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Because of the effect of defocusing and incomplete overlap between the laser beam and the receiver field
of view, elastic lidar systems are unable to fully capture the close-range backscatter signal. Here we pro-
pose a method to empirically estimate and correct such effects, allowing to retrieve the lidar signal in the
region of incomplete overlap. The technique is straightforward to implement. It produces an optimized
numerical correction by the use of a simple geometrical model of the optical apparatus and the analysis of
two lidar acquisitions taken at different elevation angles. Examples of synthetic and experimental data
are shown to demonstrate the validity of the technique. © 2011 Optical Society of America
OCIS codes: 200.0200, 280.0280, 010.0280, 010.3640, 010.0350, 190.5650.

1. Introduction

The elastic LIDAR (LIght Detection And Ranging)
technique has long been used in the study of aerosol
particles in the planetary boundary layer [1–3]. How-
ever, in the close range the laser beam is not comple-
tely within the field of view (FOV) of the telescope for
common biaxial systems. Therefore, problems are of-
ten encountered in retrieving physical parameters of
interest from the first ten to a few hundred meters
from the instrument. In addition to this incomplete
overlapping problem, the laser signal backscattered
from the close range is not focused on the focal plane
of the telescope. This is also the case for coaxial sys-
tems. This defocusing of the close-range atmospheric
targets additionally contributes to the nonlinearity
of the lidar signal up to several hundreds of meters
from the instrument, when typical telescope diam-
eters and focal lengths are of the order of several tens
of centimeters and the FOV is typically smaller
than 1mrad.

In this work we present a technique to retrieve an
optimized correction for the incomplete overlap. We
introduce an original method to experimentally
determine the correction and then we apply a numer-
ical method in order to optimize the retrieved correc-
tion. The numerical optimization can be applied to
overlap corrections retrieved also with different
methods proposed in the past [4–8]. In contrast to
these methods, our experimental approach to re-
trieve the incomplete overlap correction does not
need the knowledge of any instrumental parameter
and appears to be easy to implement for scanning or
portable lidar systems. The proposed technique is not
bound to a particular lidar system, as long as the sys-
tem can be oriented at different angles besides 90°
and could be considered optically and mechanically
stable during its operation at such different elevation
angles.

Excluding [8], the previous methods that are
broadly used [7] are bound to the idea of horizontal
acquisition assuming horizontal homogeneity [4,7],
assuming only statistical homogeneity [5] or without
any assumptions on the atmospheric conditions [6].
Those methods can produce a correction for the
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unwanted incomplete overlap, but in general an op-
tical system when tilted by 90° experiences a strong
deformation and a consequent modification of the
overlap. Our method reduces the need of horizontal
homogeneity to the area close to the instrument and
introduces a reduced mechanical deformation of the
optics because the system will be tilted by smaller
angles.

2. Close-Range Lidar Returns

Referring to Fig. 1 we can see the classical geo-
metrical approach defining S0min and S0max as the ex-
tremes of the range interval of partial or incomplete
overlap between the laser beam and the FOV of the
receiving optics. At ranges closer than S0min we do
not expect to collect any signal apart from some pos-
sible stray light. The effect of the incomplete overlap
is an underestimation of the backscattered signal ar-
riving from that region. To estimate the range in
which the beam is entering the FOV we can use
the formulas proposed in [9]:

S0min ¼ 2d − dt − dr

θr − 2αþ θt
; ð1Þ

S0max ¼
2dþ dt − dr

θr − 2α − θt
: ð2Þ

The symbols used are the same as in Fig. 1: d is the
separation between transmitter and receiver cen-
ters; dt is the transmitter beam diameter at the out-
put of the laser box; dr is the receiver aperture
diameter; θr is the receiver FOV; θt is the transmitter
divergence; α is the angle between receiver and
transmitter optical axes. In [9] the convention for
the sign of α, so their formulas are formally different.
Our convention is that the angle α is positive when
anticlockwise and negative otherwise. In general we
look at the instrument in a way that emitter stays at
the left of the instrument, as in Fig. 1; in this way a
negative angle α looks toward the optical axis.

In addition to nonlinearities induced by this in-
complete overlap between laser beam and FOV, one
should also consider the effects of close-range de-
focusing. In fact, the light backscattered from por-
tions of the atmosphere at finite distances from
the receiver, which is furthermore not along its opti-
cal axis, is neither focused on the telescope focal
plane nor along the optical axis. It is rather displaced
sideways and farther from the pinhole, which is
usually placed on the focal plane of the telescope,
acting as the field stop of the optical system. Conse-
quently, the light backscattered from short distances
is only partially intercepted by the pinhole due to its
displaced and larger beam transverse section (BTS)
on the focal plane. All these arguments are deeply
discussed in the literature. In particular we refer
to T. Halldorsson and J. Langerholc [10] and to the
more recent [11] to develop a simple model of the li-
dar systems.

