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7.1 Proof of Theorem 2.9

Plan of Proof. We start with a proof of (9), which follows a standard three step argument
in M-estimation (e.g. (van der Vaart, 2000) and (Gamboa et al., 2007)), although the
details are quite elaborate. First we show the uniqueness of the population contrast
minimizer Jo. In a second step we establish the continuity of ¥ — M (). Thirdly, we
verify that Mp(9) — M(¥) a.s. uniformly over ¥ € © as T,&r — oo, & = o(V/T).
In consequence, (van der Vaart, 2000, Theorem 5.7) (yielding weak consistency) can
be adapted to obtain strong consistency. For convenience, here is the corresponding
argument:

Since J7 is defined as a minimizer of My (hence My (d7) < MT(%)) and MT(QS'O) —
M (%) a.s., we have a.s. that

lim sup(MT(léT) — M(ﬁg)) = lim sup(MT(ng) — MT<190)) + %EEO(MT(ﬁO) — ]/—\Z(’ﬁo)) S 0.

T— o0 T—o00

It follows that

lim sup ]T/[/(7§T) - M(ﬁo) < limsup (ZT/[/@T) - ]TJ/T(@T)>

T—o00 T—00

< lim sup sup M(ﬁ)—MT(ﬁ)‘ = 0a.s. (17)
T—oo V€O

Because of the uniqueness of the minimizer vy, the continuity of M and the compactness
of ©, we have that for every ¢ > 0 there is 7, > 0 such that M () > M (dy) + 7. for all
¥ € © with || — Jg|| > €. Hence

P<limsup {||19T — || > e}) < P(limsup {M(ﬁT) > M(ﬁo) + 7%})
T—o0

T—o0

< P{timsup M(dr) = M) + 5.} = 0,

T—o00

where the last equality follows from (17).

Step I: uniqueness of the contrast minimizer ;. First note that M(ﬂ) > — > e el
for all ¥ with equality for 9 = 1. If this minimum is attained for some 1) then for each k

with ‘fk|2 >0
2

=1

1
/ hi (67 — 67°) dt

0

since ]fol hy dt| < fol \hi,| dt = 1. This implies that k(67 —67°) =1, i.e.
2 <k,5§9 — 5290> =0 mod 27

By Assumption 2.4 this holds for k € {(k1, k2), (K, k%) } with kik} — kok} # 0. Hence, we

can treat each dimension separately and obtain 6Y = 67° mod 27 a.e. Since this holds



also for k € {(kY, k), (K", k) } with E/kY — EJE!" # 0, due to the part of the Assumption

on non-common divisors we obtain 67 = 6/° a.e. and hence 9 = ¥.

Step II: continuity of M. For J,9 € © we have that

2

1
— / hi (67 — 670) dt

0

IM(0) — M(9')| < Zmﬁ“ / hi,(6) — 67°) dt

kez?
1

< 2 Z |fl<:|2 (e2m<k’5§95fo> . 27rz<k 519 o 0>> dt‘

kez?
< 2P 1=

kez?
< 47TZ|k;||fk|2 5| ar.

kez? 0
where we use
af* = 1bf* < 2Ja b (18)

for a,b € C with |a|,|b] < 1 in the second inequality and |1 — ¢®|? = 2 — 2cosx < 2? in
the fourth one. By Assumptions 2.4, 2.6, this implies the continuity of M (9).

Step IIL: My — M uniformly in ¢ a.s. Recall from model (4) that
Vil = (=) fi + Wi

with the true and unknown parameter ¥y € ©. Hence with (7) we have that

2

=57 (6! — ) i+ (GIWE) | = Ar(9) — Br(9) — Or(9)

teT

>

|k|<&r

with

)

Ar(@) = = 3 | ST !~

|k|<ér teT
Br(W) = 3. 2Re<< S b6 - 67 fk>( 3 hu(—6)) Wé))
k| <€&r teT t'€T

2
1
LS halot

teT

Cr(0) = ).

|k|<&T

To derive the desired uniform convergence we will show for the deterministic part that

Ar — M uniformly in ¢ while the random parts By and Cr converge to zero uniformly



a.s. Considering

2

—~ 2 1
) = MO < 30 IAF || 5 o melel —a)| | [ st - a)ar

|k|<&r teT
2
+Zug/mﬁémﬁ,
|k|>€7 0

and applying (18) again to the first sum while noting that the second is bounded by
Zlklz& |fx]? = o(1) (& — oo by hypothesis and Y, | fx|* < co by Assumption 2.4) gives

