6 $I = 0.522 T [°F] + 0.478 T_g$ $-0.01474 \sqrt{v} \left[\frac{ft}{min}\right]$ (10)7 $-T [°F]$) T_{met} from T_g 5Exposed skinESTBrauner and Shacham7Temperature*TDimiceli et al. (2011);5Globe ThermometerTT7TemperatureTDimiceli et al. (2011);7Vernon and WarnerConsiders T, e, v, S 5Heart Rate IndexHRIGGivoni and Goldman5Heat Stress Index*HSI _{BH} 6Heat Stress PredictionHSPM/7ModelARIEM8Cadarette et al. (1999);9Does not consider all 6 var7Nodel9ARIEM9Pandolf et al. (1985)9Does not consider all 6 var9Consider of the strain9Model9ARIEM9Different versions for lapto9Different versions for lapto9Pandolf et al. (1985)9Different versions for lapto9Does not consider all 6 var9Considers T, e, v, S, M, Clo9Different versions for lapto9Pandolf et al. (1985)9Does not consider all 6 var9 <td< td=""><td></td></td<>	
5Equivalent Warmth*EqWBedford (1936)Total g for r_{H} interval5Equivalent Warmth*EqWBedford (1936)Does not consider all 6 var g r_{H} r_{H} r_{H} r_{H} 5Exposed skinESTBrauner and ShachamDoes not consider all 6 var5Globe Thermometer T_g Dimiceli et al. (2011); Vernon and WarnerDoes not consider all 6 var5Globe Thermometer T_g Dimiceli et al. (2011); Vernon and WarnerDoes not consider all 6 var Considers T_g , or in approxi- equation T, v, e, S 5Heart Rate IndexHRIGGivoni and Goldman (1973)Does not consider all 6 var Considers T_g, v, M, Clo 5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, S, M, Clo 5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo Different versions for lapto pocket calculator and deskte exist. Based on HRI _G and T5HumidexHDMasterson andDoes not consider all 6 var Considers T, e, v, S, M, Clo	oscope
5Equivalent warminEq.WDecided (1930)Edeo (1930)Edeo (1930)6 EqT $= 0.522 T [°F] + 0.478 T_{g}$ 7 $= 0.522 T [°F] + 0.478 T_{g}$ 5Exposed skin7Temperature*5Globe Thermometer7Tg7Dimiceli et al. (2011);7Vernon and Warner(1932)Considers T, v, S 5Heart Rate Index5Heart Rate Index6HRIG6Givoni and Goldman(1973)Does not consider all 6 var7Considers T, e, v, M, Clo 7Belding and Hatch7Does not consider all 6 var7Heat Stress Index*8HSI _{BH} 8Belding and Hatch9Nodel / Heat Strain9Model / Heat Strain9ARIEM9Pandolf et al. (1985)9Humidex9Hate Strain9ARIEM9Nodel and the strain9Model and the strain9Hate Strain9ARIEM9Nodel and the strain of the str	ariables /
Image: Second StateImage: S	undones /
5Exposed skin Temperature*ESTBrauner and Shacham (1995)Does not consider all 6 var Considers T, v, S 5Globe Thermometer TemperatureTgDimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T, v, S 5Heart Rate IndexHRIG (1973)Givoni and Goldman (1955)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo 5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo 5HumidexHDMasterson andDoes not consider all 6 var Considers T, e, v, S, M, Clo	<i>T</i> [॰도]
$-0.01474 \sqrt{v} \left[\frac{\kappa}{\min}\right]$ $(10, -T[^{\circ}F])$ T_{mrt} from T_g ESTBrauner and Shacham (1995)Does not consider all 6 var Considers T, v, S 5 Globe Thermometer Temperature T_g Dimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T_g , or in approxi- equation T, v, e, S 5 Heart Rate IndexHRIGGivoni and Goldman (1973)Does not consider all 6 var Considers T, e, v, M, Clo 5 Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var consider all 6 var Considers T, e, v, S, M, Clo 5 Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo Does not consider all 6 var consider R, e, v, S, M, Clo 5 Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo Different versions for laptor pocket calculator and desk exist. Based on HRI _G and T pocket calculator and desk exist. Based on HRI _G and T pocket calculator and desk exist. Based on HRI _G and T pocket calculator and desk	¹ mrt[¹]
$-T[^\circ F]$) T_{mrt} from T_g 5Exposed skin Temperature*EST (1995)Brauner and Shacham Considers T, v, S 5Globe Thermometer Temperature T_g Dimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T_g , or in approxi equation T, v, e, S 5Heart Rate IndexHRIG (1973)Givoni and Goldman (1973)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Does not consider all 6 var diative balance.5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo Different versions for lapto pocket calculator and deski exist. Based on HRIG and T5HumidexHDMasterson andDoes not consider all 6 var	00
TamperTamperTamperTamperTamper5Exposed skin Temperature*ESTBrauner and Shacham (1995)Does not consider all 6 var Considers T, v, S 5Globe Thermometer TemperatureTgDimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T_g , or in approxi- equation T, v, e, S 5Heart Rate IndexHRIGGivoni and Goldman (1973)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo 5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo 5HumidexHDMasterson andDoes not consider all 6 var Considers T, e, v, S, M, Clo	
5Exposed skin Temperature*ESTBrauner and Shacham (1995)Does not consider all 6 var Considers T, v, S 5Globe Thermometer Temperature T_g Dimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T_g , or in approxi equation T, v, e, S 5Heart Rate IndexHRIGGivoni and Goldman (1973)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo 5HumidexHDMasterson andDoes not consider all 6 var Considers T, e, v, S, M, Clo	
Temperature*(1995)Considers T, v, S5Globe Thermometer TemperatureTgDimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers Tg, or in approxi- equation T, v, e, S5Heart Rate IndexHRIGGivoni and Goldman (1973)Does not consider all 6 var Considers T, e, v, M, Clo5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, M, Clo5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo Different versions for lapto pocket calculator and deskt exist. Based on HRIG and T5HumidexHDMasterson andDoes not consider all 6 var Considers T, e, v, S, M, Clo Different versions for lapto pocket calculator and deskt exist. Based on HRIG and T	ariables /
5Globe Thermometer Temperature T_g Dimiceli et al. (2011); Vernon and Warner (1932)Does not consider all 6 var Considers T_g , or in approxi- equation T, v, e, S 5Heart Rate IndexHRIGGivoni and Goldman (1973)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo 5Heat Stress Prediction ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo 5HumidexHDMasterson andDoes not consider all 6 var Considers T, e, v, S, M, Clo	
TemperatureVernon and Warner (1932)Considers T_g , or in approxi- equation T, v, e, S 5Heart Rate IndexHRIGGivoni and Goldman (1973)Does not consider all 6 var Considers T, e, v, M, Clo 5Heat Stress Index*HSI _{BH} Belding and Hatch (1955)Does not consider all 6 var Does not consider all 6 var Considers T, e, v, S, M, Clo 5Heat Stress Prediction Model / Heat Strain ModelHSPM/ ARIEMCadarette et al. (1999); Pandolf et al. (1985)Does not consider all 6 var Considers T, e, v, S, M, Clo Different versions for lapto pocket calculator and deskt exist. Based on HRIG and T5HumidexHDMasterson andDoes not consider all 6 var	ariables /
5 Heart Rate Index HRI _G Givoni and Goldman (1973) Does not consider all 6 var Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>M</i> , <i>Clo</i> 5 Heat Stress Index* HSI _{BH} Belding and Hatch (1955) Does not consider all 6 var Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>M</i> , <i>Clo</i> 5 Heat Stress Prediction HSPM/ Cadarette et al. (1999); Does not consider all 6 var consi	ximation
5 Heart Rate Index HRI _G Givoni and Goldman (1973) Does not consider all 6 var Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>M</i> , <i>Clo</i> 5 Heat Stress Index* HSI _{BH} Belding and Hatch (1955) Does not consider all 6 var Consider all 6 var Does not consider all 6 var Solar radiation in the equation radiative balance. 5 Heat Stress Prediction Model / Heat Strain Model HSPM/ Cadarette et al. (1999); Pandolf et al. (1985) Does not consider all 6 var Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> , <i>M</i> , <i>Clo</i> Different versions for lapto pocket calculator and desktexist. Based on HRI _G and T 5 Humidex HD Masterson and Does not consider all 6 var Consider Consider all 6 var Consider a	
5 Heat Stress Index* HSI _{BH} Belding and Hatch (1973) Does not consider all 6 var Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>M</i> , <i>Clo</i> 5 Heat Stress Index* HSI _{BH} Belding and Hatch (1955) Does not consider all 6 var Does not explicitly account solar radiation in the equati- radiative balance. 5 Heat Stress Prediction Model / Heat Strain Model HSPM/ ARIEM Cadarette et al. (1999); Pandolf et al. (1985) Does not consider all 6 var Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> , <i>M</i> , <i>Clo</i> Different versions for lapto- pocket calculator and deskt- exist. Based on HRI _G and T 5 Humidex HD Masterson and Does not consider all 6 var	ariables /
5 Heat Stress Index* HSI _{BH} Belding and Hatch (1955) Does not consider all 6 var Does not explicitly accoun solar radiation in the equat radiative balance. 5 Heat Stress Prediction Model / Heat Strain Model HSPM/ ARIEM Cadarette et al. (1999); Pandolf et al. (1985) Does not consider all 6 var Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> , <i>M</i> , <i>Clo</i> Different versions for lapto pocket calculator and deskt exist. Based on HRI _G and T 5 Humidex HD Masterson and Does not consider all 6 var	
5 Heat Stress Prediction HSPM/ Cadarette et al. (1999); Does not consider all 6 var radiative balance. 5 Heat Stress Prediction HSPM/ Cadarette et al. (1999); Does not consider all 6 var radiative balance. 5 Heat Strain ARIEM Pandolf et al. (1985) Does not consider all 6 var consider	ariables /
5 Heat Stress Prediction HSPM/ Cadarette et al. (1999); Does not explicitly account solar radiation in the equatiradiative balance. 5 Heat Strain ARIEM Cadarette et al. (1999); Does not consider all 6 var Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> , <i>M</i> , <i>Clo</i> Model Model Humidex HD Masterson and Does not consider all 6 var consider all 6 var Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> , <i>M</i> , <i>Clo</i>	nt for
5 Heat Stress Prediction HSPM/ Cadarette et al. (1999); Does not consider all 6 var 5 Model / Heat Strain ARIEM Pandolf et al. (1985) Does not consider all 6 var Model Model Humidex HD Masterson and Does not consider all 6 var	nt ion for
5 Heat Stress Prediction HSPM/ Cadarette et al. (1999); Does not consider all 6 var Model / Heat Strain ARIEM Pandolf et al. (1985) Does not consider all 6 var Model Heat Strain ARIEM Pandolf et al. (1985) Different versions for lapto pocket calculator and deski exist. Based on HRI _G and T 5 Humidex HD Masterson and Does not consider all 6 var	
5 Heat Stress Prediction HSPM/ Cadarette et al. (1999); Does not consider all 6 var Model / Heat Strain ARIEM Pandolf et al. (1985) Considers T, e, v, S, M, Clo Model Humidex HD Masterson and Does not consider all 6 var	
Model ARTEM Pandon et al. (1985) Considers 1, e, v, S, M, Cto Model Different versions for lapto pocket calculator and deskt exist. Based on HRI _G and T 5 Humidex HD Masterson and Does not consider all 6 var	
Model Different versions for laptc pocket calculator and deskt exist. Based on HRI _G and T 5 Humidex HD Masterson and	0
5 Humidex HD Masterson and Does not consider all 6 var	top,
5 Humidex HD Masterson and Does not consider all 6 var	ktop
5 Humidex HD Masterson and Does not consider all 6 var	1 _{rec}
Richardson (1979) 5	uriables /
$HD = T [°C] + \frac{3}{9} (e [mbar])$	r] – 10)
5HumiseryWeiss (1982)Does not consider all 6 var	ariables /
Humisery= $T + a(T_{dp}, v, n)$, n)
5HumiturePepi (1999); WeissDoes not consider all 6 var	ariables /
(1982) Humiture $T + T_{dp} - 18$	3[°C]

