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Abstract

The evolution of an electron beam colliding head-on with a strong plane-wave field is investigated

in the framework of strong-field QED including radiation-reaction effects due to photon emission.

Employing a kinetic approach to describe the electron and the photon distribution it is shown

that at a given total laser fluence the final electron distribution depends on the shape of the laser

envelope and on the pulse duration, in contrast to the classical predictions of radiation reaction

based on the Landau-Lifshitz equation. Finally, it is investigated how the pair-creation process

leads to a nonlinear coupled evolution of the electrons in the beam, of the produced charged

particles, and of the emitted photons.
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I. INTRODUCTION

The vast experimental progress in the generation of intense laser pulses and ultrarela-

tivistic particle beams makes it essential to attain a profound understanding of the dynamics

of charged particles in the presence of electromagnetic background fields. The investigation

of the latter is not only interesting from a theoretical point of view but also crucial for

experimental applications, e.g., in accelerator and plasma physics. Already in the realm of

classical electrodynamics the problem occurs on how to calculate the trajectory of a charged

particle in an external field, including the continuous loss of energy and momentum due

to the emission of electromagnetic radiation [1–3]. This so-called radiation-reaction (RR)

problem consists in determining an equation of motion of the charged particle, which self-

consistently incorporates energy-momentum loss. Historically, the Lorentz-Abraham-Dirac

(LAD) equation has been suggested and it can be obtained by eliminating the degrees of

freedom of the electromagnetic field in the coupled system of Maxwell’s and single-particle

Lorentz equations [3]. The LAD equation contains additional terms apart from the Lorentz-

force, which are responsible for RR effects. One of these terms, however, depends on the

time-derivative of the charge acceleration, which in turn leads to the existence of so-called

runaway solutions, with the particle acceleration exponentially increasing with time even

in absence of any driving force [1–3]. On the other hand, it has been first noticed in [1],

that in the realm of classical electrodynamics, i.e., if quantum effects, like the recoil in pho-

ton emission, are negligible, the LAD equation can be consistently approximated via the

so-called Landau-Lifshitz (LL) equation, that avoids the above-mentioned inconsistencies

(see also [4–6]). Even though the LL equation provides a consistent description of RR in

classical electrodynamics, the experimental verification of this equation is still missing. In

the so-called classical radiation dominated regime the electron emits an average energy in

a single laser cycle, which is comparable to its initial energy and RR effects dominate the

electron dynamics [7, 8]. However, the classical radiation dominated regime is rather hard

to be entered with present technology. In [9] strong signatures of RR have been predicted to

occur also below the classical radiation dominated regime, based on the analytical solution

of the LL equation in an arbitrary plane-wave field found in [8]. Alternative proposals to

measure RR effects in the classical domain have been suggested in [10–12].

Since classical electrodynamics is contained in the underlying theory of quantum electro-
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dynamics, the understanding of the quantum origin of RR is of fundamental importance. As

we have mentioned, RR in classical electrodynamics include all effects, which go beyond the

Lorentz dynamics and which stem from the action of the electromagnetic field generated by

the charged particle, an electron for definiteness, on the electron itself, when it is driven by

a background electromagnetic field. Analogously, RR in QED includes all possible processes

that may arise starting from a single, external-field-driven electron [6, 13–15]. Thus, the

complete description of RR in the quantum regime can be achieved by the calculation of

the full S-matrix, including effects like radiative corrections, multiple photon emission and

pair creation following photon emission. This implies that in the full quantum regime, the

problem of RR is intrinsically multiparticle. However, in the moderate quantum regime,

in which quantum effects are not too large and electron-positron pair production is negli-

gible (see Sec. II for further details), the process that mainly gives rise to RR effects is

the incoherent emission of multiple photons. (Note, for example, that radiative corrections

δm2 to the square m2 of the electron mass are negligible as they are of the order 1% of

m2. Indeed, such radiative corrections roughly scale as αm2 [16], where α = e2/~c ≈ 1/137

is the fine-structure constant, with e < 0 being the electron charge.) This regime is then

single-particle as in classical electrodynamics and it has been investigated in detail in [13]

in the case of a background plane wave. In [13] the so-called quantum radiation dominated

regime has also been introduced, where the electron emits on average more than one photon

with substantial recoil already in one laser period. In the quantum radiation dominated

regime the electron dynamics is dominated by both quantum and RR effects. However,

a sufficient increase of the intensity of the background electromagnetic field and/or of the

initial electron energy will let enter a new regime, where neglecting pair creation is no longer

permissible. In the collision of a laser field and electrons, pair production may occur due to

two different processes [6] (see also for a recent review on pair-production processes [17]):

(i) the photons emitted by the incoming electrons reach sufficiently high energies allowing

for laser-assisted electron-positron production and (ii) the direct pair production by elec-

trons via the emission of virtual photons. These two channels are treated in a unified way

in strong-field QED [18, 19] (see also [20]). In the presence of an electromagnetic wave of

sufficient high intensity, the emission of the photon and the transformation of the photon

into an electron-positron pair do not occur in the same formation region [20, 21]. Since the

created charged particles are thereupon accelerated by the laser field, the produced pairs will
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emit further photons and, under certain circumstances, prime the formation of the so-called

QED cascades [22–26].

In the present paper we first study the interaction of an electron beam colliding head-on

with a strong plane wave in the nonlinear moderate quantum regime and follow the macro-

scopic kinetic approach [27] (see Sec. II), which allows to take into account the multiple

incoherent emission of high-energy photons by a distribution of electrons in the quantum

regime. Alternative approaches are the microscopic approach employed in [13] or the stochas-

tic model of RR investigated in [28]. Since RR is, generally speaking, a dissipative effect (see

also Ref. [29] for a setup, which allows to use RR effects to control the electron dynamics),

we focus our attention in Sec. III on the effects stemming from the pulse shape and duration

of the laser field. As we will see, such effects can be exploited as an observable for testing the

predictions of QED in the quantum radiation dominated regime. We will see that already at

available laser intensities of the order of 1022 W/cm2, the final electron distribution strongly

depends on the shape and on the duration of the pulse also at a given pulse fluence, whereas

the classical dynamics based upon the LL equation would predict no dependence in this case.

