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Abstract

This article presents semi-analytical solutions of a linear general rate model for

fixed-bed liquid chromatographic reactors packed with core-shell particles. The

model considers axial dispersion, interfacial mass transfer, intraparticle diffusion, lin-

ear adsorption, heterogeneous irreversible and reversible reactions, and injection of

rectangular pulses. The Laplace transformation and eigen-decomposition technique

are simultaneously applied to derive analytical solutions. The numerical Laplace in-

version is applied for back transforming solutions in the actual time domain. A high

resolution finite volume scheme is used to numerically approximate the model equa-

tions. Different case studies of reactive chromatography are considered to analyze

the effect of core radius fraction on the elution profiles.
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Introduction

Core-shell particles or focused-cored beads are formed by an impermeable inner core sur-

rounded by a layer of fully porous silica and, thus, are morphologically quite different from

the commonly used fully-porous silica particles.1–5 The core may be a single sphere or

aggregation of several small spheres. The concept of core-shell particles was introduced by

Horvath et al.6 at the end of the 1960s to prepare columns that could provide efficient sep-

aration of high molecular weight compounds of biological origin in high performance liquid

chromatography (HPLC). However, the production of core-shell particles to high-quality

standards had to overcome many difficulties in the following decades.7,8 Non-porous beads

have been a success in analytical liquid chromatography (LC) because they provide sharp

peaks and fast separations.9–13 However, these beads do not offer sufficient binding sites

for peak separations in preparative LC.1,14–16 Fully porous and non-porous beads offer two

extreme cases for mass transfer and binding capacities. The first one deals with largest

binding capacities and diffusional intraparticle mass transfer resistance, while the second

one offers the smallest binding capacities and complete elimination of intraparticle mass

transfer. In preparative and large-scale LC, a substantial binding capacity is needed to

create retention time differences among peaks. However, with fully porous beads, band

broadening makes baseline separation difficult when profiles travel inside the column for

sufficiently long time. Thus, core-shell particles offer a compromise between fully porous

and non-porous particles that is better for many systems. The performance of separation

parameters is also significantly influenced by particle characteristics, such as size of particles

and the thickness of porous shell. As the thickness of the porous shell decreases, the mass

transfer fasters, the column efficiency improves and the retention time reduces. The size of

the particle core, the shell porosity and the thickness of the shell are adjusted accordingly

to suit distinct chromatographic applications. Core-shell columns are now commercially

2



available in particle sizes ranging from 1.3 to 5 µm. Usually, columns packed with 2.7 µm

core-shell particles will produce efficiencies approaching those packed with 1.8 µm fully

porous particles, but at significantly lower back pressures. In HPLC applications, the core

shell silica particles with a solid core and porous shell are commonly used. Ding and Sun17

fabricated gel-coated cored beads with dense magnetic cores for protein separations in a

magnetically stabilized fluidized bed. The use of a rigid core relieves bed compression for

soft gels and, thus, during scale-up, cored beads allow longer columns that are better for

peaks resolution.18 Cored beads were also used in gas chromatography.19

Cored beads have been used in various LC separations, especially in ion exchange.6,18,20,21

They are also practically used for the separations of proteins and peptides,1,4,22 includ-

ing proteins in proteomic research,18 nucleotides,6 and other compounds.21 The authors

in23,24 performed experiments to compare and analyze several commercially available fully

porous and cored beads. Zhou et al.4 considered a general rate model for cored beads

to obtain intraparticle diffusion coefficients. They did not provide numerical methods or

simulated elusion profiles. Kaczmarski and Guiochon25,26 extended the standard mod-

els of chromatography to columns packed with core-shell particles. Li et al.27 performed

optimization of core size for linear chromatography by minimizing height equivalent theo-

retical plate (HETP) number. Lambert et al.28 have studied the mass-transfer properties

of insulin on core shell and fully porous particles. Recently, we have analyzed linear and

nonlinear models for liquid chromatographic columns packed with core-shell particles.29,30

Reactive chromatography is an integrated process in which chemical or biochemical re-

actions are combined with the chromatographic separation.31–34 This technique improves

the conversion of reactants and purity of products and, therefore, remained a source of

attraction to several researchers in the past few decades.31,33,35–50 The chemical reactions

can be of two types, such as homogeneous and heterogeneous. For understanding the basic

principle of a fixed-bed chromatographic reactor, let us consider a single column reactor

3



and a reversible reaction of the type A⇄B. The reactant A is dissolved in the desorbent

and is injected as rectangular pulse into the column packed with the stationary phase.

The reaction occurs at the surface of catalyst to form the product B. Both components A

and B interact with the surface of adsorbent and because of their different affinities to the

stationary phase, they move inside the column with different propagation speeds. Hence,

components are separated and the driving force for the forward reaction is enhanced and

the backward reaction is suppressed. As a result, chemical equilibrium can be achieved

and high purity product can be obtained at the column outlet. Recently, we have theoret-

ically studied reactive liquid chromatopathy by considering different linear and nonlinear

chromatographic models.51–56

This paper is concerned with the analytical solutions of a two-component linear general

rate model (GRM) for fixed-bed liquid chromatographic reactors packed with a spherical

shaped core-shell particles. The model considers two-component mixture, irreversible and

reversible reactions, axial dispersion, interfacial mass transfer, intraparticle diffusion, lin-

ear adsorption, and rectangular pulse injections. It is an extension of our recent works

on reactive chromatography considering fully porous particles.55 Analytical solutions of

the model equations are derived by simultaneously applying the Laplace transformation

and eigen-decomposition techniques.57,58 The numerical Laplace inversion is applied for

back transformation of the solutions in the actual time domain.59 Numerical simulations

are required to accurately predict the dynamic behavior of chromatographic columns. To

gain further confidence on the derived semi-analytical solutions, a high resolution finite

volume scheme (HR-FVS) is applied to solve the model equations numerically.60,61 Differ-

ent case studies of the two-component mixtures are considered. With these case studies

it is intended to analyze the effects of core radius fraction, reaction rate constant, axial

dispersion, film mass transfer resistance and intraparticle diffusion resistance, on the elu-

tion curves. The behavior of chromatographic reactor is further analyzed by calculating
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numerical moments of concentration profile.

This article is structured as follows. In Section 2, the two-component linear reactive GRM

for core-shell particles is introduced for irreversible reaction along with two sets of boundary

conditions (BCs), such as Dirichlet and Danckwerts BCs. In Section 3, analytical solutions

are derived to solve these model equations for the considered irreversible reaction. In

Section 4, the model and analysis are extended for the case of reversible reaction. In Section

5, several test problems are considered. Finally, conclusions are presented in Section 6.

Irreversible reaction (A→B) in a fixed-bed chromato-

graphic reactor

This study considers an isothermal chromatographic reactor packed with core-shell par-

ticles, see Figure 1. Concentration pulses of the reactant are periodically injected to a

flowing stream passing through the chromatographic reactor. In this process, the reactant

A (component 1) converts into product B (component 2) through an irreversible first or-

der heterogeneous reaction. The considered GRM contains four mass balance equations for

describing concentrations transport in the bulk of fluid and inside the particles micropores.