С	Index	Abbr.	Reference	Reason / Comments
				Humiture = $\frac{T+T_{dp}}{2}$
				Humiture = $T[{}^{2}F] + e[mbar] -$
				10[°F]
				Different versions exist
5	Index of Clothing	CLODE	de Freitas (1986); de	Does not consider all 6 variables /
	required for Comfort*	Х	Freitas (1987)	$T_s - T = I_a(H+S)$
				$CLODEX = \frac{H}{H} - \frac{H}{H}$
				with $T_s = 33 ^{\circ}\text{C}, H = 0.75 M$
				and $1/I_a = [0.61 + 0.0000000000000000000000000000000000$
5	In the of Dath a serial ter of	IDME	Lateralises and Dalasha	$0.19(v \cdot 100)^{0.5}$ H
5	Index of Pathogenicity of Meteorological	IPME	(1965) cited by	Does not consider all 6 variables / Considers $T_{n} = a_{n} + a_{n} + a_{n}$
	Environment		Kobyscheva et al	$Considers T, T_d, e, v, n, s, p_d$
			(2008)	
5	Index of Sultriness	ISI	Aikimovich and	Does not consider all 6 variables /
	Intensity		Balalla (1971)	Classes of <i>e</i> only
5	Index of thermal	ITSN	Rohles and Nevis	Does not consider all 6 variables /
	sensation		(1971)	Considers T, RH
				Further developments link
				Sensations also to new E1* and V Robles et al. (1975): Robles et al.
				(1974)
5	Index of thermal stress*	ITS _{GIV}	Givoni (1976)	Does not consider all 6 variables /
		011		L is not considered
5	Index of thermal stress	ITS _K	Kondratyev (1957)	Does not consider all 6 variables /
		Ν	cited by Rusanov	$N = 0.16 (T_{sk} - T)$
			(1981)	$R = \frac{R}{R} + \frac{5.7}{5.7}$
				0.175 ' a(v)
				$N = 0.78 \frac{M}{1.00}$
5	Insulation Predicted	I.	Blazeiczyk (2011)	100 Does not consider all 6 variables /
5	index*	Lclp	Diazejezyk (2011)	
				$[91.4 - (1.8 \cdot T + 32)]$
				$= 0.082 \cdot \frac{1}{2.3274}$
				$-[1/0.61 + 1.9 \cdot v^{0.5}]$
5	Integral Index of Cooling	IICC	Afanasieva et al.	Does not consider all 6 variables /
	Conditions		(2009)	IICC = 73.882 - 0.60361T
				$+ 1.3096v - 9.1985I_c$
5	Kata than		IL11 and ILarga 1 A 1	-0.15527M
5	Kata mermometer		(1919): Maloney and	Approximation equations
			Forbes (2011)	considers T. 12 RH S
5	Maximum	MRDE	Young (1979)	Does not consider all 6 variables /
	Recommended Duration			Considers T, RH, S and Clo, M
	of Exercise*			
5	Meteorological Health	MHI	Bogatkin and	Does not consider all 6 variables /
	Index		Tarakanov (2006)	Considers $T, RH, v, N, P, p, T_d, p_d$
5	Modified Discomfort	MDI	Moran et al. (2001)	Does not consider all 6 variables /
5	Index Madified (D. 1 1)		A.J.,	$MDI = 0.75T_{wb} + 0.3T$
2	Tomporature (MIIK/	Adamenko and Khairullin (1072)	Does not consider all 6 variables / Considers $T_{\rm cons}$
	Fourivalent facial skin	1 пр	Kinanunini(1972)	
	temperatures*			
5	Natural Wet Bulb	NWBT	Maloney and Forbes	Does not consider all 6 variables /
	Temperature	T _n	(2011)	T_n
				= 0.85T + 0.17RH
				$-0.61v^{0.5}0.0016S - 11.62$
5	New Wind Chill	NWCI /	Office of the Federal	Does not consider all 6 variables /

С	Index	Abbr.	Reference	Reason / Comments
	Temperature Index	WCET /	Coordinator for	WCT[°C]
		WCI	Meteorological	$= 13.12 + 0.6215T[^{\circ}C]$
			services and supporting	$-11.37v^{0.16}$ [km/h]
			research (2003);	$+ 0.3965 v^{0.16} [\text{km/h}]$
			Osczevski and	
			Bluestein (2005)	
5	Oxford Index /	OxI	Lind et al. (1956) cited	Does not consider all 6 variables /
	Wet-Dry Index*	WD	by Bedford (1957);	$WD = 0.15 T + 0.85 T_{wb}$
			Lind and Hellon (1957)	
5	Operative Temperature	OpT	Winslow and	Does not consider all 6 variables /
		T _o	Herrington (1949);	Summarizes effect of dry heat
			Winslow et al. (1937)	exchange; Considers T, v, T_{mrt} in
				original form <i>T_{wall}</i>
5	Outdoor Apparent	OAT	Steadman (1984);	Does not consider all 6 variables /
	Temperature		Steadman (1994)	Considers T, e, v, S, M, Clo;
				regression version is more
				frequently used than complete
				model version
5	Physiological Heat	PHEL	Dasler (1977)	Does not consider all 6 variables /
	Exposure Limit Chart			Considers time-weighted-mean of
				WBGT and M
5	Radiation Equivalent	REET	Sheleihovskyi (1948)	Does not consider all 6 variables /
	Effective Temperature		cited by Rusanov	Considers T, e, v, S
_		DUG	(1981)	
5	Relative Heat Strain*	RHS	Lee and Henschel	Does not consider all 6 variables /
_		DUDT	(1966)	Considers T, e, v, L and Clo, M
5	Relative Humidity Dry	RHDT	Wallace et al. (2005)	Does not consider all 6 variables /
	Temperature		D (1000) : 1	RHDT = 0.9T + 0.1RH
5	Respiratory Heat Loss	RHL/	Rusanov (1989) cited	Does not consider all 6 variables /
		Q_R	by de Freitas and	C1 to C4 not checked since
			Grigorieva (2016)	required interature could not be
5	Descriteret Terrerensterne		Missessed sided have	obtained. Considers 1, e, p, et, M
3	or Not Effective	KI/ NET	L and share (1072)	Does not consider all 6 variables / $NET = 27$ (27 T)
	Temperature	INL I	Lanusberg (1972)	$NET = 57 = (57 = 1)^{-1}$
	remperature			(0.68 - 0.0014RH +
				$\left(\frac{1}{1}\right)^{-1} - 0.29T\left(1 - \frac{RH}{R}\right)$
5	Cotomotion deficit		Elitare (1012) sited has	$1.76+1.4v^{0.75}$ 1.00
5	Saturation deficit		Flugge (1912) cited by	Does not consider all 6 variables /
5	Soughty Dating	C	Druller (1939)	Collisiders q
3	Severity Rating	3	Disokin (1908) cited by Ducenou (1081)	Does not consider an o variables /
			Kusallov (1901)	-(1 - 0.06T)(1 + 0.20m)(1
				= (1 - 0.001)(1 + 0.200)(1 + 0.000)(1 + 0.
5	Standard Operative	To'/	Gagge et al. (1973)	$\frac{\Gamma 0.0000(I) \Lambda_b(\Lambda II) \Lambda_c(I_d)}{Does not consider all 6 variables /}$
	Temperature			Considers $T \to T$ can be
	Temperature	1 50		calculated from provided model
5	Subjective Temperature	T	McIntyre (1973)	Does not consider all 6 variables /
5	Subjective remperature	• sub	Weintyle (1975)	T .
				$= 0.44 T_{\odot}$
				$0 \Gamma \left(\Gamma \sqrt{10 \pi} \left(\Gamma - T \right) \right)$
				$+\frac{0.56(5-\sqrt{10}\nu(5-1))}{10}$
				$0.44 + 0.56\sqrt{10v}$
5	Summer Simmer Index	SSI	Pepi (1987); Pepi	Does not consider all 6 variables /
			(1999); Tzenkova et al.	$SSI = T[^{\circ}F] - (0.55 - 0.0055)$
			(2007)	· RH[%])
				$(T [^{\circ}F] - 58)) - 56.83$
				Different versions exist (further
				developments)
5	Sultriness value		Scharlau (1943)	Does not consider all 6 variables /