Further, the influence of the form and of the duration of the pulse shape at a given laser

fluence on the photon spectrum emitted by the electron distribution is also investigated. In

Sec. IV we extend the approach in [27] and we will also take into account the possibility

that emitted photons then transform into electron-positron pairs. Therefore, we include

the corresponding probabilities in our kinetic approach and study how the inclusion of the

process of pair creation influences the evolution of the charged particle and of the photon

distribution functions. Moreover, numerical simulations for different pulse durations at a

given laser fluence will be presented for two different initial electron energy distributions,

allowing us to identify two distinguishable scenarios, where the laser pulse duration has

diverse effects on the number of produced pairs. In the appendix A we amend a step in the

derivation of the kinetic equation given in the Supplemental Material of [27] (Eq. (5) here).

Finally, appendix B contains an example showing numerically the equivalence of the kinetic

approach proposed here and the previous microscopic approach developed in [13].
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II. KINETIC APPROACH

We consider the collision of an electron beam with a plane wave characterized by the

electric field E(ϕ) = E0f(ϕ)ẑ. Here, E0 is the laser electric field amplitude and f(ϕ) is an

arbitrary function of the laser phase ϕ = ω0(t−y) such that |f(ϕ)|max ≤ 1, with ω0 being the

laser central angular frequency (units with ~ = c = 1 are used throughout). In the case of

a single electron with the initial four-momentum pµ0 = (ε0,p0), the quantity p0,− = ε0 − p0,y

plays an important role in the electron dynamics, due to the special dependence of the plane

wave on the space-time coordinates. In fact, without taking into account radiation reaction,

the light-cone components p−(ϕ) = ε(ϕ) − py(ϕ), p⊥(ϕ), and p+(ϕ) = (ε(ϕ) + py(ϕ))/2 of

the four-momentum pµ(ϕ) = (ε(ϕ),p(ϕ)) of an electron (mass m) in the presence of the

mentioned plane wave are given by [1]

p−(ϕ) ≡ p0,−, (1)

p⊥(ϕ) = p0,⊥ − eA(ϕ), (2)

p+(ϕ) =
m2 + p2

⊥
(ϕ)

2p0,−
, (3)

where we have chosen the initial phase ϕi = 0. Further, we have introduced the four-

vector potential in Lorentz gauge Aµ(ϕ) = (0,A(ϕ)) = (0,−E0F (ϕ)ẑ/ω0), with F (ϕ) =
∫ ϕ

0
dϕ′ f(ϕ′). In order to describe the radiation of an electron in a plane-wave field, we use

the well-known single photon emission probability per unit of the laser phase ϕ and per unit

u = k−/(p− − k−) [16]

dPp
−

dϕdu
=

α√
3π

m2

ω0p−

1

(1 + u)2

[(

1 + u+
1

1 + u

)

K 2

3

(

2u

3χ(ϕ, p−)

)

−
∫

∞

2u/[3χ(ϕ,p
−
)]

dxK 1

3

(x)

]

,

(4)

where we have introduced the variable k− = ω − ky for the emitted photon with four-

momentum kµ = (ω,k), where Kν(x) is the modified Bessel function of νth order. The

symbol χ(ϕ, p−) in Eq. (4) indicates the phase-dependent quantum nonlinearity parameter,

which measures the importance of quantum effects like photon recoil [6]. In our case, this

is given by χ(ϕ, p−) = p−|E(ϕ)|/mEcr, with E(ϕ) = E0f(ϕ) and with Ecr = m2/|e| =

1.3 × 1016 V/cm being the critical field of QED [6]. Here, the probability in Eq. (4) is

averaged over the initial electron spin and summed over the final electron spin and photon

polarization. Furthermore, Eq. (4) is the photon emission probability in the case of a
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constant crossed field of amplitude E with the substitution E → |E(ϕ)| and it is only valid

in the quasi static approximation [16]. In turn, this approximation is valid if the relativistic

parameter ξ = |e|E0/mω0 of the plane wave is much larger than unity. In fact, if λ0 = 2π/ω0

is the central wavelength of the plane wave and thus the typical distance over which the

plane wave varies, the radiation formation length l0 of the photon production process at

ξ ≫ 1 is l0 = λ0/ξ and it is much smaller than λ0 [16].

In our approach, we describe the electron beam via an electron distribution ne−(ϕ, p−).

It is always assumed that the electron distribution depends only on ϕ and on p−, i.e.,

the motion along the perpendicular directions x and z is neglected (see also Ref. [30] for a

recent investigation of the influence of RR effects on the electron transverse momentum). By

employing Eq. (2) with the initial condition p0,⊥ = 0, it can be seen that the modulus of the

transverse momentum |p⊥| has the upper limit ∼ mξ (note that for a laser field |F (ϕ)| ∼ 1)

and, in turn, that p+ does not exceed in order of magnitude the quantity m2ξ2/2p−. Thus,

we can safely neglect the momentum components p⊥ and p+ in our considerations in the case

of ultra-relativistic electron bunches colliding head-on with a laser beam in which p∗
−
≫ mξ

, where p∗
−
indicates the typical value of the quantity p− of the electron distribution. In the

case, for example, of a typical energy ε∗ = 1GeV (p∗
−
≈ 2GeV) and of an optical laser field

of intensity 1023W/cm2, with ω0 = 1.55 eV, we obtain mξ . 78MeV and p+ . 1.5MeV,

which well fulfill the conditions |p⊥| ≪ p∗
−
and p+ ≪ p∗

−
(we ensured that these conditions

are fulfilled during the whole interaction of the electron beam with the plane wave). In

general, electron-positron pairs are also produced in the collision of the electron beam and

the laser field, because the electrons emit photons, which in turn can still interact with the

laser field [18, 19]. The possibility of electron-positron pair creation will be included in the

kinetic approach and its effects will be discussed in Sec. IV. However, if we assume that

the typical value χ∗ = p∗
−
E0/mEcr of the quantum nonlinearity parameter does not largely

exceed unity, we are allowed to neglect pair production for the moment. In fact, we recall

that the probability of pair production contains an exponential damping factor exp(−8/3κ∗)

[16], where κ
∗ = k∗

−
χ∗/p∗

−
, with k∗

−
< p∗

−
being the typical value of the quantity k− of the

emitted photons (see [16]). In this framework and by also neglecting radiative corrections,

which are high-order in α, the kinetic equations [see Eq. (20.1) in Ref. [21], [24] and
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Appendix A]

∂ne−(ϕ, p−)

∂ϕ
=

∫

∞

p
−

dpi,− ne−(ϕ, pi,−)
dPpi,−

dϕdp−
− ne−(ϕ, p−)

