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7.1 Proof of Theorem 2.9

Plan of Proof. We start with a proof of (9), which follows a standard three step argument

in M-estimation (e.g. (van der Vaart, 2000) and (Gamboa et al., 2007)), although the

details are quite elaborate. First we show the uniqueness of the population contrast

minimizer ϑ0. In a second step we establish the continuity of ϑ → M̃(ϑ). Thirdly, we

verify that M̃T (ϑ) → M̃(ϑ) a.s. uniformly over ϑ ∈ Θ as T, ξT → ∞, ξT = o(
√
T ).

In consequence, (van der Vaart, 2000, Theorem 5.7) (yielding weak consistency) can

be adapted to obtain strong consistency. For convenience, here is the corresponding

argument:

Since ϑ̂T is defined as a minimizer of M̃T (hence M̃T (ϑ̂T ) ≤ M̃T (ϑ0)) and M̃T (ϑ0) →
M̃(ϑ0) a.s., we have a.s. that

lim sup
T→∞

(
M̃T (ϑ̂T )− M̃(ϑ0)

)
= lim sup

T→∞

(
M̃T (ϑ̂T )− M̃T (ϑ0)

)
+ lim

T→∞

(
M̃T (ϑ0)− M̃(ϑ0)

)
≤ 0.

It follows that

lim sup
T→∞

M̃(ϑ̂T )− M̃(ϑ0) ≤ lim sup
T→∞

(
M̃(ϑ̂T )− M̃T (ϑ̂T )

)
≤ lim sup

T→∞
sup
ϑ∈Θ

∣∣∣M̃(ϑ)− M̃T (ϑ)
∣∣∣ = 0 a.s. (17)

Because of the uniqueness of the minimizer ϑ0, the continuity of M̃ and the compactness

of Θ, we have that for every ε > 0 there is ηε > 0 such that M̃(ϑ) > M̃(ϑ0) + ηε for all

ϑ ∈ Θ with ‖ϑ− ϑ0‖ ≥ ε. Hence

P
(

lim sup
T→∞

{
‖ϑ̂T − ϑ0‖ ≥ ε

})
≤ P

(
lim sup
T→∞

{
M̃(ϑ̂T ) > M̃(ϑ0) + ηε

})
≤ P

{
lim sup
T→∞

M̃(ϑ̂T ) ≥ M̃(ϑ0) + ηε

}
= 0 ,

where the last equality follows from (17).

Step I: uniqueness of the contrast minimizer ϑ0. First note that M̃(ϑ) ≥ −
∑

k∈Z2 |fk|2

for all ϑ with equality for ϑ = ϑ0. If this minimum is attained for some ϑ then for each k

with |fk|2 > 0 ∣∣∣∣∫ 1

0

hk(δ
ϑ
t − δ

ϑ0
t ) dt

∣∣∣∣2 = 1

since |
∫ 1

0
hk dt| ≤

∫ 1

0
|hk| dt = 1. This implies that hk(δ

ϑ
t − δ

ϑ0
t ) = 1, i.e.

2π
〈
k, δϑt − δ

ϑ0
t

〉
≡ 0 mod 2π

By Assumption 2.4 this holds for k ∈ {(k1, k2), (k′1, k
′
2)} with k1k

′
2 − k2k

′
1 6= 0. Hence, we

can treat each dimension separately and obtain δϑt ≡ δϑ0t mod 2π a.e. Since this holds
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also for k ∈ {(k′′1 , k′′2), (k′′′1 , k
′′′
2 )} with k′′1k

′′′
2 −k′′2k′′′1 6= 0, due to the part of the Assumption

on non-common divisors we obtain δϑt = δϑ0t a.e. and hence ϑ = ϑ0.

Step II: continuity of M̃ . For ϑ, ϑ′ ∈ Θ we have that

|M̃(ϑ)− M̃(ϑ′)| ≤
∑
k∈Z2

|fk|2
∣∣∣∣∣
∣∣∣∣∫ 1

0

hk(δ
ϑ
t − δ

ϑ0
t ) dt

∣∣∣∣2 − ∣∣∣∣∫ 1

0

hk(δ
ϑ′

t − δ
ϑ0
t ) dt

∣∣∣∣2
∣∣∣∣∣

≤ 2
∑
k∈Z2

|fk|2
∣∣∣∣∫ 1

0

(
e

2πi
〈
k,δϑt −δ

ϑ0
t

〉
− e2πi

〈
k,δϑ

′
t −δ

ϑ0
t

〉)
dt

∣∣∣∣
≤ 2

∑
k∈Z2

|fk|2
∫ 1

0

∣∣∣∣1− e2πi
〈
k,δϑ

′
t −δϑt

〉∣∣∣∣ dt
≤ 4π

∑
k∈Z2

|k||fk|2
∫ 1

0

∥∥∥δϑt − δϑ′t ∥∥∥ dt ,
where we use

|a|2 − |b|2 ≤ 2|a− b| (18)

for a, b ∈ C with |a|, |b| < 1 in the second inequality and |1 − eix|2 = 2 − 2 cosx ≤ x2 in

the fourth one. By Assumptions 2.4, 2.6, this implies the continuity of M̃(ϑ).