С	Index	Abbr.	Reference	Reason / Comments
				Considers e
5	Survival Time Outdoors in Extreme Cold*	STOEC	de Freitas and Symon (1987)	Does not consider all 6 variables / Considers <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> , <i>Clo</i> , <i>M</i>
5	Temperature Humidity Index	THIs	Schoen (2005)	Does not consider all 6 variables / THI $= T - 1.0799e^{0.03755T} (1 - e^{0.0801(T_{dp} - 14)})$
5	Temperature-Wind Speed-Humidity Index	TWH	Zaninovic (1992)	Does not consider all 6 variables / Considers T, v, e_s
5	Thermal Acceptance Ratio	TAR	Ionides, Plummer and Siple (1945) cited by Auliciems and Szokolay (2007)	Does not consider all 6 variables / Considers <i>T</i> , <i>e</i> , <i>L</i> , <i>M</i>
5	Thermal Balance	ThBal _r / Qs	Rusanov (1981)	Does not consider all 6 variables / 2 versions exist: full heat balance version that includes all terms (ThBal _b , Table 2) and a regression version based on EET, which does not consider longwave radiation and is applicable only for nude persons (ThBal _r) but has an assessment scale
5	Thermal Insulation Characteristics of Clothing	TICC / R	Kondratyev (1957) cited by Rusanov (1981)	Does not consider all 6 variables / $R = 3.36 \frac{T_{sk} - T}{M} - \frac{0.99}{a(v)}$ T_{sk} set to 33 °C
5	Thermal Insulation of Clothing	TIC _B	Budyko and Cicenko (1960); Liopo and Cicenko (1971)	Does not consider all 6 variables / Regression equation considering T, v, S and M fitted by Liopo and Cicenko (1971) to full heat balance equation by Budyko and Cicenko (1960) and related derived nomograms
5	Thermal Insulation of Clothing	TIC _R	Rusanov (1981)	Does not consider all 6 variables / Is based on ThBal _r and therefore does not consider longwave radiation
5	Thermal Insulation of Protective Clothing	TIPC	Afanasieva (1977)	Does not consider all 6 variables / Considers T, v, M. Designed especially for winter conditions (S-input is assumed very small)
5	Thermal Sensation Index*	TSNI	de Paula Xavier and Lamberts (2000)	Does not consider all 6 variables / Regression equation developed for indoors; coefficient of T_o is probably different if solar radiation is included. $S = 0.219 T_o + 0.012RH$ - 0.547v - 5.83
5	Thermal Strain Index	G TSI /	Lee (1958)	Does not consider all 6 variables / G $= a \left[\frac{(M - W) - \frac{5.55(34 - T)}{I_a(v) + I_c}}{-0.00033(46 - e)} \right]^d$ $= \frac{C - e}{r_a(v) + r_c}$
5	Total Thermal Stress*		Auliciems and Kalma (1981)	Does not consider all 6 variables / Does not consider L
5	Tropical summer index	Tsi	Bureau of Indian	Does not consider all 6 variables /

C	Index	Abbr.	Reference	Reason / Comments
			Standards (1987) cited	Tsi
			by Auliciems and	$= 0.308T_{wb} + 0.745 T_g$
			Kalma (1981)	$-2.06\sqrt{v+0.841}$
5	Wet Bulb Dry	WBDT	Wallace et al. (2005)	Does not consider all 6 variables /
	Temperature			$WBGT = 0.4T_{wb} + 0.6T$
5	Wet Bulb Globe	WBGT	Auliciems and Kalma	Does not consider all 6 variables /
	Temperature		(1981); Yaglou and	$WBGT = 0.7T_{wb} + 0.2T_a + 0.1T$
			Minard (1957)	
5	Wet Bulb Temperature	T_{wb}	Brüner (1959); Eissing	Does not consider all 6 variables /
			(1995); Stull (2011)	Approximation equation
				considers T, RH
5	Wet Kata Cooling Power	WKCP	Hill and Hargood-Ash	Does not consider all 6 variables /
	by Hill	H_w	(1919)	$H = (0.27 + 0.49\sqrt{v})(36.5 - T)$
				$+(0.85+0.102v^{0.3})(F-f)^{4/3}$
5	Wind Chill Equivalent	WCT _{wc}	Falconer (1968)	Does not consider all 6 variables /
	Temperature	Twc		$Twc \ [^{\circ}F] \approx -(\sqrt{v \cdot 100} + 10.45)$
				(-v)(91.4)
				-T[F]
				$(\sqrt{1.34 \cdot 100} + 10.45 - 1.34)$
				$+91.4)^{-1}$
				Under sunshine cooling is
				reduced
5	Wind Chill Equivalent	WCET	Steadman (1971)	Does not consider all 6 variables /
	Temperature			Considers $T, v, L, M, I_{cl}; L, M$
				and I_{cl} are assumed fixed
5	Wind Chill Index	WCI	Siple and Passel (1945)	Does not consider all 6 variables /
				Considers <i>T</i> , <i>v</i>
6	Thermal Sensation	TS _{GIV}	Givoni et al. (2003)	Does not consider longwave
				radiation from all directions /
				$1S_{GIV} = 1.7 + 0.11187 + 0.00106 + 0.222m$
				0.00195 - 0.3220 - 0.0054T
				$0.0075KH + 0.0054I_{gr}$
				considers only longways radiation
				from ground
7	Body Temperature Index	BTI	Daval (1974)	Air temperature range smaller
-				than
				-5 °C to 35 °C / Designed for
				$30 \leq \Delta T \leq 42;$
				Equation for T_{mrt} from T_q -
				measurements might be needed to
				be adapted to consider solar
				influence
7	Effective Heat Strain	EHSI	Kamon and Ryan	Air temperature range smaller
	Index		(1981)	than
				-5 °C to 35 °C / Designed for
				$2/\leq \Delta I \leq 36;$
				Equation for I_{mrt} from I_g -
				measurements might be needed to
				influence
7	Heart Rate Index	HRL	Daval (1974)	Air temperature range smaller
'		IIIID		than
				-5 °C to 35 °C / Designed for
				$30 \leq \Delta T \leq 42;$
				Equation for T_{mrt} from T_{a} -
				measurements might be needed to
				be adapted to consider solar

С	Index	Abbr.	Reference	Reason / Comments
				influence
7	Heat Strain Decision Aid	HSDA	Cadarette et al. (1999);	Air temperature range smaller
	Model		Santee and Wallace	than
			(2003)	-5 °C to 35 °C / Designed for
				$18 \le \Delta T \le 43$
7	Humid Operative	HToh /	Gagge et al. (1973);	Air temperature range smaller
	Temperature	T _{ob}	Gagge et al. (1971)	than
	1	on		-5 °C to 35 °C / Designed for
				$10 < \Delta T < 40$
7	New Effective	ET*	Gagge et al. (1973):	Air temperature range smaller
	Temperature		Gagge et al. (1971)	than
	1			-5 °C to 35 °C / Designed for
				$10 < \Delta T < 40$
7	Predicted Mean Vote –	PMV	Fanger (1970)	Temperature range smaller than
	indoors			-5 °C to 35 °C / Designed for
				$15 < \Delta T < 45$ [indoors]
7	Predicted Mean Vote –	PMV*	Gagge et al. (1986)	Air temperature range smaller
	outdoors*			than
				-5 °C to 35 °C / Designed for
				$0 < \Delta T < 50$
7	Predicted Mean Vote –	PMV _F	Hamdi et al. (1999)	Air temperature range smaller
	Fuzzy			than
				-5 °C to 35 °C / Designed for
				$-10 < \Delta T < 32$: Fuzzy logical
				estimation of PMV. Designed for
				indoors: Rules for T _{mut} may
				require adjustment if used
				outdoors
7	Predicted Percentage	PPD	ASHRAE (2001):	Air temperature range smaller
	Dissatisfied		Fanger (1970)	than
				-5 °C to 35 °C / Designed for
				$15 \leq \Delta T \leq 45$ [indoors]
7	Reference Index	RI	Pulket et al. (1980)	Air temperature range smaller
				than
				-5 °C to 35 °C / Designed for
				$30 \le \Delta T \le 40$; Originally
				included only L; but expected to
				work if S is included as based on
				heat balance principles
7	Required Sweat Rate	Reg SR /	Vogt et al. (1981)	Air temperature range smaller
	· ·	Sr		than
				-5 °C to 35 °C / Designed for
				$20 \le \Delta T \le 60$
7	Standard Effective	SET*	Gagge et al. (1973);	Air temperature range smaller
	Temperature		Gonzalez et al. (1974)	than
			, , ,	-5 °C to 35 °C / Designed for
				$0 \le \Delta T \le 50$
7	Thermal Discomfort	DISC	Gagge et al. (1986)	Air temperature range smaller
			, , ,	than
				-5 °C to 35 °C / Designed for
				$10 \le \Delta T \le 50$; calculated from
				2-node model
7	Thermal Work Limit	TWL	Brake and Bates (2002)	Air temperature range smaller
				than
				-5 °C to 35 °C / Designed for
				$36 \le \Delta T \le 40$; developed for
				indoors but uses heat balance
				equations with T_{mrt} so S can be
				included

19 Appendix B Found differences in index inputs

20 To evaluate the criteria for the different indices in Sec.3, the original publication of the indices were reviewed. For some indices our analysis of the indices differed from the

results by de Freitas and Grigorieva (2016). This might be in some cases due to the use of secondary literature by de Freitas and Grigorieva (2016). In other cases we interpret the

same publication differently, indicating that indices are not always thoroughly documented. The found differences of index characteristics are documented in Table 2. As

23 evidence for our interpretation citations or equations are given.

