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Interactions between anesthetics (lidocaine and short chain alcohols) and lipid membranes formed by
dimyristoylphosphatidylcholine (DMPC) were studied using NMR spectroscopy. The orientational order of
lidocaine was investigated using deuterium NMR on a selectively labelled compound whereas segmental
ordering in the lipids was probed by two-dimensional 'H-'3C separated local field experiments under magic-
angle spinning conditions. In addition, trajectories generated in molecular dynamics (MD) computer
simulations were used for interpretation of the experimental results. Separate simulations were carried out
with charged and uncharged lidocaine molecules. Reasonable agreement between experimental dipolar
interactions and the calculated counterparts was observed. Our results clearly show that charged lidocaine
affects significantly the lipid headgroup. In particular the ordering of the lipids is increased accompanied by
drastic changes in the orientation of the P-N vector in the choline group.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Local anesthetics have been used in practical medicine since the
beginning of the 20th century. Despite their extensive and
important clinical use the mechanism of action still remains, to a
large extent, a mystery. Several theories claiming to explain the
therapeutic effect have been put forward [1-3] but no complete
consensus on the details of the process has yet been reached. About
a century ago Meyer and Overton reported that the potency of
general anesthetics was correlated with their solubility in olive oil
[4,5]. Later, when it was realized that the cell membrane was
composed of lipids, it was a natural step to extend Meyer and
Overton observations to the lipid membrane, and so the lipid theory
[6] of anesthesia was born.

Many studies have been performed to examine the effects
anesthetics impose on lipid membranes. Observed changes in bilayer
properties such as fluidity, main transition temperature, area per lipid
and lipid volume have been reported in several studies [7-15]. These
investigations, however were not able to provide a plausible
explanation for the anesthetic mechanism because changes of the
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bilayer structure or dynamics when introducing anesthetics are quite
small, compared to changes caused by variations in temperature by
one or two degrees [16]. Since an increase in body temperature of this
magnitude doesn't cause anesthesia, it appears that these changes
cannot be, on their own, responsible for the anesthetic action.

Due to the mentioned shortcomings of lipid related explanations of
the anesthetic action, protein oriented theories, where the anesthetic
action is explained by the binding to specific protein sites, have grown
in popularity during the last decades [15,17,18]. Several investigations
have been carried out [13,14] in order to study whether the primary
mechanism of action of local anesthetics is a result of changes in the
lipid bilayer or due to the binding to proteins. Although still not fully
understood, the molecular mechanism of anesthesia is presently
considered to be a result of the Na* voltage-gate ion channel being
blocked by the anesthetic molecule, thus blocking nerve impulses [19].
Despite the fact that a binding site on the Na* channel has been
hypothesized, the influence from the lipid environment on the Na*
channel or other membrane bound proteins remains unclear and
changes in bilayer structure or dynamics could give a significant
contribution to the inactivation of ion channels involved in anesthesia
[20-22].

Lidocaine (Fig. 1) is one of the most common locally acting
anesthetic molecules. It belongs to the ionisable amines family of local
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Fig. 1. Schematic structures of dimyristoylphosphatidylcholine (DMPC, top) and lidocaine (bottom).

anesthetics and is present in both charged and uncharged forms, with
a pK, value estimated to be about 6.8 in lipid membranes [23].
Experimental studies [24,25] and computer simulations [26,27]
indicate that charged and uncharged forms of lidocaine are located
at different depths in the bilayer. In addition the two forms of
lidocaine exhibit different orientation in the bilayer [27]. It has been
speculated whether the position of the anesthetic could be crucial for
the anesthetic effect [28] followed by an assumption that the charged
species, which has a preference for the headgroup region of the lipid
bilayer, should be responsible for the anesthetic action. On the other
hand, the high mobility of uncharged molecules as compared with the
charged form [27], may also be an important factor in the anesthetic
effect.

Alcohols can act as general anesthetics and their anesthetic
potency was observed to be related to the increase of the hydrocarbon
chain up to 1-dodecanol. In analogy with other local anesthetics, the
alcohols are claimed to change membrane properties [29]. A recent
computational study focused on the interaction between membranes
and alcohols (methanol and ethanol) indicated that the location of
ethanol was close to the glycerol backbone, whereas methanol is
closer to the water membrane interface [30,31]. The effect of alcohol
on the membrane structure was also investigated using NMR
spectroscopy [32,33].