∫ p
−

0

dk−
dPp

−

dϕdk−
(5)

∂nγ(ϕ, k−)

∂ϕ
=

∫

∞

k
−

dpi,− ne−(ϕ, pi,−)
dPpi,−

dϕdk−
, (6)

with

dPpi,−

dϕdp−
=

∣

∣

∣

∣

du

dp−

∣

∣

∣

∣

dPpi,−

dϕdu

∣

∣

∣

∣

u=(pi,−−p
−
)/p

−

=
pi,−
p2−

dPpi,−

dϕdu

∣

∣

∣

∣

u=(pi,−−p
−
)/p

−

, (7)

dPp
−

dϕdk−
=

du

dk−

dPp
−

dϕdu

∣

∣

∣

∣

u=k
−
/(p

−
−k

−
)

=
p−

(p− − k−)2
dPp

−

dϕdu

∣

∣

∣

∣

u=k
−
/(p

−
−k

−
)

, (8)

dPpi,−

dϕdk−
=

du

dk−

dPpi,−

dϕdu

∣

∣

∣

∣

u=k
−
/(pi,−−k

−
)

=
pi,−

(pi,− − k−)2
dPpi,−

dϕdu

∣

∣

∣

∣

u=k
−
/(pi,−−k

−
)

, (9)

can be employed to calculate the phase evolution of the electron distribution ne−(ϕ, p−)

and of the photon distribution nγ(ϕ, k−). This method provides a correct treatment of the

incoherent multi-photon emission and thus gives the possibility of taking into account RR

not only in the classical but also in the quantum regime at moderate values of χ∗ (see also

the Appendix B and [13]). Note that the integral of Eq. (5) over all momenta vanishes, which

is in agreement with the conservation of the total number of particles. Also, by multiplying

the kinetic equation of the electron and the photon distributions by p− and k−, respectively,

and then integrating over all p− and k−, one obtains that

∂

∂ϕ

[
∫

∞

0

dp− ne−(ϕ, p−)p− +

∫

∞

0

dk− nγ(ϕ, k−)k−

]

= 0, (10)

expressing the conservation of the total energy minus the total longitudinal momentum.

In the classical limit where quantum recoil effects are negligible, i.e., at χ∗ ≪ 1, Eq.

(5) can be expanded in terms of χ(ϕ, p−), as shown in [27]. Considering only the terms

proportional to χ2(ϕ, p−) Eq. (5), becomes the continuity equation

∂ne−(ϕ, p−)

∂ϕ
= − ∂

∂p−

[

ne−(ϕ, p−)
dp−
dϕ

]

, (11)

where
dp−
dϕ

= −Icl(ϕ)

ω0
, (12)

with

Icl(ϕ) =
2

3
αm2χ2(ϕ, p−) (13)
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being the classical intensity of radiation. Eq. (12) is exactly the classical single-particle

equation resulting from the LL equation [8]. The analytical solution of Eq. (12) found in [8],

p−(ϕ) =
p0,−
h(ϕ)

, (14)

where

h(ϕ) = 1 +
2

3
α
p0,−
ω0

E2
0

E2
cr

∫ ϕ

0

dφf 2(φ), (15)

shows that the final value p−(∞) depends on the plane-wave’s parameters only through the

total fluence

Φ =
E2

0

ω0

∫

∞

0

dφf 2(φ). (16)

Since the analytical solution for the single-particle equation is known, the method of char-

acteristics can be employed to determine the solution of Eq. (11). In fact, if the initial

distribution ne−(0, p−) is given by the Gaussian distribution

ne−(0, p−) =
Ne−

√

π/2σp
−

[1 + erf(p∗−/
√
2σp

−

)]
exp

[

−(p− − p∗
−
)2

2σ2
p
−

]

, (17)

where p∗
−

is the average value of p−, σp
−

is the standard deviation [31], Ne− is the total

number of electrons and erf(x) is the error function, then the solution of Eq. (11) reads (see

[27])

ne−(ϕ, p−) =
Ne−

√

π/2σp
−

[1 + erf(p∗−/
√
2σp

−

)]g2(ϕ, p−)
exp

{

− 1

2σ2
p
−

[

p−
g(ϕ, p−)

− p∗
−

]2
}

,

(18)

with

g(ϕ, p−) = 1− 2

3
α
p−
ω0

E2
0

E2
cr

∫ ϕ

0

dφf 2(φ). (19)

Since p0,− in Eq. (14) is positive for finite values of p0,y and p0,− → 0 only at py → +∞, the

function g(ϕ, p−) must be non-negative for all values of ϕ and the equation g(ϕ, p−,max) = 0

fixes the maximum value p−,max = p−,max(ϕ) allowed for the variable p− at each ϕ. Equation

(18) also indicates that the final electron distribution depends on the plane-wave’s pulse

shape only via the fluence.

Now, the leading quantum corrections to the classical kinetic equation (11) were shown to

change the structure of the latter from a Liouville-like to a Fokker-Planck-like equation [27].

This implies that the corresponding single-particle equation becomes a stochastic differential

equation. In turn, the full quantum calculations predict a broadening of the electron energy
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distribution explained by the stochastic nature of photon emission [27], whereas in the

classical regime, RR was shown to reduce the energy width of laser-produced electron [32]

and ion bunches [33–36].

III. PULSE-SHAPE EFFECTS

In this section, we study the influence of the laser pulse form f(ϕ) on the electron and

photon distributions, by solving numerically the kinetic equations (5)-(6). Envisaging an

experimental investigation of these effects, we focus on laser pulses at a given pulse fluence

that can be modified in pulse shape and pulse duration via the various available pulse shaping

techniques (see, e.g., [37] for a discussion of pulse shaping techniques in the context of High

Harmonic Generation). We mention that in all our numerical calculations we applied a finite

difference method. In the following simulations we will always assume a central angular

frequency of the laser field corresponding to the laser photon energy ω0 = 1.55 eV.

Firstly, we consider two different shapes of the laser pulse at a given pulse fluence and

pulse duration. The incoming electron beam is described by the Gaussian beam in Eq.