Table 2: Index characteristics found in our literature review of the thermal indices and used in the present study compared to the ones by de Freitas and Grigorieva (2016).

25 Atmosphere-related variable inputs are denoted "A" and body-related variable inputs are denoted "B". The following abbreviations are used: *clo* is clothing, *e* is vapor pressure,

26 e_s is saturation vapor pressure, $e_{s,sk}$ is saturated water vapor pressure at T_{sk} , E_{sk} is evaporative heat loss from skin surface, HR is heart rate, I_{cl} is clothing insulation, L is

longwave radiation, M is metabolic rate, PE is physical exertion, RH is relative humidity, r_b is body tissue thermal resistance, S is solar radiation, T is air temperature, T_c is core temperature, T_a is globe temperature, T_{ar} is ground temperature, T_{mrt} is mean radiant temperature, T_{sk} is skin temperature, T_w is mean temp of surroundings, T_{wb} is wet bulb

29 temperature, **TS** is thermal sensation, **Tu** is turbulence intensity, v is wind speed.

Index (Abbreviation)	Variable inputs considered according to de Freitas and Grigorieva (2016) (cited reference)	Variable inputs considered according to our review (reference)	Evidence, Comments
Apparent Temperature (AT) or Heat Index (HI)	A: <i>T</i> , <i>e</i> , <i>S</i> B: <i>Clo</i> , <i>M</i> (Steadman 1979; Steadman 1984)	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> B: No (Steadman 1979; Steadman 1984)	Using the nomenclature of this paper the publication by Steadman (1984) reads: "The apparent temperature of a set of meteorological conditions <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> may be defined as equal to dry-bulb temperature at $v = S = 0$, and at a base vapor pressure of moderate humidity, which would require the same thermal resistance, in a walking adult, as this set of conditions". Clothing and activity are considered in AT but fixed and are therefore no variable inputs. From the full model regression equations were developed, which are used far more frequently. In the final development stage (Steadman 1979) the scope of the index "has been enlarged to cover the range of dry-bulb temperatures from -40 to +50 °C". This range is larger than +20 to +60 °C mentioned by de Freitas and Grigorieva (2016)
Draught Risk Index (PD; Percent dissatisfied)	A: <i>T</i> , <i>v</i> B: No (Fanger et al. 1988)	A: <i>T</i> , <i>v</i> , <i>Tu</i> B: No (Fanger et al. 1988)	The full equation reads: $PD = 3.143(34 - T)(v - 0.05)^{0.6223} + 0.3696v \cdot Tu(34 - T)(v - 0.05)^{0.6223}$ Thus, turbulent intensity <i>Tu</i> is included as input.
Equivalent Temperature (EqT)	Not considered	A: T , v , T_w B: No (Bedford 1936; Bedford 1951)	EqT is mentioned by de Freitas and Grigorieva (2015) but not analyzed by de Freitas and Grigorieva (2016). The definition reads: $EqT = 0.522 T[^{\circ}F] + 0.478 T_w[^{\circ}F] - 0.01474 \sqrt{v} [ft/min](100 - T[^{\circ}F])$

Index (Abbreviation)	Variable inputs considered according to de Freitas and Grigorieva (2016) (cited reference)	Variable inputs considered according to our review (reference)	Evidence, Comments
Equivalent Warmth (EqW)	A: T, T_{mrt}, e B: T_{sk} (Bedford (1936) cited by Auliciems and Szokolay (2007))	A: T, T_w, e_s, v B: No (Bedford 1936)	The definition is: $EqW = 9.979 - 0.1495 x^2 - 2.89$ $x = 0.0556 T + 0.0538 T_w + 0.0372 e_s - 0.00144 \sqrt{v}(100 - T)$
Exposed skin Temperature (EST)	A: <i>T</i> , <i>v</i> , <i>S</i> B: <i>M</i> (Brauner and Shacham 1995)	A: <i>T</i> , <i>v</i> , <i>S</i> B: No (Brauner and Shacham 1995)	The equation reads: $\frac{T_c - T_s}{r_b} = \frac{T_c - T}{r_b + 1/h_c}$ Fixed $M = 58 \text{ Wm}^{-2}$ (comfortable steady state condition) is used for calculating r_b : "The body tissue thermal resistance, r_b , can be estimated from Eq. 7 by introducing known values of thermal comfort in a normal temperature room []. Under such conditions [], the metabolic heat production while sitting at rest is approximately equal to 50 kcal h ⁻¹ m ⁻² (58 Wm ⁻²), and []. Thus, r_b is approximately 0.08 kcal ⁻¹ h °C m ² []." (Brauner and Shacham 1995)
Heat Stress Index (HSI _{BH})	A: T, T_g, e, v B: Clo, M (Belding and Hatch 1955)	A: T, T_g, e, v B: M (Belding and Hatch 1955)	"Clothing is the third variable fixed for the estimate, and it is unfortunate that limitations of available knowledge make it necessary to fix on a no-clothing basis." (Belding and Hatch 1955)
Index of Clothing Required for Comfort (CLODEX)	A: <i>T</i> , <i>v</i> , <i>e</i> , <i>L</i> , <i>S</i> B: <i>Clo</i> , <i>M</i> (de Freitas 1986; de Freitas 1987)	A: <i>T</i> , <i>v</i> , <i>S</i> B: <i>M</i> (de Freitas 1986; de Freitas 1987)	The definition is $CLODEX = \frac{T_s - T}{H} - \frac{I_a(H + S)}{H}$ with $T_s = 33$ °C, $H = 0.75$ M and $1/I_a = [0.61 + 0.19(v \cdot 100)^{0.5}]H$. Thus, humidity and longwave radiation is not considered and clothing is not a variable input
Index of thermal Stress (ITS _{GIV} or I.T.S.)	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> , <i>L</i> B: <i>Clo</i> , <i>M</i> (Givoni 1969)	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> B: <i>Clo</i> , <i>M</i> (Givoni 1976)	"The I.T.S. does not as yet separately cover the factor of longwave radiation" (Givoni 1976)
Insulation Predicted index (I _{clp})	A: <i>T</i> , <i>v</i> B: <i>M</i> (Blazejczyk 2011)	A: <i>T</i> , <i>v</i> B: No (Blazejczyk 2011)	The definition is $I_{clp} = 0.082 \cdot [91.4 - (1.8 \cdot T + 32)]/2.3274 - [1/0.61 + 1.9 \cdot v^{0.5}]$ Thus, no variable metabolic heat is considered
Maximum Recommended Duration of Exercise (MRDE)	A: <i>T</i> , <i>e</i> , <i>S</i> B: <i>M</i> (Young 1979)	A: <i>T</i> , <i>RH</i> , <i>S</i> B: <i>Clo</i> , <i>M</i> (Young 1979)	"The MRDE is determined by the level of exercise, the ambient temperature and humidity, the solar radiation and the clothing worn" (Young 1979)

Index	Variable inputs	Variable inputs	Evidence, Comments
(Abbreviation)	considered according to	considered according	
	de Freitas and	to our review	
	Grigorieva (2016) (cited	(reference)	
	reference)		
Modified (Reduced)	A: <i>T</i> , <i>v</i> , <i>S</i>	Not found in cited	In the publication cited by de Freitas and Grigorieva (2016) for the index MTTR no
Temperature	B: No	reference, however for	temperature termed Modified (Reduced) Temperature could be found. Instead an
$(MTTR, T_{np})$	(Adamenko and	θ_{rf} cited in reference:	equivalent facial skin temperature (θ_{rf}) derived only from T and v is presented in the
	Khairullin 1972)	A: <i>T</i> , <i>v</i>	publication.
		B: No	
		(Adamenko and	
		Khairullin 1972)	
Oxford Index (OxI)/	A: <i>T</i> , <i>T</i> _{wb}	Not found in cited	The cited publication is wrong: in the publication cited by de Freitas and Grigorieva
Wet-Dry Index (WD)	B: No	reference, however from	(2016) for the Oxford Index no index termed Oxford Index or Wet-Dry Index could be
	(Lind and Hellon 1957)	secondary literature:	found. However, from the book review by Bedford (1957) of "Lind A.R., Weiner J.S.,
		A: <i>T</i> , <i>T</i> _{wb}	Hellon R.F., Jones R.M., Fraser D.C. (1956) Reactions of Mines-Rescue Personal to
		B: No	Work in Hot Environments, Medical Research Memorandum No 1" the equation given
		(Lind et al. (1956) cited	in Table 1 could be retrieved and therefore the variable inputs could be confirmed.
		by Bedford (1957); Lind	
		and Hellon (1957))	
Perceptual strain	A: T, e	A: No	The definition is
index (PeSI)	$\begin{array}{c} \mathbf{B}: T_c, HR \\ (T) \\ \end{array}$	B: No	$PeSI = 5 \cdot \frac{IS_t - 7}{I} + 5 \cdot \frac{PE_t}{I}$
	(11kuisis et al. 2002)	(11kuisis et al. 2002)	6 10
Demonstral	A . NT.	A · NT ·	Thus, only thermal sensation and physical exertion are needed.
Perceptual	A: NO	A: NO	I he development of the PHI consisted of calculating PeSI values for all RPE-RTS
(DUI)	D: I_c , ΠK (Callagher at al. 2012)	D: I_c (Callagher at al. 2012)	combinations. [] Next, the mean T_c concident with each calculated PeSI value was determined. These T_c values subsequently replaced the DeSI values on the constructed
(ГПІ)	(Ganagher et al. 2012)	(Ganagner et al. 2012)	determined. These I_c values subsequently replaced the PeSI values on the constructed figure therefore linking the percentual variables of DDE and DTS with the physiological
			ingule therefore mixing the perceptual variables of KFE and KTS with the physiological aritarian of $T_{\rm e}$ (Gallaghar et al. 2012) Thus, DHI can be astimated either from TS and
			DE or from T. Heart rate was measured and found to be well correlated with TS and DE
			FE of from T_c . Realt rate was measured and found to be wen correlated with TS and FE but is not further integrated into the calculation of PHI ranges
Perceived	$\Delta \cdot T$ 12 I	Not found (Linke 1926)	In the publication cited by de Freitas and Grigorieva (2016) for PT- no such index could
Temperature (PT _r)	$\mathbf{R} \cdot \mathbf{I}, \mathbf{V}, \mathbf{L}$	1100 100110 (Linke 1720)	be found Instead an equation to calculate the heat input from radiation measured with a
	Linke (1926) cited by		specific kind of a black globe thermometer is presented in the publication
	Eissing (1995)		specific kind of a check group distribution is presented in the publication.