A. Defocusing

We assume the telescope as a thin lens with a pinhole
centered along the optical axis on the telescope focal
plan, as described in Fig. 2. We introduce the concept
of defocusing as a measure of the energy observed
beyond the pinhole with respect to the total energy

Fig. 1. Conventional lidar design approach. Taken from Roberts
and Gimmestad [9].

Fig. 2. Three schematic views of a lidar system are proposed. In
all, the views are the lens, the pinhole, the lens plane, and the
optical axis represented. On the right side of the lens the regions
of different defocusing are presented and on the left side, using
the same colors, their images. The region focused totally outside
the pinhole is filled with diagonal lines. The region focused par-
tially within the pinhole is filled with horizontal lines. The region
focused inside the pinhole is filled with vertical lines. In the dif-
ferent views points and their images are considered. From each
point we projected the pinhole extremes and the center onto the
lens plane to show the intersection with the lens: in A there is full
intersection, in B there is partial intersection, and in C there is no
intersection.
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collected by the telescope.We define the defocusing of
a point P in the object space, at distance S from the
lens plane and displaced at distance d from the op-
tical axis, as the ratio between the portion of the lens
area that forms the image of P in the image space and
the total area of the lens. A visual representation of
defocusing from different regions of the object space
of the lens is provided in Fig. 2.

The effect of defocusing is to decrease the light in-
tensity received from points that are at finite dis-
tance and displaced from the optical axis. Such
reduction of the light collected by the receiving optics
depends on the lidar construction parameters. For
the finite size laser beam section, the defocusing
can be considered as an integral property of the beam
section points, so that those points not completely
focused will contribute less than those closer to the
optical axis. The calculations of defocusing are
straightforward and can be done considering the thin
lens equation

1
S
þ 1
Si

¼ 1
f
; ð3Þ

where S is the distance of the object from the lens
along the optical axis and Si is the distance of its im-
age from the lens. The magnification of the lens is
given by

M ¼ −
f

S − f
: ð4Þ

Using Eqs. (3) and (4) we can find the image of a
point. Using the coordinates of the image we can pro-
ject the pinhole onto the plane of the lens. The over-
lap area of the projection on the lens plane, divided
by the area of the lens is the defocusing factor of the
point. For an ideal pinhole placed on the focal plane
and centered along the optical axis, its projection
from the image point Pi ¼ ð−Si;diÞ of the object point
P ¼ ðS;dÞ is described by the following equations:

ycðS;dÞ ¼
f

Si − f
di ¼ d; ð5Þ

RðSÞ ¼ si
Si − f

rh ¼ S
f
rh; ð6Þ

where ycðS;dÞ is the position of the center,RðSÞ is the
radius of the projection of the pinhole and rh is the
pinhole radius. To better describe the formalism used
we refer to Fig. 2. The position of the center depends
both on the range and displacement from the optical
axis of the object point. The radius of the projection
depends only on the range. This information can be
used in the equation proposed in the appendix of [10]
to get the intersection area of two circumferences
replacing r1, r2, and r from the conventions of [10],
respectively, with RðSÞ, dr the radius of the lens,
and jycðS;dÞj as measure of the distance of the two

circumferences. The result is a function γðS;dÞ that
describes the defocusing of an object point P depend-
ing on its distance S and d from, respectively, the lens
plane and the lens axis, as reported in the following
equation:

γðS;dÞ ¼
A
h
dr
2 ;RðSÞ; jycðS;dÞj

i

π d2
r
4

; ð7Þ

where A½dr
2 ;RðSÞ; jycðS;dÞj� is the overlap area of two

circumferences and well described in the appendix
of [10].

We computed this function for a system whose
parameters are reported in Table 1. The result is de-
picted in Fig. 3. The geometric overlap is expected at
a range of approximately 144m according to Eq. (2)
and considering α ¼ 0 rad. After these considerations
it is clear that Eq. (2) should be reconsidered in order
to obtain the real altitude at which we expect to col-
lect the full backscattered energy. The results ob-
tained are detailed in Appendix A with Eq. (A2).
The resulting value is approximately 1345m using
α ¼ 0 rad.

To get the integral defocusing at a defined distance
from a finite size laser beam section of unevenly dis-
tributed energy density, we integrate the product of
energy density and defocusing for each point of the
beam section and divide the result for the full energy
within the beam section. The situation is even more
complicated in practice since lidar systems may be
imperfectly aligned or the pinhole may not be prop-
erly placed on the telescope focal plane, as we
assumed in the ideal situation presented above.