[Ar(@) = M@)| < Y 2/l +o(1).

|k|<€r

th 5 — 600y —/ hi (87 — 67°) dt

te']T

Since the total variation of t — hy (67 — 6°) is bounded by a constant times |k| uniformly

in ¥ (Assumption 2.6), we have for some constant C' that

k| C
-

th 57 — §70) —/ hi (87 — 67°) dt| <

teT

In consequence of Y, |k||fx|* < oo (Assumption 2.4) this implies that

[ Az (9) — M(9)| = O(1/T),

uniformly in 1 as desired. Next, we show

supCr(9) = sup Z

2 2
=0 <£—T> a.s. (19)
90 veo = T
Since hi(6Y) acts as a rotation, hy(6))W} =: Ul + iV} (t € T,|k| < &) are again
independently complex normally distributed; in particular, every Ul = Re(hy(07)W}) is
independent of V! = Tm(hy(67)W}). Let

1
Tzhk(éf)wlg

teT

UkT—\FZUk, Ver = \/_ka.

teT teT



Because of E(€j,) = 3 and Assumption 2.7 we have

Var(UI?,T) < (UI?T)

- TQZ Za cos(—2m(k, v, — 67))*

tGT GJt

EY

£t

1 1
4

teT

Z Z oj to o cos(=2m(k, x5, — 6O cos(—2m(k, zjp — 61))?

y
ALy JjeJr j'€Jy

IA

and similarly Var(Vk r) <60l . Again by Assumption 2.7,

X*

E(U,iT—l—‘_/k%T) = —Z Zajt COS —2m(k,x;s — 5 Y)? + sin(— 27r<k:,xj7t—5f>)2)

tET ]GJt

MWL

teT ]eJt

In consequence, Kolmogorov’s strong law (see e.g. (Sen and Singer, 1993, Theorem
2.3.10)) yields that

h 5”W
#{rk|<5T}|k|§ WZ oo Z &
#{!k|<£T}|k|§ ket Vi) Z Z

— 0Oas.,, T — o0.
Since # {|k| < &} = O(&%) this yields (19). Finally,
sup |Br(9)|* = o(1) a.s.
9

follows at once from |Ar(9)] < >, |fel* by definition, (19) and the observation that
|Br(9)]? < 2| A7 (9)]|Cr(¥9)|. This concludes the proof of Step III.

The proof of (10). Observe that, using the Plancherel equality, we have

2
+ > |l

[k|>ET

S | Sy -

‘k“<fT teT

.

2

= 35S (T — o) fi+ el6IWE) — | +ol)

‘k‘<£T teT




- > |fk:|27% > (hk(5fT —6°)—1) (hk(—5f:T +6,0) — 1)

|k|<ér t,t'eT
2
£ | mEnw
|k| <& te’ﬂ‘

£2 0 5 3 (elof™ — 6°) — 1) fiu(—S0) + o)

lkl<¢r = tt'eT

< arLldr— oo 3 (|fk|2|k|+|fk||k|%|a;€|>+o<1> as. ()

|k|<ér

with G} defined below, by (19), since |hk((5,§§T —6%0) — 1| < 2 as well as (recalling the
argument following display (18))

P67 = 67°) = 1| < 2n[k|ll677 — 67| < 2w LIkl 107 — b
with the constant L > 0 from Assumption 2.8 and the following argument. Setting
19T 7wt
k . th 5t/ Wk 3
f =
we obtain complex normal deviates independent in k& with the property

75 2 (el =) = 1) (-0 = L2 (TZ (67" = ") —1)) GI.

£ ET teT

Now (20) yields indeed ||fr — f||I2 — 0 as. if £&2/v/T — 0 since |07 — 9| — 0 a.s. as
shown in the proof of the first part of Theorem 2.9, sup,c; |fx| |k| < oo by Remark 2.5
and D e | fx|? |k|] < oo by Assumption 2.4. The same argument that led to (19) shows

Z | fil RG]

\k\<£

that the variance of

is of order o(1) in case of &r/v/T — 0, which gives convergence of ||fr — flla — 0 in
probability, completing the proof. O

7.2 Proof of (i) of Theorem 2.13

With the d-dimensional real vector ay, := 2mgrad,(k, 0;) verify that

grad, (Z hi(67)YE Y hi(67) yt’) = 2Re (Z grad19<hk(5f)th> hk(éﬁ)Y,j’>

teT €T tET

tt’eT



Moreover, with the true parameter ¥y € © and arbitray 9 € © recall from (2) that
hi(8)) Yy = ha(6 — 6/°) fiu + hai(87 )W .