Index (Abbreviation)	Variable inputs considered according to	Variable inputs considered according	Evidence, Comments
	de Freitas and Grigorieva (2016) (cited reference)	(reference)	
Physical saturation deficit	A: <i>e</i> B: No (Thilenius and Dorno (1925) cited by Eissing (1995))	Not found (Thilenius and Dorno 1925)	In the publication cited by de Freitas and Grigorieva (2016) for the index physical saturation deficit (Thilenius and Dorno (1925) cited by Eissing (1995)) the following definition is given "Difference between the vapour pressure of the ambient air and the vapour pressure of exhaled air". However in the original publication (Thilenius and Dorno 1925) no such index is described. Instead the Frigorimeter (Table 1) is described.
Relative Heat Strain (RHS)	A: T, T_{wb}, e, v B: Clo, M (Lee and Henschel 1966)	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>L</i> B: <i>Clo</i> , <i>M</i> (Lee and Henschel 1966)	"The equation just cited includes terms for air temperature, humidity, air movement, radiant heat, metabolic rate and clothing" (Lee and Henschel 1966)
Skin wettedness (SkW, w)	A: T, T_w B: No (Gonzalez et al. 1978)	A: e B: E_{sk} , $e_{s,sk}$ (Gonzalez et al. 1978)	"Skin wettedness (w), defined as the fraction of the subjects' body surface area covered by evaporative moisture, was determined as a ratio of the observed E_{sk} to maximum evaporation (E_{max}) possible to the environment, assuming a subject's entire surface is completely wet."(Gonzalez et al. 1978) $w = \frac{E_{sk}}{E_{max}} = \frac{E_{sk}}{h_e(e_{s,sk} - e)}$ h_e is the evaporative heat transfer coefficient
Survival Time Outdoors in Extreme Cold (STOEC)	A: T, v, S B: M (de Freitas and Symon 1987)	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> B: <i>M</i> (de Freitas and Symon 1987)	STOEC includes <i>e</i> to estimate respiratory heat loss (using the nomenclature of this paper): $E_{res} = 1.73 \cdot 10^{-3} M (44 - e)$ Clothing is taken into account for convective heat exchange but fixed ($I_{cl} = 4$ clo).
Thermal Insulation of Clothing (TIC _A)	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> , <i>L</i> B: No (Aizenshtat 1964)	Not found (Aizenshtat 1964)	In the publication cited by de Freitas and Grigorieva (2016) for the index TIC_A (Aizenshtat (1964)) no index TIC_A could be found. Instead this paper describes how a globe thermometer can be used to evaluate the thermal balance of a person.
Thermal Sensation Index (TSNI)	A: $\overline{T, e, v, T_{mrt}}$ B: Clo, M (de Paula Xavier and Lamberts 2000)	A: $\overline{T, e, v, T_{mrt}}$ B: No (de Paula Xavier and Lamberts 2000)	"The activity was constant (school activity) and not considered to be an independent variable influencing the sensation of thermal comfort. In our studies, we do not treat the thermal insulation of clothes as an independent variable but as dependent on the external temperature" (de Paula Xavier and Lamberts 2000): $S = 0.219 T_o + 0.012RH - 0.547\nu - 5.83$ Thus, clothing and metabolic heat are not variable inputs.
Total Thermal Stress (TTS)	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> , <i>L</i> B: No (Auliciems and Kalma 1981)	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>S</i> B: No (Auliciems and Kalma 1981)	"The net gain of shortwave solar radiation must be incorporated $[]$. $(Q+q)_m$ is the sum of net direct (Q) and diffuse (q) radiation falling upon man" (Auliciems and Kalma 1981). Includes only direct and diffuse radiation and no longwave radiation

Index	Variable inputs	Variable inputs	Evidence, Comments
(Abbreviation)	considered according to	considered according	
	de Freitas and	to our review	
	Grigorieva (2016) (cited	(reference)	
	reference)		
Q _s -index	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>L</i>	A: <i>T</i> , <i>e</i> , <i>v</i> , <i>L</i>	The Q _s -index cited by Graveling et al. (1988) should be named Δq -index since Q _s
Correct name: ΔQ -	B: <i>Clo</i> , <i>M</i> , <i>T</i> _{sk}	B: <i>Clo</i> , <i>M</i> , <i>T</i> _{<i>sk</i>}	according to the original publication (Rublack et al. 1981) describes only the longwave
index	(Rublack et al. (1981)	(Rublack et al. 1981)	component in ΔQ :
	cited by Graveling et al.		$\Delta Q = Q_M + Q_c + Q_s - Q_{\nu,\max}(e)$
	(1988))		

Appendix C Systematic literature review of thermal comfort studies with ORMs

A systematic literature review using the databases "Scopus" and "Web of Science" was conducted to identify which thermal indices have been used in the past with ORMs. Figure 1 shows the flow diagram corresponding to the method described in Sec. 2.4. Table 3 shows the 32 studies included in the analysis for F6 ordered by thermal index and climatic zone.

Figure 1: Flow Diagram for the systematic literature review adapted from the standardized Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) flow diagram (Moher et al. 2009) with changes.

Table 3: Cited studies to evaluate application frequency of indices. Studies have been selected according to the method in Sec. 2.4. For abbreviations of indices see Table 1 (Appendix A) and Table 1 (Sec. 3).

Index	Zone	References
PET	Tropics	Qaid et al. (2016); Morakinyo et al. (2016);
	Sub-tropics	Morakinyo and Lam (2016); Taleghani et al. (2016); Yang et al. (2015); Lopes et al.
	_	(2014); Yahia and Johansson (2014); Chen and Ng (2013); Peng and Jim (2013);
		Yang et al. (2011); Ali-Toudert and Mayer (2006)
	Mid-latitudes	Zölch et al. (2016); Lobaccaro and Acero (2015); Acero and Herranz-Pascual
		(2015); Taleghani et al. (2015); Ketterer and Matzarakis (2015); Ketterer and
		Matzarakis (2014); Müller et al. (2014); Ketterer et al. (2013); Minella et al. (2014)
PMV	Sub-tropics	Hedquist and Brazel (2014) (PMV); Stavrakakis et al. (2012) (PMV (extended
		version)); Zhang et al. (2012) (PMV (extended version))
	Mid-latitudes	Robitu et al. (2006) (PMV*)
SET*	Sub-tropics	He and Hoyano (2010) (OUT_SET*); He (2011) (OUT_SET*); Huang et al. (2005)
		(SET*)
THI	Tropics	Morakinyo et al. (2016); Kakon et al. (2009);
UTCI	Mid-latitudes	Goldberg et al. (2013); Schrijvers et al. (2016); Tumini et al. (2016); Park et al.
		(2014); Minella et al. (2014)
WBGT	Tropics	Morakinyo et al. (2016)