Table 1. Lidar System Specifications

Parameter Value

Laser ND-YAG
Pulse rate 1200Hz
Wavelength 1064=532nm
Pulse energy 400 μJ
Pulse duration 10ns
Laser diameter dt 8mm
Distance from optical axis 0:12m
Laser divergence θt 333 μrad

Receiver Cassegrain telescope
Telescope diameter dr 0:20m
Telescope focal length f 0:30m
FOV θr 666 μrad
Pinhole 2rh 200 μm

Filters bandwidth 2nm
Number of channels 4
Channel 1 532nm∥

Channel 2 532nm⊥

Channel 3 1064nm
Channel 4 N2 (Raman) 607nm
Sensor type photo multipliers

Acquisition modes photon counting, current
Photo counting mode res. 60m
Current mode res. 7:5m
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These experimental uncertainties add complexity to
the study. Because of the difficulties inherent in find-
ing an a priori correction that is always valid, a
correction function experimentally retrieved should
be pursued on a case-by-case basis. Different ap-
proaches have been reported in the literature [7].
We have elaborated a model that not only takes into
account the incomplete overlap and defocusing
effects for a perfectly aligned system but also the ef-
fects of a partial misalignment of the laser–telescope
axes along the sagittal and meridional angles α and
β, as well as the possible transverse displacement dx
of the pinhole, which might not be well centered
along the optical axis.

B. Lidar Model

Following [10,11], we implemented a simple lidar
model. In order to describe the formulation of the
model we assume cylindrical symmetry around the
optical axis. We assume also that the distribution
of energy of the laser beam is symmetrical with re-
spect to the center of the BTS and that it is zero out-
side. Within the coordinate system of the BTS ðr; θÞ
we express our distribution of energy dEðr;SÞ as a
normalized distribution

dEðr;SÞ ¼
�
1=ðπ �RdðSÞ2Þ; if r ≤ RdðSÞ
0; if r > RdðSÞ ; ð8Þ

(flat hat beam) where r is the distance from the cen-
ter of the BTS and RdðSÞ is the radius of the BTS at a
range S. So we can express the normalized energy of
the BTS as

EðSÞ ¼
Z

2π

0

Z
∞

0
dEðr;SÞdrdθ ¼ 1: ð9Þ

Equations (8) and (9) are dimensionless because we
are considering a normalized distribution. An idea of
the errors introduced in to the model considering a
uniform distribution instead of a real one can be seen
in [11]. For a point of coordinate ðS;dÞ we can calcu-
late the defocusing using the considerations devel-
oped in Section 2.A, in particular Eq. (7). We
remember that dr is the diameter of the receiver,
RðSÞ is the radius of the projection of the pinhole
on the lens plane, and ycðS;dÞ is the center of this
projection. To better understand the coordinates
we used please refer to Fig. 2.

The defocusing for the BTS of the laser at range S
can be calculated by integrating the product of the
normalized distribution of energy and multiplied
for the defocusing of each point:

ΓðSÞ ¼
Z

2π

0

Z
RdðSÞ

0
γðS;dðr; θ;SÞÞdEðr;SÞdrdθ: ð10Þ

The function dðr; θ;SÞ expresses the distance of a
point of the BTS at a range S from the optical axis.
Remembering the conventions used for defining the
instrumental parameters and assuming small an-
gles, we can express

RdðSÞ ≈
dt þ θtS

2
ð11Þ

as the radius of the BTS at a distance S. The distance
of the center of the BTS at a range S can be obtained
from the following equation:

dcðSÞ ≈
��

d0

2
þ αS

�
2
þ S2β2

�
1=2

; ð12Þ

where d0 is the distance between the lens center and
the laser beam when S ¼ 0 and β is the meridional
angle. The distance from the optical axis of a point
of the laser BTS in the coordinate system of the
BTS can be expressed as

dðr; θ;SÞ2 ¼ dcðSÞ2 − 2rdcðSÞ cosðθÞ þ r2: ð13Þ
In order to add further realism let us consider dis-

placement of the pinhole along the optical axis of the
telescope. This can be achieved by modifying the re-
sults of Eqs. (5) and (6). However, for a generic dis-
placement dx of the pinhole along the optical axis
we can give a modified version of Eqs. (5) and (6).
We consider dx so that f > jdxj. We assume it to
be positive when the pinhole is placed between the
focal plane and lens plane and negative when it is
placed otherwise.