At ¥ = ¥y the right hand side is just fi + he(07°)W}. In consequence we have for My
from (7) that

gradﬁMT (Vo) Z H] (22)

|k|<&r

where aj = a5, fi = e + ige, hi(6)°)W} = 7L A} + iw}, B} with standard deviations

= \/ Za cos(—2m{k, x;, — 6,°))2,

Ea

]EJt

Wt = Za csin(—=2m(k, xj, — 6,°))2,
]EJf
and
HY = 2 m (Z ak(rfu + fehi (G2 )WL+ hi (07 YW T + hi(870)W hk<62°)wlz’)>
tt’'eT
= = Z aj, <ngk — epwt BY + epwlBE — gpmi AL 4+ H Wi AL BE — ,iw,gA}ch,il) :

t,t’'eT

Note that At B! ~ N(0,1) (k € Z* t € T) are all mutually independent, and for
k= (0,0) we have w(,, = 0.

To determine the limit distribution of v/TgradyMy () we look at its projections
VT {(x, gradyMp(9)) with arbitrary but fixed 0 # x = (x1,...,74) € R% To this end
denote by H!'(j) and al(j) the j-th component of H} and at, respectively, j € {1,...,d},

and set
d d
Gy =Y xH{(j), a, = wzaL(j). (23)
j=1 Jj=1
Introducing the independent normal vectors Ay := (TLAL/7)ier, Br = (wiB! /@] )ier

with (cf. Assumption 2.12)

1 1
== 2(75)2 >0, of = /=) (w)?>0,
T T
seT seT
each with independent components as well as the unit vector e := (1);er/v/T and the



vector ay, = (al)ier and denoting the transpose of ay by a), etc., we obtain

2—T—T
GT = ;fg(;;k (a;CBkA;Ce — e'BkA;Cak)

2
=T / / -T / / —T / =T /
+f <7‘,€ gragee Ay — wy epagee By + Wy exa, By, — Ty, gkakAk> .

To tackle the first term introduce a unit vector by orthogonal to e such that ay = age+Fibg,
ag, Br € R and define a matrix U = Uy, € SO(T') having e and by, as the first two columns.
Then, with the independent normal vectors ﬁk = U'A;, ék = U’'By, with independent

components, each with zero mean,
!/ ! / / !/ / /
apBrAie — € ByAyar, = Ap(ea), — age’) By
= ALUU(ea;, — are\UU'By,
— AU (e, b, (elane + Bibe) = (ane + Bibi)e’) (e, by ¥)U' By

- Z;((m,...,0)’(ak,5k,0,...,0)—(ak,ﬁk,o,...,0)’(1,0,...,0)>Bk

0 10 0
~10 0 0

= A Bl o o0 - 0B
0 00 0

In consequence, with the first components ﬁ,(:), E,(cl) and second components Af% E,f) of
A"k and Ek,

27l B 1 1) 32 ~(2) 301

G = “EP(AVBY - APBY)
201 ) 1, B) =@y AT () 7@

+f<7k g AL — Wy epoy By + oy ek(osz + BeBy) — Ty gk Ay + BrA;, )) )

At this point we note that

5 = ||ak—akeu?—2<az—%2az> - szf—%(Zaz) (24)

teT t’'eT teT teT

whence B, = O(|k|v/T) from the definition of al, and Assumption 2.11. Furthermore,
by Assumption 2.12, 77 — o4 and & — opy uniformly in k as T — oo. Hence, the

variance of the first term of G scales with |k|?/T?, thus

2—T—T . .
M= Y0 2l (B0AR  B@AR) — o,

> ) =ouem @)

|k|<§T



i.e. with the hypothesis £7./T — 0, we obtain
VT (GT); — 0 in probability. (26)

Let us further note at this point for future use in case of & — oo with £7./T — 0 due to
B, < C|k|v/T with a suitable constant C' > 0, we have also that

1 27l ol C ~
Gl < G X TEECE|BVAY - BYAY
T |k|<€r

— 0 a.s. (27)

The second term of Gg reduces to

9 ~ _
T <@Z€k5kB;(€2) - ﬂ?gkﬁkAEf))

which is normally distributed with zero mean and variance
4 T N2 -T \2
ﬁﬁk((ﬁc gr)? + (g er)?)

