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Abstract

Assigning proper prior uncertainties for inverse modeling of CO2 is of high importance,
both to regularize the otherwise ill-constrained inverse problem, and to quantitatively
characterize the magnitude and structure of the error between prior and “true” flux.
We use surface fluxes derived from three biosphere models VPRM, ORCHIDEE, and5

5PM, and compare them against daily averaged fluxes from 53 Eddy Covariance sites
across Europe for the year 2007, and against repeated aircraft flux measurements
encompassing spatial transects. In addition we create synthetic observations to sub-
stitute observed by modeled fluxes to explore the potential to infer prior uncertainties
from model-model residuals. To ensure the realism of the synthetic data analysis, a10

random measurement noise was added to the tower fluxes which were used as refer-
ence. The temporal autocorrelation time for tower model-data residuals was found to
be around 35 days for both VPRM and ORCHIDEE, but significantly different for the
5PM model with 76 days. This difference is caused by a few sites with large model-data
bias. The spatial correlation of the model-data residuals for all models was found to be15

very short, up to few tens of km. Long spatial correlation lengths up to several hundreds
of km were determined when synthetic data were used. Results from repeated aircraft
transects in south-western France, are consistent with those obtained from the tower
sites in terms of spatial autocorrelation (35 km on average) while temporal autocorre-
lation is markedly lower (13 days). Our findings suggest that the different prior models20

have a common temporal error structure. Separating the analysis of the statistics for
the model data residuals by seasons did not result in any significant differences of the
spatial correlation lengths.
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1 Introduction

Atmospheric inversions are widely used to infer surface CO2 fluxes from observed CO2
dry mole fractions with a Bayesian approach (Ciais et al., 2000; Gurney et al., 2002;
Lauvaux et al., 2008). In this approach a limited number of observations of atmospheric
CO2 mixing ratios are used to solve for generally a much larger number of unknowns,5

making this an ill-posed problem. By using prior knowledge of the surface–atmosphere
exchange fluxes and by using an associated prior uncertainty, the information retrieved
in the inversion from the observations is spread out in space and time corresponding
to the spatiotemporal structure of the prior uncertainty. In this way, the solution of the
otherwise ill-posed problem is regularized. This prior knowledge typically comes from10

process-oriented or diagnostic biosphere models that simulate the spatiotemporal pat-
terns of terrestrial fluxes, as well as from inventories providing information regarding
anthropogenic fluxes such as energy consumption, transportation, industry, and forest
fires.

The Bayesian formulation of the inverse problem is a balance between the a priori15

and the observational constraints. It is crucial to introduce a suitable prior flux field and
assign to it proper uncertainties. When prior information is combined with inappropriate
prior uncertainties, this can lead to poorly retrieved fluxes (Wu et al., 2011). Here, we
are interested in biosphere–atmosphere exchange fluxes and their uncertainties, and
make the usual assumption that the uncertainties in anthropogenic emission fluxes are20

not strongly affecting the atmospheric observations at the rural sites that are used in
the regional inversions of biosphere–atmosphere fluxes.

Typically inversions assume that prior uncertainties have a normal and unbiased
distribution, and thus can be represented in the form of a covariance matrix. The co-
variance matrix is a method to weigh our confidence of the prior estimates. The prior25

error covariance determines to what extent the posterior flux estimates will be con-
strained by the prior fluxes. Ideally the prior uncertainty should reflect the mismatch
between the prior guess and the actual (true) biosphere–atmosphere exchange fluxes.
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In this sense it needs to also have the corresponding error structure with its spatial and
temporal correlations.

A number of different assumptions of the error structure have been considered by
atmospheric CO2 inversion studies. Coarser scale inversions often neglect spatial and
temporal correlations as the resolution is low enough for the inverse problem to be5

regularized (Bousquet et al., 1999; Rödenbeck et al., 2003a) or assume large spatial
correlation lengths (several hundreds of km) over land (Houweling et al., 2004; Röden-
beck et al., 2003b). For regional scale inversions, with higher spatial grid resolutions
which are often less than 100 km, the spatial correlations are decreased (Chevallier
et al., 2012) and the error structure need to be carefully defined. A variety of differ-10

ent assumptions exist. This is because only recently an objective approach to define
prior uncertainties was followed (Chevallier et al., 2006 and 2012). In some regional
studies, correlations are derived from large scale inversions in order to regularize the
problem, although the change of resolution could lead to different correlation scales
(Schuh et al., 2010). Alternatively, they are defined with a correlation length repre-15

senting typical synoptic meteorological systems (Carouge et al., 2010). In other cases,
ad-hoc solutions are adopted, where the correlation lengths are assumed to be smaller
than in the case of global inversions (Peylin et al., 2005), or derived from climatolog-
ical and ecological considerations (Peters et al., 2007) where correlation lengths only
within the same ecosystem types have a value of 2000 km. In addition some studies20

use a number of different correlation structures in order to analyze which seems to be
the most appropriate one based on some evaluation of the resulting inverted fluxes
(Lauvaux et al., 2012). Michalak et al. (2004) applied a geostatistical approach based
on the Bayesian method, in which the prior probability density function is based on an
assumed form of the spatial and temporal correlation and no prior flux estimates are25

required. It optimizes the prior error covariance parameters, the variance and the spa-
tial correlation length by maximizing the probability density function of the observations
with respect to these parameters.
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A recent study by Broquet et al. (2013) obtained good agreements between the
statistics at the European and 1 month scale of both the prior and posterior uncer-
tainties from their inversions of the biosphere fluxes and that of the average misfits of
the prior and posterior estimates of the fluxes to the local flux measurements. These
good agreements relied in large part on their definition of the prior uncertainties based5

on the statistics derived in an objective way from model-data mismatch by Chevallier
et al. (2006, 2012). In these studies, modeled daily fluxes from a site scale configu-
ration of the ORCHIDEE model are compared with flux observations made within the
global FLUXNET site network, based on the eddy covariance method (Baldocchi et al.,
2001), and a statistical upscaling technique is used to derive estimates of the uncer-10

tainties in ORCHIDEE simulations at lower resolutions. While typical inversion systems
have a resolution ranging from tens of kilometers up to several degrees (hundreds of
km), the spatial representativity of the flux observations is typically around a kilometer.
Considering also the scarcity of the observing sites in the flux network, the spatial in-
formation they bring is limited without methods for up-scaling such as the one applied15

by Chevallier et al. (2012). Nevertheless these measurements provide a unique oppor-
tunity to infer estimates of the prior uncertainties by examining model-data misfits for
spatial and temporal autocorrelation structures.

