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Introduction:

For symmetric magnetic configurations (e.g. tokamaks), the flux-friction relation [1] is based on the
equivalence of thé? - V B and theB x V B terms in the drift-kinetic equation, the first being responsible

for the friction of passing particles with trapped ones and the second for the radial drift, i.e. radial
transport. In the conventional neoclassical theory, mono-energetic transport coefficients are defined by
moments of the 1st order distribution function (involving flux-surface averaging and integration over
the pitch,p = v)/v). The flux-friction relation leads to a coupling of the 3 mono-energetic transport
coefficients, i.e. the particle transport coefficiant; , the bootstrap current coefficierds; (equivalent

to the Ware pinchpD3 due to Onsager symmetry), and the parallel electric conductidigy, With a
database of elongated tokamak configurations, these mono-energetic transport coefficients are described

self-consistently by analytic expressions.

Flux-Friction Relations:
The mono-energetic 1st order drift kinetic equation (DKE) is written in conservative form with spherical
velocity-space coordinateg; v
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with the incompressible form of th& x B drift, with C?(f) the Lorentz form of the pitch-angle

collision term, and with
B-VB

)= —(1—p?)v—=a—.

The flux surface averagéA ), and the averaged momeny | are defined by
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Straightforward integration with

(20 =(f257) ad (V(ExB)f)=(1-H)(ExB)Vf)

leads to
1+p* B-VB
2 U B2

[PV () = pC?(f)] = | f]+2vips] @)

whereb = B/By, and theE x B drift effect can be neglected (2nd order in inverse aspect ratio,

e = r/R). For tokamaksBy = t¢ By with ¢ being the rotational transform yields

B-VB=-re(BxYB)-e,
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(with the unit vectore,. normal to the flux surface) coupling the radial flux,(B x VB) - ¢,., and the
friction, B - VB. This feature is not present in configurations with lacking symmetry.
The radial component of th€ B-drift velocity is given by

m 1+ p?

P, = p opr U (EXTE) e

and inserting in eq.(2) yields the flux-friction relation

v [pV(f) =pCP(f)] = —teweo [b7 f] + 2vv[pf]. 3)

By normalizing the DKE (1) K = Xw/R)
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with collisionality, v* = v R/+v, the 1st order DKE for the radial transport and the bootstrap current is

defined by
L, 14+p?0b=2 dln fyy

and for the ohmic current and the Ware pinch by
- N u*
Vig)) = CP(g1) =~ (5)

with ff = fi/fm (97 = o1/ fum), with “gyroradius” p* = v/rwe, and “loop voltage”u* =
(¢R/TB) E - B in normalized form. Both the radial transport (symmetric parpiof f;) and the
ohmic current (asymmetric part gmof g;) are directly driven by the inhomogeneity. With eq.(3), the

averaged moment equations are obtained

u*
—I'11 (1 — 0411) + 2U* I's;=0 and —1TI'3 (1 — 0413) + 2v* I's3 = — 7

(6)
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with the particle flux'y; = [7* f7], bootstrap currerits; = [pf;], Ware pincll’13 = [#*g7], and ohmic
currentl's3 = [pgi]; #* =7/ p*v = £ (1 4 p?) b~1 /00, and the (small) finite aspect ratio corrections
ant = [(b— 1) f7]/[F* f{] andaus = [(b — 1) g7/ [ g3].

The Pfirsch-Scliiter (PS) contributions must be eliminated in bbth andI's3. With the ansatZ| =

oo + po1 in the PS-regime, eq. (3) leads to

P i L PS/q Coxp 2, Apvidlnfy oo 1
¢1—L_€7‘(fM) (1 b2)b and T'ii"” (1 —an) =2v [P<Z51]—3 = dlnr <(1 bg)b>

For the simplified “standard model” (see Sec. 8.9 in ref.[2]) of an elongated tokamak(1 +
ke cos 0)~! with the reduction of the toroidal curvature(elongation~ x~2), ((1—b2) b) = x2c2/2

is obtained. The direct integration of the DKE (5) for largie(neglecting the/ contribution) leads to

1
Iy3" = 3

(u”).



31st EPS 2004; H. Maassberg et al. : Self-Consistent Neoclassical Transport Coefficients for Elongated Tokam... 30f4

Eliminating both PS contributions in eq.(6), dividing by the “thermodynamic forcésh (fy; /d Inr

andu*, respectively), and using Onsager symmefdy; = —Ds1, yields the system for the diffusion
coefficients
—(D11 — Dﬁs) (1 —a11)+2v" D31 =0 (7
bgl (1 — Oélg) + 2v* (Dgg — bg%s) =0 (8)

Database of elongated tokamak configurations:

The DKES code [3, 4] is used to calculate the 3 mono-energetic transport coefficients for a database of
elongated tokamak configurations in an extended “standard médelicey + (1 + ke cos 9)_1§¢.