_ 1672 ( (7] gk:)F;r (@i er)?) Z <k Z“’Uaﬁ 519> _% (Z <k,;xj&9j6§9)>> ;

teT teT

for ¥ = ¥y cf. (24). Since the normal random deviates in

2 ~ ~
@)= Y (B A as L)

|k|<&r

are independent in k, we have that v/T (G7)s is normally distributed with zero mean and

variance converging to

1 9 1 2
167 3 (0400 + (rmser)?) [ [ (b gy ae— (v, [ (gradﬂafoyxdt”
kez? 0 0
=102 <00 (28)

if f € H'([0,1]). Recalling the notation of (22), (23) and > lkl<tr GI =(G"), + (GT), =
(x, gradyMrz(1)) as well as collecting the results of (26) and (28) we have thus shown that
for any 0 # z € R?

VT (x, gradyMp(9)) — N (0, 02)

whenever T, &p — oo with &7 of rate o(T%/*). Since this holds true for every x, the joint
distribution of /T grady M7 (0¥) at ¥ = dy is asymptotically multivariate normal with
covariance matrix as asserted in Theorem 2.13.

In view of use below we note here that we obtain with suitable constants C,C" > 0

(C" due to Remark 2.5), 0.y from Assumption 2.7 and independent standard normal Cj,



(k € Z) that

2 2Jmax
(Gl = |7 Y B/ (90 + @] < > lIkIC
k| <&r k<&
20maxCC'E% 1

< —r e W; |C] = 0 as. if & — oo and /T = O(1). (29)

]

Remark 7.1. As shown above, asymptotic normality of the second part \/T(GT)Q of
ﬁgradﬁMT(ﬂo) holds regardless of the rate of 7. If we relax €4 /T — 0 to C\TY* < &p <
CoT* with suitable constants Cy, Cy > 0, the first part VT (GT)y will no longer converge
to zero but will be tight, cf. (25). Since then also 0 — 9 by Theorem 2.9, although the
(GT)y and (GT)y will be dependent for this rate of &1, we expect that asymptotic normality
still holds. The corresponding covariance matrix, however, will have a more complicated

structure than being a multiple of ¥.

7.3 Proof of (ii) of Theorem 2.13

Here we build on the proof of (i) of Theorem 2.13 within the preceding section and use
the notation there. In addition let b}z’t := 27 Hessy (k, 67). Then we obtain at once from
(21)

Hessy (Z hi (7)Y~ hi(8) Yt’) = D'+ F!
teT t'eT
with

t,t’'eT

- R (z ol o — ol VeI —hkwm) .

tt'eT

In particular, in consequence of (7)

Hossy Mr(9) — —% S (Df + ). (30)

|k|<ér

Note that E(D{) = 0. Setting ) = )y observe that the argument of the previous section
(using the matrices by, instead of the vectors ay,) that led to (27) and (29) gives at once

1
— Y D{ = Oas. if T,& — oo and /T — 0. (31)
|k|<ér

10



Likewise, the same follows for the random part of Fi'. More precisely for ¢ = y:

T /
By = =2 § :aktakt akzt’)

t,t’eT

Re(1ful? + Sl (G0 )WL + (87 WL T+ 070 YW (80 )W)
= 2 Z ’fk,Qakt Ot kt’) +Fk

t,t’eT
with
= =23 ai(als — apy) Re( fihi(00 )WL + (67 Wi + (87 Wi a0 W)
t,t’eT
yields

~ 1 ~
E(F{) = 0and = Y K = Oas ifT.& —ooand &/T o0,  (32)

|k|<&r

Since we have the deterministic limit

Z Z ’fk‘Qakt akt_azot’ "= 22 ’ka//;n] akt akt_akt’) dtdt’

\k\<§T tt'eT kez?

as T, & — oo due to Assumption 2.11 on bounded total variation of first ¥-derivatives,
in conjunction with (30), (31) and (32) the definition of a}j?t yields the assertion (ii) of
Theorem 2.13.