NMR is a powerful experimental method for studies of molecular
order, structure, and dynamics in soft matter such as lipid bilayers.
Deuterium NMR has proven particularly useful for estimations of
order parameter profiles of hydrocarbon chain segments in unor-
iented lipid systems [34-39]. Deuterium solid-state NMR was also
employed in previous investigations of local anesthetic interactions
with membranes [40-42]. Deuterium NMR experiments are usually
reasonably simple to carry out, and produce uncomplicated spectra. A
limitation, however is that these spectra reflect only the motional
behavior of the C-D vector. A major shortcoming of 2H NMR is,
however, that isotopic labeling is required. This can be both
complicated and expensive.

An alternative technique for investigations of fluid phase lipids,
which does not require isotopic enrichment or tedious sample
preparation, is to carry out measurements of 'H-'3C dipolar couplings
by two-dimensional (2D) separated local field (SLF) spectroscopy
under magic-angle spinning (MAS) conditions [43,44]. Recently, we
have introduced several efficient SLF pulse schemes for measurements
of dipolar couplings in solid and liquid-crystalline systems, such as
lipid bilayers [45-49].

In the present study we use NMR spectroscopy and molecular
dynamics (MD) computer simulations for investigations of the effect
of local anesthetic lidocaine and alcohols (ethanol and methanol) on
the dimyristoylphosphatidylcholine (DMPC, Fig. 1) bilayer. Using
deuterium NMR we investigate concentration and pH dependence of
the orientational order of selectively deuterium labeled lidocaine-d,.
The 'H-"C dipolar couplings in DMPC are employed to investigate the
segmental order of the lipids. These couplings determined for several

concentrations of lidocaine are compared with the results from MD
simulations of similar systems.

2. Materials and methods
2.1. Sample preparation and characterization

Unlabelled dimyristoylphosphatidylcholine DMPC and lidocaine,
methanol and ethanol were purchased from Sigma-Aldrich and used
without further purification. Lidocaine-d, labelled in the acidic
methylene group (between the carbonyl and amine), was prepared
according to the previously published procedure [50]. Introduction
of lidocaine in the multilamellar vesicles (MLVs) was performed by
dissolving DMPC and a desired amount of lidocaine in a mixture of
chloroform and methanol (2:1, v/v). The solutions were dried under
a stream of nitrogen followed by vacuum pumping overnight. The
lipid films were thereafter placed in a chamber with a humidity of
96% at 40 °C, created by a saturated solution of potassium sulphate,
which resulted in hydration levels of approximately 15 water
molecules per lipid (n,=15). The pH was adjusted using the
phosphate buffer with the concentration 100 mM. The water content
in the pH adjusted samples was the same as in the samples where
no buffer was added.

In contrast to lidocaine, the alcohols were added only after the
hydration level of 15 water molecules per lipid was reached.
Subsequently, the sample was subject to several freeze-thaw-
vortexing cycles. The reason for this was to prevent evaporation
which occurs since the alcohols are very easily mixed into membranes.

2.2. NMR experiments

All NMR experiments carried out on MLVs were performed at a
magnetic field of 9.4 T on a Chemagnetics Infinity-400 spectrometer
equipped with a 6 mm triple-resonance MAS probe and a static
probe with a 5 mm horizontal solenoid coil for the ?H NMR
experiments. The typical mass of the sample for the MAS experi-
ments was around 250 mg whereas for the 2H NMR was about
100 mg. The set temperature was 40 °C which, due to the sample
heating originating from the MAS, resulted in a temperature of 42 °C
[51]. Heteronuclear 'H-'3C dipolar couplings were measured using a
2D MAS technique denoted R-PDLF spectroscopy [46], which
incorporates R-type recoupling [52] into the proton-detected local
field (PDLF) protocol [53]. We used refocused INEPT [54] for the 'H
to '3C polarization transfer since this scheme provides high spin-pair
selectivity. The spinning frequency was 5.15 kHz in the 2D SLF
experiments, and the 'H field strengths during dipolar recoupling
and heteronuclear decoupling were 46 and 27 kHz, respectively. The
2D spectra were acquired using typically 112 scans and 90
increments in the t;-dimension. A recycling delay of 6 s was
employed. Further details of the R-PDLF method can be found
elsewhere [46,55].
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The deuterium spectra were acquired at 61.4 MHz employing the
conventional quadrupole echo sequence [56] (90°x—-t1-90°+,~t>-acq)
with a 90° pulse length of 3 ps and t;=t,=30 ps. A recycle delay of at
least five times the spin-lattice relaxation time was used. All the
experiments were carried out at 40 °C and the temperature gradient
across the sample was estimated to be less than 1 °C.