The mass balance equations in the bulk of fluid are expressed as31,32

∂cbi
∂t

+ u
∂cbi
∂z

= Db

∂2cbi
∂z2

− 3

Rp

Fbkexti
(
cbi − cpi|r=Rp

)
, i = 1, 2. (1)

Here, t denotes the time coordinate, z represents the axial coordinate along the column

length, cbi(t, z) is the concentration of the ith component in the bulk of fluid and cpi(t, z)

is the concentration of ith component in the particle pores, respectively. Moreover, u is

the interstitial velocity, Db represents the axial dispersion coefficient which quantifies back

mixing effects in the column and is assumed same for both components, kext,i is the external

5



mass transfer coefficient of ith component quantifying the rate of the transport through a

luminary boundary layer, Fb =
1−ǫb
ǫb

is the phase ratio, ǫb ∈ (0, 1) is the external porosity,

and r denotes the radial coordinate of spherical particles of radius Rp (c.f. Figure 1).

Assuming pore-diffusion as a mean of intraparticle transport, the governing equations in

the particles pores are given as:31,32

ǫp
∂cpi
∂t

+ (1− ǫp)
∂q∗pi
∂t

=
1

r2
∂

∂r

(
r2

[
ǫpDpi

∂cpi
∂r

+ (1− ǫp)Dsi

∂q∗pi
∂r

])
∓ ν1(1− ǫp)q

∗

p1
. (2)

Here, i = 1, 2. In the above equation, q∗pi denotes the local equilibrium concentration of ith

component in the stationary phase, ǫp is the internal porosity, Dpi is the pore diffusivity of

ith component, Dsi is the surface diffusivity of ith component, and ν1 is the rate constant of

the chemical reaction taking place in the column. The signs of the reaction rate constant ν1

is taken positive for component 1 and negative for component 2 indicating the irreversible

behavior of reactant (component 1).

The Eqs. (1)-(2) are linked at r = Rp through the following relations:32

[
ǫpDpi

∂cpi
∂r

+ (1− ǫp)Dsi

∂q∗pi
∂r

]

r=Rp

= kexti(cbi − cpi|r=Rp
), i = 1, 2. (3)

The adsorption isotherms are assumed linear in this study,32 i.e.

q∗pi = aicpi, i = 1, 2. (4)

After plugging Eq. (4) in Eq. (2), we get

a∗i
∂cpi
∂t

=
Deffi

r2
∂

∂r

(
r2
∂cpi
∂r

)
∓ ν1(1− ǫp)a1cp1, (5)

with a component specific effective diffusivity Deffi
coefficient quantifying the transport
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rate in the particles:

Deffi
= ǫpDpi + (1− ǫp)Dsiai, a∗i = ǫp + (1− ǫp)ai, i = 1, 2. (6)

Similarly, Eq. (3) reduces to

Deffi

∂cpi
∂r

∣∣∣∣
r=Rp

= kexti(cbi − cpi|r=Rp
). (7)

The following dimensionless variables are introduced for simplifying the analysis and for

reducing the number of variables:

x =
z

L
, τ =

ut

L
, ρ =

r

Rp

, P eb =
Lu

Db

, ω1 =
ν1L

u
,

Bipi =
kextiRp

Deffi

, ηpi =
Deffi

L

R2
pu

, ξpi = 3BipiηpiFb, i = 1, 2, (8)

where L denotes the column length, Peb represents the axial Pectlet number which is

assumed same for both components, and ω1 quantifies the reaction rate. By introducing

the dimensionless variables in Eqs. (1), (5) and (7), we get

∂cbi
∂τ

+
∂cbi
∂x

=
1

Peb

∂2cbi
∂x2

− ξpi (cbi − cpi|ρ=1) , (9)

a∗i
∂cpi
∂τ

=
ηpi
ρ2

∂

∂ρ

(
ρ2
∂cpi
∂ρ

)
∓ ω1(1− ǫp)a1cp1, (10)

∂cpi
∂ρ

∣∣∣∣
ρ=1

= Bipi(cbi − cpi|ρ=1), i = 1, 2. (11)

For fully porous particles ρ ranges from 0 to 1, while for cored particles it ranges from

β = Rcore/Rp to 1. As this study is concerned with the cored particles of arbitrary core

radius fraction β, it is necessary to allow the core radius to be changed. For cored particles

(c.f. Eqs. (10) and (11) ), β ≤ ρ ≤ 1. For fully porous particles β=0, while β 6= 0 for
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cored particles. Thus, it is helpful to replace ρ-axis by 0 ≤ γ ≤ 1, where

γ =
ρ− β

1− β
. (12)

On substituting

ρ = γ(1− β) + β, (13)

in Eqs. (9)-(11), we obtain

∂cbi
∂τ

+
∂cbi
∂x

=
1

Peb

∂2cbi
∂x2

− ξpi (cbi − cpi|ρ=1) , (14)

a∗i
∂cpi
∂τ

− ηbi

(
1

(1− β)2
∂2cpi
∂γ2

+
2

(γ(1− β) + β)

1

(1− β)

∂cpi
∂γ

)
± ω1(1− ǫp)a1cp1 = 0, (15)

∂cpi
∂γ

|γ=1 = Bpi(1− β)(cbi − cpi|γ=1), i = 1, 2. (16)

Eqs. (15) can now be rephrased as

(1− β)2a∗i
∂

∂τ
[(γ(1− β) + β)cpi]− ηbi

∂2

∂γ2
[(γ(1− β) + β)cpi] (17)

± (1− β)2ω1(1− ǫp)a1[(γ(1− β) + β)cp1] = 0, i = 1, 2.

Moreover, appropriate inlet and outlet BCs are needed for Eqs. (14) and (17). For an

initially regenerated column, the corresponding initial conditions are given as

cbi(0, x) = 0, cpi(0, x, γ) = 0 , ∀ x, γ ∈ (0, 1), i = 1, 2 . (18)
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The following boundary conditions at γ = 0 and γ = 1 are assumed for Eq. (17)

∂cpi
∂γ

∣∣∣∣
γ=0

= 0 ,
∂cpi
∂γ

∣∣∣∣
γ=1

= Bpi(1− β)(cbi − cpi|γ=1) , i = 1, 2. (19)

Due to assumed rapid adsorption or desorption rates, the concentrations of solute in the

pores and that in the stationary phase are in the equilibrium state. In this study, the

following two sets of BCs are considered as summarized below.

Type 1: Dirichlet inlet BCs

In this case, the simpler Dirichlet BCs are applied at the column inlet

cbi(τ, x = 0) =





cbi ,inj , if 0 ≤ τ ≤ τinj,

0 , τ > τinj,
, i = 1, 2, (20a)

together with the useful and realistic zero Neumann BCs for hypothetically infinite length

column (Neumann at infinity):

∂cbi
∂x

∣∣∣∣
x=∞

= 0, i = 1, 2. (20b)

This assumption is required to satisfy the over all mass balance i.e mass injected at the

column inlet should be equal to the mass at the column outlet. For sufficiently small

dispersion coefficient, for example Db ≤ 10−5 m2/s, the Dirichlet BCs are well applicable.