The database is defined in the rang@ex < » < 1.04, 0.0125 < ¢ < 0.4, and0.25 < xk < 1.0. For

up to 35v /v values (0~ < v/v < 10%) in 24 configurations, the diffusion coefficients are calculated
with up to 250 Fourier modes and up to 1000 Legendre polynomials in the expansion of the distribution
function at low collisionalities. At even lower/v, the accuracy strongly decreases. For estimating the
PS contributions, 44 configurations are usediat = 10° due to fast convergence to the PS limit).
The test functions for the non-linear fitting are constructed mainly by “trial and error”. This procedure
is supported by the complete co-variance analysis of the least-squares fitting. The dependBnce on
and onR is known and therefore omitted for simplicity, i.d&3 = 1 T and R = 1 m is used for the
databaselp;; o 1/B?, D3; « 1/B, and D33 independent of3).

Fit results:

All representations of the mono-energetic transport coefficidnis,are given in DKES notation and
can be normalized by the plateau valuefor 1, D}, = 7/(8¢), the collisionless asymptote far= 1
ande — 0, D§, = 0.9733/(x/¢) [5], and the collisional limit,D%; = 2v/3v (in DKES notation).

For the PS contributions, the best-fits are obtained by

ps  4K* v 3.6 1.6 2 2
D™ = — — (1+3.42¢%%(1 — 2.58¢%) — 0.6e*(1 — k%))
32 v
2
Dy = = (1= L18(xe) 5 + 0.685%7).
14

The averaged deviation of the fit to the DKES data is 0.7% (0.1%Pfaf® (Ds3”%).

The convergence of thBs; coefficient to the collisionless asymptote is independently fitted in order to
avoid the influence of (inaccurate) test functions in other collisionality regimesk Forl and in the
limit ¢ — 0, the result from analytic theory [5] is confirmed (105, ); the extension for elongation and

finite £ in the banana regime is given by

. o 2 (1 L0 [y
Dl = 09733, | =5 (1 - 0.67(xe)?) (1+I%2/3t1/3 \ﬁ) ©)

Finally, all 3 diffusion coefficients are fitted simultanously. With the contributions for the plateau and
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the PS regime, the bootstrap current coefficient is represented by

175 —1.75 175\~ /175
D31 = (Dgl + DB 4 DES )
2 2 9
with D2 =0.39" =" and DFS = 0.068°= <U_”> 7
t vV U v

and the radial diffusion coefficient and the parallel electric conductivity by
1 .
D1y = D" + = DyY and Dy = D3y™s — a Dy with o = te(1—0.97(ke)" ")
(6 v 14

corresponding to egs.(7,8). The average deviation of this representation for all 3 mono-energetic trans-
port coefficients to the DKES data is 1.9%, and the difference is higher for the bootstrap current coeffi-

cient especially for large.

Discussion:

With the very accurate expansion of the 1st order distribution functionDfjecoefficient of eq. (9)
calculated with DKES can be compared with other approaches. First of all, the analytical estimate of
Ref. [5] is confirmed fork = 1 and very smalt (the energy convolution leads to an additional factor 1.5
resulting in the given value of 1.46). In lowest ordeeiandv* — 0, this representation is independent

of the magnetic field model.

The situation is different, however, with respect to the fiaiteorrection and the convergence to the
collisionless asymptotic value. For the very low collisionalities, the ré&tig/ D53, = (1 + ag)/(1 +
a1v/v*) corresponding to eq. (9) is fitted to DKES calculations for 3 different magnetic field models
with e = 0.125, kK = 1 ands = 0.2614: the model with only B-Fourier mode) = 1 — e cos 0, yields

ap = —0.0347 anda; = 4.045; the “standard” modelp = (1 + ccosf)~!, yieldsay = —0.0091
anda; = 3.76; and, finally, the model used in Ref. [6],= (1 + 2¢ cos 6 + 4e2 cos 20) /2, yields

ap = —0.129 anda; = 4.98. For the last modelgy = 2.74¢ ~ +0.3425 anda; = 1 obtained by

a d f-Monte Carlo technique [6] is in contradiction to the results with DKES calculations. However,
no access to the asymtotic Imfp-regime was possible i fhonte Carlo simulations (which were

restricted ta/* > 10?).

[1] F.L. Hinton and R.D. Hazeltine, Rev. Mod. Physitg 239 (1976).

[2] R. Balescu,Transport Processes in Plasm@sorth-Holland, Amsterdam, 1988).
[3] S.P.Hirshmaret al, Phys. Fluid29, 2951 (1986).

[4] W.I. van Rij and S.P. Hirshman, Phys. FluidslB563 (1989).

[5] A.H.Boozer and H.J. Gardner, Phys. Fluid23408 (1990).

[6] M. Sasinowski and A.H. Boozer, Phys. Plasni2a610 (1995).