In this study, we augment the approach of Chevallier et al. (2006 and 2012), to
a multi-model – data comparison, investigating among others a potential generaliza-20

tion of the error statistics, suitable to be applied by inversions using different biosphere
models as priors. This expectation is derived from the observation that the biosphere
models, despite their potential differences typically have much information in common,
such as driving meteorological fields, land use maps, or remotely sensed vegetation
properties, and sometimes even process descriptions. We evaluate model – model25

mismatches to (i) investigate intra-model autocorrelation patterns and (ii) to explore
whether they are consistent with the spatial and temporal correlation lengths of the
model – data mismatch comparisons. Model comparisons have been used in the past
to infer the structure of the prior uncertainties. For example, Rödenbeck et al. (2003b)
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used prior correlation lengths based on statistical analyses of the variations within an
ensemble of biospheric models. This approach is to a certain degree questionable, as
it is unclear how far the ensemble of models actually can be used as representative of
differences between modeled and true fluxes. However, if a relationship between model
– data and model – model statistics can be established for a region with dense network5

of flux observations, it could be used to derive prior error structure also for regions with
a less dense observational network.

Moreover, to improve the knowledge of spatial flux error patterns, we make use of
a unique set of aircraft fluxes measured on 2 km spatial windows along intensively sam-
pled transects of several tens of km, ideally resolving spatial and temporal variability of10

ecosystem fluxes across the landscape without the limitation of the flux network with
spatial gaps in between measurement locations. Lauvaux et al. (2009) compared re-
sults of a regional inversion against measurements of fluxes from aircraft and towers,
while this is the first attempt to use aircraft flux measurements to assess spatial and
temporal error correlation structures.15

This study focuses on the European domain for 2007 (tower data) and 2005 (aircraft
data), and uses output from high-resolution biosphere models that have been used
for regional inversions. Eddy covariance tower fluxes were derived from the FLUXNET
ecosystem network (Baldocchi et al., 2001), while aircraft fluxes were acquired within
the CarboEurope Regional Experiment (CERES) in southern France. The methods20

and basic information regarding the models are summarized in Sect. 2. The results
from model-data and model-model comparisons are detailed in Sect. 3. Discussion
and conclusions are following in Sect. 4.

2 Data and methods

Appropriate error statistics for the prior error covariance matrix are derived from com-25

paring the output of three biosphere models which are used as priors for regional scale
inversions with flux data from the ecosystem network and aircraft. We investigate spa-
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tial and temporal autocorrelation structures of the model-data residuals. The temporal
autocorrelation is a measure of similarity between residuals at different times but at the
same location as a function of the time difference. The spatial autocorrelation refers
to the correlation, at a given time, of the model-data residuals at different locations as
a function of spatial distance. With this analysis we can formulate and fit an error model5

such as an exponentially decaying model, which can be directly used in the mesoscale
inversion system to describe the prior error covariance.

2.1 Observations

A number of tower sites within the European domain, roughly expanding from −12◦ E
to 35◦ E and 35◦N to 61◦N (see also Fig. 1), provide us with direct measurements of10

CO2 biospheric fluxes using the eddy covariance technique. This technique computes
fluxes from the covariance between vertical wind velocity and CO2 dry mole fraction
(Aubinet et al., 1999). We use Level 3, quality checked, half hourly observations of
net ecosystem exchange fluxes (NEE), downloaded from the European Flux Database
(www.europe-fluxdata.eu), and listed by site in Table 1. Each site is categorized into15

different vegetation types (Table 1). A land cover classification is used to label the sites
as crop (17 sites), deciduous forest (4), evergreen forest (17), grassland (8), mixed
forest (3), savannah (1 site), and shrub land (1). For the current study we focus on
observations from these 53 European sites during the year 2007 (Fig. 1).

Additionally, aircraft fluxes are used, obtained with an eddy covariance system in-20

stalled onboard a SkyArrow ERA aircraft (Gioli et al., 2006). Flights were made in
southern France during CERES (CarboEurope Regional Experiment) from 17 May to
22 June 2005. Eddy covariance fluxes were computed on 2 km length spatial windows
along transects of 69 km above forest and 78 km above agricultural land, flown 52 and
54 times across entire daily course, respectively. Exact routes are reported in Dolman25

et al. (2006).
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2.2 Biosphere models

We simulate CO2 terrestrial fluxes for 2007 with three different biosphere models
described in the following. The “Vegetation Photosynthesis and Respiration Model”
(VPRM) (Mahadevan et al., 2008), used to produce prior flux fields for inverse studies
(Pillai et al., 2012), is a diagnostic model that uses EVI – enhanced vegetation index5

and LSWI – land surface water index from MODIS, a vegetation map (Synmap, Jung
et al., 2006) and meteorological data (temperature at 2 m and downward shortwave
radiative flux extracted from ECMWF short term forecast fields at 0.25◦ resolution) to
derive gross biogenic fluxes. VPRM parameters controlling respiration and photosyn-
thesis for different vegetation types (a total of four parameters per vegetation type)10

were optimized using eddy covariance data for the year 2005 collected during the Car-
boEuropeIP project (Pillai et al., 2012). For this study, VPRM fluxes are provided at
hourly temporal resolution and at two spatial resolutions of 1 and 10 km (referred to as
VPRM1 and VPRM10). The difference between the 1 and 10 km resolution version is
the aggregation of MODIS indices to either 1 or 10 km, otherwise the same meteorol-15

ogy and VPRM parameters are used. At 10 km resolution VPRM uses a tiled approach,
with fractional coverage for the different vegetation types, and vegetation type specific
values for MODIS indices. For the comparison with the aircraft data VPRM produced
fluxes for 2005 at 10 km spatial resolution.

The “Organizing Carbon and Hydrology In Dynamic Ecosystems”, ORCHIDEE,20

model (Krinner et al., 2005) is a process based site scale to global land surface model
that simulates the water and carbon cycle using meteorological forcing (temperature,
precipitation, humidity, wind, radiation, pressure). The water balance is solved at a half-
hourly time step while the main carbon processes (computation of a prognostic LAI,
allocation, respiration, turnover) are called on a daily basis. It uses a tiled approach,25

with fractional coverage for 13 Plant Functional Types (PFT). It has been extensively
used as prior information in regional and global scale inversions (Piao et al., 2009;
Broquet et al., 2013). For the present simulation, we use a global configuration of the
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version 1.9.6 of ORCHIDEE, where no parameter has been optimized against eddy
covariance data. The model is forced with 0.5◦ WFDEI meteorological fields (Weedon
et al., 2014). The PFT map is derived from an Olson land cover map (Olson, 1994)
based on AVHRR remote sensing data (Eidenshink and Faundeen, 1994). The fluxes
are diagnosed at 3 hourly temporal resolution and at 0.5◦ horizontal resolution.5

The “5 parameter model” (5PM) (Groenendijk et al., 2011), also used in atmospheric
inversions (Tolk et al., 2011; Meesters et al., 2012), is a physiological model describing
transpiration, photosynthesis, and respiration. It uses MODIS LAI (leaf area index) at
1 km resolution, meteorological data (temperature, moisture, and downward shortwave
radiative flux, presently from ECMWF at 0.25◦ resolution), and differentiates PFTs for10

different vegetation types and climate regions. 5PM fluxes are provided at 0.25◦ spatial
and hourly temporal resolution. The optimization has been done with EC-data from
Fluxnet as described in Groenendijk et al. (2011). Regarding the optimization of the
heterotrophic respiration, EC-data from 2007 were used here.