Type 2: Danckwerts inlet BCs

In this case, the Robin type BCs, also known as Danckwerts BCs in chemical engineering,

are applied at the column inlet:62

cbi(τ, x = 0)− 1

Peb

∂cbi(τ, x = 0)

∂x
=





cbi ,inj , if 0 ≤ τ ≤ τinj ,

0 , τ > τinj ,
, i = 1, 2. (21a)
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Danckwert BCs quantify the possible back mixing at the column inlet due to large axial

dispersion and reduces to simpler Dirichlet BCs when the axial dispersion is small. At the

outlet of the column of finite length L, the following Neumann BCs are used

∂cbi
∂x

∣∣∣∣
x=1

= 0 . (21b)

Analytical solutions of the model for reaction of type

A→B

Here, semi-analytical solutions of the above model are presented for Dirichlet (Eqs. (20a)

and (20b)) and Danckwert (Eqs. (21a) and (21b)) inlet boundary conditions. The following

Laplace transformation is applied as a basic tool to solve the model equations:

c̄i(s, x) =

∞∫

0

e−sτci(τ, x)dτ, τ ≥ 0, c ∈ {cb, cp}. (22)

After applying the Laplace transformation, the model Eqs. (14) yield

sc̄bi +
dc̄bi
dx

=
1

Peb

d2c̄bi
dx2

− ξpi(c̄bi − c̄pi|γ=1) , i = 1, 2 . (23)

While, the Laplace transformation of Eqs. (17) gives

(1− β)2a∗i [(γ(1− β) + β)c̄pi]s− ηpi
d2

dγ2
[(γ(1− β) + β)c̄pi] (24)

± (1− β)2ω1(1− ǫp)a1[(γ(1− β) + β)c̄p1] = 0 , i = 1, 2 .
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The general solution of Eq. (24) for (i = 1) is given as

c̄p1(s, x, γ) =
1

(γ(1− β) + β)

[
k1e

(1−β)
√

α(s)γ + k2e
−(1−β)

√
α(s)γ

]
, (25)

where,

α(s) =
a∗1s+ ω1(1− ǫp)a1

ηp1
. (26)

On utilizing the boundary conditions given in Eq. (19), the values of k1 and k2 become

k1 =
Bip1 c̄b1(β(

√
α(s)) + 1)/2 sinh((1− β)

√
α(s))

((1− β) +Bip1β)
√
α(s)

[
(Bip1+(βα(s)−1))

((1−β)+Bip1β)
√

α(s)
+ coth((1− β)

√
α(s))

] , (27)

k2 =

[
(β(

√
α(s))− 1)

(β(
√
α(s)) + 1)

]
Bip1 c̄b1(β(

√
α(s)) + 1)/2 sinh((1− β)

√
α(s))

((1− β) +Bip1β)
√
α(s)

[
(Bip1+(βα(s)−1))

((1−β)+Bip1β)
√

α(s)
+ coth((1− β)

√
α(s))

] .

(28)

Here, the upper positive sign is taken for k1 and the lower negative sign for k2. At γ = 1,

Eqs. (25), (27) and (28) give

c̄p1|ρ=1 = c̄b1f1(s), (29)

where

f1(s) =
Bip1 [β(

√
α(s)) coth((1− β)

√
α(s)) + 1]

((1− β) +Bip1β)
√
α(s)

[
(Bip1+(βα(s)−1))

((1−β)+Bip1β)
√

α(s)
+ coth((1− β)

√
α(s))

] . (30)
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Introducing Eq. (21b) in Eq. (18), we get the general solution

c̄p2(s, x, ρ) =
1

(γ(1 − β) + β)

[
k′1e

(1−β)
√

α′(s)γ + k′2e
−(1−β)

√
α′(s)γ

]
(31)

− f1(s)(1− ǫp)a1ωc̄b1(β(
√

α(s)) cosh((1− β)
√

α(s)γ) + sinh((1 − β)
√

α(s)γ))

(γ(1 − β) + β)(α(s)ηp2 − a∗2s)(β
√

α(s)− 1)(β(
√

α(s)) coth((1 − β)
√

α(s)γ) + 1)(sinh(1− β)
√

α(s))
,

where α′(s) =
a∗2s

ηp2
. By using the boundary conditions in Eq. (19) in Eq. (31), we get

k′1 =
Bip2 c̄b2 +

((Bip2−1)+
√

α(s)(β(
√

α(s)) coth((1−β)
√

α(s))))f1(s)(1−ǫp)a1ωc̄b1
(α(s)ηp2−a∗2s)(β

√
α(s)−1)

2 sinh((1− β)
√

α′(s))

[
− 1 + βα′(s) +Bip2 + (1− β + βBip2)

√
α′(s) coth((1− β)

√
α′(s))

] ,

(32)

k′2 =

[
(β(

√
α′(s))− 1)

(β(
√

α′(s)) + 1)

]

Bip2 c̄b2 +
((Bip2−1)+

√
α(s)(β(

√
α(s)) coth((1−β)

√
α(s))))f1(s)(1−ǫp)a1ωc̄b1

(α(s)ηp2−a∗2s)(β
√

α(s)−1)

2 sinh((1 − β)
√

α′(s))

[
− 1 + βα′(s) +Bip2 + (1− β + βBip2)

√
α′(s) coth((1− β)

√
α′(s))

] .

(33)

At γ = 1, Eqs. (31), (32) and (33) give

c̄p2|γ=1 = c̄b2f2(s) + c̄b1A(s), (34)

where,

f2(s) =
Bip2[β(

√
α′(s)) coth((1− β)

√
α′(s)) + 1]

((1− β) +Bip2β)
√
α′(s)

[
(Bip2+(βα′(s)−1))

((1−β)+Bip2β)
√

α′(s)
+ coth((1− β)

√
α′(s))

] , (35)
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and

A(s) =
f1(s)(1− ǫp)a1ω

(α(s)ηp2 − a∗2s)(β
√

α(s)− 1)
[
((Bip2 − 1) +

√
α(s)(β

√
α(s) + coth((1− β)

√
α(s))))[β(

√
α′(s)) coth((1− β)

√
α′(s)) + 1]

((1− β) +Bip2β)
√

α′(s)

[
(Bip2+(βα′(s)−1))

((1−β)+Bip2β)
√

α′(s)
+ coth((1 − β)

√
α′(s))

] − 1

]
.

(36)

On introducing Eqs. (29) and (34) in Eqs. (23) for (i = 1, 2), we get the following ordinary

differential equations (ODEs)

d2c̄b1
dx2

− Peb
dc̄b1
dx

− Pebφ1(s)c̄b1 = 0 , (37)

d2c̄b2
dx2

− Peb
dc̄b2
dx

− Pebφ2(s)
dc̄b2
dx

= −Pebξp2A(s)c̄b1 , (38)

where

φ1(s) = s+ ξp1(1− f1(s)) , φ2(s) = s+ ξp2(1− f2(s)). (39)

Eqs. (37) and (38) can be expressed in matrix notation as

d2

dx2



c̄b1

c̄b2


− Peb

d

dx



c̄b1

c̄b2


−




Pebφ1(s) 0

−ξp2PebA(s) Pebφ2(s)






c̄b1

c̄b2


 =



0

0


 . (40)

Here, the square brackets [ ] stands for a square matrix, the round brackets ( ) represents

a column vector, and c̄bi for (i = 1, 2) are the liquid phase concentrations of mixture

components in the Laplace domain.
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The reaction coefficient matrix [B] in Eq. (40) is given as

B =




Pebφ1(s) 0

−ξp2PebA(s) Pebφ2(s)


 . (41)

In the next step, the linear transformation matrix [A] will be computed.52,53,58 Note that,

the columns of [A] are the eigenvectors of the matrix [B]. The eigenvalues and eigenvectors

of the matrix [B] are given as:

λ1 = Pebφ1(s), x1 =




A11

−ξp2PebA(s)A11

Pebφ1(s)−Pebφ2(s)


 and λ2 = Pebφ2(s), x2 =




0

A22


 . (42)

Here, λ1 and λ2 denote the eigenvalues and A11 and A22 are the arbitrary constants. For

simplicity, we take the values of A11 and A22 equal to one. Using Eq. (42), the diagonal

matrix k̃ and the transformation matrix [A] can be written as

k̃ =



Pebφ1(s) 0

0 Pebφ2(s)


 , A =




1 0

−ξp2PebA(s)

Pebφ1(s)−Pebφ2(s)
1


 . (43)