Step III: M̃T → M̃ uniformly in ϑ a.s. Recall from model (4) that

Y t
k = hk(−δϑ0t )fk +W t

k

with the true and unknown parameter ϑ0 ∈ Θ. Hence with (7) we have that

M̃T (ϑ) = −
∑
|k|<ξT

∣∣∣∣∣ 1

T

∑
t∈T

(
hk(δ

ϑ
t − δ

ϑ0
t )fk + hk(δ

ϑ
t )W t

k

)∣∣∣∣∣
2

= AT (ϑ)−BT (ϑ)− CT (ϑ)

with

AT (ϑ) := −
∑
|k|<ξT

∣∣∣∣∣ 1

T

∑
t∈T

hk(δ
ϑ
t − δ

ϑ0
t )fk

∣∣∣∣∣
2

,

BT (ϑ) :=
∑
|k|<ξT

2 Re

(( 1

T

∑
t∈T

hk(δ
ϑ
t − δ

ϑ0
t )fk

)( 1

T

∑
t′∈T

hk(−δϑt′)W t′
k

))
,

CT (ϑ) :=
∑
|k|<ξT

∣∣∣∣∣ 1

T

∑
t∈T

hk(δ
ϑ
t )W t

k

∣∣∣∣∣
2

.

To derive the desired uniform convergence we will show for the deterministic part that

AT → M̃ uniformly in ϑ while the random parts BT and CT converge to zero uniformly
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a.s. Considering

|AT (ϑ)− M̃(ϑ)| ≤
∑
|k|<ξT

|fk|2
∣∣∣∣∣∣
∣∣∣∣∣ 1

T

∑
t∈T

hk(δ
ϑ
t − δ

ϑ0
t )

∣∣∣∣∣
2

−
∣∣∣∣∫ 1

0

hk(δ
ϑ
t − δ

ϑ0
t ) dt

∣∣∣∣2
∣∣∣∣∣∣

+
∑
|k|≥ξT

|fk|2
∣∣∣∣∫ 1

0

hk(δ
ϑ
t − δ

ϑ0
t ) dt

∣∣∣∣2 ,
and applying (18) again to the first sum while noting that the second is bounded by∑
|k|≥ξT |fk|

2 = o(1) (ξT →∞ by hypothesis and
∑

k |fk|2 <∞ by Assumption 2.4) gives

|AT (ϑ)− M̃(ϑ)| ≤
∑
|k|<ξT

2|fk|2
∣∣∣∣∣ 1

T

∑
t∈T

hk(δ
ϑ
t − δ

ϑ0
t )−

∫ 1

0

hk(δ
ϑ
t − δ

ϑ0
t ) dt

∣∣∣∣∣+ o(1).

Since the total variation of t 7→ hk(δ
ϑ
t − δ

ϑ0
t ) is bounded by a constant times |k| uniformly

in ϑ (Assumption 2.6), we have for some constant C that∣∣∣∣∣ 1

T

∑
t∈T

hk(δ
ϑ
t − δ

ϑ0
t )−

∫ 1

0

hk(δ
ϑ
t − δ

ϑ0
t ) dt

∣∣∣∣∣ < |k|CT .

In consequence of
∑

k |k||fk|2 <∞ (Assumption 2.4) this implies that

|AT (ϑ)− M̃(ϑ)| = O(1/T ) ,

uniformly in ϑ as desired. Next, we show

sup
ϑ∈Θ

CT (ϑ) = sup
ϑ∈Θ

∑
|k|<ξT

∣∣∣∣∣ 1

T

∑
t∈T

hk(δ
ϑ
t )W t

k

∣∣∣∣∣
2

= o

(
ξ2
T

T

)
a.s. (19)

Since hk(δ
ϑ
t ) acts as a rotation, hk(δ

ϑ
t )W t

k =: U t
k + iV t

k (t ∈ T, |k| < ξT ) are again

independently complex normally distributed; in particular, every U t
k = Re(hk(δ

ϑ
t )W t

k) is

independent of V t
k = Im(hk(δ

ϑ
t )W t

k). Let

Ūk,T =
1√
T

∑
t∈T

U t
k, V̄k,T =

1√
T

∑
t∈T

V t
k .
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Because of E(ε4j,t) = 3 and Assumption 2.7 we have