y0c½S;dðr; θ;SÞ� ¼
dðr; θ;SÞðf þ dxÞ
jf − Sdx=f þ dxj ; ð14Þ

Fig. 3. Description of the defocusing effect within the FOV using
the lidar parameters collected in Table 1. The solid lines represent
the laser beam borders (light gray) and the FOV borders (dark
gray). The nonwhite area is the geometrical FOV, the gray from
0 (white) to 1 (black) shows the region where the effect of defocus-
ing is present, so that points in that area are only partially imaged
through the pinhole. In this example, defocusing effects affects the
laser returns from near the ground up to 1:34km.
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R0ðSÞ ¼ Srh
jf − Sdx=f þ dxj : ð15Þ

Substituting those results in Eq. (7) and then in
Eq. (10) we obtain the lidar model used in this article.
Displacement of the pinhole from the optical axis is
more complex to consider because the assumption of
cylindrical symmetry is broken. An approach to such
a problem can be seen in [12]. In general, the com-
plexity of a lidar is not reduced to those few param-
eters. A more realistic model of a lidar system was
proposed in [13], but for our purpose the idealized
version of [11] is enough in order to produce a fit
of the experimental data.

3. Correction for Close-Range Returns

We propose here a technique that involves the acqui-
sition of two consecutive profiles of the atmosphere
with the lidar system tilted at two different elevation
angles. We assume that the vertical stratification of
the atmosphere remains constant over time between
the two consecutive acquisitions and is homogeneous
over horizontal distances comparable to the altitude
range of our sampling. This reduces the assumption
of horizontal uniformity used in [4,7]. The principal
idea is that the profile taken at the smaller elevation
angle will sample the same stratified atmosphere
reaching the condition of full overlap at a lower alti-
tude with respect to the profile acquired at the great-
er elevation angle. Moreover, at any given altitude,
the profile taken at the smaller elevation angle will
suffer less from defocusing than the profile acquired
at the larger elevation angle. Thus, we use the acqui-
sition at the lower elevation to correct the defocusing
of the higher one to obtain a correction for the verti-
cal profile. This correction is applied to the profile
with lower elevation. The new corrected profile is
used with the vertical noncorrected to evaluate a new
correction. By iteratively applying this method, we
reconstruct the true atmospheric profile down to the
minimum sampling altitude. In fact this empirically
determined correction often cannot be used because
it is affected by noise that would introduce, on the
reconstructed profiles, artifacts and artificial fea-
tures. This noise results from horizontal inhomo-
geneities in the atmosphere, whose existence is
violating what we assumed so far. We get rid of the
need to invoke the atmospheric horizontal homoge-
neity by using such empirically determined function
to constrain the free parameters α, β, and dx in our
model. Such retrieved parameters are then used to
calculate a modeled function Γt that is unaffected
by small horizontal inhomogeneities.

A. Description of the Method

A rigorous approach to our technique is proposed
in Appendix B. Here we present the operational
description of the iterative method to retrieve the ex-
perimental correction for close range. Let us consider
two lidar range corrected signals (RCSs) after back-
ground subtraction at two different elevation angles,

and let us define X1 as the acquisition taken at the
lowest elevation angle ω1 and X2 as the one with
the highest ω2. In the following example we take
ω2 ¼ 90° and thus consider X2 as a vertical profile.
We refer to the range using the symbol S and to the
altitude using the symbol Z. We remark that the al-
titudes of a profile can be obtained from the range
and the elevation angle ω by multiplying the range
with sinω.

1. Both acquisitions are calibrated to an assumed
molecular profile at the same altitude range.

2. For a well aligned system the two profiles
should have the same values in the full overlap
region, at altitudes above Z0 ¼ S1max � sinðω2Þ, as ob-
tained from Eq. (A2) in Appendix A.

3. Inside the altitudes from zero to Z0, X1 is in-
terpolated over the altitude grid of X2, obtaining
the regridded profile X0

11
where we added the extra

subscript 1 to explain that this is an interpolated pro-
file, we added also the apex to define the order of
iteration, that in this case is zero because no correc-
tion was applied to X1.

4. The ratio Γ1 ¼ X0
11

X2
will be our first step correc-

tion. It should be equal to unity in the region of
full overlap while it starts increasing at lower alti-
tudes. Deviations from unity in the full overlap re-
gion are due to fluctuations of the signals caused
by small atmospheric variability and noise. The de-
viations can be both positive and negative, but of
small entity if the measurements are taken closely
in time and angle.

5. We apply the Γ1 correction over the range of
X1, in order to obtain a first corrected acquisition
X1

1 that we consider to correctly reproduce the close-
range lidar returns from a lower altitude than the
original X1.