The matrix [A] is then used in the following linear transformation53,58



c̄b1

c̄b2


 =




1 0

−ξp2PebA(s)

Pebφ1(s)−Pebφ2(s)
1






b1

b2


 . (44)

Applying the above linear transformation on Eq. (40), we get

d2

dx2



b1

b2


− Peb

d

dx



b1

b2


 =



Pebφ1(s) 0

0 Pebφ2(s)






b1

b2


 . (45)
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Eq. (45) represents a system of two independent ODEs. Their explicit solutions are given

as

b1(s, x) = A1e
m1x +B1e

m2x, m1,2 =
Peb
2



1∓
√

1 +
4φ1(s)

Peb



 , (46)

and

b2(s, x) = A2e
m3x +B2e

m4x, m3,4 =
Peb
2



1∓
√

1 +
4φ2(s)

Peb



 . (47)

Here, A1, B1, A2 and B2 are constants of integration which can be obtained by using one

of the selected two sets of BCs. If ω1 = 0, the above solutions correctly reduce to the

solutions of non-reactive chromatography presented in our previous article.29

Type 1: Dirichlet BCs

The Laplace Transformation of Eqs. (20a) and (20b) gives

c̄bi(s, 0) =
cbi,inj(1− e−sτinj)

s
,

dc̄bi
dx

(s,∞) = 0. (48)

On using the transformations in Eq. (44), Eq. (48) yields

b1(s, x = 0) =
(1− e−sτinj)

s
cb1,inj,

db1
dx

(s,∞) = 0. (49)

b2(s, x = 0) =
(1− e−sτinj)

s
cb2,inj +

ξp2PebA(s)

Pebφ1(s)− Pebφ2(s)
b1(s, x = 0),

db2
dx

(s,∞) = 0. (50)
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After applying these boundary conditions on Eq. (46), the values of A1 and B1 are obtained

as

A1 =
(1− e−sτinj)

s
cb1,inj, B1 = 0 . (51)

Thus, Eqs. (44), Eq. (46) and Eq. (51) gives

c̄b1(s, x) =
cb1,inj(1− e−sτinj)

s
em1x, (52)

where the value of m1 is given by Eq. (46) for the upper negative sign. Similarly, on using

Eq. (50) in Eq. (47), we get the values of A2 and B2 as follows:

A2 =
(1− e−sτinj)

s

[
cb2,inj +

ξp2PebA(s)

Pebφ1(s)− Pebφ2(s)
cb1,inj

]
, B2 = 0 . (53)

With these values of A2 and B2 and using Eq. (44) in Eq. (47), we obtain

c̄b2(s, x) =
cb1,inj(1− e−sτinj)

s

(
ξp2A(s)

φ1(s)− φ2(s)

)
(em3x − em1x) +

cb2,inj(1− e−sτinj)

s
em3x. (54)

Analytical Laplace inversions is not applicable for back transformation of the solutions

in the actual time domain τ . Thus, the numerical Laplace inversion is applied for back

transformation.57,59

Type 2: Danckwerts BCs

The Laplace transformations of Danckwerts BCs given by Eqs. (21a) and (21b) are given

as

c̄bi(s, 0) =
cbi,inj
s

(
1− e−sτinj

)
+

1

Peb

dc̄bi
dx

∣∣∣∣
x=0

,
dc̄bi
dx

(s, x = 1) = 0 , i = 1, 2 . (55)
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Following the same solution procedure of Subsection 3.1, the Laplace domain solutions can

be obtained as

c̄b1(s, x) =
cb1,inj (1− e−sτinj)

s

(m2 −m1)e
m2+m1

(1− m1

Peb
)m2em2 − (1− m2

Peb
)m1em1

, (56)

c̄b2(s, x) =
−ξp2A(s)

φ1(s)− φ2(s)

cb1,inj (1− e−sτinj)

s

(m2 −m1)e
m2+m1

(1− m1

Peb
)m2em2 − (1− m2

Peb
)m1em1

+
(1− e−sτinj)

s

[
cb2,inj − (

−ξp2FA(s)

φ1(s)−φ2(s)
)cb1,inj

]
(m3 −m4)e

(m4+m3)

(1− m4

Peb
)m3em3 − (1− m3

Peb
)m4em4

. (57)

There is no possibility to apply analytical back transformation on these Laplace domain

solutions. However, the numerical Laplace inversion can be applied to obtain a discrete

solution in time. In this technique, the integral of inverse Laplace transformation is ap-

proximated by Fourier series.57,59

GRM for core-shell particles considering reversible Re-

action A ⇋ B

This section presents a linear general rate model for simulating reversible reactions in a

chromatographic reactor packed with core-shell particles. In this case, the reactant A

(component 1) is injected to the column which converts to product B (component 2) with

a reaction rate constant ν1. Due to reversible reaction, product B also partly converts

back into the reactant A having a reaction rate constant ν2. In the current setup, the mass

balances in the bulk of liquid are expressed as

∂cbi
∂t

+ u
∂cbi
∂z

= Db

∂2cbi
∂z2

− 3

Rp

Fbkexti
(
cbi − cpi|r=Rp

)
, i = 1, 2 . (58)
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For dynamics inside the particle, the model equations are formulated as

ǫp
∂cpi
∂t

+ (1− ǫp)
∂q∗pi
∂t

=
1

r2
∂

∂r

[
r2

(
ǫpDpi

∂cpi
∂r

+ (1− ǫp)Dsi

∂q∗pi
∂r

)]
(59)

∓ (1− ǫp)(ν1a1cp1 − ν2a2cp2) , i = 1, 2 .

where q∗pi (i = 1, 2) are given by Eq. (4). After using the dimensionless variables in Eq.

(8), the isotherms q∗pi in Eq. (4) and substitution in Eq. (13), the above equations can be

rewritten as

∂cbi
∂τ

+
∂cbi
∂x

=
1

Peb

∂2cbi
∂x2

− ξpi (cbi − cpi|ρ=1) , (60)

(1− β)2a∗i
∂

∂τ
[(γ(1− β) + β)cpi]− ηbi

∂2

∂γ2
[(γ(1− β) + β)cpi]± (1− ǫp)

(
(1− β)2ω1a1

[(γ(1− β) + β)cp1]− (1− β)2ω2a2[(γ(1− β) + β)cp2]

)
, i = 1, 2 . (61)

The same initial and boundary conditions are used as given by Eqs. (18)-(19). The appli-

cation of Laplace transformation on the above equations yields

sc̄bi +
dc̄bi
dγ

=
1

Peb

d2c̄bi
dγ2

− ξpi(c̄bi − c̄pi|γ=1) , (62)

(1− β)2a∗i [(γ(1− β) + β)c̄pi]s− ηpi
d2

dγ2
[(γ(1− β) + β)c̄pi]

± (1− ǫp)

(
(1− β)2ω1a1[(γ(1− β) + β)c̄p1]− (1− β)2ω2a2[(γ(1− β) + β)c̄p2]

)
= 0,

(63)

In matrix natation, Eqs. (63) can be expressed as

d2

dγ2



(γ(1 − β) + β)c̄p1

(γ(1 − β) + β)c̄p2


− (1− β)2




a∗1s+ω1ǫp
ηp1

−ω2a2(1−ǫp)
ηp1

−ω1a1(1−ǫp)
ηp2

a∗2s+ω2a2(1−ǫp)
ηp2






(γ(1 − β) + β)c̄p1

(γ(1 − β) + β)c̄p2


 =



0

0


 .