References

- Acero JA, Herranz-Pascual K (2015) A comparison of thermal comfort conditions in four urban spaces by means of measurements and modelling techniques Building and Environment 93, Part 2:245-257 doi:http://dx.doi.org/10.1016/j.buildenv.2015.06.028
- Adamenko VN, Khairullin KS (1972) Evaluation of conditions under which unprotected parts of the human body may freeze in urban air during winter Boundary-Layer Meteorology 2:510-518
- Afanasieva R (1977) Hygienic theory of cold protection clothes projection. Legkaya Industriya. Moscow Afanasieva R, Bobrov A, Sokolov S (2009) Cold Assessment Criteria and Prediction of Cooling Risk in
- Humans: The Russian Perspective Industrial Health 47:235-241
- Aikimovich NN, Balalla OA (1971) Sultry weathers at the south of Primorye and their influence on human body Izvestia ASc USSR, Geography 4:94–100
- Aizenshtat BA (1964) Methods for assessment of some bioclimate indices Meteorol Hydrol 12:9 16
- Aizenshtat LB, Aizenshtat BA (1974) Equation for equivalent-effective temperature Questions of biometeorology, Hydrometeoizdat, Leningrad:81 83
- Ali-Toudert F, Mayer H (2006) Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate Building and Environment 41:94 108 doi:https://doi.org/10.1016/j.buildenv.2005.01.013
- Arnoldy IA (1962) Acclimatization of the man in north and south. Medgiz, Moscow
- ASHRAE (2001) ASHRAE Handbook: Fundamentals. 8. American Society of Heating and Air-Conditioning Engineers,
- Auliciems A, Kalma JD (1981) Human thermal climates of Australia Australian Geographical Studies 19:3 24
- Auliciems A, Szokolay SV (2007) Thermal comfort. 2 edn. PLEA in association with Dept. of Architecture, University of Queensland Brisbane, Qld,
- Becker S (2000) Bioclimatological Rating of Cities and Resorts In South Africa According to the Climate Index International Journal Of Climatology 20:1403 - 1414
- Bedford T (1936) Warmth factor in comfort at work Med Res Council, Industrial Health Research Board, Report
- Bedford T (1951) Equivalent Tempeature What it is how it's measured Heating, Piping & Air Conditioning 8:87 91
- Bedford T (1957) Reactions of Mines-Rescue Personnel to Work in Hot Environments British Journal of Industrial Medicine 14:300
- Bedford T (1961) Researches on thermal comfort, Given at Bristol, 17 April Ergonomics 4:289-310 doi:<u>http://dx.doi.org/10.1080/00140136108930531</u>
- Bedford T (1964) Basic Principles of Ventilation and Heating. 2 edn. H.K. Lewis and Co, London, London
- Belding HS, Hatch TF (1955) Index for Evaluating Heat Stress in Terms of Resulting Physiological Strains Heating, Piping & Air Conditioning 27:129 - 136
- Belkin VS (1992) Biomedical Aspects of the Development of Mountain Regions: A Case-Study for the Gorno-Badakhshan Autonomous Region, Tajikistan Mountain Research and Development 12:63-70
- Blazejczyk K (2011) Assessment Of Regional Bioclimatic Contrasts In Poland Miscellanea Geographica 15:79-91
- Blazejczyk K, Homer I, Nilsson H (1998) Absorption of Solar Radiation by an Ellipsoid Sensor Simulated the Human Body Applied Human Science 17:267-273
- Blazejczyk K, Vinogradowa V (2014) Adaptation Strain Index for tourists traveling from central and northern Europe to the Mediterranean Finisterra XLIX 98:139-152
- Bodman G (1908) Das Klima als eine Funktion von Temperatur und Windgeschwindigkeit in ihrer Verbindung vol II. Lithographisches Institut des Generalstabs, Stockholm
- Bogatkin OG, Tarakanov GG (2006) Basics of Meteorology (Основы метеорологии). St Petersburg
- Brake DJ, Bates GP (2002) Limiting Metabolic Rate (Thermal Work Limit) as an Index of Thermal Stress Applied Occupational and Environmental Hygiene 17:176-186
- Brauner N, Shacham M (1995) Meaningful wind chill indicators derived from heat transfer principles Int J Biometeorology 39:46-52
- Brown RD, Gillespie TJ (1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model International Journal of Biometeorology 30:43-52
- Brüner H (1959) Arbeitsmöglichkeiten unter Tage bei erschwerten klimatischen Bedingungen Int Z angew Physiol einschl Arbeitsphysiol 18:31-61
- Budyko M, Cicenko V (1960) Climatic factors of human thermal sensation. Izv AS USSR Ser Geogr 3:3-11
- Burton AC, Edholm OG (1955) Man in a cold environment: physiological and pathological effects of exposure to low temperatures. Arnold,
- Cadarette BS, Montain SJ, Kolka MA, Stroschein L, Matthew W, Sawka MN (1999) Cross validation of USARIEM heat strain prediction models Aviat Space Environ Med 70:996 1006

Chen L, Ng E (2013) Simulation of the effect of downtown greenery on thermal comfort in subtropical climate using PET index: a case study in Hong Kong Architectural Science Review 56:297-305

- Dasler AR (1977) Heat stress, work function and physiological heat exposure limits in man. Washington, D.C, https://play.google.com/books/reader?id=49fL2qrLF8gC&printsec=frontcover&output=reader&authuse r=0&hl=en&pg=GBS.PP2
- Dayal D (1974) An Index for assessing heat stress in terms of physiological strain.

de Freitas C, Grigorieva E (2009) The Acclimatization Thermal Strain Index (ATSI): a preliminary study of the methodology applied to climatic conditions of the Russian Far East Int J Biometeorology 53:307 - 315

- de Freitas C, Grigorieva E (2015) A comprehensive catalogue and classification of human thermal climate indices International Journal of Biometeorology 59:109–120 doi:10.1007/s00484-014-0819-3
- de Freitas C, Grigorieva E (2016) A comparison and appraisal of a comprehensive range of human thermal climate indices Int J Biometeorology doi:10.1007/s00484-016-1228-6
- de Freitas C, Ryken M (1989) Climate and physiological heat strain during exercise International Journal of Biometeorology 33:157-164 doi:10.1007/BF01084600
- de Freitas CR (1986) Human thermal climates of New Zealand. New Zealand Meteorological Service, Misk Publ, 190, Wellington.
- de Freitas CR (1987) Bioclimates Of Heat And Cold Stress In New Zealand Weather and Climate 7:55-60
- de Freitas CR, Symon LV (1987) A Bioclimatic Index of Human Survival Times in the Antarctic Polar Record 23:651-659
- de Paula Xavier AA, Lamberts R (2000) Indices of thermal comfort developed from field survey in Brazil ASHRAE Transactions 106:1-14
- Dimiceli VE, Piltz SF, Amburn SA (2011) Estimation of Black Globe Temperature for Calculation of the Wet Bulb Globe Temperature Index Proceedings of the World Congress on Engineering and Computer Science 2
- Dufton AF (1929) The eupatheostat Journal of Scientific Instruments 6:249
- Eissing G (1995) Climate assessment indices Ergonomics 38:47–57 doi:10.1080/00140139508925084 Evans M (1980) Housing, climate, and comfort. Architectural Press, London
- Falconer R (1968) Windchill, A Useful Wintertime Weather Variable Weatherwise 21:227 229, 255
- Fanger PO (1970) Thermal Comfort Analysis and Applications in Environmental Engineering. Danisch Technical Press, Copenhagen
- Fanger PO, Melikov AK, Hanzawa H, Ring J (1988) Air Turbulence and Sensation of Draught Energy and Buildings 12:21 - 39
- Frank A, Moran D, Epstein Y, Belokopytov M, Shapiro Y (1996) The estimation of heat tolerance by a new cumulative heat strain index. In: Shapiro Y, Moran D, Epstein Y (eds) Environmental Ergonomics: Recent Progress and New Frontiers. Freund Publishing House, Tel Aviv-London, pp 194 - 197
- Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment ASHRAE Transactions 92:709-731
- Gagge AP, Nishi Y, Gonzalez RR (1973) Standard Effective Temperature A single Temperature Index of Temperature Sensation and Thermal Discomfort. In: HMSO U (ed) Symposium on thermal comfort and moderate heat stress, Watford, UK, 1973 1973. Building Research Station,
- Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response ASHRAE TRANSACTIONS 77:21-36
- Gallagher MJ, Robertson RJ, Goss FL, Nagle-Stilley EF, Schafer MA, Suyama J, Hostler D (2012) Development of a perceptual hyperthermia index to evaluate heat strain during treadmill exercise Europ J Appl Physiol 112:2025–2034
- Givoni B (1976) Man, Climate and Architecture. Architectural Science Series, 2 edn. Applied Science Publ., Amsterdam
- Givoni B, Goldman R (1972) Predicting rectal temperature response to work, environment, and clothing Journal of Applied Physiology 32:812-822
- Givoni B, Goldman RF (1973) Predicting heart rate response to work, environment, and clothing ournal of Applied Physiology 34:201–204
- Givoni B, Noguchi M, Saaroni H, Pochter O, Yaacov Y, Feller N, Becker S (2003) Outdoor comfort research issues Energy and Buildings 35:77-86 doi:10.1016/S0378-7788(02)00082-8
- Goldberg V, Kurbjuhn C, Bernhofer C (2013) How relevant is urban planning for the thermal comfort of pedestrians? Numerical case studies in two districts of the City of Dresden (Saxony/Germany) Meteorologische Zeitschrift 22:739 751 doi:10.1127/0941-2948/2013/0463
- Golovina EG, Rusanov VI (1993) Some questions in biometeorology. Russisches Staatshydrometeorologisches Institut, St Petersburg
- Gonzalez RR, Berglund LG, Gagge AP (1978) Indices of thermoregulatory strain for moderate exercise in the heat J Appl Physiol Respir Environ Exerc Physiol 44:889-899

- Gonzalez RR, Nishi Y, Gagge AP (1974) Experimental evaluation of standard effective temperature a new biometeorological index of man's thermal discomfort International Journal Biometeorology 18:1-15 doi:10.1007/BF01450660
- Graveling RA, Morris LA, Graves RJ (1988) Working in Hot Conditions in Mining: A Literature Review. Institute of Occupational Medicine Ergonomics Branch,
- Gregorczuk M (1968) Bioclimates of the world related to air enthalpy International Journal of Biometeorology 12:35–39 doi:10.1007/BF01552976
- Gregorczuk M, Cena K (1967) Distribution of Effective Temperature over the Surface of the Earth International Journal of Biometeorology 11:145-149
- Hall J, Polte J (1960) Physiological index of strain and body heat storage in hyperthermia Journal of Applied Physiology 15:1027-1030
- Hamdi M, Lachiver G, Michaud F (1999) A new predictive thermal sensation index of human response Energy and Buildings 29:167-178
- He J (2011) A design supporting simulation system for predicting and evaluating the cool microclimate creating effect of passive evaporative cooling walls Building and Environment 46:584-596 doi:http://dx.doi.org/10.1016/j.buildenv.2010.09.005
- He J, Hoyano A (2010) Measurement and evaluation of the summer microclimate in the semi-enclosed space under a membrane structure Building and Environment 45:230-242 doi:<u>http://dx.doi.org/10.1016/j.buildenv.2009.06.006</u>