(17) with Ne− = 1000, p∗
−
= 1.4GeV, corresponding to an average energy of ε∗ ≈ 700MeV

and with σp
−

= 0.14GeV. We considered two pulses of 20 cycles (final phase ϕf = 40π),

the first one described by the function f1(ϕ) = sin(ϕ) sin2(ϕ/40), with a peak intensity of

I0,1 = 1022W/cm2, and the second one by the function

f2(ϕ) =























sin(ϕ) sin2
(

ϕ
4

)

if ϕ ∈ [0, 2π]

sin(ϕ) if ϕ ∈ [2π, 38π]

sin(ϕ) sin2
(

ϕ−36π
4

)

if ϕ ∈ [38π, 40π].

(20)

The peak intensity for the second pulse is I0,2 = 4 × 1021W/cm2, which leads to the same

fluence Φ = 1.3 × 109 J/cm2 for both pulses. The difference between the two pulses is

that for the second pulse the intensity increases and decreases steeply over just one laser

cycle instead of the smooth alteration over the whole pulse length in case of the first pulse.

For the above physical scenario we have that the relativistic parameter ξ and the quantum

nonlinearity parameter χ∗ are ξ1 = 48 and χ∗

1 = 0.40 for the pulse shape f1(ϕ), and ξ2 = 31

and χ∗

2 = 0.25 for the pulse shape f2(ϕ). Thus, since in both cases it is ξ ≫ 1, the quasi

static approximation can be applied. We note that for the above numerical parameters
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FIG. 1. (color online) Phase evolution of the electron distribution (part a)) as a function of

p−/2 ≈ ε and the photon spectrum (part b)) as a function of k−/2 ≈ ω for the shape function

f1(ϕ).

0 0.2 0.4 0.6 0.8 1

p−/2 [GeV]

0

20

40

60

80

100

120

ϕ

0

500

1000

1500

2000

2500

3000
n
e
−
(ϕ

,p−
)[G

eV
−
1]

a)

0.0001 0.001 0.01 0.1 1

k−/2 [GeV]

0

20

40

60

80

100

120
ϕ

0

500

1000

1500

2000

2500

3000

3500

4000

n
γ (ϕ

,k−
)k−

b)

FIG. 2. (color online) Phase evolution of the electron distribution (part a)) as a function of

p−/2 ≈ ε and the photon spectrum (part b)) as a function of k−/2 ≈ ω for the shape function

f2(ϕ).

we are slightly below the quantum radiation dominated regime, which is characterized by

the conditions RQ = αξ ∼ 1 and χ∗ . 1 [13]. The evolution of the electron distributions

ne−(ϕ, p−) and the photon spectra nγ(ϕ, k−)k− is shown in Fig. 1 for the pulse shape f1(ϕ)

and in Fig. 2 for the pulse shape f2(ϕ). In Fig. 1b) it can be seen, that for the pulse shape

f1(ϕ) the electrons emit less energy at the beginning and more at the peak of the pulse.

On the contrary, for the pulse shape f2(ϕ) (see Fig. 2b)), the emission of photons starts

almost immediately, because the laser profile increases to the maximum value only over one

cycle. This effect is also visible in the evolution of the electron distributions in Fig. 1a)

and Fig. 2a). Also, since the emission probability increases at higher intensities (see also

the final photon spectra in Fig. 3b)), the photon yield for the pulse shape f2(ϕ) exceeds
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FIG. 3. (color online) Comparison of the final electron distributions (part a)) as functions of

p−/2 ≈ ε and photon spectra (part b)) as functions of k−/2 ≈ ω for the shape functions f1(ϕ)

(solid, red line) and f2(ϕ) (dashed, green line).

the photon yield for the pulse shape f1(ϕ) due to the longer interaction time at a higher

intensity. Thus, the electrons lose more energy in the collision with the laser with the shape

function f2(ϕ). We point out that, since the final electron distribution according to the

classical analytical solution in Eq. (18) depends only on Φ, the differences between the two

final electron distributions (see Fig. 3a)) are due to quantum effects in the interaction. This

is in agreement with the values χ∗

1 = 0.40 and χ∗

2 = 0.25 of the typical quantum nonlinearity

parameter for the pulse shapes f1(ϕ) and f2(ϕ), respectively, which are not significantly

smaller than unity. Note that these effects are however smaller than that reported in [27],

which remains the more prominent signature of quantum RR. We also observe that the

average value of the quantity p− at the end of the interaction of the electron bunch with

the laser field (∼ 500 MeV) is still much larger than the typical transverse momentum mξ

(∼ 25 MeV for the pulse shape f1(ϕ) and ∼ 16 MeV for the pulse shape f2(ϕ)) (on this

respect, see also Eq. (3) in the Supplemental Material of [27]). We have ensured that this

condition is also fulfilled in the other numerical examples presented below. In addition, even

though we have not considered here the dynamics of the beam in the transverse direction, we

expect from the analytical solution of the LL equation (see [8]) that radiation reaction mainly

decreases the transverse momentum of an electron as pz ∼ mξ
∫ ϕ

0
dφ h(φ)f(φ)/h(ϕ) . mξ

and px ≡ 0.

Now, we perform a different comparison of two pulses having the same fluence and the
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FIG. 4. (color online) Phase evolution of the electron distribution (part a)) as a function of

p−/2 ≈ ε and the photon spectrum (part b)) as a function of k−/2 ≈ ω for the shape function

f3(ϕ).

same pulse shape but with different durations and then peak intensities. By keeping the sin2-

pulse form, we consider a two-cycle pulse (ϕf = 4π), i.e., f(ϕ) = f3(ϕ) = sin(ϕ) sin2(ϕ/4),

with peak intensity I0,3 = 4 × 1022W/cm2 and a 40-cycle pulse (ϕf = 80π), i.e., f(ϕ) =

f4(ϕ) = sin(ϕ) sin2(ϕ/80), with peak intensity I0,4 = 2 × 1021W/cm2. For both pulses the

fluence Φ is equal to 5× 108 J/cm2. The initial Gaussian electron beam is centered around

p∗
−
= 1.6GeV, corresponding to an average energy of ε∗ ≈ 800MeV, and it has a standard

deviation of σp
−

= 0.16GeV. For such an initial electron distribution the quantum nonlin-

earity parameter χ∗ is about unity for the shorter pulse, whereas the relativistic parameter

is ξ3 = 97 such that RQ ≈ 0.7, i.e., the process occurs in the quantum radiation dominated

regime. The results of our simulations are shown in Fig. 4 for the pulse shape f3(ϕ) and in

Fig. 5 for the pulse shape f4(ϕ). For the two-cycle pulse we observe a completely different

phase evolution of the electron distribution than in the previous example. In Fig. 4a) it is

visible that the electron distribution significantly broadens as soon as the laser pulse inten-

sity reaches its maximum and thereby loses its Gaussian shape. Whereas, it can be seen in