Var(Ū2
k,T ) ≤ E(Ū4

k,T )

=
3

T 2

∑
t∈T

1

n2
t

∑
j∈Jt

σ4
j,t cos(−2π〈k, xj,t − δϑt 〉)4

+
3

T 2

∑
t6=t′

1

ntnt′

∑
j∈Jt

∑
j′∈Jt′

σ2
j,tσ

2
j′,t′ cos(−2π〈k, xj,t − δϑt 〉)2 cos(−2π〈k, xj′,t′ − δϑt′〉)2

≤ 3σ4
max

(
1

T 2

∑
t∈T

1

nt
+ 1

)
≤ 6σ4

max,

and similarly Var(V̄ 2
k,T ) ≤ 6σ4

max. Again by Assumption 2.7,

E(Ū2
k,T + V̄ 2

k,T ) =
1

T

∑
t∈T

1

nt

∑
j∈Jt

σ2
j,t

(
cos(−2π〈k, xj,t − δϑt 〉)2 + sin(−2π〈k, xj,t − δϑt 〉)2

)
=

1

T

∑
t∈T

1

nt

∑
j∈Jt

σ2
j,t ≤ σ2

max.

In consequence, Kolmogorov’s strong law (see e.g. (Sen and Singer, 1993, Theorem

2.3.10)) yields that∣∣∣∣∣∣ 1

# {|k| < ξT}
∑
|k|<ξT

∣∣∣∣∣ 1√
T

∑
t∈T

hk(δ
ϑ
t )W t

k

∣∣∣∣∣
2

− 1

T

∑
t∈T

1

nt

∑
j∈Jt

σ2
j,t

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

# {|k| < ξT}
∑
|k|<ξT

(Ū2
k,T + V̄ 2

k,T )− 1

T

∑
t∈T

1

nt

∑
j∈Jt

σ2
j,t

∣∣∣∣∣∣
→ 0 a.s., T →∞.

Since # {|k| < ξT} = O(ξ2
T ) this yields (19). Finally,

sup
ϑ
|BT (ϑ)|2 = o(1) a.s.

follows at once from |AT (ϑ)| ≤
∑

k |fk|2 by definition, (19) and the observation that

|BT (ϑ)|2 ≤ 2|AT (ϑ)| |CT (ϑ)|. This concludes the proof of Step III.

The proof of (10). Observe that, using the Plancherel equality, we have

∥∥∥f̂T − f∥∥∥2

2
=

∑
|k|<ξT

∣∣∣∣∣ 1

T

∑
t∈T

hk(δ
ϑ̂T
t )Y t

k − fk

∣∣∣∣∣
2

+
∑
|k|≥ξT

|fk|2

=
∑
|k|<ξT

∣∣∣∣∣ 1

T

∑
t∈T

(
hk(δ

ϑ̂T
t − δϑ0t )fk + hk(δ

ϑ̂T
t )W t

k

)
− fk

∣∣∣∣∣
2

+ o(1)
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=
∑
|k|<ξT

|fk|2
1

T 2

∑
t,t′∈T

(
hk(δ

ϑ̂T
t − δϑ0t )− 1

)(
hk(−δϑ̂Tt′ + δϑ0t′ )− 1

)
+
∑
|k|<ξT

∣∣∣∣∣ 1

T

∑
t∈T

hk(δ
ϑ̂T
t )W t

k

∣∣∣∣∣
2

+ 2
∑
|k|<ξT

1

T 2

∑
t,t′∈T

(
hk(δ

ϑ̂T
t − δϑ0t )− 1

)
fkhk(−δϑ̂Tt′ )W t′

k + o(1)

≤ 4πL‖ϑ̂T − ϑ0‖
∑
|k|<ξT

(
|fk|2 |k|+ |fk| |k|

1√
T
|GT

k |
)

+ o(1) a.s. (20)

with GT
k defined below, by (19), since |hk(δϑ̂Tt − δϑ0t ) − 1| ≤ 2 as well as (recalling the

argument following display (18))∣∣∣hk(δϑ̂Tt − δϑ0t )− 1
∣∣∣ ≤ 2π|k|‖δϑ̂Tt − δϑ0t ‖ ≤ 2πL|k|‖ϑ̂T − ϑ0‖

with the constant L > 0 from Assumption 2.8 and the following argument. Setting

GT
k :=

1√
T

∑
t′∈T

hk(−δϑ̂Tt′ )W t′
k ,

we obtain complex normal deviates independent in k with the property

1

T 2

∑
t,t′∈T

(
hk(δ

ϑ̂T
t − δϑ0t )− 1

)
fkhk(−δϑ̂Tt′ )W t′

k =
fk√
T

(
1

T

∑
t∈T

(
hk(δ

ϑ̂T
t − δϑ0t )− 1

))
GT
k .