2.3. Molecular dynamics computer simulations

Details of the computer simulation, the parameters of the force
fields and the properties of the bilayer are reported in previous
publications [26,27] here we only summarize essential technical
aspects. Five different lipid bilayer systems, each consisting of 128
(64x2) DMPC lipids and 3655 water molecules, were simulated. In
two of the systems 12 charged/uncharged lidocaine molecules were
dissolved, whereas two other systems contained 36 charged/
uncharged lidocaines. To keep the electroneutrality, 12 and 36 CI”
ions were added to the systems with charged lidocaine. One system
containing a pure fully hydrated DMPC bilayer was simulated as a
reference. The lipid force field parameters for bonded and non-bonded
interactions and atomic partial charges are based on the GROMOS
force field [57,58]. The united atom model was used for the CH, CHo,
and CHs groups in DMPC lipids and in lidocaine, except for the polar
hydrogen atom on the charged lidocaine, which was described
explicitly. The temperature was set to 313 K and the pressure to

1 bar. The systems were simulated for 100 ns using a time step of 2 fs.

3. Results and discussion

Anesthetics have a tendency to partition between the hydrophilic
and hydrophobic regions of the membrane. Although the distribution
between these regions is often ruled by the hydrophobic properties of
the anesthetic itself, lidocaine exists in charged and uncharged forms,
which influences the partition coefficient between the different
regions of the lipid membrane as a function of the pH.

We start the analysis by considering the orientation order of
lidocaine in the DMPC bilayer. In Fig. 2 typical deuterium NMR spectra
for the selectively labelled molecule are displayed. The spectra do not
show the characteristic Pake features, which may indicate that the
sample is not completely homogenous. In Table 1 the deuterium
quadrupolar splittings are collected for lidocaine at different con-
centrations and pHs. The experiments where the concentration of
lidocaine was varied were carried out without the buffer. Comparison
with the pH dependence, assuming no major interactions with the
buffer [59], indicates that the quadrupolar coupling for pH 6.7 is
similar to that with the same lipid-anesthetic composition in the

X,p=0.15 pH=4.7
X,p=0.33 pH=28.8
I I T T I I
-4 0 4 -4 0 4
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Fig. 2. Typical ?H-NMR spectra of unoriented and hydrated bilayers (at 40 °C) as a
function of lidocaine concentration and pH. The traces to the left were collected in
samples with no buffer, whereas the spectra to the right were obtained for the x;;5=0.33
sample.

Table 1
Experimental deuterium quadrupolar splittings (kHz) for lidocaine-d, in the DMPC
bilayer

XLID Avg [Scol pH Avg [Seol

0.05 1.8 0.014 43 2.1 0.017
0.15 2.0 0.016 5.5 19 0.015
0.25 1.6 0.013 6.7 15 0.012
0.33 15 0.012 7.9 1.2 0.010
0.50 11 0.009 8.8 12 0.010

The concentration dependence was measured in absence of buffer, and the pH
dependence is studied on the x;;p=0.33 sample, where x;;p=nyp/Npmpc.

absence of buffer. Since the pK, for lidocaine in a phosphatidylcholine
lipid was determined to be ~6.8 [23], it can be assumed that both
charged and uncharged forms of lidocaine are present in membranes
with no buffer.