(64)
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The reaction coefficient matrix [B′] of Eq. (64) is given as

B′ =




a∗1s+ω1ǫp

ηp1
−ω2a2(1−ǫp)

ηp1

−ω1a1(1−ǫp)
ηp2

a∗2s+ω2a2(1−ǫp)

ηp2


 . (65)

The eigenvalues and eigenvectors of the matrix [B′] are given as:

λ′

1,2 =
β1 ±

√
β2
1 − 4β2

2
, x′

1,2 =



λ′

1,2 −
a∗2s+ω2a2(1−ǫp)

ηp2

−ω1a1(1−ǫp)
ηp2


 , (66)

where

β1(s) =
a∗1s

ηp1
+

a∗2s

ηp2
+

(1− ǫp)ω1a1

ηp1
+

(1− ǫp)ω2a2

ηp2
, β2(s) =

a∗1a
∗

2s
2

ηp1ηp2
+

a∗2s(1− ǫp)ω1a1

ηp1ηp2
+

a∗1s(1− ǫp)ω2a2

ηp1ηp2
.

(67)

Thus, we have the following linear transformation



c̄p1

c̄p2


 =



λ′

1 −
a∗2s+ω2a2(1−ǫp)

ηp2
λ′

2 −
a∗2s+ω2a2(1−ǫp)

ηp2

−ω1a1(1−ǫp)
ηp2

−ω1a1(1−ǫp)
ηp2






b̄p1

b̄p2


 . (68)

Applying the above linear transformation on Eq. (64), we get

d2

dγ2



γ(1− β) + β)b̄p1

γ(1− β) + β)b̄p2


− (1− β)2



λ′

1 0

0 λ′

2






γ(1− β) + β)b̄p1

γ(1− β) + β)b̄p2


 =



0

0


 . (69)

Eq. (69) represents a system of two independent ODEs. Their explicit solutions are given

as

b̄p1(s, x, γ) =
1

γ(1− β) + β
[A′

1e
(1−β)

√
λ′

1γ +B′

1e
−(1−β)

√
λ′

1γ ],

19



b̄p2(s, x, γ) =
1

γ(1− β) + β
[A′

2e
(1−β)

√
λ′

2γ +B′

2e
−(1−β)

√
λ′

2γ ]. (70)

From Eqs. (19) and (68), one can easily find

∂bpi(s, γ)

∂γ

∣∣∣∣
γ=0

= 0, i = 1, 2. (71)

On using this boundary conditions in Eq. (70), we get A′

1 =
(β
√

λ′

1+1)

(β
√

λ′

1−1)
B′

1 and A′

2 =

(β
√

λ′

2+1)

(β
√

λ′

2−1)
B′

2. Thus, Eq. (70) reduces to

bp1(s, x, γ) =
2A′

1

γ(1− β) + β)
β

√
λ′

1 cosh((1− β)
√

λ′

1γ) +
2A′

1

γ(1 − β) + β)
sinh((1− β)

√
λ′

1γ),

(72)

bp2(s, x, γ) =
2A′

2

γ(1− β) + β)
β

√
λ′

2 cosh((1− β)
√

λ′

2γ) +
2A′

2

γ(1 − β) + β)
sinh((1− β)

√
λ′

2γ).

(73)

By using the transformation in Eq. (68) and values of bi in Eq. (72), we obtain

cp1(s, x, γ) =

[
λ′

1 −
a∗2s+ ω2a2(1− ǫp)

ηp2

]
2A′

1

γ(1− β) + β)

[
β

√
λ′

1 cosh((1 − β)
√

λ′

1γ)
]

+ sinh(
√

λ′

1γ) + sinh((1 − β)
√

λ′

1γ)

+

[
λ′

2 −
a∗2s+ ω2a2(1− ǫp)

ηp2

]
2A′

2

γ
γ(1− β) + β)

[
β

√
λ′

2 cosh((1 − β)
√

λ′

2γ)
]
+ sinh(

√
λ′

2γ)

+ sinh((1− β)
√

λ′

2γ), (74)

cp2(s, x, γ) =− ω1a1(1− ǫp)

ηp2

[
2A′

1

γ(1− β) + β)

[
β

√
λ′

1 cosh((1 − β)
√

λ′

1γ)
]
+ sinh(

√
λ′

1γ)

+ sinh((1− β)
√

λ′

1γ) +
2A′

2

γ
γ(1− β) + β)

[
β

√
λ′

2 cosh((1− β)
√

λ′

2γ)
]
+ sinh(

√
λ′

2γ)

+ sinh((1− β)
√

λ′

2γ)

]
. (75)

By using second boundary condition at ρ = 1 (c.f. Eq. (19)) in Eqs. (74) and (75), we get
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a system of two equations in term of A′

1 and A′

2. On solving those equations, we obtain

A′

1 =
1

2 sinh((1− β)
√
λ′

1)

[
α1(s)

A(s)
c̄b1 +

α2(s)

A(s)

ηp2

(
λ′

2 −
a∗2s+ω2a2(1−ǫp)

ηp2
)
)

(1− ǫp)a1ω1
c̄b2

]
, (76)

A′

2 =− 1

2 sinh((1− β)
√
λ′

2)

[
α3(s)

A(s)
c̄b1 +

α4(s)

A(s)

ηp2

(
λ′

1 −
a∗2s+ω2a2(1−ǫp)

ηp2
)
)

(1− ǫp)a1ω1
c̄b2

]
, (77)

where

α1(s) =Bip1(
[
β

√
λ′

2 coth((1− β)
√

λ′

2γ) + 1
]
(Bip2 − 1) +

[
βλ′

2 +
√

λ′

2 coth((1 − β)
√

λ′

2)
]
),

(78)

α2(s) =Bip2(
[
β

√
λ′

2 coth((1− β)
√

λ′

2γ) + 1
]
(Bip1 − 1) +

[
βλ′

2 +
√

λ′

2 coth((1 − β)
√

λ′

2)
]
),

(79)

α3(s) =Bip1(
[
β

√
λ′

1 coth((1− β)
√

λ′

1γ) + 1
]
(Bip2 − 1) +

[
βλ′

1 +
√

λ′

1 coth((1 − β)
√

λ′

1)
]
),

(80)

α4(s) =Bip2(
[
β

√
λ′

1 coth((1− β)
√

λ′

1γ) + 1
]
(Bip1 − 1) +

[
βλ′

1 +
√

λ′

1 coth((1 − β)
√

λ′

1)
]
),

(81)

A(s) =

[
λ′

1 −
a∗2s+ ω2a2(1− ǫp)

ηp2

]
[
β

√
λ′

1 coth((1 − β)
√

λ′

1γ) + 1
]
(Bip1 − 1) +

[
βλ′

1 +
√

λ′

1 coth(
√

λ′

1)
]

[
β

√
λ′

2 coth((1 − β)
√

λ′

2γ) + 1
]
(Bip2 − 1) +

[
βλ′

2 +
√
λ′

2 coth(
√

λ′

2)
]
−

(
λ′

2 −
a∗2s+ ω2a2(1− ǫp)

ηp2

)

[
β

√
λ′

2 coth((1 − β)
√

λ′

2γ) + 1
]
(Bip1 − 1) +

[
βλ′

2 +
√
λ′

2 coth(
√

λ′

2)
][
β

√
λ′

1 coth((1− β)
√

λ′

1γ) + 1
]

+ (Bip2 − 1)
[
βλ′

1 +
√

λ′

1 coth(
√

λ′

1)
]
. (82)

Thus, Eqs. (74) and (75) take the forms

cp1 |γ=1 =

[
[β
√

λ′

1 coth((1− β)
√

λ′

1γ) + 1]α1(s)