Now (20) yields indeed ‖f̂T − f‖2
2 → 0 a.s. if ξ2

T/
√
T → 0 since ‖ϑ̂T − ϑ0‖ → 0 a.s. as

shown in the proof of the first part of Theorem 2.9, supk∈Z |fk| |k| < ∞ by Remark 2.5

and
∑
|k|<ξT |fk|

2 |k| <∞ by Assumption 2.4. The same argument that led to (19) shows

that the variance of
1√
T

∑
|k|<ξT

|fk| |k| |GT
k |

is of order o(1) in case of ξT/
√
T → 0, which gives convergence of ‖f̂T − f‖2 → 0 in

probability, completing the proof.

7.2 Proof of (i) of Theorem 2.13

With the d-dimensional real vector aϑk,t := 2πgradϑ〈k, δϑt 〉 verify that

gradϑ

(∑
t∈T

hk(δ
ϑ
t )Y t

k

∑
t′∈T

hk(δϑt′)Y
t′
k

)
= 2 Re

(∑
t,t′∈T

gradϑ

(
hk(δ

ϑ
t )Y t

k

)
hk(δϑt′)Y

t′
k

)

= −2 Im

(∑
t,t′∈T

aϑk,thk(δ
ϑ
t )Y t

k hk(δ
ϑ
t′)Y

t′
k

)
. (21)
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Moreover, with the true parameter ϑ0 ∈ Θ and arbitray ϑ ∈ Θ recall from (2) that

hk(δ
ϑ
t )Y t

k = hk(δ
ϑ
t − δ

ϑ0
t )fk + hk(δ

ϑ
t )W t

k .

At ϑ = ϑ0 the right hand side is just fk + hk(δ
ϑ0
t )W t

k. In consequence we have for M̃T

from (7) that

gradϑM̃T (ϑ0) =
∑
|k|≤ξT

HT
k (22)

where atk = aϑ0k,t, fk = ek + igk, hk(δ
ϑ0
t )W t

k = τ tkA
t
k + iωtkB

t
k with standard deviations

τ tk :=

√
1

nt

∑
j∈Jt

σ2
j,t cos(−2π〈k, xj,t − δϑ0t 〉)2,

ωtk :=

√
1

nt

∑
j∈Jt

σ2
j,t sin(−2π〈k, xj,t − δϑ0t 〉)2,

and

HT
k :=

2

T 2
Im

(∑
t,t′∈T

atk

(
|fk|2 + fkhk(δ

ϑ0
t′ )W t′

k + hk(δ
ϑ0
t )W t

kfk + hk(δ
ϑ0
t )W t

k hk(δ
ϑ0
t′ )W t′

k

))

=
2

T 2

∑
t,t′∈T

atk

(
gkτ

t′

k A
t′

k − ekωt
′

kB
t′

k + ekω
t
kB

t
k − gkτ tkAtk + τ t

′

k ω
t
kA

t′

kB
t
k − τ tkωt

′

kA
t
kB

t′

k

)
.

Note that Atk, B
t
k ∼ N (0, 1) (k ∈ Z2, t ∈ T) are all mutually independent, and for

k = (0, 0) we have ωt(0,0) ≡ 0.

To determine the limit distribution of
√
TgradϑMT (ϑ) we look at its projections√

T 〈x, gradϑMT (ϑ)〉 with arbitrary but fixed 0 6= x = (x1, . . . , xd) ∈ Rd. To this end

denote by HT
k (j) and atk(j) the j-th component of HT

k and atk, respectively, j ∈ {1, . . . , d},
and set

GT
k :=

d∑
j=1

xjH
T
k (j), atk :=

d∑
j=1

xja
t
k(j) . (23)

Introducing the independent normal vectors Ak := (τ tkA
t
k/τ̄

T
k )t∈T, Bk := (ωtkB

t
k/ω̄

T
k )t∈T

with (cf. Assumption 2.12)

τ̄Tk =

√
1

T

∑
s∈T

(τ sk)2 > 0, ω̄Tk =

√
1

T

∑
s∈T

(ωsk)
2 > 0,

each with independent components as well as the unit vector e := (1)t∈T/
√
T and the

7



vector ak = (atk)t∈T and denoting the transpose of ak by a′k etc., we obtain

GT
k =

2τ̄Tk ω̄
T
k

T 3/2

(
a′kBkA

′
ke− e′BkA

′
kak

)
+

2

T

(
τ̄Tk gka

′
kee
′Ak − ω̄Tk eka′kee′Bk + ω̄Tk eka

′
kBk − τ̄Tk gka′kAk

)
.