Fig. 5a), that the changes in the electron distribution are rather smooth for the longer pulse

described by the shape function f4(ϕ), and the Gaussian shape of the electron distribution is

almost conserved. The electron distributions appear to be very sensitive to quantum effects

also in the case of the shape function f4(ϕ), where χ∗

4 ≈ 0.2 (ξ4 = 22). In fact, the stochas-

ticity of the photon emission cannot be neglected in the quantum regime. In contrast to the

classical regime, where the effects of RR are predicted to strongly narrow the electron dis-
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FIG. 5. (color online) Phase evolution of the electron distribution (part a)) as a function of

p−/2 ≈ ε and the photon spectrum (part b)) as a function of k−/2 ≈ ω for the shape function

f4(ϕ).
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FIG. 6. (color online) Comparison of the final electron distributions (part a)) as functions of

p−/2 ≈ ε and photon spectra (part b)) as functions of k−/2 ≈ ω for the shape functions f3(ϕ)

(solid, red line) and f4(ϕ) (dashed, green line).

tributions, the stochastic nature of quantum emission induces a broadening in the quantum

regime [27]. We mention here that we ensured that for values of χ∗ smaller than or of the

order of 0.01, the classical and the quantum predictions are found to practically coincide. As

in the previous example, we consider the final electron distribution and photon spectrum in

more detail, as they can be more relevant from an experimental point of view (see Fig. 6). As

we have already pointed out, according to the classical result in Eq. (18) following from the

LL equation the final electron distribution does only depend on the fluence of the laser field,

which is the same for the two pulse shapes. Thus, the differences between the two electron
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distributions in Fig. 6a) arise, as in the previous example, due to quantum effects. We also

note that the photon spectrum has its maximum at lower energies for the 40-cycle pulse,

and its yield is much higher than for the two-cycle pulse, due to the longer interaction even

though at lower laser intensity. Finally, we observe that for the two-cycle pulse, where quan-

tum effects are larger, the photon spectrum is peaked at k∗

−
≈ 0.2GeV. Since the probability

of pair creation is approximately suppressed by η(k∗

−
) = exp(−8/3κ∗), with κ

∗ = k∗

−
χ∗/p∗

−

(see [16]), we conclude that for the peak of the photon spectrum η(k∗

−
) ∼ 10−12 and thus

that pair production is negligible, as initially assumed. Further, we ensured that numerical

calculations including pair production (see Sec. IV) lead to the same results. In addition,

assuming a nowadays feasible total number of Ne− = 6 × 108 electrons (corresponding to a

total charge of Q = 100 pC) [38] we give the estimated number of emitted photons Nγ for

the numerical simulations above. In the case of the shape functions f1(ϕ) and f2(ϕ), we

obtain Nγ = 9.5 × 109 and Nγ = 1.1 × 1010, respectively, whereas in the case of the shape

functions f3(ϕ) and f4(ϕ) it results Nγ = 1.8× 109 and Nγ = 8.5× 109, respectively.

IV. PAIR PRODUCTION

In this section we include the effect, that photons emitted during the interaction of the

electron beam and the laser field may create electron-positron pairs by interacting with

the laser field itself (see, e.g., [24–26] for similar studies). As it was pointed out in [24],

however, in the present setup radiation-reaction effects, i.e. the fact that for any elementary

process (photon emission and pair photo-production) each final particle has a value of the

minus-momentum smaller than the initial particle, makes the generation of a QED cascade

impossible. Now, we include terms corresponding to pair production in the kinetic equations

(5) and (6) to investigate the dynamics of this process together with photon emission. Since

an intense laser plane-wave field (ξ ≫ 1) is considered, we are allowed to neglect pair-

production processes of higher order, e.g., the direct production of a pair by an electron via

the emission of a virtual photon [18, 19]. Here, again all the probabilities are averaged over

the initial photon polarization and summed over the final electron and positron spin. The

probability that a photon with momentum k− produces a pair with particles’ momenta p−
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and k− − p− per unit phase ϕ and per unit p− is given by (see [16])

dPk
−

dϕdp−
=

α√
3π

m2

ω0k
2
−

[

k2
−

p−(k− − p−)
K 2

3

(κ(ϕ, k−, p−))−
∫

∞

κ(ϕ,k
−
,p

−
)

dxK 5

3

(x)

]

, (21)

where κ(ϕ, k−, p−) = 2k2
−
/[3p−(k− − p−)κ(ϕ, k−)], with κ(ϕ, k−) = (k−/m)|E(ϕ)|/Ecr.

By including the process of pair production and by introducing the distribution function

ne+(ϕ, p−) for the created positrons, we obtain the set of kinetic equations (see Eq. (20.1)

in Ref. [21] and also [24])

∂ne−(ϕ, p−)

∂ϕ
=

∫

∞

p
−

dpi,− ne−(ϕ, pi,−)
dPpi,−

dϕdp−
− ne−(ϕ, p−)

∫ p
−

0

dk−
dPp

−

dϕdk−

+

∫

∞

p
−

dk− nγ(ϕ, k−)
dPk

−

dϕdp−
(22)

∂ne+(ϕ, p−)

∂ϕ
=

∫

∞

p
−

dpi,− ne+(ϕ, pi,−)
dPpi,−

dϕdp−
− ne+(ϕ, p−)

∫ p
−

0

dk−
dPp

−

dϕdk−

+

∫

∞

p
−

dk− nγ(ϕ, k−)
dPk

−

dϕdp−
(23)

∂nγ(ϕ, k−)

∂ϕ
=

∫

∞

k
−

dpi,− [ne−(ϕ, pi,−) + ne+(ϕ, pi,−)]
dPpi,−

dϕdk−

− nγ(ϕ, k−)

∫ k
−

0

dp−
dPk

−

dϕdp−
. (24)

Note that the electron distribution function is no longer decoupled from the photon

distribution function and thus the final electron distributions will be affected by the evolution

of the photon spectrum. Although the total number of particles is no longer conserved, the

integral over all momenta of the difference of Eq. (22) and Eq. (23) vanishes, which implies

the conservation of the total charge. Further, the conservation of the total energy minus the

total longitudinal momentum is ensured by the analogue of Eq. (10)

∂

∂ϕ

[
∫

∞

0

dp− ne−(ϕ, p−)p− +

∫

∞

0

dp− ne+(ϕ, p−)p− +

∫

∞

0

dk− nγ(ϕ, k−)k−

]

= 0. (25)

In order to investigate the dynamics of the created particles and how the pair creation

process affects the dynamics of the electrons and photons in the regime χ∗ > 1, we consider

different numerical examples below. Note that the quantum nonlinearity parameter cannot

be increased to arbitrary values in our approach, since the energy loss of the electrons due to

photon emission would imply a violation of the validity-condition p∗
−
≫ mξ of our approach

during the laser-particles interaction. However, we ensured that all our approximations are

valid throughout the entire numerical simulations.