7.4 Proof of Theorem 2.14

Under Assumption 2.11, standard expansion arguments from M-estimation can be used as
follows. Since My (¥) is twice continuously differentiable for ¥ near 9y and U7 converges

a.s. to ¥y, we have that

0 = grady,Mp(d7)
— grady, My (0y) + HessyMyp(9o) (D7 — o) + <Hess§MT(1§‘*) - HeSS19MT<790>) (O — 9p)

where 9J* lies between 9y and J7. The continuity of the second derivatives gives that
7 — 9 and gradyMr () are of the same asymptotic order since Hessy Mr(dy) — 8725
a.s. holds by (ii) of Theorem 2.13. Hence

8T8 (I — ) = — grady My (90) + op (|07 — 9ol|)

11



which in conjunction with (i) of Theorem 2.13, yields both asymptotic assertions.

7.5 Ad Example 2.15

Lemma 7.2. In the situation of Ezample 2.15, det(X) = 0 iff there is x € R?\ {0} s.t.
fy+r0) = f(y) forally € REr € R, (33)

where [ is [0, 1]2-periodic.

Proof. Since for x € R?\ {0} we have

the matrix X is positive semidefinite. Hence, det(X) = 0 iff there is an x € R? \ {0} s.t.
2’3z = 0. This is the case iff

|fe|? # 0 implies (k,z)? =0 for all k € Z°. (34)

If this implication holds, we have for all y € R? and r € R that

y‘f'TCC Z f e27rz(/€ y+rx) Z f 6271'1 ky) 27rz7" (k,z) __ Z f 627r7, ky) ( ),

keZ? keZ? kez?

i.e. (33). If, on the other hand, (33) holds, then the two functions f and f™*(.) :=
f(+ + rz) are identical. Subsequently, their respective Fourier coefficients f; and f[* =
e2mir(k) £, are also the same, i.e. (34) holds. [

7.6 Motion Blur Measure

To evaluate our drift correction we use a version of the motion blur measure ms proposed
n (Xu et al., 2013) which is based on the work of (Chen et al., 2010). It is defined as

= tog (G20} (35)

Here, J(p) = Zjvjl <AI ((z)1, (xj)2)¢>2 is the average squared directional derivative of
an image I in direction (cos(@),sin(go))/, © € [0,27), @min is the motion direction, and
¢Ymax 1s the direction perpendicular to ¢ui,. Note, that J(p) = 0 iff I is constant in
direction . An advantage of ms is that it does not depend on the scale of the image.
n (Chen et al., 2010), @i, is selected as a minimizer of the functional J. The idea is

that the image is blurred in the direction of the motion and thus the image intensity f

12



changes little in this direction (on average), while it varies much more in the perpendicular
direction. The minimizer is obtained as follows:
Rewrite J(¢) = (cos(¢), sin(p)) D (cos(p), sin(gp)),, where

dll d12 N2 oI By
0T ( d12 d22 ) ’ TS ' Z 8 mj)l, (x])Q) . M((xS)jv(xj)Q).

Then, J(¢) = di1 + di2sin(2¢) + (dag — d11) (sin(w))Q. We get the minimum value of J by
setting dJ(¢)/dp = di2 cos(2¢) + (dag — di1) sin(2¢) = 0, which yields ¢ = ¢, + (r7)/2,
r € Z, with ¢, = arctan(?dlg/(dn - dgg))/z. The motion direction is then determined
by

Pm if J(pm) < J(om +7/2),

Om + /2 it J(pm) > J(pm +7/2).

Pmin =

The J(Ymax) also keeps the blur measure value low in the case of an image that is
(almost) constant over wide areas (where the directional derivative is small in any direc-
tion). In our simulation study, since we already know the true drift 6,(¢), we choose the
average drift direction fol 00:(0) /0t dt = 6,(¥) as the motion direction (after normaliza-
tion). Hence, in our context (where I is either fT or the superimposed image, see Table

4) we get the motion blur measure

. <2§Vi<gradx1(<xj>1, (2;)2), Rote 201 (9) /|18 (9) 12)° )
SN (grad, I ()1, (25)2) . 61 (9)/|6:(D)[[2)° )