To tackle the first term introduce a unit vector bk orthogonal to e such that ak = αke+βkbk,

αk, βk ∈ R and define a matrix U = Uk ∈ SO(T ) having e and bk as the first two columns.

Then, with the independent normal vectors Ãk = U ′Ak, B̃k = U ′Bk with independent

components, each with zero mean,

a′kBkA
′
ke− e′BkA

′
kak = A′k(ea

′
k − ake′)Bk

= A′kUU
′(ea′k − ake′)UU ′Bk

= A′kU(e, bk, ∗)′
(
e(αke+ βkbk)

′ − (αke+ βkbk)e
′
)

(e, bk, ∗)U ′Bk

= Ã′k

(
(1, 0, . . . , 0)′(αk, βk, 0, . . . , 0)− (αk, βk, 0, . . . , 0)′(1, 0, . . . , 0)

)
B̃k

= Ã′k βk



0 1 0 · · · 0

−1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


B̃k .

In consequence, with the first components Ã
(1)
k , B̃

(1)
k and second components Ã

(2)
k , B̃

(2)
k of

Ãk and B̃k,

GT
k =

2τ̄Tk ω̄
T
k βk

T 3/2

(
Ã

(1)
k B̃

(2)
k − Ã

(2)
k B̃

(1)
k

)
+

2

T

(
τ̄Tk gkαkÃ

(1)
k − ω̄

T
k ekαkB̃

(1)
k + ω̄Tk ek(αkB̃

(1)
k + βkB̃

(2)
k )− τ̄Tk gk(αkÃ

(1)
k + βkÃ

(2)
k )
)
.

At this point we note that

β2
k = ‖ak − αke‖2 =

∑
t∈T

(
atk −

1

T

∑
t′∈T

at
′

k

)2

=
∑
t∈T

(atk)
2 − 1

T

(∑
t∈T

atk

)2

(24)

whence βk = O(|k|
√
T ) from the definition of atk and Assumption 2.11. Furthermore,

by Assumption 2.12, τ̄Tk → σA,k and ω̄Tk → σB,k uniformly in k as T → ∞. Hence, the

variance of the first term of GT
k scales with |k|2/T 2, thus

(GT )1 :=
∑
|k|≤ξT

2τ̄Tk ω̄
T
k βk

T 3/2

(
B̃

(1)
k Ã

(2)
k − B̃

(2)
k Ã

(1)
k

)
= Op

√√√√∑
|k|<ξT

|k|2
T 2

 = Op(ξ
2
T/T ) (25)

8



i.e. with the hypothesis ξ4
T/T → 0, we obtain

√
T (GT )1 → 0 in probability. (26)

Let us further note at this point for future use in case of ξT →∞ with ξ4
T/T → 0 due to

βk ≤ C|k|
√
T with a suitable constant C > 0, we have also that

|(GT )1| ≤ ξ2
T

1

ξ2
T

∑
|k|<ξT

2τ̄Tk ω̄
T
k CξT
T

∣∣∣B̃(1)
k Ã

(2)
k − B̃

(2)
k Ã

(1)
k

∣∣∣ → 0 a.s. (27)

The second term of GT
k reduces to

2

T

(
ω̄Tk ekβkB̃

(2)
k − τ̄

T
k gkβkÃ

(2)
k

)
which is normally distributed with zero mean and variance

4

T 2
β2
k

(
(τ̄Tk gk)

2 + (ω̄Tk ek)
2
)

=
16π2

(
(τ̄Tk gk)

2 + (ω̄Tk ek)
2
)

T 2

∑
t∈T

〈
k,

d∑
j=1

xj∂ϑjδ
ϑ
t

〉2

− 1

T

(∑
t∈T

〈
k,

d∑
j=1

xj∂ϑjδ
ϑ
t )

〉)2
 ,

for ϑ = ϑ0 cf. (24). Since the normal random deviates in

(GT )2 :=
∑
|k|<ξT

2

T

(
ω̄Tk ekβkB̃

(2)
k − τ̄

T
k gkβkÃ

(2)
k

)

are independent in k, we have that
√
T (GT )2 is normally distributed with zero mean and

variance converging to

16π2
∑
k∈Z2

(
(σA,kgk)