A decrease of the deuterium quadrupolar couplings with increased
pH is also observed. In principle, such decrease can be explained by
three possible situations: a) molecular orientation of lidocaine in the
membrane, b) motional averaging and c¢) combination of a) and b). At
this point we can use the trajectories generated in the MD simulations.
In Fig. 3 the probability distribution functions, P(3) are displayed,
where (3 is the angle between the C-D vector in the acidic methylene
in the lidocaine molecule and the normal to the bilayer. The
distributions for the charged and uncharged lidocaine molecules are
indeed very different, while there is only a minor effect of the
concentration (x;;p=0.09 and x;;p=0.28). The distribution correspond-
ing to the charged form exhibits a clear maximum at 3=90° which is
consistent with the molecular orientation (assuming that the long axis
is defined by the amine nitrogen and one of the aromatic carbons)
parallel to the bilayer normal. In contrast, the distribution of
uncharged molecules is much flatter with a weak maximum at
B=0°, which indicates the orientation perpendicular to the director. In
principle, the two CD vectors in a CD,-group may be different, but it
turns out that the distribution functions are essentially equivalent. Yet
another way to demonstrate the location and orientation of lidocaine
molecules is the density of the nitrogen and aromatic carbon atoms
calculated as a function of distance from the bilayer center, P(r). These
distributions obtained from the trajectories are displayed in Fig. 4.
Nitrogen atoms in charged lidocaine molecules are located closest to
the bilayer surface, at a distance of 1.4 nm from the membrane center.
This distance corresponds approximately to the location of the
carbonyl oxygen atoms in DMPC molecules [60]. The binding of ions
to carbonyl rather than to the phosphate group has been previously
observed in computer simulations [61-63]. The aromatic carbons in
charged molecules are located closer to the center, indicating a
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Fig. 3. Normalized orientational distribution functions P(3) for the C-D vector of
lidocaine, for x;p=0.09 (solid), and x;;p=0.28 (dashed) systems.
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Fig. 4. The probability of finding atoms in lidocaine as a function of distance from bilayer
center: nitrogen (blue) and carbon (black) in the charged (solid) and uncharged
(dashed) systems. The distributions are calculated for the x;;p=0.28 system. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

molecular orientation parallel to the bilayer normal. For uncharged
molecules the two distributions essentially coincide, which is
consistent with the orientation perpendicular to the normal. Note
that in contrast to charged lidocaine molecules there is a probability of
finding uncharged species in the center of the membrane, indicating
that lidocaine can pass through the bilayer [26]. Thus, we can conclude
that the decrease of the quadrupolar splitting with increased pH is a
result of the orientation of the lidocaine in the DMPC bilayer.
Furthermore, lidocaine molecules in the MD trajectory never leave
the bilayer surface, i.e. they are excluded from the water phase. This
conclusion is experimentally supported by absence of an isotropic
signal in deuterium NMR spectra. There is, however, possibility of a
fast exchange between the water and lipid phases and computer
simulations are known to overestimate the partition coefficient [64].

The orientational order is conveniently quantified using the order
parameters, Scp, which in turn are easily calculated from the
trajectory. For the charged/uncharged form we obtain Scp=-0.20/
0.09 and Scp=-0.21/0.05 for x;;p=0.09 and x;;p=0.28, respectively.
The negative sign of Scp shows that the average orientation of the C-D
vector in charged molecules is perpendicular to the bilayer normal.
The order parameter can also be derived from the quadrupolar
splitting in the deuterium NMR spectrum using the following relation:
Avq=3[4qcp|Scpl, where qcp is the static nuclear quadrupole coupling
constant (qcp=167 kHz for a CD, group). The values of the order
parameter |Scp| derived from the experimental splittings are included
in Table 1. Clearly, the orientational order of lidocaine in the MD
simulation is higher than that observed in the experiments. On the
other hand, the error in Scp obtained from the analyses of the
trajectories is ~1/+/N, where N is the number of lidocaine molecules
in the simulation box. Thus, for 36 molecules the error for Scp
becomes ~+0.2, indicating that the experimental results are within
these limits.

An analysis of the quadrupolar couplings for different sample
compositions shows a decrease of the splitting as the lidocaine
concentration is increased. This effect is consistent with the general
picture that the orientational order in the bilayer decreases upon
addition of anesthetics such as tetracaine or lidocaine [24,25,40]. An
exception from this trend is the concentration x;;p=0.15; we will
return to this anomalous behaviour in the discussion of the dipolar
couplings.

We now turn to the analysis of 'H-'3C dipolar interactions. In order
to investigate the effect of lidocaine on the bilayer, the couplings were
measured for different DMPC:lidocaine compositions. Typical slices
extracted from a 2D R-PDLF experiment carried out in the x;;p=0.15
mixture are displayed in Fig. 5. The slices from the 2D spectra can be