Hedquist BC, Brazel AJ (2014) Seasonal variability of temperatures and outdoor human comfort in Phoenix, Arizona, U.S.A Building and Environment 72:377-388 doi:<u>http://dx.doi.org/10.1016/j.buildenv.2013.11.018</u>

- Hill L, Hargood-Ash D (1919) On the cooling and evaporative powers of the atmosphere, as determined by the kata-thermometer Proceedings of the Royal Society of London B: Biological Sciences 90:438–447 doi:10.1098/rspb.1919.0004
- Holmer I (1988) Assessment of cold stress in terms of required clothing insulation—ireq International Journal of Industrial Ergonomics 3:159-166 doi:10.1016/0169-8141(88)90017-0
- Hori S (1978) Index for the assessment of heat tolerance J Human Ergol 7:135 144
- Huang H, Ooka R, Kato S (2005) Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer Atmospheric Environment 39:6362-6375 doi:<u>http://dx.doi.org/10.1016/j.atmosenv.2005.07.018</u>
- Hubac M, Strelka F, Borsky I, Hubacova L (1989) Application of the relative summary climatic indices during work in heat for ergonomic purposes Ergonomics 32:733-750 doi:10.1080/00140138908966839
- Jokl MV (1982) Standard Layers A New Criterion of the Thermal Insulating Properties of Clothing Int J Biometeorology 26:37 - 48
- Kakon AN, Mishima N, Kojima S (2009) Simulation of the urban thermal comfort in a high density tropical city: Analysis of the proposed urban construction rules for Dhaka, Bangladesh Building Simulation 2:291 doi:10.1007/s12273-009-9321-y
- Kalkstein LS, Nichols MC (1996) A new spatial synoptic classification: Application to air-mass analysis International Journal Of Climatology 16:983 - 1004
- Kalkstein LS, Valimont KM (1986) An evaluation of summer discomfort in the United States using a relative climatological index Bull Amer Meteor Soc 68:1535 1540
- Kamon E, Ryan C (1981) Effective heat strain index using pocket computer American Industrial Hygiene Association Journal 42:611-615
- Ketterer C, Ghasemi I, Bertram A, Kapp R (2013) Changes of thermal bioclimate through urban planning Case study of Stuttgart-West Gefahrstoffe Reinhaltung der Luft 73:323 329
- Ketterer C, Matzarakis A (2014) Human-biometeorological assessment of heat stress reduction by replanning measures in Stuttgart, Germany Landscape and Urban Planning 122:78-88 doi:http://dx.doi.org/10.1016/j.landurbplan.2013.11.003
- Ketterer C, Matzarakis A (2015) Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany International Journal of Biometeorology 59:1299-1309 doi:10.1007/s00484-014-0940-3
- Kobyscheva NB et al. (2008) Guidelines for specialized climatological services in economy. Ministry of Natural Resources and Ecology RussianFederation, Federal Service for Hydrometeorology and Environmental Monitoring, Saint Petersburg
- Koenigsberger O, Mahoney C, Evans M (1971) Climate and House Design Design of low-cost housing and cummunity facilities vol 1. United Nations Publication. United Nations, New York
- Landsberg HE (1972) The assessment of human bioclimate. A limited review of physical parameters. Geneva, Switzerland
- Lecha Estela LB (1998) Biometeorological classification of daily weather types for the humid tropics Int J Biometeorology 42:77 - 83

- Lee DHK Proprioclimates of man and domestic animals. In: Climatology: reviews of research, UNESCO Conf. Paris, 1956, 1958.
- Lee DHK, Henschel A (1966) Effects of physiological and clinical factors on response to heat Annals of the New York Academy of Sciences 134:743-749 doi:10.1111/j.1749-6632.1966.tb43059.x

Lee DHK, Vaughan JA (1964) Temperature Equivalent of Solar Radiation on Man Int J Biometeorology 8:61-69

Lind AR, Hellon RF (1957) Assessment of Physiological Severity of Hot Climates J Appl Physiol 11:35-40

- Linke F (1926) Die Übertemperatur einer frei aufgestellten schwarzen Kugel Meteorologische Zeitschrift 42:11-15
- Liopo TN, Cicenko GV (1971) Climatic conditions and human thermal state. Leningrad Hydrometeorological Publishing House.
- Lobaccaro G, Acero JA (2015) Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons Urban Climate 14, Part 2:251-267 doi:<u>http://dx.doi.org/10.1016/j.uclim.2015.10.002</u>
- Lopes A, Correia E, Do Nascimento JM, Canario P (2014) Urban Bioclimate and Comfort Assessment in the African City of Praia (Cape Verde) Finisterra: Revista Portuguesa de Geografia 49:33-48
- MacPherson RK (1962) The Assessment of the Thermal Environment. A Review British Journal of Industrial Medicine 19:151-164
- Maloney SK, Forbes CF (2011) What effect will a few degrees of climate change have on human heat balance? Implications for human activity International Journal of Biometeorology 55:147-160 doi:10.1007/s00484-010-0320-6
- Masterson J, Richardson FA (1979) Humidex, a method of quantifying human discomfort due to excessive heat and humidity. Environment Canada.
- Matyukhin VA, Kushnirenko EY (1987) Complex quality assessment of environmental influence on the human body. In: Proceedings of the WMO; WHO, UNEP-Symposium on Climate and Human Health, Leningrad, 1986. WMO-WCP, Geneva, pp 33-37
- McArdle B, Dunham W, Holling HE, Ladell WSS, Scott JW, Thomson ML, Weiner JS (1947) The Prediciton of the physiological Effects of warm and hot environments vol RNP Rep. 47/391.
- McIntyre D (1973) A guide to thermal comfort Applied Ergonomics 4:66-72 doi:10.1016/0003-6870(73)90079-3
- McLaughlin JT, Shulman MD (1977) An Anthropocentric Summer Severity Index Int J Biometeorology 21:16 28
- McPherson MJ The generalization of air cooling power. In: Africa MVSoS (ed) Proceedings of the 5th International Mine Ventilation Congress, 1992. Johannesburg:, pp 27 - 35
- Mehnert P, Malchaire J, Kampmann B, Piette A, Griefahn B, Gebhardt H (2000) Prediction of the average skin temperature in warm and hot environments Eur J Appl Physiol 82:52-60
- Minella FO, Krüger E, Honjo S, Goyette S, Hedjazi A (2014) Daytime microclimatic impacts of the SOVALP project in summer: A case study in Geneva, Switzerland Simulation 90:857-873 doi:10.1177/0037549714543085
- Mochida T (1979) Comfort Chart : An Index for Evaluating Thermal Sensation Memoirs of the Faculty of Engineering, Hokkaido University 15:175 185
- Moher D, Liberati A, Tetzlaff J, Altman DG, The PG (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement PLOS Medicine 6:e1000097 doi:10.1371/journal.pmed.1000097
- Morakinyo TE, Dahanayake KWDKC, Adegun OB, Balogun AA (2016) Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university Energy and Buildings 130:721-732 doi:<u>http://dx.doi.org/10.1016/j.enbuild.2016.08.087</u>
- Morakinyo TE, Lam YF (2016) Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon's micro-climate and thermal comfort Building and Environment 103:262-275 doi:http://dx.doi.org/10.1016/j.buildenv.2016.04.025
- Moran DS, Castellani JW, O'Brien C, Young DT, Pandolf KB (1999) Evaluating physiological strain during cold exposure using a new cold strain index Am J Physiol 277:R556–R564
- Moran DS, Pandolf KB, Shapiro Y, Heled Y, Shani Y, Mathew WT, Gonzalez RR (2001) An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT) Journal of Thermal Biology 26:427 431
- Moran DS, Shitzer A, Pandolf KB (1998) A physiological strain index to evaluate heat stress Am J Physiol Regul Integr Comp Physiol 275
- Mount L, Brown D (1985) The calculation from weather records of the requirement for clothing insulation International Journal of Biometeorology 29:311-321 doi:10.1007/BF02189205
- Müller N, Kuttler W, Barlag A-B (2014) Counteracting urban climate change: adaptation measures and their effect on thermal comfort Theoretical and Applied Climatology 115:243-257 doi:10.1007/s00704-013-0890-4