2 + (σB,kek)
2
) [∫ 1

0

〈
k, (gradϑδ

ϑ0
t )′x

〉2

dt−
〈
k,

∫ 1

0

(gradϑδ
ϑ0
t )′x dt

〉2
]

=: σ2
x <∞ (28)

if f ∈ H1
(
[0, 1]

)
. Recalling the notation of (22), (23) and

∑
|k|<ξT G

T
k = (GT )1 + (GT )2 =

〈x, gradϑMT (ϑ)〉 as well as collecting the results of (26) and (28) we have thus shown that

for any 0 6= x ∈ Rd

√
T 〈x, gradϑMT (ϑ)〉 → N (0, σ2

x)

whenever T, ξT → ∞ with ξT of rate o(T 1/4). Since this holds true for every x, the joint

distribution of
√
TgradϑMT (ϑ) at ϑ = ϑ0 is asymptotically multivariate normal with

covariance matrix as asserted in Theorem 2.13.

In view of use below we note here that we obtain with suitable constants C,C ′ > 0

(C ′ due to Remark 2.5), σmax from Assumption 2.7 and independent standard normal Ck

9



(k ∈ Z) that

|(GT )2| =

∣∣∣∣∣∣ 2

T

∑
|k|<ξT

βk

√
(τ̄Tk gk)

2 + (ω̄Tk ek)
2Ck

∣∣∣∣∣∣ ≤ 2σmaxC√
T

∑
|k|<ξT

|fk||k||Ck|

≤ 2σmaxCC
′ξ2
T√

T

1

ξ2
T

∑
|k|<ξT

|Ck| → 0 a.s. if ξT →∞ and ξ4
T/T = O(1). (29)

Remark 7.1. As shown above, asymptotic normality of the second part
√
T (GT )2 of√

T gradϑM̃T (ϑ0) holds regardless of the rate of ξT . If we relax ξ4
T/T → 0 to C1T

1/4 ≤ ξT ≤
C2T

1/4 with suitable constants C1, C2 > 0, the first part
√
T (GT )1 will no longer converge

to zero but will be tight, cf. (25). Since then also ϑ̂ → ϑ0 by Theorem 2.9, although the

(GT )1 and (GT )2 will be dependent for this rate of ξT , we expect that asymptotic normality

still holds. The corresponding covariance matrix, however, will have a more complicated

structure than being a multiple of Σ̃.

7.3 Proof of (ii) of Theorem 2.13

Here we build on the proof of (i) of Theorem 2.13 within the preceding section and use

the notation there. In addition let bϑk,t := 2πHessϑ〈k, δϑt 〉. Then we obtain at once from

(21)

Hessϑ

(∑
t∈T

hk(δ
ϑ
t )Y t

k

∑
t′∈T

hk(δϑt′)Y
t′
k

)
= DT

k + F T
k

with

DT
k := −2 Im

(∑
t,t′∈T

bϑk,thk(δ
ϑ
t )Y t

k hk(δ
ϑ
t′)Y

t′
k

)

F T
k := −2 Re

(∑
t,t′∈T

aϑk,t(a
ϑ
k,t − aϑk,t′)

′hk(δ
ϑ
t )Y t

k hk(δ
ϑ
t′)Y

t′
k

)
.

In particular, in consequence of (7)

HessϑM̃T (ϑ) = − 1

T 2

∑
|k|<ξT

(DT
k + F T

k ) . (30)

Note that E(DT
k ) = 0. Setting ϑ = ϑ0 observe that the argument of the previous section

(using the matrices bϑk,t instead of the vectors aϑk,t) that led to (27) and (29) gives at once

1

T 2

∑
|k|<ξT

DT
k → 0 a.s. if T, ξT →∞ and ξ4

T/T → 0 . (31)

10



Likewise, the same follows for the random part of F T
k . More precisely for ϑ = ϑ0:

F T
k = −2

∑
t,t′∈T

aϑ0k,t(a
ϑ0
k,t − aϑ0k,t′)

′

Re
(
|fk|2 + fkhk(δ

ϑ0
t′ )W t′

k + hk(δ
ϑ0
t )W t

kfk + hk(δ
ϑ0
t )W t

k hk(δ
ϑ0
t′ )W t′

k

)
= −2

∑
t,t′∈T

|fk|2aϑ0k,t(a
ϑ0
k,t − aϑ0k,t′)

′ + F̃ T
k

with

F̃ T
k :

= −2
∑
t,t′∈T

aϑ0k,t(a
ϑ0
k,t − aϑ0k,t′)