A(s)

(
λ′

1 −
a∗2s+ ω2a2(1− ǫp)

ηp2

)

− [β
√

λ′

2 coth((1 − β)
√

λ′

2γ) + 1]α3(s)

A(s)

(
λ′

2 −
a∗2s+ ω2a2(1− ǫp)

ηp2

)]
c̄b1
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− ǫpω2

ηp1
[β
√

λ′

2 coth((1− β)
√

λ′

2γ) + 1]

[
α2(s)

A(s)
− α4(s)

A(s)

]
c̄b2 , (83)

cp2 |γ=1 =− ǫpω1

ηp2

[[
β
√

λ′

1 coth((1− β)
√

λ′

1γ) + 1
]
α1(s)

A(s)
−

[
β
√

λ′

2 coth((1− β)
√

λ′

2γ) + 1
]
α3(s)

A(s)

]
c̄b1

+

[[
β
√

λ′

2 coth((1 − β)
√

λ′

2γ) + 1
]
α4(s)

A(s)

(
λ′

1 −
a∗2s+ ω2a2(1− ǫp)

ηp2

)

−
[
β
√

λ′

1 coth((1− β)
√

λ′

1γ) + 1
]
α2(s)

A(s)

(
λ′

2 −
a∗2s+ ω2a2(1− ǫp)

ηp2

)]
c̄b2 . (84)

By using Eqs. (83) and (84) in Eqs. (62), we get the following system of ODEs

d2

dx2



c̄b1

c̄b2


− Peb

d

dx



c̄b1

c̄b2


+



−r1 − sPeb r2

r3 −r4 − sPeb






c̄b1

c̄b2


 =



0

0


 , (85)

where

r1 =Pebξp1

[
1−

[
β
√

λ′

1 coth((1− β)
√

λ′

1γ) + 1
]
α1(s)

A(s)

(
λ′

1 −
a∗2s+ ω2a2(1− ǫp)

ηp2

)

+

[
β
√

λ′

2 coth((1− β)
√

λ′

2γ) + 1
]
α3(s)

A(s)

(
λ′

2 −
a∗2s+ ω2a2(1− ǫp)

ηp2

)]
, (86)

r2 =− Pebξp1
(1− ǫp)a2ω2

ηp1

[[
β
√

λ′

2 coth((1− β)
√

λ′

2γ) + 1
]
α2(s)

A(s)
−

[
β
√

λ′

1 coth((1 − β)
√

λ′

1γ) + 1
]
α4(s)

A(s)

]
,

(87)

r3 =− Pebξp2
(1− ǫp)a1ω1

ηp2

[[
β
√

λ′

1 coth((1− β)
√

λ′

1γ) + 1
]
α1(s)

A(s)
−

[
β
√

λ′

2 coth((1 − β)
√

λ′

2γ) + 1
]
α3(s)

A(s)

]
,

(88)

r4 =Pebξp2

[
1−

[
β
√

λ′

2 coth((1− β)
√

λ′

2γ) + 1
]
α4(s)

A(s)

(
λ′

1 −
a∗2s+ ω2a2(1− ǫp)

ηp2

)

+

[
β
√

λ′

1 coth((1− β)
√

λ′

1γ) + 1
]
α2(s)

A(s)

(
λ′

2 −
a∗2s+ ω2a2(1− ǫp)

ηp2

)]
. (89)

By following the solution procedure of Section 3, we get the following Laplace domain

solutions of the system in Eq. (85) for the considered two sets of BCs.
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Type 1: Dirichlet BCs

Here, the boundary conditions in Eqs. (20a) and (20b) are taken into account. The Laplace

domain solutions are given as

c̄b1(s, x) =
(1− e−sτinj) λ′′

3(r3cb1,inj − λ′′

4cb2,inj)(m
′

2e
m′

2+m′

1x −m′

1e
m′

1+m′

2x)

sr3(λ′′

3 − λ′′

4)(m
′

2e
m′

2 −m′

1e
m′

1)

− (1− e−sτinj)λ′′

4(r3cb1,inj − λ′′

3cb2,inj)(m
′

4e
m′

4+m′

3x −m′

3e
m′

3+m′

4x)

sr3(λ′′

3 − λ′′

4)(m
′

4e
m′

4 −m′

3e
m′

3)
, (90)

c̄b2(s, x) =
(1− e−sτinj) (r3cb1,inj − λ′′

4cb2,inj)(m
′

2e
m′

2+m′

1x −m′

1e
m′

1+m′

2x)

s(λ′′

3 − λ′′

4)(m
′

2e
m′

2 −m′

1e
m′

1)

− (1− e−sτinj) (r3cb1,inj − λ′′

3cb2,inj)(m
′

4e
m′

4+m′

3x −m′

3e
m′

3+m′

4x)

s(λ′′

3 − λ′′

4)(m
′

4e
m′

4 −m′

3e
m′

3)
, (91)

where

λ′′

1,2 =− 1

2

[
r1 + r4 + 2sPeb ∓

√
4(r2r3 − r1r4) + (r1 + r4)2

]
, (92)

λ′′

3,4 =− 1

2

[
r1 − r4 ∓

√
4(r2r3 − r1r4) + (r1 + r4)2

]
. (93)

m′

1,2 =
Peb ±

√
Pe2b − 4λ′′

1

2
, m′

3,4 =
Peb ±

√
Pe2b − 4λ′′

2

2
. (94)

Once again, the analytical Laplace inversion is not applicable. For that reason, the nu-

merical Laplace inversion of Durbin is applied to get back solutions in the actual time

domain.59

Type 2: Danckwerts BCs

Here, the BCs in Eq. (21a) and (21b) are applied. The Laplace domain are expressed as

c̄b1(s, x) =
(1− e−sτinj)λ′′

3(r3cb1,inj − λ′′

4cb2,inj)(m
′

1e
m′

1+m′

2x −m′

2e
m′

2+m′

1x)

r3s(λ
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3 − λ′′

4)[(1−
m′

2

Peb
)m′

1e
m′

1 − (1− m′

1

Peb
)m′

2e
m′

2 ]

− (1− e−sτinj) λ′′

4(r3cb1,inj − λ′′

3cb2,inj)(m
′

3e
m′

3+m′

4x −m′

4e
m′

4+m′

3x)

r3s(λ′′

3 − λ′′

4)[(1−
m′

4

Peb
)m′

3e
m′

3 − (1− m′

3

Peb
)m′

4e
m′

4 ]
, (95)
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c̄b2(s, x) =
(1− e−sτinj) (r3cb1,inj − λ′′

4cb2,inj)(m
′

1e
m′

1+m′

2x −m′

2e
m′
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4)[(1−
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′

3e
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4e
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4)[(1−
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4
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)m′

3e
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3 − (1− m′

3
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4e
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4 ]
. (96)

Here, λ′′

i andm′

i for i = 1, 2, 3, 4 are given by Eqs. (92)-(94). Once more time, the analytical

Laplace inversion is not possible. Therefore, the numerical Laplace inversion of Durbin is

applied.59

Numerical case studies

This section presents several numerical case studies to analyze the derived semi-analytical

solution. A high resolution finite volume scheme (HR-FVS) is applied to gain further con-

fidence on the correctness of derived semi-analytical solutions.60,61 In all test problems,

rectangular pulses of the mixture (reactant and product) are injected into the chromato-

graphic reactor for tinj = 10min. All the parameters appearing in the model equations are

listed in Table 1. These model parameters have been chosen in accordance with ranges

typically encountered in HPLC applications.