- Office of the Federal Coordinator for Meteorological services and supporting research (2003) Report on Wind Chill Temperature and Extreme Heat Indices: Evaluation and Improvement Projects. Washington, DC
- Ono H, Kawamura T (1991) Sensible climates in monsoon Asia International Journal of Biometeorology 35:39-47 doi:10.1007/BF01040962
- Osczevski R, Bluestein M (2005) The New Wind Chill Equivalent Temperature Chart Bull Amer Meteor Soc 86:1453-1458
- Pandolf KB, Stroschein LA, Drolet LL, Gonzalez RR, Sawka MN (1985) Prediction Modeling of Physiological Responses and Human Performance in the Heat. US Army Rsch Inst of Env Med, Natick, Massachusetts
- Park S, Tuller S, Jo M (2014) Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments Landscape and Urban Planning 125:146 155 doi:<u>http://dx.doi.org/10.1016/j.landurbplan.2014.02.014</u>
- Parsons KC (2014) Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance. 3 edn. CRC Press,
- Peng LL, Jim YC (2013) Green-Roof Effects on Neighborhood Microclimate and Human Thermal Sensation Energies 6 doi:10.3390/en6020598
- Pepi JW (1987) The summer simmer index Weatherwise 40:143-145
- Pepi JW (1999) The new Summer Simmer Index: a comfort index for the new millennium, <u>http://www.summersimmer.com/home.htm</u>.
- Pulket C, Henschel A, Burg WR, Saltzman BE (1980) A comparison of heat stress indices in a hot-humid environment American Industrial Hygiene Association Journal 41:442-449
- Qaid A, Bin Lamit H, Ossen DR, Raja Shahminan RN (2016) Urban heat island and thermal comfort conditions at micro-climate scale in a tropical planned city Energy and Buildings 133:577-595 doi:<u>http://dx.doi.org/10.1016/j.enbuild.2016.10.006</u>
- Robinson S, Turrell ES, Gerking SD (1944) Physiologically equivalent conditions of air temperature and humidity Am J Physiol 143:21-32
- Robitu M, Musy M, Inard C, Groleau D (2006) Modeling the influence of vegetation and water pond on urban microclimate Solar Energy 80:435-447 doi:<u>http://dx.doi.org/10.1016/j.solener.2005.06.015</u>
- Rodriguez C, Mateos J, Garmendia J (1985) Biometeorological comfort index International Journal of Biometeorology 29:121-129 doi:10.1007/BF02189031
- Rohles FH, Hayter R, Milliken G (1975) Effective Temperature (ET*) as a predictor of thermal comfort ASHRAE Trans 81:148-156
- Rohles FH, Nevis RG (1971) The nature of thermal comfort for sedentary man ASHRAE Trans 77:239-246
- Rohles FH, Woods JE, Nevis RG The Effects of Air Movement and Temperature on the Thermal Sensation of Sedentary Man. In: ASHRAE Semiannual Meeting, Los Angeles CA, 1974.
- Rublack K, Medvedeva EF, Gaebelein H, Noack H, Schulz G (1981) Integrative Bewertung der Wärmebelastung durch Arbeit und Klima Z ges Hyg 27:12 - 17
- Rusanov V (1981) Complex meteorological indices and methods of climate assessment in medical purposes. Tomsk Tomsk State University
- Rusanov V Climate and human health. In: WMO; WHO, UNEP-Symposium on Climate and Human Health in, Leningrad 1986 1987. WMO-WCP, Geneva, pp 101–106
- Santee WR, Wallace RF (2003) Evaluation of weather service heat indices using the USARIEM heat strain decision aid (HSDA) model. U.S. Army Research Institute of Environmental Medicine, Natick, MA
- Scharlau K (1943) Die Schwüle als meßbare Größe Bioklimatische Beiblätter (Meteorologische Zeitschrift) 10:19-23
- Schoen C (2005) A New Empirical Model of the Temperature–Humidity Index J Appl Meteor 44
- Schrijvers PJC, Jonker HJJ, de Roode SR, Kenjereš S (2016) The effect of using a high-albedo material on the Universal Temperature Climate Index within a street canyon Urban Climate 17:284-303 doi:http://dx.doi.org/10.1016/j.uclim.2016.02.005
- Sheridan SC (2002) The redevelopment of a weather-type classification scheme for North America International Journal Of Climatology 22:51-68 doi:10.1002/joc.709
- Siple PA, Passel CF (1945) Measurements of Dry Atmospheric Cooling in Subfreezing Temperatures Proceedings of the American Philosophical Society 89:177-199
- Smith FE (1952) Effective Temeprature as an index of physiological stress. Medical Research Council, London
- Stavrakakis GM, Tzanaki E, Genetzaki VI, Anagnostakis G, Galetakis G, Grigorakis E (2012) A computational methodology for effective bioclimatic-design applications in the urban environment Sustainable Cities and Society 4:41-57 doi:<u>http://dx.doi.org/10.1016/j.scs.2012.05.002</u>
- Steadman RG (1971) Indices of Windchill of Clothed Persons J Appl Meteor 10:674-683
- Steadman RG (1979) The Assessment of Sultriness. Part II: Effects of Wind, Extra Radiation and Barometric Pressure on Apparent Temperature Journal of Applied Meteorology 18:874 - 885
- Steadman RG (1984) A Universal Scale of Apparent Temperature J Climate Appl Meteor 23:1674-1687

Steadman RG (1994) Norms of apparent temperature in Australia Aust Met Mag 43:1-16

- Stull R (2011) Wet-Bulb Temperature from Relative Humidity and Air Temperature Journal of Applied Meteorology and Climatology 50:2267-2269 doi:10.1175/JAMC-D-11-0143.1
- Taleghani M, Kleerekoper L, Tenpierik M, van den Dobbelsteen A (2015) Outdoor thermal comfort within five different urban forms in the Netherlands Building and Environment 83:65-78 doi:<u>http://dx.doi.org/10.1016/j.buildenv.2014.03.014</u>
- Taleghani M, Sailor D, Ban-Weiss GA (2016) Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood Environmental Research Letters 11:024003
- Tennenbaum J, Sohar E, Adar R, Gilat T, Yaski D (1961) The physiological significance of the cumulative discomfort index (Cum DI) Harefuah 60:315-319
- Terjung W (1966) Physiologic climates of the conterminous united states: A bioclimatic classification based on man Annals of the Association of American Geographers 56:141-179 doi:10.1111/j.1467-8306.1966.tb00549.x
- Terjung W (1968) World patterns of distribution of the monthly comfort index Int J Biometeorology 12:119-151
- Thilenius R, Dorno C (1925) Das Davoser Frigorimeter ein Instrument zur Dauerregistrierung der physiologischen Abkühlungsgröße Meteorologische Zeitschrift 42:57-60
- Tikuisis P, Mclellan TM, Selkirk G (2002) Perceptual versus physiological heat strain during exercise-heat stress Med Sci Sports Exerc 34:1454 - 1461
- Tromp SW (1966) A Physiological Method for Determining the Degree of Meteorological Cooling Nature 210:486-487
- Tumini I, Higueras García E, Baereswyl Rada S (2016) Urban microclimate and thermal comfort modelling: strategies for urban renovation International Journal of Sustainable Building Technology and Urban Development 7:22-37 doi:10.1080/2093761x.2016.1152204
- Tzenkova A, Ivancheva J, Koleva E, Videnov P (2007) The human comfort conditions at Bulgarian Black Sea side. Paper presented at the Developments in Tourism Climatology, 3rd International Workshop on Climate, Tourism and Recreation, Alexandroupolis, Greece, December 2007
- Vernon HM, Warner CG (1932) The influence of the humidity of the air on capacity for work at high temperatures J Hyg 32:431 462
- Vogt JJ, Candas V, Libert JP (1982) Graphical determination of heat tolerance limits Ergonomics 25:285-294 doi:10.1080/00140138208924955
- Vogt JJ, Candas V, Libert JP, Daull F (1981) Required Sweat Rate as an Index of Thermal Strain in Industry Original vol 10. Elsevier Scientific Publishing Company,
- Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger CB, Gardner JW, Gonzalez RR (2005) The effects of continuous hot weather training on risk of exertional heat illness Med Sci Sports Exerc 37:84-90
- Watts JD, Kalkstein LS (2004) The Development of a Warm-Weather Relative Stress Index for Environmental Applications Journal of Applied Meteorology 43:503 513
- Webb GG (1959) An Analysis Of Some Observations Of Thermal Comfort In An Equatorial Climate Brit J industr Med 16:297-310
- Weiss M (1982) The humisery and other measures of summer discomfort Nat Weather Digest 7:10-18
- Wenzel HG (1978) Heat stress upon undressed man due to different combinations of elevated environmental temperature, air humidity, and metabolic heat production: a critical comparison of heat stress indices J Hum Ergol 7:185–206
- Winslow CEA, Gagge AP, Greenburg L, Moriyama IM, Rodee EJ (1935) The calibration of the thermointegrator Am J Hygiene 22:137-156
- Winslow CEA, Herrington LP (1949) Temperature and Human Life. Princeton University Press, Princeton
- Winslow CEA, Herrington LP, Gagge AP (1937) Physiological reactions of the human body to varying environmental temperatures Am J Physiol 120:1-22
- Yaglou CP, Minard D (1957) Control of heat casualties atmilitary training centers Arch Indust Health 16:302 -316
- Yahia MW, Johansson E (2014) Landscape interventions in improving thermal comfort in the hot dry city of Damascus, Syria—The example of residential spaces with detached buildings Landscape and Urban Planning 125:1-16 doi:<u>http://dx.doi.org/10.1016/j.landurbplan.2014.01.014</u>
- Yang F, Lau SSY, Qian F (2011) Thermal comfort effects of urban design strategies in high-rise urban environments in a sub-tropical climate Architectural Science Review 54:285-304 doi:10.1080/00038628.2011.613646
- Yang W, Wong NH, Lin Y (2015) Thermal Comfort in High-rise Urban Environments in Singapore Procedia Engineering 121:2125-2131 doi:<u>http://dx.doi.org/10.1016/j.proeng.2015.09.083</u>
- Young KC (1979) The influence of environmental parameters on heat stress during exercise Journal of Applied Meteorology 18:886-897

Zaninovic K (1992) Limits of warm and cold bioclimatic stress in different climatic regions Theoretical and Applied Climatology 45:65-70 doi:10.1007/BF00865996

Zhang W, Mak CM, Ai ZT, Siu WM (2012) A Study of the Ventilation and Thermal Comfort of the Environment Surrounding a New University Building under Construction Indoor and Built Environment 21:568-582 doi:10.1177/1420326x11419871

Zölch T, Maderspacher J, Wamsler C, Pauleit S (2016) Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale Urban Forestry & Urban Greening 20:305-316 doi:http://dx.doi.org/10.1016/j.ufug.2016.09.011