′Re
(
fkhk(δ

ϑ0
t′ )W t′

k + hk(δ
ϑ0
t )W t

kfk + hk(δ
ϑ0
t )W t

k hk(δ
ϑ0
t′ )W t′

k

)
yields

E(F̃ T
k ) = 0 and

1

T 2

∑
|k|<ξT

F̃ T
k → 0 a.s. if T, ξT →∞ and ξ4

T/T →∞ . (32)

Since we have the deterministic limit∑
|k|<ξT

2

T 2

∑
t,t′∈T

|fk|2aϑ0k,t(a
ϑ0
k,t − aϑ0k,t′)

′ → 2
∑
k∈Z2

|fk|2
∫∫

[0,1]2
aϑ0k,t(a

ϑ0
k,t − aϑ0k,t′)

′ dtdt′

as T, ξT → ∞ due to Assumption 2.11 on bounded total variation of first ϑ-derivatives,

in conjunction with (30), (31) and (32) the definition of aϑ0k,t yields the assertion (ii) of

Theorem 2.13.

7.4 Proof of Theorem 2.14

Under Assumption 2.11, standard expansion arguments from M-estimation can be used as

follows. Since MT (ϑ) is twice continuously differentiable for ϑ near ϑ0 and ϑ̂T converges

a.s. to ϑ0, we have that

0 = gradϑMT (ϑ̂T )

= gradϑMT (ϑ0) + HessϑMT (ϑ0)(ϑ̂T − ϑ0) +
(

HessϑMT (ϑ̂∗)− HessϑMT (ϑ0)
)

(ϑ̂T − ϑ0)

where ϑ̂∗ lies between ϑ0 and ϑ̂T . The continuity of the second derivatives gives that

ϑ̂T − ϑ0 and gradϑMT (ϑ0) are of the same asymptotic order since HessϑMT (ϑ0)→ 8π2Σ

a.s. holds by (ii) of Theorem 2.13. Hence

8π2Σ(ϑ̂T − ϑ0) = − gradϑMT (ϑ0) + oP (‖ϑ̂T − ϑ0‖)

11



which in conjunction with (i) of Theorem 2.13, yields both asymptotic assertions.

7.5 Ad Example 2.15

Lemma 7.2. In the situation of Example 2.15, det(Σ) = 0 iff there is x ∈ R2 \ {0} s.t.

f(y + rx) = f(y) for all y ∈ R2, r ∈ R, (33)

where f is [0, 1]2-periodic.

Proof. Since for x ∈ R2 \ {0} we have

x′Σx =
1

12

∑
k∈Z2

|fk|2〈k, x〉2 ≥ 0,

the matrix Σ is positive semidefinite. Hence, det(Σ) = 0 iff there is an x ∈ R2 \ {0} s.t.

x′Σx = 0. This is the case iff

|fk|2 6= 0 implies 〈k, x〉2 = 0 for all k ∈ Z2. (34)

If this implication holds, we have for all y ∈ R2 and r ∈ R that

f(y + rx) =
∑
k∈Z2

fke
2πi〈k,y+rx〉 =

∑
k∈Z2

fke
2πi〈k,y〉e2πir〈k,x〉 =

∑
k∈Z2

fke
2πi〈k,y〉 = f(y),

i.e. (33). If, on the other hand, (33) holds, then the two functions f and f rx( · ) :=

f( · + rx) are identical. Subsequently, their respective Fourier coefficients fk and f rxk =

e2πir〈k,x〉fk are also the same, i.e. (34) holds.

7.6 Motion Blur Measure

To evaluate our drift correction we use a version of the motion blur measure m2 proposed

in (Xu et al., 2013) which is based on the work of (Chen et al., 2010). It is defined as

m2 := log

(
J(ϕmax)

J(ϕmin)

)
. (35)

Here, J(ϕ) :=
∑N2

j=1

(
∆I
(
(xj)1, (xj)2

)
ϕ

)2

is the average squared directional derivative of

an image I in direction
(
cos(ϕ), sin(ϕ)

)′
, ϕ ∈ [0, 2π), ϕmin is the motion direction, and

ϕmax is the direction perpendicular to ϕmin. Note, that J(ϕ) = 0 iff I is constant in

direction ϕ. An advantage of m2 is that it does not depend on the scale of the image.

In (Chen et al., 2010), ϕmin is selected as a minimizer of the functional J . The idea is

that the image is blurred in the direction of the motion and thus the image intensity f

12



changes little in this direction (on average), while it varies much more in the perpendicular

direction. The minimizer is obtained as follows:

Rewrite J(ϕ) =
(
cos(ϕ), sin(ϕ)

)
D
(
cos(ϕ), sin(ϕ)

)′
, where

D =

(
d11 d12

d12 d22

)
, drs :=

N2∑
j=1

∂I

∂(x)r

(
(xj)1, (xj)2

)
· ∂I

∂(x)s

(
(xs)j, (xj)2

)
.