extracted provided that the chemical shifts of the sites in DMPC are
known [55]. The motionally averaged heteronuclear dipolar couplings,
dcy, collected in Table 2, were calculated from the spectral splittings
Av using the relationship Av=0.315 dcy, where the coefficient 0.315 is
the effective scaling factor for the R-PDLF pulse sequence [46]. We
start the analysis of the dipolar couplings by considering the 'H-'3C
interaction in the acidic methylene of lidocaine. This interaction
reflects the same motion as the quadrupolar splitting determined in a
deuterium NMR experiment. The dipolar splitting for lidocaine (Fig. 5)
is 83 Hz which corresponds to the dcy coupling of 263 Hz. Assuming
that a rigid C-H vector measured in the solid-state corresponds to
dg* = -22.5 kHz, an order parameter (|Scy| = dci/dgF*) of |Scu|=0.012
is obtained, which is in good agreement with the value of |Scp| in
Table 1. We have also extracted the splitting corresponding to the C-H
interaction for the para-site in the phenyl ring of lidocaine. This splitting
is 0.1 kHz, which assuming d{* = -23.0 kHz for an aromatic C-H
vector [65] gives |Scy|=0.015. In order to unambiguously determine
molecular orientation of lidocaine in the bilayer several dipolar
couplings i.e. order parameters are required. It is so, because the
principal frame of the ordering tensor is not know. An additional
complication is the fact that lidocaine is a flexible molecule.

The "H-'3C dipolar interactions determined in absence of lidocaine
are in good agreement with these previously reported for pure DMPC
[55]. Recently, the effect of uncharged lidocaine on the segmental
order in DMPC was investigated employing deuterium NMR [66].
Using the order parameters determined in that study we can calculate
the corresponding dipolar couplings: 5.1, 3.1, 2.6 kHz in pure DMPC,
and 4.8, 2.5, 2.0 kHz in x;;p=0.30 for sites 2, 12 and 13, respectively.
These values can be compared with our dipolar couplings collected in
Table 2.

For all sites (except g,) in the DMPC molecule several C-H vectors
exist and can give rise to dipolar interactions, usually however not all
couplings can be determined experimentally. A general trend for most
fragments of DMPC is an increase at the lowest lidocaine content
followed by a decrease of couplings at the higher concentration. The
same trend is observed for the quadrupolar splitting derived from
deuterium NMR spectra (see Table 1). The decrease of the dipolar

kHz kHz

Fig. 5. Selected 'H-'3C dipolar cross-sections through a 2D R-PDLF spectrum of an
unoriented DMP(/lidocaine mixture x;;p=0.15 acquired at 40 °C.
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Experimental and calculated from the MD trajectory 'H-"2C dipolar couplings (kHz) for hydrated DMPC:lidocaine mixtures

Site (DMPC) Experimental MD simulations
DMPC Xp=0.15 xp=0.33 DMPC Charged Uncharged
Xup=0.09 Xup=0.28 Xup=0.09 Xup=0.28
a 13 1.5 1.2 -11 0.2 2.0 -09 -0.5
-12 -0.2 1.6 -11 -12
B 0.9 0.5 0.5 =2 -18 -0.9 -2.0 -19
v 0 0 0 0 0 0 0 0
g1 0 0 0 -0.2 -0.1 0.2 -04 -0.6
34 35 32 =52 -5.0 -4.6 =52 -5.0
2 4.4 43 4.1 42 5.0 4.7 44 44
g3 5.1 5.0 4.6 45 4.0 3.7 42 3.7
6.1 6.2 5.7 6.1 6.0
2 2.0 22 2.0 34 3.7 3.8 3.6 3.8
31 33 31 4.0 42 44 4.0 4.2
4.6 5.0 4.6 4.0 44 4.5 43 4.5
8 41 4.5 4.1 4.1 4.5 4.7 43 4.7
44 4.8 44 44 4.7 5.0 4.6 5.0
12 2.8 2.9 21 23 2.6 2.4 2.7 29
2.8 3.0 2.2 2.6 3.0 2.8 29 3.0
13 22 2.1 1.6 1.9 2.1 19 21 2.4
22 2.4 1.6 2.2 2.5 2.3 24 2.7
14 0.3 0.7 0 0.4 0.4 0.4 0.4 0.4

couplings in the x;;p=0.30 sample can be explained by a decreased
order in the membrane. Similar observations were reported based on
experimental results [25,40,41,67] and computer simulations [26,68].
The initial increase of dipolar interactions upon addition of lidocaine is
however more difficult to rationalize. A possible explanation may be
an ordering of the membrane created by strong electrostatic
interactions where the charged form of lidocaine molecules and
several lipids are involved. The effect of increased order when salt is
added to bilayers has been previously observed [63]. Yet another
possibility may be that lidocaine increases the order in a similar way
as the well known effect of cholesterol [69].