6. We again interpolate X1
1 over the altitude grids

of X2 to obtain the quantity X1
11
. The ratio Γ2 ¼ X1

11
X2

is
now our second step correction. Again we use this
ratio to calculate a correction function for X1 over
its range.

By iterating through steps 3 to 5, we progressively
reduce the altitude above which we consider Xi

1 as a
reliable acquisition of the slant atmospheric profile.
The number of iterations n needed to converge to a
stable value for the profile depends on the angles ω1
and ω2. The closer they are, the more iterations are
needed. The number of iterations can be calculated
using Eq. (A2) and can be obtained looking for the
iterations needed to correct a hypothetical profile
that reaches full overlap at S0 to a range equal to
S0min:

n ¼ int
�
ln
�
S0min

S0

�
ln
�
sinω1

sinω2

�
−1
�
: ð16Þ

The range S0 is generally unknown, but an estima-
tion can be obtained using nominal parameters and
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Eq. (A2). Performing more iteration than the needed
number will not affect the function obtained. The
Γn function is the empirical correction function for
overlap and defocusing effect. However, before using
it to correct the profiles we need to clarify some
points: it is important to realize that the difference
between the two angles should be large enough to en-
sure that when the complete focus and overlap is
reached for X2 at a given altitude, there will be a sig-
nificant portion of the vertical range where the acqui-
sition X1 could be considered reliable. On the other
hand, if the angle between the two acquisitions is too
large, the differences in the sampled air masses
might be significant and would induce errors in the
estimated correction. As noted earlier, such experi-
mentally retrieved correction function Γ will suffer
of “noise” due to experimental errors and lack of hor-
izontal homogeneity. We have to use the experimen-
tally retrieved correction function Γ to constrain the
free parameters in our lidar model and thus find a
new, modeled correction function Γt, unaffected by
experimental errors or lack of horizontal homogene-
ity in the atmosphere.

B. Numerical Simulations

A numerical simulation and validation of this tech-
nique and of our model has been carried out by using
a known atmospheric vertical profile and simulating
two lidar acquisitions taken at two different eleva-
tion angles.

We used an atmospheric profile of molecular back-
scatter using the standard atmospheric profiles as
stated in [14]. The profile used is plotted in Fig. 4.
We created two synthetic RCSs corresponding to
ω1 ¼ 40° and ω2 ¼ 90° in nighttime, which are dis-
played in Fig. 4. For each profile we applied a random
noise from a Gaussian distribution with a standard
deviation of 15% at 1500m. This noise was applied to
both profiles after the multiplication for the same
overlap function.

The algorithm proposed in Section 3.A was applied
to these two virtual acquisitions. The “experimental”
correction function Γ that we obtained from our itera-
tive algorithm is shown in Fig. 5 (black dots). It is
compared to the function computed by using
Eq. (7) with the nominal parameters of our system
as reported in Table 1 (dashed line) and alternatively
by choosing these parameters in Eq. (7) in order to fit
with the “experimental” data the modeled correction
function Γt (solid line). The fitting procedure is ac-
complished by a least-square minimization using the
Levenberg–Marquardt algorithm. It is noteworthy
that the dashed and solid lines originating from an
“a priori” and “a posteriori” assessment of the param-
eters in Eq. (7) superimpose well.

In order to assess the robustness of our estimation
of the parameters α, β, and dx of our model described
in Section 2.B, we performed the calculations above
up to 1500 times and applied noise that was 15% of
the signal at 1500m. The results of our Monte Carlo
simulations are shown in Fig. 6. The noise we applied

was strong compared to typical systems with integra-
tion time of 1 min. The average overlap curve super-
imposes well with the one used to generate the
profiles. Its relative errors could be used as an esti-
mation of the real errors of the fit. We can see from
the scatter plots A, B, and C that different triplets of
the parameters give the same overlap function

Fig. 4. Simulation of molecular backscatter coefficient profiles
measures by a lidar at two different elevation angles (solid gray
line, 90° elevation angle, solid black line 40° elevation angle), using
the nominal overlap function depicted in Fig. 5. A random noise is
applied to each profile according to the model of noise plotted in
Fig. 10 and discussed in Appendix B. The noise level has been cho-
sen to produce a relative error of 5% at 1500m of range. The pro-
files corrected according to our method have also been plotted as
dashed gray lines. The solid thicker gay line represents the atmo-
spheric backscatter coefficient, from standard atmosphere model.

Fig. 5. Comparison of the theoretical function (dashed gray) used
to generate profiles in Fig. 4. The result of our algorithm (black
dots) of Section 3.A and the overlap function estimated fitting with
Eq. (10) (solid black).
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compatible with the one used to create the profiles
within the noise limits. The reason for this is that
the problem is ill-posed, because the solution is
not unique, so the different results depend on the fact
that similar overlap functions can be obtained with
different experimental setups. The aim of the inver-
sion of Eq. (7) is to obtain a realistic overlap function
that can correct in a better way. The use of such a
method for estimating the state of alignment of
the system needs further studies.