Then, J(ϕ) = d11 + d12 sin(2ϕ) + (d22− d11)
(
sin(ϕ)

)2
. We get the minimum value of J by

setting dJ(ϕ)/dϕ = d12 cos(2ϕ) + (d22 − d11) sin(2ϕ) = 0, which yields ϕ = ϕm + (rπ)/2,

r ∈ Z, with ϕm = arctan
(
2d12/(d11 − d22)

)
/2. The motion direction is then determined

by

ϕmin :=

ϕm if J(ϕm) ≤ J(ϕm + π/2),

ϕm + π/2 if J(ϕm) > J(ϕm + π/2).

The J(ϕmax) also keeps the blur measure value low in the case of an image that is

(almost) constant over wide areas (where the directional derivative is small in any direc-

tion). In our simulation study, since we already know the true drift δt(ϑ), we choose the

average drift direction
∫ 1

0
∂δt(ϑ)/∂t dt = δ1(ϑ) as the motion direction (after normaliza-

tion). Hence, in our context (where I is either f̂T or the superimposed image, see Table

4) we get the motion blur measure

m̃2 := log

(∑N2

j=1

〈
gradxI

(
(xj)1, (xj)2

)
,Rotπ/2δ1(ϑ)/||δ1(ϑ)||2

〉2∑N2

j=1

〈
gradxI

(
(xj)1, (xj)2

)
, δ1(ϑ)/||δ1(ϑ)||2

〉2

)
, (36)

where || · ||2 is the Euclidean norm and

Rotπ/2 :=

(
cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)

)

is the rotation through π/2. Note that the average drift direction used to determine the

motion blur (36) in the case of a drift function with jump is (before normalization)

t0δt0(ϑ) + (1− t0)
(
δ1(ϑ)− lim

t↘t0
δt(ϑ)

)
instead of just δ1(ϑ), where t0 is the time at which the jump occurs. We calculated an

approximation of gradxI as follows (see e.g. (Gonzalez, R.C. and Woods, R.E., 2002)).

Let I be a pixel image of size M ×N . For every pixel location (i, j), i ∈ {1, . . . ,M},
j ∈ {1, . . . , N}, the gradient of I is defined as ∇I(i, j) :=

(
Gx(i, j), Gy(i, j)

)′
with

Gx(i, j) :=
1∑

i′,j′=−1

Sx(i
′+2, j′+2)I(i+i′, j+j′), Gy(i, j) :=

1∑
i′,j′=−1

Sy(i
′+2, j′+2)I(i+i′, j+j′),

13
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where we extend the image periodically, i.e. I(0, j) := I(M, j), I(M + 1, j) := I(1, j),

I(i, 0) := I(i, N), and I(i, N + 1) := I(i, 1) and so on. Here, Sx and Sy are the Sobel

masks

Sx :=
1

8

 −1 0 1

−2 0 2

−1 0 1

 , Sy :=
1

8

 −1 −2 −1

0 0 0

1 2 1

 .

Often, especially if I is noisy, it is beneficial to smooth the image first, e.g. with a Gauss

kernel

K :=
1

16

 1 2 1

2 4 2

1 2 1

 .

This means that we replace every I(i, j) with the weighted average

Ī(i, j) :=
1∑

i′,j′=−1

K(i′ + 2, j′ + 2)I(i+ i′, j + j′)

of the 3 × 3 pixel area centred on it. Because our images are very noisy, we repeat that

procedure once more.

7.7 Simulations: Tables

In this subsection we display the simulation results from Section 3.

Table 1 summarizes the drift parameter estimators ϑ̂T for one simulation in different

drift models, error models, and for different image sequence lengths T . Table 2 displays

the means of those estimators ϑ̂T from 100 simulations each. Table 3 shows the roots

of the mean squared errors of the same estimators ϑ̂T . Finally, Table 4 lists the blur

measure values of the superimposed images and the estimated images f̂T corresponding

to the parameters in Table 1.

We used images of size 256 × 256 pixels and the image sequences had lengths T ∈
{20, 50, 100}. The drift functions were polynomials in t (time) of degree 1, 2, or 3, or

piecewise linear with a jump. The true drift parameters θ0 are shown in Tables 1 and 2.

For the Gaussian and t2-distributed errors we chose a noise level of σ = 0.1. The Fourier

cutoff was set to ξT =
√
T and the start value for the minimization algorithm was 0 ∈ Rd,

where d is the dimension of the drift parameter ϑ0. For each scenario (drift model, error

model, number of frames T ), we performed 100 simulations.
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