15



0.1 1 10

p−/2 [GeV]

0
20
40
60
80
100
120

ϕ

0 0.02 0.04 0.06 0.08 0.1

ne−(ϕ, p−)[GeV−1]

a)

0.1 1 10

p−/2 [GeV]

0 0.02 0.04 0.06

ne+(ϕ, p−)[GeV−1]

b)

0.1 1 10

k−/2 [GeV]

0 0.4 0.8 1.2 1.6

nγ(ϕ, k−)k−

c)

FIG. 7. (color online) Phase evolution of the electron (part a)) and positron distribution (part b))

as functions of p−/2 ≈ ε and of the photon spectrum (part c)) as a function of k−/2 ≈ ω for the

shape function f5(ϕ).

Firstly, we consider that a 20-cycle sin2-pulse, i.e., f(ϕ) = f5(ϕ) = sin(ϕ) sin2(ϕ/40),

with laser peak intensity I0,5 = 4.2×1021 W/cm2 collides with an initially Gaussian electron

distribution with p∗
−

= 100GeV(ε∗ ≈ 50GeV) and σp
−

= 10GeV that is normalized to

unity. These numerical values correspond to the relativistic parameter ξ5 = 31 and to the

quantum nonlinearity parameter χ∗

5 = 19. The evolutions of the electron distribution, of

the positron distribution and of the photon spectrum are shown in Fig. 7. In Fig. 7a) it can

be seen that during the interaction with the laser pulse the electrons lose a large amount

of their initial momentum due to the emission of photons. As expected, the so-generated

photons have a sufficiently high energy to produce electron-positron pairs. This implies a

decrease of the yield of high-energetic photons in the final photon spectrum and, of course,

an increases the number of charged particles. In this case, the ratio of the final and the

initial number of electrons is approximately 1.56 corresponding to a growth of the number

of electrons by more than 50%. Mainly the energy of the created particles is much smaller

than the initial energy of the electrons (see Fig. 7b)), which can be explained by the fact

that emitted photons must have a smaller energy than the emitting electrons and that, in

addition, the energy of these photons is split up into two particles in the pair-production

process. Since the evolution of the distribution functions shown in Fig. 7 includes already

the coupled dynamics of electrons, positrons and photons, it is not directly evident how

radiation and pair-production processes affect the evolution of each distribution function.
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FIG. 8. (color online) Comparison of the final electron (part a)) and positron distributions (part

b)) as functions of p−/2 ≈ ε and photon spectra (part c)) as functions of k−/2 ≈ ω for the

full kinetic approach (solid, red line), without the radiation of positrons (dashed, green line) and

without pair production (short dashed, blue line) for the initial Gaussian electron distribution with

p∗− = 100GeV (ε∗ ≈ 50GeV) and the shape function f5(ϕ).

In order to gain a deeper understanding of the interplay of the particles, we simulated the

same collision process as before but artificially switched off once pair creation and then the

radiation of the created positrons. The final distributions of these calculations are shown

in Fig. 8. As, by construction, the positron distribution vanishes identically without the

inclusion of pair production, Fig. 8b) only shows the final distribution functions for the full

dynamics and the one where radiation by positrons is excluded. Further, it can be seen

in Fig. 8a) and Fig. 8c) that the inclusion of pair creation drastically changes the final

electron distribution and photon spectrum. The high-energy part of the photon spectrum

is significantly decreased, as in the pair creation process the photon is transformed into a

pair of charged particles also corresponding, in turn, to an increase in the low-energy part

of the final energy distribution of the electrons. Whereas, the electron distribution at very

high energies is not altered, because the produced particles are mostly created at smaller

energies. Moreover, the photon gain is enlarged for smaller photon energies, due to the

additional emission of the increased number of charged particles. In fact, the inclusion of

RR for positrons shifts the final energy distribution to lower energies (see Fig. 8b)), i.e., the

created particles are able to interact with the laser background field after the pair production

and in turn will emit photons. In accordance with the argument above, this results in an

enlarged photon gain for lower photon energies. Furthermore, the radiation emitted by

the positrons barely affects the evolution of the electrons leading to a slightly higher energy
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FIG. 9. (color online) Comparison of the final electron (part a)) and positron distributions (part

b)) as functions of p−/2 ≈ ε and photon spectra (part c)) as functions of k−/2 ≈ ω for the shape

functions f5(ϕ) (solid, red line), f6(ϕ) (dashed, green line) and f7(ϕ) (short dashed, blue line) for

the initial Gaussian electron distribution with p∗− = 100GeV (ε∗ ≈ 50GeV).

spectrum (see Fig. 8a)). In this case, the produced positrons had a sufficiently high energy to

emit photons that were enabled to again create a small number of pairs during the remaining

interaction time with the laser pulse.

Now, we want to examine the influences of the initial energy of the electrons and the

laser peak intensities on the final electron and positron distributions and on the photon

spectrum. As in Sec. III, we will again consider laser pulses at a given pulse fluence that

can experimentally be modified via pulse shaping. Therefore, we consider two initially