The "H-'3C dipolar couplings (in Hz) were calculated from the MD
trajectory using

_ Mo Ycyuh

27 3
16m% g,

den ((3 cos? ¢CH‘1)>

where ¢cy is the angle between the spin-spin vector and the bilayer
normal, 7> is the C-H bond length, and the angular bracket denotes an
average over all molecular motions. We assume that the bilayer
normal and the z-coordinate of the simulation box coincide. The

T T T T T T
60 90 120 150

0 (degrees)

T
180

Fig. 6. Normalized distribution functions for the orientation of the P-N vector in DMPC
molecule relative the bilayer normal calculated from the trajectories with charged
lidocaine: DMPC (solid), x;;p=0.09 (dashed), and x;;p=0.28 (dotted). Note that the
distributions are symmetrized, i.e. they were calculated for both leaflets in the bilayer.

potential model for DMPC employed in the MD simulation is based on
united atoms, which means that no hydrogen atoms were included.
Instead, the hydrogen positions were calculated from the carbon
coordinates. A consequence of not explicitly including protons in the
MD simulation is that vibrational contributions to the 'H-'3C
couplings are to a large extent neglected. The calculated couplings
derived from trajectories are included in Table 2. Having access to the
coordinates for all atoms we are in position to calculate, from the
trajectory, every dipolar interaction. Considering all approximations
introduced in computer simulations the general agreement between
observed and calculated couplings is satisfactory. In particular
regarding the fact that the experimental couplings are determined
for a system where both charged and uncharged lidocaine molecules
are present. In the couplings calculated from the trajectory we observe
again an increase and decrease of the interactions upon increasing the
lidocaine content. This trend is particularly pronounced for the
charged form of lidocaine. The decrease of the order along the lipid
chains is also observed.

In contrast to experimental values, the calculated couplings
contain the information about the sign. In fact, at least one coupling
changes sign (o) upon addition of lidocaine, which clearly indicates a

0.002

T T T T
180 240 300 360

O (degrees)

0 60 120

Fig. 7. Normalized distribution functions for the torsion angle Og3-P-0-C,: DMPC
(solid), x;p=0.09 (dashed), and x;;p=0.28 (dotted).
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Table 3
Experimental 'H-'">C dipolar couplings (kHz) and order parameters for hydrated
DMPC-alcohol mixtures Xajon="nai0n/Mpmpc

Site (DMPC) DMPC Xmeon=0.33 Xeron=0.33
[denl [Scal [deul Sl |deul [Scul
o1 13 0.06 1.2 0.05 1.2 0.05
B 0.9 0.04 0.8 0.04 0.8 0.04
v 0 0 0 0 0 0
g1 34 0.15 33 0.15 33 0.15
2 44 0.20 43 0.19 43 0.19
g3 51 0.23 49 0.23 49 0.23
2 2.0 0.09 2.0 0.09 2.0 0.09
3.1 0.14 3.0 0.13 3.0 0.13
4.6 0.20 4.5 0.20 4.5 0.20
8 41 0.18 3.8 0.17 3.8 0.17
4.4 0.20 4.2 0.19 4.2 0.19
12 2.8 0.12 24 0.11 24 0.11
2.8 0.12 2.6 0.12 25 0.11
13 2.2 0.10 19 0.08 1.8 0.08
2.2 0.10 1.9 0.08 19 0.08
14 0.3 0.01 0 0 0 0

conformational transition. This effect is only observed for the charged
form of lidocaine. In addition poor agreement is observed between
experimental and calculated dipolar couplings for the (-site. The
changes of the dipolar couplings for the « and (-sites reflect the
orientation of the P-N vector in the DMPC molecule. In Fig. 6 we
display the distribution functions for the orientation of the P-N vector
with respect to the bilayer normal. These distributions are calculated
from the trajectories with the charged lidocaine whereas the three
corresponding distributions for the uncharged systems are identical
(not shown). The distributions in Fig. 6 result in order parameters, Spy,
-0.202, -0.137, and 0.003 for pure DMPC, x;;p=0.09 and x;;p=0.28,
respectively. Note that the detailed information about the orientation
of the P-N vector is lost in the experimental dipolar couplings, simply
because the sign of the interaction is not known. The sensitivity of the
P-N vector to the charge effects has been previously investigated
using computer simulations [63,70,71] and NMR spectroscopy [72-
74]. In these investigations it was concluded that the average angle of
the P-N vector decreases upon addition of salt, which is consistent
with our results: 79, 72 and 69° for the systems with 0, 12, and 36
charged lidocaine molecules respectively. In the three systems with
uncharged lidocaine the average angle between the P-N vector and
the bilayer normal is 79°. We also find that the only conformational
parameter in the choline group of DMPC that exhibits lidocaine
concentration dependence is the torsion angle Og3-P-O-C, The
distribution for this angle is displayed in Fig. 7; clearly, the trans
conformation, ¢=180°, is enhanced upon increasing the concentration
of charged lidocaine. Again, no lidocaine concentration dependence is
observed in the uncharged system (not shown).