(36)

where || - ||2 is the Euclidean norm and

Rot, /o := ( cos(m/2) —sin(m/2) )
77 sin(r/2)  cos(n/2)

is the rotation through 7/2. Note that the average drift direction used to determine the

motion blur (36) in the case of a drift function with jump is (before normalization)

todt, (0) + (1 — to) (61(V )‘}{2}51&( )

instead of just 0;(¢), where ¢ is the time at which the jump occurs. We calculated an
approximation of grad, I as follows (see e.g. (Gonzalez, R.C. and Woods, R.E., 2002)).
Let I be a pixel image of size M x N. For every pixel location (i,7), 7 € {1,..., M},
j€{1,..., N}, the gradient of I is defined as VI(i, ) := (G4 (3, 7), Gy (i, 7)) with
1

G.(i,7) Z Se(i'42, j'+2)I(i+1", j+5"),  Gy(i,J) Z Sy (742, j'+2)I(i+4', j+7"),

iy =—1 i =—1

13



YoDa SUOYDINUWAS ()] oL L Ss4090uysa ay) Jo suvaw ay) bufiv)dsyq T 2190, ur v buag g SR,

(90¢°0°€€Z°0 6510 ‘FTE0°LST°0 LTE0°CIE0) | (SST°0°280°0 ‘900°0— ‘820°0 ‘€€0°0 ‘TL1°0) | (GC0°0 ‘F20°0‘8G0°0°9L1°0) | (LIT°0°961°0) | 00T
(P1G°0°GEZ°0°9CT°0 ‘€TE 0 ‘FIT°0 ‘1€°0°2TE0) (FST'0°LL0°0°0 L1070 ‘GF0°0 ‘TLT 0) (L60°0°120°0°90°0 ‘FLT°0) | (LTT°0°G6T°0) | 0G
(¥2S°0°L£2°0 ‘GST°0 ‘FIE°0T9T°0 ‘L1€0°T1€0) | (9GT°0°GL0°0 T00°0 ‘ZT0°0°€90°0 26T°0) | (L50°0°T20°0°00°0 ‘F2L1°0) | (9TT°0°961°0) | 0 UOSSIO ]
(906°0°GET°0°LET°0°9T€°0 ‘6ST°0 ‘6070 ‘TTE0) | (99T°0°890°0 ‘TO0°0— ‘8TO°0 ‘9F0°0 L9T1°0) | (€90°0°9T0°0‘8¢0°0°9LT°0) | (9TT0°961°0) | 00T
(60670 ‘F€Z0TIT'0 ‘CTE0°9T°021€0°2T€0) | (€91°0°2L0°0°T00°0— T20°0 ‘FE00LLT°0) | (950°0°CZ0°0 ‘TG00 ‘T8T°0) | (LIT°0°G6T0) | 0G
(L16°0°9€2°0°99T°0 ‘€0€°0 ‘TLT'0 ‘TT€°0‘60€°0) | (SST°0°G80°0 ‘TT0°0— ‘S00°0 ‘TL0°0 ‘FST°0) | (G0°0 ‘82009500 ‘2L1°0) | (FIT°0°S61°0) | 0T “13SIp-}
(C'0°1€Z°0°9T°0°G0€°0 ‘6ST1°0 ‘T€°0 ‘1L 0) (F91°0°20°0 ‘T00°0— 9200 “L£0°0‘89T°0) | (¥90°0°GT0O°0°90°0 ‘8LT°0) | (LIT°0°G6T°0) | 00T
(TG°0‘%€2°0‘79T°0°9T€°0 ‘9T°0 ‘TI€0F1€0) | (29T°0 ‘FL0°0 ‘F00'0— ‘L10°0°2L€0°0°2LL1°0) | (9070 ‘61070 ‘2S0°0°Z8T°0) | (LIT°0°G61°0) | 0OG
(22S°0°GE2°0 ‘29T°0 ‘FIE°0 TOT°0 ‘9T€°0 ‘TT€0) | (99T°0 ¥90°0 ‘€00°0 ‘T00°0— ‘T80°0 ‘IST°0) | (150°0°280°0°950°0 ‘6.1°0) | (9T1°0°961°0) | 0 urissner)
$,180 JO ueaw S,159 JO ueawt S,159 JO ueawt $,180 Jo uweawt | 7, odAy 10110

(G°0'7€2°0'9ST°0 ‘C1€°0 '9ST°0 ‘T1€°0 ‘T1L0)

(S61°0°6£0°0°0 '6€0°0 0 ‘S6T°0)

(820700 ‘6£0°0 ‘G61°0)

(LIT°0°G6T°0)