Gaussian electron distributions the first as before with p∗
−

= 100GeV (ε∗ ≈ 50GeV) and

σp
−

= 10GeV and the second with p∗
−
= 10GeV (ε∗ ≈ 5GeV) and σp

−

= 1GeV, which are

both normalized to unity. We consider these two electron distributions to collide with three

different laser pulses that have the same fluence Φ = 5.2× 108 J/cm2 and a sin2-pulse form,

i.e., f(ϕ) = sin(ϕ) sin2(ϕ/2NL), but differ in the number of laser cycles NL and the laser

peak intensities. Thus, we have chosen laser peak intensities of I0,5 = 4.2 × 1021W/cm2

for f5(ϕ) = sin(ϕ) sin2(ϕ/40) (ϕf = 40π, ξ5 = 31 and χ∗

5 = 19), I0,6 = 1.7 × 1022W/cm2

for f6(ϕ) = sin(ϕ) sin2(ϕ/10) (ϕf = 10π, ξ6 = 63 and χ∗

6 = 37) and I0,7 = 1023W/cm2

for f7(ϕ) = sin(ϕ) sin2(ϕ/2) (ϕf = 2π, ξ7 = 153 and χ∗

7 = 91) corresponding to pulse

durations of 60 fs, 15 fs and 3 fs, respectively. In Fig. 9 the final electron and positron

distributions as well as the photon spectra are shown for the three collisions with the first

electron distribution. In agreement with our previous results, the photon yield is higher for

the 20-cycle pulse than for both the five-cycle pulse and the one-cycle pulse. The reason
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FIG. 10. (color online) Comparison of the final electron (part a)) and positron distributions (part

b)) as functions of p−/2 ≈ ε and photon spectra (part c)) as functions of k−/2 ≈ ω for the shape

functions f5(ϕ) (solid, red line), f6(ϕ) (dashed, green line) and f7(ϕ) (short dashed, blue line) for

the initial Gaussian electron distribution with p∗− = 10GeV (ε∗ ≈ 5GeV).

again is the longer interaction time of the electrons with the laser field, although the laser

peak intensity is smaller. Since the initial energy of the electrons and the laser intensities

are sufficiently high to produce many high-energetic photons during the interaction, also the

number of pairs produced by the longer pulses exceed the number produced by the one-cycle

pulse (see Fig. 9). In fact, the ratio of the final and the initial electron number is reduced

to 1.06 for the one-cycle pulse, even though in comparison with the 20-cycle pulse the laser

peak intensity is larger by a factor of 24. In prospect of an experimental investigation, an

electron bunch with typical charge Q ≈ 100 pC corresponding to a total initial number of

Ne− = 6 × 108 electrons is considered in order to achieve estimates for the final number of

produced positrons Ne+ and photons Nγ . From our numerical simulations, we conclude that

for the shape function f5(ϕ) it is Ne+ = 3.3 × 108 and Nγ = 5.5× 109, whereas for f6(ϕ) it

results Ne+ = 1.3 × 108 and Nγ = 1.7 × 109 and for f6(ϕ) we obtain Ne+ = 3.4 × 107 and

Nγ = 5.5× 108.

Since for the second electron distribution centered at p∗
−
= 10GeV the value χ∗ is reduced

by a factor of 10, also the value κ∗ will be decreased and quantum effects and pair production

are expected to be less prominent. The final distribution functions for the collision of this

electron distribution and the aforementioned three laser pulses are shown in Fig. 10. As

in the simulations above the electrons lose most of their energy in the collision with the

20-cycle pulse. On the other hand, the shorter pulses lead to much broader final electron

distributions and the initial peak around p∗
−

= 10GeV (ε∗ ≈ 5GeV) is still pronounced
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for the one-cycle pulse. Although this results once more in a much larger photon yield for

the long pulse, the spectrum has it maximum at smaller values of k− than in the previous

example (see Fig. 10c)). Thus, the typical value κ
∗ is decreased significantly leading to

a lower pair-production probability. In fact, the number of produced pairs by the shorter

pulses now exceeds the one produced by the 20-cycle pulse. Even though the total gain of

photons is larger in the case of the long pulse, the energy of the emitted photons and the

laser peak intensity are not sufficiently high to create a large number of pairs. However, for

the five-cycle pulse the number of produced particles is slightly higher than for the shortest

pulse, i.e., the laser peak intensity is high enough in this case to obtain the beneficial

effects of the longer interaction time also in the positron yield (see Fig. 10b)). As in the

previous examples, estimations for the final Ne+ and Nγ are given for an electron bunch

with total initial number of Ne− = 6 × 108 electrons. Hence, in the case of f5(ϕ) one

obtains Ne+ = 5.8× 106 and Nγ = 5.6× 109, whereas in the case of f6(ϕ) (f7(ϕ)) it results

Ne+ = 1.6× 107 and Nγ = 2.5× 109 (Ne+ = 1.4× 107 and Nγ = 1.0× 109).

Finally, we give an estimation for the laser peak intensities at which electron-positron

pairs will be detectable for nowadays available laser accelerated electron beams [38]. There-

fore, a Gaussian electron beam centered at p∗
−
= 4GeV (ε∗ ≈ 2GeV) and σp

−

= 0.2GeV

with again a total number of Ne− = 6× 108 electrons is considered to collide with 10-cycle

sin2-shaped laser pulses with different peak intensities. Considering that the detection of

a few tens of positrons is feasible, pair production should be measurable at an intensity of

I0 = 1.5 × 1021W/cm2, which would lead to a total number of 26 created positrons. For a

slightly lower electron energy p∗
−
= 2GeV (ε∗ ≈ 1GeV) the production of 19 pairs already

requires an increased intensity of I0 = 5 × 1021W/cm2, indicating that an increase in the

beam energy is more favorable in the studies of pair production.

V. CONCLUSION

In the present paper we have investigated how the pulse shape of the laser and its du-

ration influence the evolution of an electron beam which collides head-on with the laser

pulse. By employing a kinetic approach, we have included quantum radiation-reaction ef-

fects, in a regime where they mainly stem from multiple incoherent photon emission. In

particular, we have investigated the dependence of the final electron distribution and of
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the final photon spectrum on the pulse shape and on the duration of pulses with the same

fluence. By keeping the laser fluence fixed, we ensure that the classical theory of radiation

reaction based on the Landau-Lifshitz equation predicts that the final electron spectrum

and the total electromagnetic energy emitted by the electrons are the same for different

pulses. Thus, possible differences in such observables indicate an interplay of quantum and

radiation-reaction effects. Our numerical simulations show that already for χ∗ = 0.2-0.3

the final electron distribution and final photon spectrum are altered by quantum radiation

reaction effects. Our results also indicate that these quantum radiation-reaction effects are

measurable in principle already at available laser intensities of the order of 1022 W/cm2 [39]

and at electron bunch energies of the order of 1 GeV [38].