Problem 1: Linear case of irreversible reaction

Here, we study the influence of boundary conditions, β, ω, Peb, Bip , and ηp, characterizing

the core radius fraction, solid phase reaction constant, axial dispersion, film transfer re-

sistance and intraparticle diffusion resistance, on the concentration profiles and numerical

moments.

Figure 2 describes the effects of injection when a rectangular pulse of finite width is injected

in an empty column (ci,init = 0 g/l for i = 1, 2). For the inert core bead value β = 0.5,

the concentration profiles of reactant and product are plotted using the Dirichlet BCs.
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In Figure 2(a), the amount of injection for both reactant (component 1) and product (

component 2) is considered the same (i.e. cb1,inj = 0.5 g/l, cb2,inj = 0.5 g/l), while in Figure

2(b), half amount of component 2 is injected i.e. cb2,inj = 0.25 g/l. It can be observed from

the plots that the amount of product increases when the same amount of injection is used

for both components. As a result more amount of reactant is converted into the product

because of the irreversibility of solid phase reaction constant ω = 0.2. The semi-analytical

and numerical results of HR-FVS are in good agreement with one another in both the

cases.

In Figure 3, the effects of core radius fraction, including fully porous beads, are analyzed

on the elusion curves of both reactant and product for two different Peclet numbers, i.e.

Peb = 73.53 (Figure 3(a) and Figure 3(b)) and Peb = 7353 (Figure 3(c) and Figure 3(d)).

In Figure 3(a), the behavior of reactant (component 1) is examined, when β increases from

0 (fully porous beads) to 0.9 (beads with a very thin shell). As β increases, peak of the

reactant increases and sharpens due to reduction in intraparticle diffusional mass transfer

resistance. In Figure 3(b), the behavior of product (component 2) is explained for the

same values of β. Sharpened and asymmetric peaks of concentration curves are observed

for larger values of β. Efficiency of the column gradually increases for larger value of β

due to sharpened elusion profiles and column capacity gradually decreases due to smaller

residence times of the components. The shorter residence time are due to the loss of binding

sites with the larger values of β, which results in less interaction between the mobile and

stationary phases for adsorption and desorption. The concentration profiles in Figure

3(c) and Figure 3(d) have similar behavior but have sharp fronts due to small dispersion

coefficient (Db = 0.0034 or Peb = 7353). In all plots, complete breakthrough curves occur

at β = 0.9 because of very low capacity, i.e. feed concentration can be seen at the column

outlet. Numerical solutions of HR-FVS are exactly matching with the analytical results

for all values of β which is an indication for the accuracy of proposed numerical scheme
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and for the correctness of analytical results.

The effects of model parameter Peb is being examined on the concentration profile in

Figure 4. It is clear that if axial dispersion is large (Peb = 1.25) elusion profiles for

Dirichlet and Danckwert BCs differs from each other. Whereas, for small axial dispersion

(Peb = 125), concentration profiles for both boundary conditions overlap each other which

quantify the possible back mixing near the column inlet as explained in Figures 4(a) and

4(b). Again, the same effects of β on the concentration profiles are observed even for large

axial dispersion. The retention times corresponding to the maximum peaks become shorter

and peaks are more steeper when β = 0.9. Also, more amount of product is achieved when

chromatographic column is packed with fully porous particles (β = 0.0) as compared to

the case when column is packed with core-shell particles (β = 0.9).

Figure 5 demonstrates how different values of solid phase reaction constant ω effects the

elusion curves for fully porous column (β = 0.0) and for inert core absorbent column

(β = 0.9). The plots are obtained using Danckwerts boundary conditions and considering

cb1,inj = 0.5 g/l, cb2,inj = 0.5 g/l, and ci,init = 0.0 g/l. It is found that when column is packed

with fully porous particles (β = 0.0), and reaction rate constant ω increases from 0.0 to

0.6, conversion of reactant into product is faster in both Figures 5(a) and 5(b). While,

when the column is packed with core-shell having very thin shell (β = 0.9), less amount

of reactant is converted into product on increasing the value of reaction rate constant ω.

In other words, the core-shell particles reduces the amount of product for a given value of

the reaction rate constant.

Figure 6(a) describes the effects of Biot number Bip =
kextRp

Deffi

on the reactant (component

1) and Figure 6(b) shows the plots of product (component 2) for three different values of

Bip. In both figures, it is observed that when the value of Bip increases from 5 to 500,

broadened peaks of the concentration profiles are shifted to steeped peaks. The same effect

of Bip is observed for core-shell particles (β = 0.9). In this case, the residence time inside
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the column reduces again. Also, at β = 0.9, the elution profile of component 2 is more

sharped for Bip = 500 as compared to component 1.

The effects of intraparticle diffusion parameter ηp on the concentration profiles are discussed

in Figures 7(a) and 7(b). For small value of ηp = 0.02, the diffusion rate is very fast and

fluid retention time is shorter for both component 1 and component 2. The tendency is

that the breakthrough time for fully porous adsorbents becomes closer to that of inert

core adsorbents due to the limitation of the intraparticle diffusion resistance. The zone

spreading time means the time from the breakthrough to the saturation of the fixed bed. It

can be observed that the zone spreading time for elution curves can be decreased effectively

if inert core adsorbents are used. A decrease in the zone spreading time is important for

desorption process, especially for biomacromolecule separation.

Using different core-radius fractions, numerical moments of component 1 and component 2

are plotted for Dirichlet BCs in Figures 8 and 9, respectively. In this case cb1,inj = 0.5 g/l,

cb2,inj = 0.5 g/l and ω = 0.2. The plots of zeroth moment shows that the total mass of

component 1 increases on increasing the value of β. Whereas, the total mass of component

2 decreases on increasing β. It is observed that on increasing β from 0 to 0.8 (fully porous

beads to thin shell beads), the values of first, second and third moments are decreasing.

The first moment µ1, characterizing the retention time of the elution profile, decreases on

increasing the speed u and it further decreases on increasing the value of β . The second

central moment explains the variance (spreading) of the elution profiles. The concentration

profiles become shaper for larger value of β which indicates a decrease in the variance in

Figures 8 and 9 for both components. Moreover, asymmetry and skewness of the elution

profiles are explained by third moment, which is also decreasing on increasing the value of

β in Figures 8 and 9. Also, on increasing β concentration profiles of both components are

right-tailed.

Figures 10 and 11 display the first three numerical temporal moments of component 1 and
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component 2, respectively. All the moments are compared as functions of Bip for various

core radius fractions ((β = 0.0) to (β = 0.8)) using dirichlet BCs. Plots of zeroth mo-

ment depict that mass of the reactant(Component 1) increases, while mass of the product

decreases on increasing the value of core radius fraction from 0.0 to 0.8. It also indicates

that conversion of the reactant (Component 1) into the product (Component 2) decreases

on increasing the value of β. Moreover, on increasing the core radius β from 0.0 to 0.8,

the first, second and third moments of both component 1 and component 2 are decreasing.

The figures also show that retention time, spreading and skewness of concentration profiles

decreases on increasing β.

In Figures 12 and 13, the numerical moments of component 1 and component 2 are plotted

versus intraparticle diffusion parameter η for various core radius fractions ((β = 0.0) to

(β = 0.8). Once again, the magnitude of zeroth moment depicts a reduced conversion on

increasing the value of core-radius fraction from 0.0 to 0.8. Moreover, observations for the

first, second and third moments are analogous to the above discussions.

Problem 2: Linear case of Reversible reaction

This section presents some numerical cases studies for reversible reactions. Both analytical

and numerical solutions are in good agreement with each other showing accuracy of the

numerical scheme and correctness of the analytical solutions. All the parameters used in

the test problems are listed in Table 1.