We have also collected 3'P NMR spectra (not shown), but the line
shapes were not affected by the presence of lidocaine. The chemical
shift tensor of >'P in DMPC is of the order of 50 ppm [75] and remained
essentially constant (within 5 ppm) upon increased concentration of
lidocaine. It may be so that even if the PN vector is reasonably sensitive
to the lidocaine content, the Og3-P-0-C, torsion angle (see Fig. 7) and
thus the CSA tensor of 3!P are not.

In addition to lidocaine we have experimentally investigated the
effect of two alcohols, methanol and ethanol, on the DMPC bilayer. The
experimental 'H-"3C dipolar couplings for mixtures of DMPC and the
two alcohols are collected in Table 3. The addition of small alcohols has
a limited influence on experimental dipolar interactions, in fact the
reductions are similar to these determined for DMPC:lidocaine at the
same molar ratio. Ethanol binding to lipids has been investigated
using deuterium, phosphorus an proton NMR [32,33,42,76]. In
particular, the effect of ethanol addition on the local order in the

hydrocarbon chains was investigated using deuterium NMR in DMPC
[32,76] and in POPC [42]. There the trends of the order parameter are
similar to our observations. The order parameters for o and (3 carbons
in Table 3 are in perfect agreement with those determined using
deuterium NMR [76]. The ordering in the glycerol fragment exhibits a
similar decrease upon addition of alcohols as the other fragments of
the lipids. An analysis of a trajectory generated in computer
simulations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) and dipalmitoyl phosphatidylcholine (DPPC) bilayers with
methanol and ethanol [30] indicated an enhanced local order for both
alcohols. These studies were, however carried out on significantly
more concentrated systems xajon~ 0.7.

4. Conclusions

In this paper we present NMR investigation of the effect of
anesthetics (lidocaine, ethanol and methanol) on the DMPC bilayer.
Deuterium NMR was employed to study the orientational order of
selectively labelled lidocaine-d, and 'H-'3C dipolar couplings were
measured using 2D local field spectroscopy under sample spinning
conditions. In addition, previously generated molecular dynamics
trajectory was analyzed with focus on NMR parameters. The computer
simulations were carried out with charged and uncharged forms of
lidocaine in the bilayer so to reflect the different pH conditions. The
experimental quadrupolar splitting in the acidic methylene group of
lidocaine exhibited a clear pH and concentration dependence. At the
low pH, the charged lidocaine molecules are oriented parallel to the
bilayer normal whereas the uncharged form (at high pH) is on average
oriented perpendicular to the normal. A clear effect of anesthetics was
also reflected in the dipolar couplings in DMPC. In particular, the
addition of the charged form of lidocaine increased the local order and
resulted in orientational changes of the P-N vector in the choline
fragment of DMPC. Reasonable agreement between experimental
dipolar interactions and the calculated counterparts was observed.
The experimental system contains both charged and uncharged
lidocaine, whereas in the computer simulations we can separate the
effect from charged and uncharged forms of lidocaine on the bilayer
structure.

Before closing this paper we wish to comment on how our
experimental and computational observations may be related to the
mechanism of lidocaine action as an anesthetic. Clearly, the lidocaine-
membrane interaction perturbs the bilayer structure. We can only
speculate that this change in the local order will also affect the lipid-
protein (ion channel) interaction which is claimed to be essential for
the anesthetic activity. Furthermore, we note that the uncharged form
of lidocaine can be transported across the membrane, which is not
possible for the charged form. Thus the pH plays most likely a
significant role for the activity of lidocaine as an anesthetic.
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