C. Experimental Results

To check the validity of our correction algorithm we
should apply it to a measured lidar profile and com-
pare it with a real profile measured by an instrument
that does not suffer from defocusing effects: for exam-
ple an in situ backscatter sonde on board of an
ascending balloon. However, this would be very dif-
ficult and expensive to set up. An alternative way
to check the correctness of our approach is to use a
system that can also measure the atmospheric N2
Raman signal and to use it to calibrate the elastic
signal [8]. Since both acquisitions suffer from the
same incomplete overlapping and defocusing, the
ratio of the two quantities would be unaffected.
Unfortunately not many systems, especially the
more portable ones, are powerful enough to acquire
a Raman signal. In our case, our system is capable to
perform Raman measurements only during night-
time, while the high sky background does not allow
such measurements during daylight. Hence, we

tested our method on the field during nighttime,
and compared the results of our correction with
the Raman calibration. The characteristics of the
system used in the present work are summarized
in Table 1.

We acquired three successive lidar profiles at an
elevation angle of 90°, 38:9°, and again 90° with an
acquisition time of 60 s to ensure the constancy of the
atmospheric characteristics in the time frame of our
test. With those profiles we performed the calcula-
tions as described in Section 3 for bothmeasured cou-
ples. We finally acquired also a Raman and an elastic
profile for a period of 10 min with the aim of verifying
the correction obtained with our method.

Figure 7 displays the three lidar acquisitions as
RCS after background subtraction and calibrated
on the expected molecular profile as function of the
altitude. The calibration was performed correcting
for the extinction using 40 sr of lidar ratio. This
choice was made taking into account the most likely
characteristics of the aerosol present in our measure-
ment site according to [15]. Different choices of the
lidar ratio did not alter the course of our test.

In Fig. 7, a comparison of the RCS acquired at
38:9° with the one taken at 90°, before and after it,
is shown. The profiles superimpose well from 1300m
upward, suggesting that full overlap was reached at
that altitude. This result was further confirmed by
Eq. (A2) in Appendix A, which yields a nominal value
of 1342m. Considering the nominal parameters of
our system, we chose the altitude 1500mas the point
where to start our iterative algorithm.

Figure 8 shows our correction functions Γn ob-
tained by applying the iterative algorithm using the

Fig. 6. Distributions of the results obtained using our technique
on 1500 couple of synthetic profiles generated with elevations
40° and 90° applying noise as in Fig. 4, using a relative error of
15% at 1500m. A Angles α and β; B angle α and pinhole displace-
ment dx; C sagittal angle β and pinhole displacement dx; D distri-
bution of the 1500 overlap curves. Solid gray line represents the
average overlap function while the dashed gray line represents
its relative error.

Fig. 7. Calibration of the three acquired range corrected signals
over molecular backscatter coefficient profiles for 532nm. The ca-
libration was performed using an iterative scheme to correct for
extinction assuming a lidar ratio value of 40 sr.
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two profiles taken at 90° and the one taken at 38:9°.
The gray solid line represent their average.

It is clear from Fig. 8 that the two correction func-
tions differ significantly and do not have a smooth
shape as desirable, because of the lack of horizontal
homogeneity in the atmospheric stratification during
our test. We used their average to fit our model, using
the angles α, β, and the displacement dx as free fit-
ting parameters. As noted before, the inversion of
Eq. (10) is an ill-posed problem. Hence, the para-
meters obtained from the fitting procedure are not
unique and may not represent realistically the sys-
tem; hence, we are not particularly interested in
them. What is of importance is that the fitting pro-
cedure produces an estimate of the overlap function
that is effective in describing the behavior of the sys-
tem in the region of incomplete overlap. The result of
the fitting is displayed in Fig. 9 as a dotted gray line.
In the same figure we plotted the overlap function
estimated from the Raman channel and the nominal
curve obtained by using the lidar specifications re-
ported in Table 1. The Raman channel was used
as proposed in [8] and we expect it to be the true over-
lap function of the system. It departed from the nom-
inal curve as we would expect for a real system. Our
retrieval reproduced the Raman curve rather than
the nominal curve. Therefore, we can assume that
our method provides a good approximation of the
overlap function.