Modeled fluxes for all above mentioned sites have been provided by the different15

models by extracting the fluxes from the grid cells which encompass the EC station
location using vegetation type specific simulated fluxes, i.e. using the vegetation type
within the respective grid cell for which the eddy covariance site is assumed represen-
tative. For most of the sites the same vegetation type was used for model extraction
as long as this vegetation type is represented within the grid-cell. As VPRM uses a tile20

approach, for two cases (“IT-Amp”, “IT-MBo”) the represented vegetation type (crop)
differ from the actual one (grass). For these cases, the fluxes corresponding to crop
were extracted. Fluxes were aggregated to daily fluxes in the following way: first, fluxes
from VPRM and 5PM as well as the observed fluxes were temporally aggregated to
match with the ORCHIDEE 3 hourly resolution; in a second step we created gaps in25

the modeled fluxes where no observations were available; the last step aggregated to
daily resolution on the premise that (a) the gaps covered less than 50 % of the day, and
(b) the number of gaps (number of individual 3 hourly missing values) during day and
during night were similar (not different by more than a factor two) to avoid biasing.
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Spatial and temporal correlation structures and the standard deviation of flux resid-
uals (model–observations) were examined for daily fluxes over the year 2007. For the
aircraft analysis, only the VPRM model was used since it is the only having a sufficiently
high spatial resolution (10 km) comparable with aircraft flux footprint and capable of re-
solving spatial variability in relatively short flight distances. Aircraft NEE data have been5

grouped into 10 km segments along the track, to match the VPRM grid, obtaining 6 grid
points in forest transects and 8 in agricultural land transects. Each grid point was sam-
pled 52 times in forests, and 54 in agricultural land. VPRM fluxes at each aircraft grid
cell were extracted, and then linearly interpolated to the time of each flight.

3 Analysis of model–observation differences10

Observed and modeled fluxes are represented as the sum of the measured or simu-
lated values and an error term, respectively. When we compare modeled to observed
data this error term is a combination of model (the prior uncertainty we are interested
in) and observation error. Separating the observation error from the model error in the
statistical analysis of the model–observation mismatch is not possible; therefore we15

first neglect the impact of the observation error term on the correlation lengths. Nev-
ertheless later in the analysis of model-model differences we assess the impact of the
observation error on estimated correlation lengths.

The tower temporal autocorrelation is computed between the time series of model–
observations differences xl ,i at site l and the same series lagged by a time unit k20

(Eq. 1), where x is the overall mean and N the number of observations:

rl (k) =

N−k∑
i=1

(xl ,i −xl ) · (xl ,i+k −xl )

N∑
i=1

(xl ,i −xl )2

(1)
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In order to reduce boundary effects in the computation of the autocorrelation at lag
times around one year, the one-year flux time series data (model and observations)
for each site was replicated four times. This follows the approach of Chevallier et al.,
(2012), where sites with at least three consecutive years of measurements have been
used.5

In the current analysis we introduce the all-site temporal autocorrelation by simulta-
neously computing the autocorrelation for all the observation sites, with M the number
of the sites:

r(k) =

M∑
l=1

N−k∑
i=1

(xl ,i −xl ) · (xl ,i+k −xl )

M∑
l=1

N∑
i=1

(xl ,i −xl )2

(2)

Temporal correlation scales τ were derived by fitting an exponentially decaying model:10

r = α ·e− tτ (3)

Here t is the time lag. For the exponential fit, lags up to 180 days were used (thus the
increase in correlations for lag times larger than 10 months is excluded). At zero lag
time the correlogram has a value of one (fully correlated), however for even small lag
times this drops to values smaller than one, also known as the nugget effect. For this15

we include the nugget effect variable α.
The aircraft temporal autocorrelation was similarly computed according to Eq. (1)

using VPRM, and the same exponentially decaying model (Eq. 3) was used to fit the
individual flight flux data, distributed along the entire daily course. The temporal interval
was limited at 36 days by the experiment duration.20

For the spatial analysis the correlation between model–observation residuals at two
different locations (i.e sites or aircraft grid points) separated by a specific distance was
computed in a way similar to the temporal correlation, and involved all possible pairs
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of sites and aircraft grid points. Additional data treatment for the spatial analysis was
applied to reduce the impact of tower data gaps, as it is possible that the time series for
two sites might have missing data at different times. Thus in order to have more robust
results, we also examined spatial structures by setting a minimum threshold of 150
days of overlapping observations within each site pair. Furthermore spatial correlation5

was investigated for seasonal dependence, where seasons are defined as summer
(JJA), fall (SON), winter (DJF for the same year), and spring (MAM). In those cases
a different threshold of 20 days of overlapping observations was applied.

To estimate the spatial correlation scales, the pairwise correlations were grouped
into bins of 100 km distance for towers and 10 km for aircraft data, respectively (dist).10

Following the median for each bin was calculated, and a model similar to Eq. (3) was
fitted, but omitting the nugget effect variable:

r = e−
dist
d (4)

The nugget effect could not be constrained simultaneously with the spatial correlation
scale d , given the relatively coarse distance groups, the fast drop in the median cor-15

relation from one at zero distance to small values for the first distance bin combined
with the somewhat variations at larger distances. Note that this difference between the
spatial and the temporal correlation becomes obvious in the results Sect. 3.

As aircraft fluxes cannot obviously be measured at the same time at different loca-
tions, given the relatively short flight duration (about one hour) we treated aircraft flux20

transect as instantaneous “snapshots” of the flux spatial pattern across a landscape,
neglecting temporal variability that may have occurred during flight.

4 Analysis of model-model differences

We evaluate both model-data flux residuals and model-model differences in a sense of
pairwise model comparisons, in order to assess if model-model differences can be used25

as proxy for the prior uncertainty, assuming that the involved prior errors for each model
9404
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are identical in a sense that they share the same statistics and not correlated. Similar to
the model–observation analysis, the statistical analysis gives a combined effect of both
model errors. We assess the impact in the error structure between model–observation
and model-model comparisons caused by the observation error by adding a random
measurement error to each model-model comparison. This error has the same char-5

acteristics as the observation error which is typically associated with eddy covariance
observations; the error characteristics were derived from the paired observation ap-
proach (Richardson et al., 2008). Specifically, we implement the flux observation error
as a random process (white noise) with a double-exponential probability density func-
tion. This can be achieved by selecting a random variable u drawn from the uniform10

distribution in the interval (−1/2, 1/2), and then applying Eq. (5) to get a Laplace dis-
tribution (also referred to as the double-exponential)

x = µ− σ
√

2
· sgn(u) · ln(1−2 · |u|) (5)

Here µ = 0 and σ is the standard deviation of the double-exponential. We compute the
σ according to Richardson et al. (2006) as15