Furthermore, we have studied how electron-positron pair creation affects the dynamics of

the charged particles and photons. The inclusion of electron-positron pair production was

shown to significantly decrease the high-energy part of the photon spectra and to increase

the low-energy part of the electron and positron distribution, due to the enhanced number

of charged particles. Moreover, a weak nonlinear coupling of all three distribution functions

became apparent in the fact that the radiation of positrons can (slightly) alter the final

electron distribution. Since at a fixed laser fluence the photon gain was found to be higher

for longer pulses (though with smaller peak intensity), the creation process is amplified if the

initial energy of the electrons is sufficiently high. Finally, we estimated that nowadays high

intensity laser facilities [39], as well as high energy electron beams [38], allow in principle

for an experimental detection of pair creation in an all-optical setup.

Appendix A: On the derivation of the kinetic equation (5)

In this appendix we revise a step in the derivation of the kinetic equation (5) of the main

text given in the Supplemental Material of [27]. We point out, however, that the final form

of this equation is unchanged.

In the Supplemental Material of [27], the electron distribution function fe−(φ, T, r⊥, p−,p⊥)

has been assumed to have the structure fe−(φ, T, r⊥, p−,p⊥) = δ(p⊥)ρe−(φ, T, r⊥, p−) cor-

responding to a distribution that is “infinitely” peaked at p⊥ = 0 throughout the whole

interaction of the electron beam with the laser plane-wave field. Here, we used the light-cone

coordinates φ = t − y, T = (t + y)/2 and r⊥ = (x, z), and the corresponding quantities
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p− = ε − py, p+ = (ε + py)/2 and p⊥ = (px, pz). However, the specific choice of the delta

function is not essential for the derivation of the kinetic equation. We remind that a basic

assumption in our approach is that mξ ≪ ε, which allows us already to neglect the terms

proportional to the transverse momenta and to p+ ∼ (m2+p2
⊥
)/ε2 in Eq. (2) in the Supple-

mental Material of [27]. Thus, by considering still a well peaked function, e.g., a Gaussian,

but also allowing for a finite transverse momentum evolving in phase, we can seek for a so-

lution of the form fe−(φ, T, r⊥, p−,p⊥) = ge−(φ,p⊥)ρe−(φ, T, r⊥, p−). Since ρe−(φ, T, r⊥, p−)

can be factorized by ρe−(φ, T, r⊥, p−) = fT (T )f⊥(r⊥)ne−(φ, p−), we employ the modified

ansatz in the approximated kinetic equation mentioned in the Supplemental Material of [27]

and obtain the following equation (which replaces Eq. (6) in the Supplemental Material of

[27])
[

∂

∂φ
+ eE(φ)

∂

∂pz

]

ge−(φ,p⊥)ne−(φ, p−) =

ge−(φ,p⊥)

[
∫

∞

0

dk−
dP (φ; p− + k− → p−)

dφdk−
ne−(φ, p− + k−) (A1)

−ne−(φ, p−)

∫

∞

0

dk−
dP (φ; p− → p− − k−)

dφdk−

]

.

We recall that in deriving this equation, we have also assumed that the emission of photons

does not significantly broaden the electron distribution in the transverse momenta with re-

spect to the broadening already induced by the laser field (i.e. by the Lorentz force). Within

our model, this assumption is justified as in the ultra-relativistic regime the electrons mainly

emit along the instantaneous propagation direction [21], i.e. almost along the negative y

direction in the present case (see also the Supplemental Material of [27]). For the sake of

consistency, in our simplified model, we have neglected the small angular spreading (of the

order of mξ/ε ≪ 1) brought about by the Lorentz force as well as by the emission of photons

off-axis. Now, the function ge−(φ,p⊥) can be chosen to satisfy the Liouville-like equation
[

∂

∂φ
+ eE(φ)

∂

∂pz

]

ge−(φ,p⊥) = 0. (A2)

If ge−(0,p⊥) is a given function g̃(p⊥) well peaked around p⊥ = 0 (in the limiting case, it

could also be g̃(p⊥) = δ(p⊥)), then the solution of Eq. (A2) is ge−(φ,p⊥) = g̃(p⊥ + eA(φ)),

where A(φ) = (0, 0,−
∫ φ

0
dφ′E(φ′)) (see also Eq. (2) in the main text). Thus, the evolution

of the transverse electron momentum driven by the external plane-wave field decouples from

the longitudinal one and we again obtain that the reduced distribution function ne−(φ, p−)

satisfies Eq. (7) in the Supplemental Material of [27].
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Appendix B: The microscopic approach

In this appendix the results of the so-called microscopic approach developed in [13] are

compared with the “macroscopic” kinetic approach employed here. In the microscopic ap-

proach the starting point to calculate the photon spectrum is the probability that a single

electron emits more than one photon incoherently. The single-photon spectrum is then ob-

tained by essentially integrating over the degrees of freedom of all emitted photons except

one. In the microscopic approach one avoids the solution of the kinetic integro-differential

equations (5)-(6). However, the calculation of multi-dimensional integrals is required, with

dimensionality increasing with the number of photons emitted. In the numerical example

considered in [13] the spectrum was found to converge after the inclusion of 16 photons and

the corresponding multidimensional integrals were evaluated via the Monte Carlo method.

For the sake of comparison with that numerical example, we consider a two-cycle sinu-

soidal pulse, i.e., f(ϕ) = sin(ϕ), with a peak intensity of I0 = 1023W/cm2 and again with

ω0 = 1.55 eV (note that in [13] the given value of the intensity was the average one). We

center the initial Gaussian electron distribution around ε∗ = 1GeV (corresponding to the

value p∗
−
≈ 2 GeV employed in [13]), and consider a standard deviation of σp

−

= 0.1GeV.

In order to compare with the single-particle approach in [13] and with the numerical results

presented in Fig. 2 there, we fix Ne− = 1 and we show the photon spectra with respect to

the normalized quantity ̟ = k−/p
∗

−
. The resulting final photon spectrum is the quantum

photon spectrum including RR effects, i.e., multiple incoherent photon emissions, shown in

Fig. 11 as a solid, red line. The quantum spectrum without RR is obtained by averaging

the single-photon emission spectrum (see Eq. (4)) with respect to the initial electron distri-

bution. On the other hand, the classical spectrum without RR effects can be obtained by

multiplying the single-photon emission probability in Eq. (4) with 1+u ≈ 1 and u ≈ k−/p−

by k−, and the classical RR effects can be included by employing the analytical expression

of p−(ϕ) in Eq. (14) according to the LL equation. A comparison of the quantum spectrum

including RR effects in Fig. 11 (solid, red line), with the solid black line in Fig. 2 in [13],

shows the excellent agreement of the results in the two different approaches.
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