0q Iojourered oni)

duwm( yym jyup

JLIp dIqnd

)J1Ip orpeIpenb

WLIp Teour]

JLIY Y] UL [1DYIP UL PAUID]ATI SD ]IPOUL UOSSIOJ D PUD ,T°() 2IUDIIDA YN S]IPOUL LOLLD TI-JUIPTIG PUD UDISSIDE) D 112N §D SJuL0d 9UL1)
{001 °0G ‘0g} 2 L yrum saouanbas abvwir paLapIsu0d 2aDY 3| S]PPOUL Lf1ip JUBLIL1P UL U0LDINWLS U0 LOf LA pagpwiisa 2y burfivydsy T o[qe],

(6°0°022°0°26T°0°GZE 0 °GET'0°LTE0°G8Z°0) | (6L1°0°T90°0°000°0— ‘6000 ‘TL0°0 LFT'0) | (LF0O'0°T€0°0‘T80°0°TST0) | (FTT°0°€6T°0) | 00T
(£9°0°GF20°601°0 ‘STE'0 ‘2810 ‘€6Z°0 ‘T9€°0) (212°020°0 ‘F00°0— ‘€10°0 ‘¥0°0 ‘TI8T°0) (9200200702900 ‘2L1°0) | (TT°0°€0Z°0) | 0G
(¥S°0°€92°0 ‘760°0 ‘L£€°0 ‘8FT1°0 '2S€°0°895°0) | (IF1°0°980°0 ‘T0°0 ‘¥S0°0— LST1°0 ‘'9TT°0) (L0°0°9T0°0°€0°0 ‘261°0) | (LET'0°€8T°0) | 0 UOSSIO ]
(6°0°7€2°0°2ST0°€°0 ‘TFT 0 ‘F8E 0 ‘THE0) (9PT°0°20°0 ‘L1070 ‘8L0°0 ‘TF0°0— ‘602°0) | (220°0‘2S0°0°2L0°0‘891°0) | (FIT'0°€0Z°0) | 00T
(19°0°TH2°0‘2GT°0‘€TE°06ST°0 ‘F0E'0°T2€0) |  (FET0°€80°0 ‘GT0°0 F00°0 ‘FE0'0 ‘F6T°0) | (950°0 ‘620°0 ‘9F0°0 ‘981°0) | (£2T°0°€61°0) | 0G
(79°0°992°0 ‘€20°0 ‘9820 ‘LF1°0 ‘92£°0 ‘20€°0) | (SPT°0°L60°0 ‘8T0°0— ‘200°0 ‘¥80°0 ‘F¥1°0) | (910°0°‘€S0°0‘290°0°691°0) | (611°0°681°0) | 0T “1)STp-7
(8%°0°222°0°C°0‘€TE0T9T°0 €820 2 0) (F0Z°0220°0 ‘€00°0 ‘800 ‘#90°0— ‘6zZ°0) | (69070 ‘TTO0‘6¥0°0‘88T°0) | (6T1°0°C°0) | 00T
(£6°0P22°0°822°0°LEE'0°9T°0°92€ 0 ‘62€°0) | (F8T°0°950°0‘900°0— ‘L20°0 ‘GTO0 T61°0) | (€80°0°100°0‘6£0°0°10Z°0) | (1T°0°¢61°0) | 0G
(60°TPT°0 600 ‘G82°0 ‘€8T°0LLZ0°LL€'0) | (£ST°0‘T60°0 ‘8T0°0— ‘T20°0— ‘80T°0‘G€1°0) | (FS0°0 ‘2200 ‘€50°0 ‘6L1°0) | (STT°0°161°0) | 07 ugIssney)
L Lo La Lo I od£) 10119

(6°0‘7€2°0°9ST°0 ‘G1€°0 9ST°0 ‘C1E°0 ‘GIE0)

(S61°0°6£0°0°0 ‘6£0°0 0 ‘G6T°0)

(820°0°0'6£0°0 ‘S61°0)

(LIT°0°G6T°0)

0p  19%0urRIRd ONIY

dum( yyim yup

PP O1qud

PLIp o1peipenb

YUp Teour

14



¥ pup g saunbi,y ur umoys auv {06 ‘0g} O L puv dwnl ypm frip ‘4rup 01qno uof sabvwir 2y [ 9)qD[ Ut

pagiodas 24p Lg su0ppuigsa burpuodsaliod 2y Lf sabvwa pagpwasa ayp puv (1) sabvwi pasodwiriadns ay) [0 san)pa aunsvauL 4njg F S[qR],