σ = α1 +α2 · |F | (6)

where F is the flux and α1, α2 are scalars specific to the different vegetation classes.
Lasslop et al. (2008) found that the autocorrelation of the half hourly random errors is
below 0.7 for a lag of 30 min, and falls off rapidly for longer lag times. Thus we assume
the standard deviation for hourly random errors to be comparable with the half hourly20

errors. Hourly random errors specific for each reference model are generated for each
site individually. With ORCHIDEE as reference with fluxes at 3 hourly resolution, a new
ensemble of 3 hourly random noise was generated with σ for the 3 hourly errors mod-
ified (divided by the square root of three to be coherent with the hourly σ). As both
modeled and observed fluxes share the same gaps, the random errors were aggre-25

gated to daily resolution, with gaps such to match those of observed fluxes. Finally the
daily random errors were added to the modeled fluxes.
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5 Results

5.1 Model-data comparison for tower and aircraft fluxes

Observed daily averaged NEE fluxes, for all ground sites and the full time-series,
yield a standard deviation of 3.01 µmolm−2 s−1, while the modeled fluxes were found
to be less spatially varying and with a standard deviation of 2.84, 2.80, 2.53,5

2.64 µmolm−2 s−1 for VPRM10, VPRM1, ORCHIDEE and 5PM respectively.
The residual distribution of the models defined as the difference between simulated

and observed daily flux averages for the full year 2007 was found to have a standard
deviation of 2.47, 2.49, 2.7 and 2.25 µmolm−2 s−1 for VPRM10, VPRM1, ORCHIDEE
and 5PM respectively. Those values are only slightly smaller than the standard devia-10

tions of the observed or modeled fluxes themselves, which is in line with the generally
low fraction of explained variance with r-square values of 0.31, 0.27, 0.12, and 0.25 for
VPRM10, VPRM1, ORCHIDEE and 5PM respectively. When using site-specific corre-
lations, the average fraction of explained variance increases to 0.38, 0.36, 0.35, and
0.42, for VPRM10, VPRM1, ORCHIDEE and 5PM, respectively. This indicates better15

performance for the models to simulate temporal changes at the site level, and the
differences to the overall r-square values indicate limitation of the models to reproduce
observed spatial (site to site) differences. Figure 2 shows the correlation between mod-
eled and observed daily fluxes as a function of the vegetation type characterizing each
site. All models exhibit a significant scatter of the correlation ranging from 0.9 for some20

sites to 0 or even negative correlation for some crop sites, with the highest correlation
coefficients for deciduous and mixed forest.

The distribution is biased by −0.07, 0.26, 0.92 and 0.25 µmolm−2 s−1 for VPRM10,
VPRM1, ORCHIDEE and 5PM, respectively. Figure 3 shows the bias distribution for dif-
ferent vegetation types. Bias and standard deviation seem to depend on the vegetation25

type for all models, without a clear general pattern.
The temporal autocorrelation was calculated for model-data residuals for each of

the flux sites (“site data” in Fig. 4), but also for the full dataset (“all-site” in Fig. 4).
9406
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The “all site” temporal autocorrelation structure of the residuals appears to have the
same pattern for all models. It decays smoothly for time lags up to 3 months and then
remains constant near to 0 or to some small negative values. The temporal autocor-
relation increases again for time lags > 10 months, which is caused by the seasonal
cycle. The all-sites correlation for the VPRM model at 10 km resolution remains positive5

for lags<104 days and for lags > 253 days. Weak negative correlations were found in
between with minimum value −0.03. In contrast we found only positive correlation for
VPRM at 1 km resolution for the whole year with a minimum value of 0.002. Similarly,
ORCHIDEE follows the same patterns with positive correlations for lags< 76 days and
for lags > 291. Minimum correlation was found to be −0.09. For 5PM model we also10

found only positive correlations. The minimum value was found to be 0.08. These tem-
poral autocorrelation results agree with the findings of Chevallier et al. (2012).

The exponentially decaying model in Eq. (3) was used to fit the data. At zero separa-
tion time (t = 0) the correlogram value is 1. However the correlogram exhibits a nugget
effect (i.e. a value of 0.39 for VPRM10) as a consequence of an uncorrelated part of15

the error. For the current analyses we fit the exponential model with an initial corre-
lation different from 1. The fit has a root mean square error of 0.041. The e-folding
time (defined as the lag required for the correlation to decrease by a factor of e (63 %
of its initial value) ranged between 26–70 days for the different models (see Table 2).
Specifically, for VPRM10 and VPRM1 the e-folding time is 32 and 33 days respectively20

(30–34 days within 95 % confidence interval for both). Confidence intervals for the e-
folding time were calculated by computing the confidence intervals of the parameter in
the fitted model. For ORCHIDEE best fit was 26 days (23–28 days within 95 % confi-
dence interval). In contrast, 5PM yields a significantly longer correlation time between
65–75 days (95 % confidence interval) with the best fit being 70 days.25

For a number of sites a large model-data bias was found. In order to assess how
the result depends on individual sites where model-data residuals are more strongly
biased the analysis was repeated under exclusion of sites with an annual mean of
model-data flux residuals larger than 2.5 µmolm−2 s. This threshold value is roughly
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half of the most deviant bias. In total 9 sites (“CH-Lae”, “ES-ES2”, “FR-Pue”, “IT-Amp”,
“IT-Cpz”, “IT-Lav”, “IT-Lec”, “IT-Ro2”, “PT-Esp”) across all model-data residuals were
excluded. From these sites “CH-Lae” appears to have serious problems related to the
steep terrain, where the basic assumptions made for eddy covariance flux measure-
ments are not well applicable (Göckede et al., 2008). The rest of the sites are located in5

the Mediterranean region, and suffer from summer drought according to the Köppen–
Geiger climate classification map (Kottek et al., 2006); in those cases a large model
– data bias is expected as existing models tend to have difficulties to estimate carbon
fluxes for drought prone periods (Keenan et al., 2009). The model-data bias at those
sites does not necessarily exceed the abovementioned threshold of 2.5 µmolm−2 s for10

each individual model, but a larger bias than the average was detected. After exclu-
sion of those sites the temporal correlation times were found to be between 33–35
days within 95 % confidence interval for 5PM with the best fit value being 34 days.
The rest of the models had temporal e-folding times of 27, 29 and 24 days (1st row of
Table 2), while the all-site correlation remains positive for lags < 76, < 79, < 66 days15

for VPRM10, VPRM1 and ORCHIDEE respectively. Some weak negative correlations
exist, with a minimum value of −0.06, −0.02, −0.09, −0.005 for VPRM10, VPRM1,
ORCHIDEE and 5PM respectively.

The temporal correlation of differences between VPRM and aircraft flux measure-
ments could be computed for time intervals up to 36 days (Fig. 5) corresponding to the20

duration of the campaign. The correlation shows an exponential decrease, and levels
off after about 25 days with an e-folding correlation time of 13 days. Whilst the general
behavior is consistent with results obtained for VPRM-observation residuals for flux
sites, the correlation time is two times smaller.