Figure 14 shows concentration profiles for the core radius fraction β = 0.5, when a finite

width pulse is injected in an initially regenerated column (ci,init = 0.0 g/l for i = 1, 2)

using Dirichlet BCs. Here, the reaction rate constants are taken as ω1 = 0.2, and ω2 = 0.1.

In Figure 14(a) the amount of injection for both components is the same (cbi,inj = 0.5 g/l

for i = 1, 2), where as in Figure 14(b) cb1,inj = 0.5 g/l and cb2,inj = 0.25 g/l. The effects

of injection for reversible reaction in Figures 14(a) and 14(b) are almost the same to
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irreversible reaction presented in Figures 2(a) and 2(b). Good agreements in the solution

profiles validate correctness of the numerical Laplace inversion and accuracy of the HR-

FVS.

Finally, in Figures 15 and 16, the numerical temporal moments of semi-analytical solutions

for dirichlet BCs are presented for different core radius fractions. For the case of reversible

reaction and various flow speeds, the zeroth, first, 2nd central and third central moments

are calculated for both components. The zeroth moments reflect the obvious effects of flow

velocity on the conversion of reactant and it is consistently decreasing its value when β is

increased from 0.0 to 0.8. From the Figures 15(b) and 16(d), the first moment tells that on

increasing the speed, retention time of component 1 (reactant) is higher than component

2 (product) and this retention time reduces on increasing β for both components. The

plots of second central moments reveal that variances (spreadings) of both components

are reducing on increasing the value of β. Furthermore, the third central moments, which

depict asymmetry of concentration profiles, are also decreasing on increasing the value of

β.

Conclusion

The semi-analytical solutions and numerical temporal moments were derived for the two-

component GRM simulating linear reactive chromatography in fixed-bed columns packed

with core-shell particles. The Laplace transformation, the eigen-decomposition, and the

numerical back transformation techniques were utilized to derive the analytical solutions.

The second order accurate finite volume scheme was applied to solve the model equations

numerically. Moreover, the numerical temporal moments were obtained from the semi-

analytical solutions. Good matching of the analytical and numerical solutions verified

accuracy of the suggested numerical scheme and helped in gaining confidence on the de-
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rived analytical solutions. Selected parametric studies for core-radius fractions, reaction

rate constants, intraparticle diffusion resistance, film mass transfer resistance and axial dis-

persion were performed. The results showed that the column hold-up capacity decreases

with an increase in the core radius fraction, which result in faster and sharper breakthrough

curves. Also, the column efficiency increased due to reduced diffusional path when it is

packed with inert core adsorbents. However, it was found that conversion of the reactants

into product decreases on increasing the core radius fraction due to limited volume where

the reaction is taking place. The derived and carefully validated solutions are seen as a

useful tool to produce further optimized core-shell particles and to apply them efficiently

in chromatographic reactors. As stated above, the results explain and quantify both the

advantages and disadvantages of using such particles that allow exploiting higher column

efficiencies but reduced active volumes. The analysis further allows determining optimal

operating conditions in terms of flow rate and injected amount for such particles.
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Table 1: Parameters of linear GRM for reactive chromatography.

Parameters values
Column length L = 10 cm
external porosity ǫb = 0.4
internal porosity ǫp = 0.333

Interstitial velocity u = 2.5 cm/min
Axial dispersion coefficient Db = 0.34 cm2/min

Effective diffusivity coefficient Deffi
= 10−4 cm2/min (i = 1, 2)

Radius of particle Rp = 4× 10−4 cm
External mass transfer coefficient kexti = 0.01cm/min (i = 1, 2)

Time of injection tinj = 10 min
Total simulation time tmax = 50 min
Inlet concentration cbi,inj = 0.5 g/l (i = 1, 2)

Adsorption equilibrium constant for component 1 a1 = 2.5
Adsorption equilibrium constant for component 2 a2 = 0.5
Dimensionless rate constant of forward reaction ω1 = 0.2
Dimensionless rate constant of backward reaction ω2 = 0.1
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Figure 1: Schematic diagrams of fixed-bed reactor and inert core adsorbent.
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Figure 3: Irreversible reaction: Influence of core-radius fraction (β = Rcore/Rp) on the
concentration profiles obtained by Dirichlet BCs at x = 1 for ω1 = 0.2, tinj = 10min and
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Figure 4: Irreversible reaction: Effects of Dirichlet and Danckwerts BCs on the concentra-
tion profiles at x = 1. Here, cbi,inj = 0.5 g/l (i = 1, 2), tinj = 10min and ω1 = 0.2.
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Figure 5: Irreversible reaction: Effects of dimensionless forward reaction rate constant ω1

on the concentration profiles at x = 1, using Danckwerts BCs. Here, cbi,inj = 0.5 g/l (i =
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Figure 6: Irreversible reaction: Influence of Bip =
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Deffi

on the concentration profiles for

cbi,inj = 0.5 g/l (i = 1, 2), tinj = 10min and ω1 = 0.2.
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Figure 7: Irreversible reaction: Influence of ηp on the concentration profiles for cbi,inj =
0.5 g/l (i = 1, 2), tinj = 10min and ω1 = 0.2.
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Figure 8: Irreversible reaction: Plots of average central moments (numerical) for compo-
nent1 considering different flow-rates using Dirichlet BCs. Here, cbi,inj = 0.5 g/l (i = 1, 2),
tinj = 10min and ω1 = 0.2.
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Figure 9: Irreversible reaction: Plots of average central moments (numerical) of compo-
nent2 considering different flow-rates using Dirichlet BCs. Here, cbi,inj = 0.5 g/l (i = 1, 2),
tinj = 10min and ω1 = 0.2.
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Figure 10: Irreversible reaction: Plots of average central moments (numerical) for compo-
nent 1 considering different Biot numbers using Dirichlet BCs. Here, cbi,inj = 0.5 g/l (i =
1, 2), tinj = 10min and ω1 = 0.2.
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Figure 11: Irreversible reaction: Plots of average central moments (numerical) for compo-
nent 2 considering different Biot numbers using Dirichlet BCs. Here, cbi,inj = 0.5 g/l (i =
1, 2), tinj = 10min and ω1 = 0.2.
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Figure 12: Irreversible reaction: Plots of average central moments (numerical) for compo-
nent 1 considering different values of ηp using Dirichlet BCs. Here, cbi,inj = 0.5 g/l (i = 1, 2),
tinj = 10min and ω1 = 0.2.
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Figure 13: Irreversible reaction: Plots of average central moments (numerical) for compo-
nent 2 considering different values of ηp using Dirichlet BCs. Here, cbi,inj = 0.5 g/l (i = 1, 2),
tinj = 10min and ω1 = 0.2.
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Figure 14: Reversible reaction: Influence of injection on the concentration profiles at x = 1.
Here, cbi,inj = 0.5 g/l (i = 1, 2), tinj = 10min, ω1 = 0.2 and ω2 = 0.1.
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Figure 15: Reversible reaction: Plots of average central moments (numerical) of compo-
nent1 considering different flow-rates using Dirichlet BCs. Here, Here, cbi,inj = 0.5 g/l (i =
1, 2), tinj = 10min, ω1 = 0.2 and ω2 = 0.1.
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Figure 16: Reversible reaction: Plots of average central moments (numerical) of compo-
nent2 considering different flow-rates using Dirichlet BCs. Here, Here, cbi,inj = 0.5 g/l (i =
1, 2), tinj = 10min, ω1 = 0.2 and ω2 = 0.1.
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