68¢°0— €2T'0— 8L00— | TL00— LIZ0— 9600— | g8¢°0— 92€'0— T10g¢0— | dwml ymm yyuqg
PIG0— 8GE0— GLEO0— | 8T¢’0— ¢<IT0— GIg0— | OTL0— GPO'T— 989°0— | YLP 21quy
6L1°0— 88T'0— G0Z'0— | 8ZT'0— 090°0— L¥T0— | C€F'0— L¥P0— TIP0— | WYUPp drperpeny)
8€E'0— BIE0— L8E0— | ¢61T°0— <CO0T'0— S0C0— | L0LO— CFP80— 6L9°0— | YHPp JIeaul] Lf
g¢0’0— 1€00 9100 | GT0'0— GTO'0— 2000 6200  ¥€00— €100 | duml yym yuqg
Iv0°0— 8700 9T10°0— | 8000 ¢000  TO0O0— | €L00— 9100  ¥#c0°0— | HUp 21qny
80T'0— €000— T€0°0— | 6€0°0— 6000— TEO0 | 6I00— TI00  S00'0— | WP dryeIpeny)
€50'0—  ¢lIo0 110°0 | €10°0— 600°0— 600°0— | 9000 0500 290°0 | WLIp Teaul] IS
00r=4 05=4L 0c=1L]00l=0L 0= 0= |00I=.1L 05=.0 0¢=.0

[opou UOSSI0] asIou &) 9SIOU URISSNEX)

“Yova suonvnuiLs ()] woif Le suopwigsa ayp fo |00 — La||g 40442 paspnbs uvaws ayp fo j00y ¢ SIqR],

€998 €906  €9L8 | €9¢8 €908  €OPLT | €°L9 €-oTL  €o6L | duml yya I
€TV €PIVL  €9¢Vl | €94L1 €P0ET  €9CLT | €9€EEL €PICT  €98ET | PP 21y
€919 €969 €999 | €949 €9YG €999 | €97F €-98F  €-9€9 | JUIp dryeIpeN()
£€9L €798 €796 €98 €99 €99¢ | €99 €-9¢ €99 HLIp Teaury
00r=4 05=4 06=1|00l=1L 05=40 0= |00I=1L 05=.1 0¢=.0

[Ppou UOSSIOJ asIou &) 9STOU URISSNEX)

15



where we extend the image periodically, i.e. 1(0,7) := I(M,j), I(M + 1,5) := I(1,),
I(i,0) := I(i,N), and I(i, N +1) := I(i,1) and so on. Here, S, and S, are the Sobel

masks

. -1 0 1 . -1 -2 -1
Se=<| — .Sy ==
3 2 0 2 yiT g 0 0 O
-1 0 1 1 2 1
Often, especially if I is noisy, it is beneficial to smooth the image first, e.g. with a Gauss
kernel
1 21
K = L 2 4 2
T 16
1 21

This means that we replace every (i, j) with the weighted average

1
I(i,j) = Y K@ +2,7+2I(+7i,j+5)

ij'=—1

of the 3 x 3 pixel area centred on it. Because our images are very noisy, we repeat that

procedure once more.

7.7 Simulations: Tables

In this subsection we display the simulation results from Section 3.

Table 1 summarizes the drift parameter estimators O for one simulation in different
drift models, error models, and for different image sequence lengths 7. Table 2 displays
the means of those estimators J7 from 100 simulations each. Table 3 shows the roots
of the mean squared errors of the same estimators O Finally, Table 4 lists the blur
measure values of the superimposed images and the estimated images fT corresponding
to the parameters in Table 1.

We used images of size 256 x 256 pixels and the image sequences had lengths T' €
{20,50,100}. The drift functions were polynomials in ¢ (time) of degree 1, 2, or 3, or
piecewise linear with a jump. The true drift parameters 6y are shown in Tables 1 and 2.
For the Gaussian and ¢5-distributed errors we chose a noise level of 0 = 0.1. The Fourier
cutoff was set to &7 = /T and the start value for the minimization algorithm was 0 € R?,
where d is the dimension of the drift parameter 9. For each scenario (drift model, error

model, number of frames T'), we performed 100 simulations.
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