Regarding spatial error correlations, results for all models show a dependence on25

the distance between pairs of sites. The median correlation drops within very short
distances (Fig. 6). Fitting the simple exponentially decaying model (Eq. 4) to the cor-
relation as a function of distance we find an e-folding correlation length d of 40, 37,
32 and 31 km with a root mean square error (RMSE) of 0.14, 0.09, 0.05 and 0.07 for

9408

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/9393/2015/bgd-12-9393-2015-print.pdf
http://www.biogeosciences-discuss.net/12/9393/2015/bgd-12-9393-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


BGD
12, 9393–9441, 2015

An objective prior
error quantification

for regional
atmospheric inverse

applications

P. Kountouris et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

VPRM10, VPRM1, ORCHIDEE and 5PM, respectively. Spatial correlation scales are
also computed for a number of different data selections (cases) in addition to the stan-
dard case shown in Fig. 6 (case S): using only pairs with at least 150 overlapping days
of non-missing data (case S∗), using only pairs with identical PFT (case I), using only
pairs with different PFT (case D), and using only pairs with at least 150 overlapping5

days for the D and I cases (cases D∗, I∗). The results for these cases are summarized
in Fig. 7. Also 95 % confidence intervals were computed, and the spread spatial corre-
lation was found to be markedly more critical than for the time correlations. Note that for
some cases the 2.5 % (the lower bound of the confidence interval) hit the lower bound
for correlation lengths (0 km).10

Interestingly, if we restrict the analysis to pairs with at least 150 overlapping days
between site pairs, larger correlation scales are found (case S∗ in Fig. 7). Considering
only pairs with different PFT (case D), consistently, all correlation lengths are found to
be smaller compared to the standard case (S). This is expected to a certain degree, as
model errors should be more strongly correlated between sites with similar PFTs than15

between sites with different PFTs. By considering only pairs within the same vegetation
type (case I) we observe a significant increase of the correlation length relative to
case S for VPRM at 10 and 1 km resolution to values of 432 and 305 km, respectively.
The ORCHIDEE and 5PM models show some (although not significant) increase in
correlation length. Restricting again the analysis to pairs with at least 150 overlapping20

days for the D and I cases (D∗, I∗) we observe an increase of the correlation lengths
that is however significant only for VPRM at 10 and 1 km.

Seasonal dependence of the correlation lengths for at least 20 overlapping days per
season and for all site-pairs is also shown in Fig. 7. VPRM showed somewhat longer
correlation lengths during spring and summer, ORCHIDEE had the largest lengths25

occurring during summer and fall, and 5PM correlation lengths show slightly enhanced
values during spring and summer. However, none of these seasonal differences are
significant with respect to the 95 % confidence interval.
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The spatial error correlation between VPRM10 model and aircraft fluxes measured
during May–June along continuous transects at forest and agriculture land use (Fig. 8)
shows an exponential decay up to the maximum distance that was encompassed dur-
ing flights (i.e. 70 km). Of note is that only two measurements were available at 60 km
distance and none for larger distances making difficult to identify where the asymptote5

lying. Nevertheless fitting the decay model (Eq. 4) leads to d = 35 km (26–46 km within
the 95 % confidence interval), which is in good agreement with the spatial correlation
scale derived for VPRM10 using flux sites during both spring and summer (Fig. 7).

6 Model-model comparison

We investigate the model-model error structure of NEE estimates by substituting the10

observed fluxes which were used as reference, with simulated fluxes from all the bio-
sphere models. Note that for consistency with the model-data analysis, the simulated
fluxes contained the same gaps as the observed flux time series. The e-folding cor-
relation time is found to be slightly larger compared to the model-data correlation
times, for most of the cases. An exception are the 5PM-VPRM10 and 5PM-VPRM115

pairs which they produced remarkably larger correlation times (Table 2). Specifically,
VPRM10-ORCHIDEE and VPRM10-5PM residuals show correlation times of 30 days
(range between 27–33 days within 95 % confidence interval) and 131 (range between
128–137 days within 95 % confidence interval), respectively. Repeating the analysis
excluding sites with residual bias larger than 2.5 µmolm−2 s, correlation times of 3120

and 100 days for VPRM10-ORCHIDEE and VPRM10-5PM are found, respectively. If
we use ORCHIDEE as reference the e-folding correlation times are 30, 28 and 38 days
with respect to VPRM10, VPRM1 and 5PM comparisons respectively.

Although the e-folding correlation times show but minor differences compared to
the model-data residuals, this is not the case for the spatial correlation lengths (Fig. 9).25

The standard case (S) was applied for the annual analysis, with no minimum number of
days with overlapping non-missing data for each site within the pairs. Taking VPRM10
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as reference, much larger e-folding correlation lengths of 312 km with a range of 206–
421 km within 95 % confidence interval yielded for VPRM10-ORCHIDEE comparisons,
and 306 km for VPRM10-5PM were found. With ORCHIDEE as reference the correla-
tion length for the ORCHIDEE-5PM comparison is 271 km with a range of 183–360 km
within 95 % confidence interval. Seasonal correlation lengths, using a minimum of 205

days overlap in the site-pairs per season (Fig. 9), are also significantly larger compared
with those from the model-data analysis.

When we add the random measurement error to the modeled fluxes used as ref-
erence (crosses in Fig. 9), we observe only slight changes in the annual correlation
lengths, without a clear pattern. The correlation lengths show a random increase or10

decrease but limited up to 6 %. Interestingly, the seasonal correlation lengths for most
of the cases show a more clear decrease. For example, the correlation length of the
VPRM10-5PM residuals during winter, decreases by 22 % or even more for spring
season. Despite this decrease, the seasonal correlation lengths remain significantly
larger in comparison to those from the model-data analysis. Overall, all models when15

used as reference show the same behavior with large e-folding correlation lengths that
mostly decrease slightly when the random measurement error is included. Although
the random measurement error was added as “missing part” to the modeled fluxes to
better mimic actual flux observations, it did not lead to correlation lengths similar to
those from the model-data residual analysis. To investigate if a larger random mea-20

surement error could cause spatial correlation scales in model-model differences, we
repeated the analysis with artificially increased random measurement error (multiply-
ing with a factor between 1 and 15). Only for very large random measurement errors
did the model-model correlation lengths start coinciding with those of the model-data
residuals (Fig. 10).25
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7 Discussion and conclusions

We analyzed the error structure of a-priori NEE uncertainties derived from a multi-
model – data comparison by comparing fluxes simulated by three different vegetation
models to daily averages of observed fluxes from 53 sites across Europe, categorized
into 7 land cover classes. The different models showed comparable performance with5

respect to reproducing the observed fluxes; we found mostly insignificant differences
in the mean of the residuals (bias) and in the variance. Site-specific correlations be-
tween simulated and observed fluxes are significantly higher than overall correlations
for all models, which suggest that the models struggle with reproducing observed spa-
tial flux differences between sites. Furthermore, the site-specific correlations reveal10

a large spread even within the same vegetation class, especially for crops (Fig. 2).
This is likely due to the fact that none of the models uses a specific crop model that
differentiates between the different crop types and their phenology. The models using
remotely sensed vegetation indices (VPRM and 5PM) better capture the phenology;
ORCHIDEE is the only model that differentiates between C3 and C4 plants, but shows15

the largest spread in correlation for the crop. Differences in correlations between the
different vegetation types were identified for all the biosphere models, however it must
be noted that the number of sites per vegetation type is less than 10 except for crop
and evergreen forests.