D. Error Estimations

To estimate the systematic error present in our
retrieval we compared our overlap function with
the one obtained from the simultaneous use of the

Raman channel that allowed us a Raman calibration,
considered hereafter as the reference. The solid black
line reported in Fig. 10, represents the relative sys-
tematic error, computed as the absolute value of the
differences between our proposed corrections and the
Raman calibrated signal, divided by the Raman ca-
librated. We can see from the figure that the sys-
tematic errors remain below 10% almost down to
bottom of the incomplete overlap range but increased
quickly as the retrieved signal approached the
S0min ≈ 32m range. In the same figure, the gray line
represents the relative random error of the lidar de-
tected signal itself, computed as suggested in [16].
We observe that it has a minimum around 0:2km,
this is due to the fact that the non-range-corrected
signal has a maximum where the beam enters the
FOV of the telescope, which produces a minimum
of the relative error. We can see that the systematic
error induced by our correction scheme remains at
acceptable levels throughout the reasonable range of
exploitation of the lidar detected signal, i.e., approxi-
mately down to 100m. Appendix B reports a detailed
computation of the propagation of random errors af-
fecting the experimentally retrieved correction func-
tion Γ (as the two reported as gray dotted-dashed in
Fig. 8). The results there presented, obtained by
using up to nine iterations to correct the signal down
to 100m, are reported in Fig. 10. There, the dashed
black line represents the errors to be attributed to
the experimentally retrieved correction function Γ,
calculated using Eq. (B7), propagating the random
errors of the lidar detected signal reproduced by
the solid gray line. Finally, the dashed gray line in
Fig. 10 represents the number of iterations needed,

Fig. 8. Different overlap functions Γ: the black solid line results
from the lidar optical model, with the system parameters as in
Table 1, i.e., the nominal overlap function. The gray dotted and
dashed lines are two different experimental determinations of Γ
obtained by our iterative technique. The light gray solid line is
the average of the two experimental ones.

Fig. 9. Comparison between the different overlap functions: the
black solid line is the nominal overlap, as in Fig. 8; the black
dashed line is the reference overlap correction curve obtained from
the Raman calibration; the dotted gray line is Γt, the result of the
fitting procedure of the free parameters of our lidar optical model,
constrained by the average of two experimental Γ, depicted as a
light gray solid line in Fig. 8.
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step by step, to obtain the results presented. It is in-
teresting to note that the discontinuities in the error
profile (dashed black line) are related to the number
of iterations (dashed gray line). Each subsequent
iteration keeps memory of the relative error of the
previous 10 iterations, as can be seen from Eq. (B1).
If the percentage error were constant the error would
be a series of equal steps. However, the relative er-
rors in a lidar profile are inverse to the magnitude
of the signals and this leads to the saw shape we
can observe in Fig. 10. Such determination of the er-
rors affecting the experimentally retrieved correction
function Γ can be used as weighting factor when con-
straining Γ to the modeled Γt.

4. Conclusions

Following the approach outlined in [10] we obtained
Eq. (A2) as a definition of the range at which a lidar
signal can be considered not underestimated by in-
complete overlap effects. This equation can be used
in the evaluation of the minimum altitude of full
overlap for lidar systems. A new iterative scheme
employing lidar acquisition at two elevations was
proposed to experimentally estimate an overlap cor-
rection function Γ. Such scheme was described and
applied to retrieve Γ. It has then been shown that
such empirical correction suffers from withdrawals
due to the lack of horizontal homogeneities in the at-
mosphere. A simple geometric optical model of a lidar
was then introduced, taking into account both the in-
complete overlap and close-range defocusing effects,

as well as possible misalignments of the lidar system.
The application of the model to constrain the experi-
mentally determined overlap function Γ produced a
modeled Γt, which is not suffering from the hassles
affecting Γ. The proposed method, employing two li-
dar acquisitions at different elevations, an iterative
procedure to retrieve an experimental correction and
a fitting procedure to obtain a modeled correction,
was validated using aMonte Carlo approach, leading
to promising results. Finally, the method to correct
for incomplete overlapping and defocusing in the de-
tection of close-range lidar returns has been experi-
mentally implemented and validated on a real lidar
system with Raman N2 detection capabilities. The
method appears to be robust and of easy implemen-
tation. It allows to extend the lidar profiles well be-
low the altitude of full overlap. The estimated errors
showed that correction of the signal in the incom-
plete overlap range shall be considered reliable
(i.e., with systematic errors below 10%) for a large
part of the incomplete overlap range. In principle,
the method can also give information about the state
of alignment of the system. Subsequent develop-
ments should be done in order to use it as a diagnos-
tic tool.