Model-data flux residual correlations were investigated to give insights regarding20

prior error temporal scales which can be adopted by atmospheric inversion systems.
Autocorrelation times were found to be in line with findings of Chevallier et al. (2012).
The model-data residuals were found to have an e-folding time of 32 and 26 days for
VPRM and ORCHIDEE respectively, and 70 days for 5PM. This significant difference
appears to have a strong dependence on the set of sites used in the analysis. Ex-25

cluding nine sites with large residual bias, the autocorrelation time from the 5PM-data
residuals drastically decreased and became coherent with the times of the other bio-
sphere models. The all-models and all-sites autocorrelation time was found to be 39
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days, which reduces to 30 days (28–31 days within 95 % confidence interval), when
excluding the sites with large residual bias, coherent with the single model times. From
the model-model residual correlation analysis, the correlation time appear to be con-
sistent with the above-mentioned results, and lies between 28 and 46 days for most of
the ensemble members. However model-model pairs consisting of the VPRM and 5PM5

models produced larger times up to 136 days; omitting sites with large residual biases
this is reduced to 105 days (102–108 days within 95 % confidence interval). This find-
ing could be attributed to the fact that despite the conceptual difference between those
models, they do have some common properties. Both models were optimized against
eddy covariance data although for different years (2005 and 2007 respectively), while10

no eddy covariance data were used for the optimization of ORCHIDEE. In addition,
VPRM and 5PM both use data acquired from MODIS, although they estimate photo-
synthetic fluxes by using different indices of reflectance data. Summarizing the tem-
poral correlation structure, it appears reasonable to (a) use same error correlation in
atmospheric inversions regardless which biospheric model is used as prior, (b) use an15

autocorrelation length of around 30 days.
Only weak spatial correlations for model-data residuals were found, limited to short

lengths up to 40 km without any significant difference between the biospheric models
(31–40 km). Although the estimated spatial scales are shorter than the spatial resolu-
tion that we are solving for (100 km bins), the autocorrelation analysis of aircraft mea-20

surements made during CERES supports the short scale correlations. These measure-
ments have the advantage of providing continuous spatial flux transects along specific
tracks that were sampled routinely (in this case over period of 36 days at various times
of the day), thus resolving flux spatial variability also at small scales, where pairs of
eddy covariance sites may not be sufficiently close. On the other hand, aircraft surveys25

are necessarily sporadic in time. Of note is that the impact of the eddy covariance ob-
servation error on the estimated prior error and its structure had to be initially neglected
as it is not possible to subtract the unknown error from the observations. However we
do not expect this to have a significant impact on the error structure, as the addition of
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an observation error to the analysis of model-model differences had only minor influ-
ence on the error structure.

Model-data residual correlation lengths show a clear difference, between the cases
where pairs only with different (D) or identical (I) PFT were considered, with the lat-
ter resulting in longer correlation lengths, but only identified for the VPRM model at5

both resolutions. The “D” case has slightly shorter lengths for all models than the stan-
dard case (S). One could argue that as VPRM uses PFT specific parameters that
were optimized against 2005 observations, the resulting PFT specific bias could lead
to longer spatial correlations. However ORCHIDEE and 5PM also show comparable
biases (Fig. 3), but long correlation scales were not found. Moreover we repeated the10

spatial analysis after subtracting the PFT specific bias from the fluxes, and the result-
ing correlation lengths showed no significant change. The impact of data gaps was
also investigated by setting a threshold value of overlapping observations between site
pairs. Setting this to 150 days results in an increase for the “S” case up to 60 km, but
only for the VPRM model. For the “D” and “I” cases when setting the same threshold15

value (D∗ and I∗) we only found an insignificant increase, indicating that data gaps are
hardly affecting the “D” and “I” cases. These findings suggest that high-resolution di-
agnostic models might be able to highlight the increase of the spatial correlation length
between identical PFTs vs. different PFTs. Note that the Chevallier et al. (2012) study
concluded that assigning vegetation type specific spatial correlations is not justified,20

based on comparisons of eddy covariance observations with ORCHIDEE simulated
fluxes. The current study could not further investigate this dependence, as the number
of pairs within a distance bin is not large enough for statistical analyses, when using
only sites within the same PFT. With respect to the seasonal analysis, spatial correla-
tions are at the same range among all models and seasons. Although in some cases25

(VPRM10 and VPRM1 spring) the scales are larger, they suffer from large uncertain-
ties. Hence, implementing distinct and seasonally dependent spatial correlation lengths
in inversion systems cannot be justified.
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The analysis of model-model differences did not reproduce the same spatial scales
as those from the model-data differences, but instead spatial correlation lengths were
found to be dramatically larger. Adding a random measurement error to the modeled
fluxes used as reference slightly reduced the spatial correlation lengths to values rang-
ing from 86 to 320 km. Even when largely inflating the measurement error, the resulting5

spatial correlation lengths (Fig. 10) still do not approach those derived from model-data
residuals. Only when the measurement error is scaled up by a factor of 8 or larger
(which is quite unrealistic as this corresponds to a mean error of 1.46 µmolm−2 s−1 or
larger, which is comparable to the model-data mismatch where a standard deviation of
around 2.5 µmolm−2 s−1 was found), the correlation lengths are consistent with those10

based on model-data differences. Whilst the EC observations are sensitive to a foot-
print area of about 1 km2, the model resolution is too coarse to capture variations at
such a small scale. This local uncorrelated error has not been taken into account by the
analysis of model-data residuals as the error model could not be fitted with a nugget
term included, favoring therefore smaller correlation scales. The analysis of differences15

between two coarser models (excluding VPRM at 1 km for the reason mentioned in
the next paragraph) does not involve such a small scale component, thus resulting in
larger correlation scales. This would suggest that for inversion studies targeting scales
much larger than the eddy covariance footprint scale, the statistical properties of the
prior error should be derived from the model-model comparisons.20

A special case in the context of the model-model study is the comparison between
VPRM1 and VPRM10, which is the only case that produced short spatial correlation
scales. These two models only differ in the spatial resolution of MODIS indices EVI
and LSWI (1 vs. 10 km). Thus differences between those two models are only related
to variability of these indices at scales below 10 km, which is not expected to show any25

spatial coherence. Indeed the results show only very short correlation scales (Fig. 9)
with an exception during fall, however there the uncertainty is also large.

The large correlation lengths yielded from this model-model residual analysis sug-
gest that the models are more similar to each other than to the observed terrestrial
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fluxes, at least on spatial scales up to a few hundred kilometers regardless of their con-
ceptual differences. This might be expected at some extent due to elements that the
models share. Respiration and photosynthetic fluxes are strongly driven by temperature
and downward radiation, respectively, and those meteorological fields have significant
commonalities between the different models. VPRM and 5PM both use temperature5

and radiation from ECMWF analysis and short-term forecasts. Also the WFDEI tem-
perature and radiation fields used in ORCHIDEE are basically from the ERA-Interim re-
analysis, which also involves the integrated forecasting system (IFS) used at ECMWF
(Dee et al., 2011). Regarding the vegetation classification all models are site specific
and therefore are using the same PFT for each corresponding grid-cell. Photosynthetic10

fluxes are derived with the use of MODIS indices in VPRM (EVI and LSWI) and in 5PM
(LAI and albedo).

Using full flux fields from the model ensemble (rather than fluxes at specific locations
with observation sites only) to assess spatial correlations in model-model differences
is not expected to give significantly different results, as the sites are representative for15

quite a range of geographic locations and vegetation types within the domain investi-
gated here.

The current study intended to provide insight on the error structure that can be used
for atmospheric inversions. Typically, inversion systems have a pixel size ranging from
10 to 100 km for regional and continental inversions, and as large as several degrees20

(hundreds of km) for global inversions. If a higher resolution system assumes such
small-scale correlations (as those found in the current analysis), in the covariance ma-
trix, of note is that this leads to very small prior uncertainties when aggregating over
large areas and over longer time periods. For example, with a 30 km spatial and a 40
day temporal correlation scale, annually and domain-wide (Fig. 1) aggregated uncer-25

tainties are around 0.06 Gt C. This is about a factor ten smaller than uncertainties typi-
cally used e.g. in the Jena inversion system (Rödenbeck et al., 2005). In addition, the
aggregated uncertainties using the VPRM10-ORCHIDEE error structure (32 days and
320 km temporal and spatial correlation scales) are found to be 0.46 Gt C yr−1 which is
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also much smaller than the difference between VPRM10 (NEE= −1.45 GtCyr−1) and
ORCHIDEE (NEE= −0.2 GtCyr−1), when aggregated over the domain shown in Fig. 1.
Although this analysis does capture the dominating spatiotemporal correlation scale
in the error structure, it fails in terms of the error budget, suggesting that also other
parts of the error structure are important as well. Therefore additional degrees of free-5

dom (e.g. for a large-scale bias) need to be introduced in the inversion systems to fully
describe the error structure.

Exponentially decaying correlation models are a dominant technique among atmo-
spheric inverse studies to represent temporal and spatial flux autocorrelations (Röden-
beck et al., 2009; Broquet et al., 2011, 2013). However, regarding the temporal error10

structure we need to note the weakness of this model to capture the slightly negative
values at 2–10 months lags and, more importantly, the increase in correlations for lag
times larger than about 10 months. Error correlations were parameterized differently
by Chevalier et al. (2012) where the prior error was investigated without implementing
it to atmospheric inversions. Polynomial and hyperbolic equations were used to fit tem-15

poral and spatial correlations respectively. Nevertheless, we use here e-folding lengths
not only for their simplicity in describing the temporal correlation structure with a single
number, but also because this error model ensures a positive definite covariance matrix
(as required for a covariance). This is crucial for atmospheric inversions as otherwise
negative, spatially and temporally integrated uncertainties may be introduced. In addi-20

tion it can keep the computational costs low; this is because the hyperbolic equation
has significant contributions from larger distances: for the case of the VPRM1 model,
at 200 km distance the correlation according to Eq. (7) is 0.16, compared to 0.004 for
the exponential model. As a consequence, more none-zero elements are introduced to
the covariance matrix, which increases computational costs in the inversion systems.25

Using the parameterization from Eq. (7) for the spatial correlation, d values of 73, 39,
12 and 20 km were found with a RMSE of 0.11, 0.07, 0.05, 0.07 for VPRM10, VPRM1,
ORCHIDEE and 5PM respectively. A similar RMSE was found when using the expo-
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nential (0.14, 0.09, 0.05 and 0.07), indicating similar performance of both approaches
with respect to fitting the spatial correlation.

Whilst temporal scales found from this study have already been used in inversion
studies, this is not the case to our best knowledge for the short spatial scales. The
impact of the prior error structure derived from this analysis, on posterior flux estimates5

and uncertainties will be assessed in a subsequent paper. For that purpose, findings
from this study are currently implemented in three different regional inversion systems
aiming to focus on network design for the ICOS atmospheric network.
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Table 1. Eddy covariance sites measuring CO2 fluxes that were used in the analysis. The land
cover classification which is used, is coded as follows; CRO, DCF, EVG, MF, GRA, OSH, SAV for
crops, deciduous forest, evergreen forest, mixed forest, grass, shrub and savanna respectively.

Site code Site name Land cover Latitude Longitude Citation
classification

BE-Bra Brasschaat MF 51.31 4.52 Gielen et al. (2013)
BE-Lon Lonzee CRO 50.55 4.74 Moureaux et al. (2006)
BE-Vie Vielsalm MF 50.31 6.00 Aubinet et al. (2001)
CH-Cha Chamau GRA 47.21 8.41 Zeeman et al. (2010)
CH-Dav Davos ENF 46.82 9.86 Zweifel et al. (2010)
CH-Fru Frebel GRA 47.12 8.54 Zeeman et al. (2010)
CH-Lae Laegern MF 47.48 8.37 Etzold et al. (2010)
CH-Oe1 Oensingen GRA 47.29 7.73 Ammann et al. (2009)

grassland
CH-Oe2 Oensingen crop CRO 47.29 7.73 Dietiker et al. (2010)
CZ-BK1 Bily Kriz forest ENF 49.50 18.54 Taufarova et al. (2014)
DE-Geb Gebesee CRO 51.10 10.91 Kutsch et al. (2010)
DE-Gri Grillenburg GRA 50.95 13.51 Prescher et al. (2010)
DE-Hai Hainich DBF 50.79 10.45 Knohl et al. (2003)
DE-Kli Klingenberg CRO 50.89 13.52 Prescher et al. (2010)
DE-Tha Tharandt ENF 50.96 13.57 Prescher et al. (2010)
DK-Lva Rimi GRA 55.68 12.08 Soussana et al. (2007)
ES-Agu Aguamarga OSH 36.94 −2.03 Rey et al. (2012)
ES-ES2 El Saler-Sueca CRO 39.28 −0.32 –

(Valencia)
ES-LMa Las Majadas del SAV 39.94 −5.77 Casals et al. (2011)

Tietar (Caceres)
FI-Hyy Hyytiälä ENF 61.85 24.30 Suni et al. (2003)
FR-Aur AuradeŽ CRO 43.55 1.11 Tallec et al. (2013)
FR-Avi Avignon CRO 43.92 4.88 Garrigues et al. (2014)
FR-Fon Fontainebleau DBF 48.48 2.78 Delpierre et al. (2009)
FR-Hes Hesse DBF 48.67 7.07 Longdoz et al. (2008)
FR-LBr Le Bray ENF 44.72 −0.77 Jarosz el al. (2008)
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Table 1. Continued.