Appendix A

Equations (1) and (2) describe the ranges where the
laser BTS starts entering and where it is fully inside
the FOV. On the basis of the considerations on defo-
cusing we define the ranges where the beam enters
in the region of full focus. In other words, considering
Fig. 3 we want to obtain the range where the beam is
completely within the black region. To obtain this re-
sult we can use simple geometrical argumentations.
Let us consider Eqs. (5) and (6). We can estimate
the lowest range s0 in the FOV where γðS;dÞ is 1.
This range can be estimated using Eq. (6) assuming
the radius of pinhole projection from the point into
the image space on the lens plane is equal to the lens
radius:

s0 ¼ drf
rh

: ðA1Þ

The point in the object space on the optical axes
and distant s0 from the receiver is the vertex of
the black cone, as in Fig. 3, and it is at 300m on the
optical axis. The interception of this cone with the
beam will define the ranges between which the beam
is entering inside the completely focused region of
the FOV.

Assuming small angles, we can use the approxima-
tion tan α ≈ α. The maximum range where the exter-
nal part of the beam enters in the fully focused region
S1
max is given by the following equation:

S1max ¼
2dþ dr þ dt

θr − θt − 2α : ðA2Þ

For a system as in Table 1, this equation gives as
result S1max ≈ 1343m and can be used when the

Fig. 10. The solid black line is the relative systematic error, com-
puted as the absolute value of the differences between our pro-
posed corrections and the Raman calibrated signal, divided by
the latter. The solid gray line is the relative random error of
the lidar signal. The dashed black line is the relative uncertainty
attributable to the experimentally retrieved correction function Γ,
computed by propagating the relative random error of the lidar
signals in the iterative procedure as described in the text. The
dashed gray line represents the number of iterations needed, step
by step, to obtain the results presented.
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angles of the optical systems respect the following
relation:

θr < 2αþ θt ≤
2drf

ðdþ dt=2Þrh
: ðA3Þ

The entrance of the internal part within the full
overlap region is more complex and beyond the scope
of this work.

Appendix B

Here we present the analytical treatment to the
iterative technique described in Section 3.A consider-
ing X2ðrÞ the signal from the vertical profiling and
X1ðrÞ as the one with elevation angle ω < 90°, both
function of the range r and range corrected. In order
to relate this appendix with Section 3.A the reader
must take into account that the previously described
method is applied to gridded data, considering r as a
continuous variable, no interpolations are needed in
order to obtain the corresponding values at grid
points. We simply note that the range r for X2 and
the range r= sinω for X1 correspond to signals from
the same atmospheric altitude. In general we can say
that

X2ðrÞ ≤ X1

�
r

sinω

�
; ðB1Þ

and it is equal when r ≥ S0max. The first correction is

Γ1ðrÞ ¼
X1

�
r

sinω

�

X2ðrÞ
: ðB2Þ

This correction is used to correct X1:

X1
1ðrÞ ¼ X1ðrÞΓ1ðrÞ ¼ X1ðrÞ

X1

�
r

sinω

�

X2ðrÞ
; ðB3Þ

then we implemented our second-order correction:

Γ2ðrÞ ¼
X1

1

�
r

sinω

�

X2ðrÞ
¼

X1

�
r

sinω

�
Γ1

�
r

sinω

�

X2ðrÞ

¼
X1

�
r

sinω

�
X1

�
r

sin2 ω

�

X2ðrÞX2

�
r

sinω

� : ðB4Þ

The generalization of this formula for a correction
of order n is

ΓnðrÞ ¼
Yn
i¼0

X1ðrsin−i−1ωÞ
X2ðrsin−iωÞ : ðB5Þ

By reordering the terms we get the most conve-
nient form:

ΓnðrÞ ¼
X1ðrsin−n−1ωÞ

X2ðrÞ
Yn
i¼1

X1ðrsin−iωÞ
X2ðrsin−iωÞ : ðB6Þ

We estimated the errors for our correction scheme.
We assumed that the angle and the range have no
errors in order to simplify the calculation. It is clear
that the relative errors of our signal at each range
can be expressed as the sum of all the relative errors
used to bring the correction to that specific range.
These arguments finally produced the formula to es-
timate the relative error:

ϵΓnðrÞ ¼
Xn
i¼0

½ϵX1ðr sin−i−1 ωÞ þ ϵX2ðr sin−i ωÞ�: ðB7Þ

We have to remark that ϵX1ðrÞ ¼ 0 when r ≥ S0max
sinω and

the relative error ϵX2ðrÞ ¼ 0when r ≥ S0max. An exam-
ple of the results of this formula is shown in Fig. 10 as
the analytical error curve.

The measurements were performed in the frame-
work of the project AEROCLOUDS (Study of the
Direct and Indirect Aerosol Effects on Climate)
supported by the Italian Ministry of Education,
University and Research (MIUR).
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