Site code Site name Land cover Latitude Longitude Citation
classification

FR-Lq1 Laqueuille GRA 45.64 2.74 Klumpp et al. (2011)
intensive

FR-Lq2 Laqueuille GRA 45.64 2.74 Klumpp et al. (2011)
extensive

FR-Mau Mauzac GRA 43.39 1.29 Albergel et al. (2010)
FR-Pue Puechabon EBF 43.74 3.60 Allard et al. (2008)
HU-Mat Matra CRO 47.85 19.73 Nagy et al. (2007)
IT-Amp Amplero GRA 41.90 13.61 Barcza et al. (2007)
IT-BCi Borgo Cioffi CRO 40.52 14.96 Kutsch et al. (2010)
IT-Cas Castellaro CRO 45.07 8.72 Meijide et al. (2011)
IT-Col Collelongo DBF 41.85 13.59 Guidolotti et al. (2013)
IT-Cpz Castelporziano EBF 41.71 12.38 Garbulsky et al. (2008)
IT-Lav Lavarone ENF 45.96 11.28 Marcolla et al. (2003)
IT-Lec Lecceto EBF 43.30 11.27 Chiesi et al. (2011)
IT-LMa Malga Arpaco GRA 46.11 11.70 Soussana et al. (2007)
IT-MBo Monte Bondone GRA 46.01 11.05 Marcolla et al. (2011)
IT-Ren Renon ENF 46.59 11.43 Marcolla et al. (2005)
IT-Ro2 Roccarespampani 2 DBF 42.39 11.92 Wei et al. (2014)
IT-SRo San Rossore ENF 43.73 10.28 Matteucci et al. (2014)
NL-Dij Dijkgraaf CRO 51.99 5.65 Jans et al. (2010)
NL-Loo Loobos ENF 52.17 5.74 Elbers et al. (2011)
NL-Lut Lutjewad CRO 53.40 6.36 Moors et al. (2010)
PT-Esp Espirra EBF 38.64 −8.60 Gabriel et al. (2013)
PT-Mi2 Mitra IV (Tojal) GRA 38.48 −8.02 Jongen et al. (2011)
SE-Kno Knottœsen ENF 61.00 16.22 –
SE-Nor Norunda ENF 60.09 17.48 –
SE-Sk1 Skyttorp 1 ENF 60.13 17.92 –
SK-Tat Tatra ENF 49.12 20.16 –
UK-AMo Auchencorth Moss GRA 55.79 −3.24 Helfter et al. (2015)
UK-EBu Easter Bush GRA 55.87 −3.21 Skiba et al. (2013)
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Table 2. Annual temporal autocorrelation times in days, from model-data and model-model
residuals. The number within the brackets shows the correlation times when excluding sites
with large model-data bias from the analysis.

Reference VPRM10 VPRM1 ORCHIDEE 5PM
[days] [days] [days] [days]

OBSERVATION 32 (27) 33 (29) 26 (24) 70 (34)
VPRM10 – 47 (46) 30 (31) 131 (100)
VPRM1 – – 28 (28) 116 (85)
ORCHIDEE – – – 38 (32)
5PM – – – –
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Figure 1. Eddy covariance sites used in the study. The dashed line delimits the exact domain
used to calculate the aggregated fluxes.
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Figure 2. Box and whisker plot for correlation coefficients between modeled and observed daily
fluxes as a function of the vegetation type. The numbers beneath the x axis indicate the number
of sites involved. The bottom and the top of the box denote the first and the third quartiles. The
band inside the box indicates the central 50 % and the line within is the median. Upper and
lower line edges denote the maximum and the minimum values excluding outliers. Outliers are
shown as circles.
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Figure 3. Box and whisker plot for the annual site specific biases of the models differentiated
by vegetation type. Units at y axis are in µmolm−2 s−1.
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Figure 4. Temporal lagged autocorrelation from model-data daily averaged NEE residuals for
all models. Red lines correspond to different sites while the dark magenta color reveals the sites
with a bias larger than ±2.5 µmolm−2 s−1. Black line shows the all-site autocorrelation, and the
grey line indicates the autocorrelation excluding sites with large model-data bias (“sub-site”).
The dark green line is the all-site exponential fit using lags up to 180 days, and the light green
line shows the all-site autocorrelation excluding the sites with large bias.
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Figure 5. Temporal autocorrelation for VPRM10 – aircraft NEE residuals. Black dots represent
individual flux transects pairs sampled at different times as function of time separation. Black
circles represent daily scale binned data.
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Figure 6. Distance correlogram for the daily net ecosystem exchange (NEE) residuals using
all sites. Black dots represent the different site pairs; the blue line represents the median value
of the points per 100 km bin and the green an exponential fit. Results are shown for residuals
of VPRM at a resolution of 10 km (top left) and 1 km (top right), ORCHIDEE (bottom left), 5PM
(bottom right).
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Figure 7. Annual and seasonal e-folding correlation length of the daily averaged model-data
NEE residuals for VPRM at 10 and 1 km resolution, ORCHIDEE and 5PM. “S” refers to the
standard case where all pairs were used, “D” refers to the case where only pairs with different
vegetation types were used, “I” denotes the case in which only pairs with identical vegetation
type were considered, and “∗” denotes that in addition 150 days of common non-missing data
are required for each pair of sites. The dot represents the best-fit value when fitting the expo-
nential model. The upper and the lower edge of the error bars show the 2.5 and 97.5 % of the
length value. Note the scale change in the y axis at 100 km.
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Figure 8. Distance correlogram between VPRM10 and aircraft NEE measurements. Black dots
represents the different aircraft grid points pairs; black circles represent 10 km scale binned
data.
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Figure 9. Annual and seasonal e-folding correlation length for an ensemble of daily averaged
NEE differences between two models without (filled circle) and with random measurement er-
rors added to the modeled fluxes used as reference (crosses). The symbols represents the
best fit value when fitting the exponential model, and the upper and lower edge of the error
bars show the 2.5 and 97.5 % of the correlation length. The first acronym at the legend repre-
sents the model used as reference and the second the model which was compared with. Note
that for the VPRM10/VPRM1 case during spring (with and without random error), the 97.5 % of
the length value exceeds the y axis and has a value of 1073, 1626 km respectively.
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Figure 10. Annual correlation lengths as a function of the factor used for scaling the ran-
dom measurement error, for all model-model combinations. The black dot-dash lines reveal
the range of the spatial correlation lengths generated from the model-data comparisons.
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