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Aeroelastic A/RPC

Aircraft/Rotorcraft-Pilot Couplings are

“unintentional (inadvertent) sustained or uncontrollable vehicle oscillation 
characterized by a mismatch between the pilot’s mental model of the 

vehicle dynamics and the actual vehicle dynamics.” (Mc Ruer)

ARISTOTEL: research project sponsored by EC 7th FP led by TUDelft

Aircraft and Rotorcraft Pilot Couplings Tools
and Techniques for Alleviation and Detection
http://www.aristotelproject.eu/

This presentation is related to research on aeroelastic RPC resulting 
from involuntary control inputs generated by the pilot as a consequence 
of vibrations of the vehicle
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Aeroelastic A/RPC

● Voluntary interaction (PIO) “active” pilot
● Involuntary interaction (PAO) “passive” pilot

(Biodynamic Feedthrough)

   Pilot 

FCS

Rotorcraft 

vehiclevehicle
accelerationacceleration

involuntary involuntary 
controlcontrol
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Aeroelastic A/RPC

Vehicle:
● Certain (deterministic): models available
● Assumed asymptotically stable (stabilized if needed)

   Pilot 

Rotorcraft 

““certain”certain”

FCS
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Rotorcraft 

Aeroelastic A/RPC

FCS

   Pilot 

Pilot:
● Intrinsically uncertain
● Models often unavailable or unreliable
● Assumed intrinsically asymptotically stable

““uncertain”uncertain”
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Rotorcraft 

Aeroelastic A/RPC

FCS

   Pilot 

● Cockpit vibration 
excites the pilot

● Pilot exerts 
involuntary controls

● BDFT is (device and) 
task dependent [1]

Biodynamic Feedthrough (BDFT)

[1] Venrooij, J., Abbink, D. A., Mulder, M., van Paassen, M. M., and Mulder, M., “Biodynamic 
feedthrough is task dependent,” 2010

laterallateral longitudinallongitudinal verticalvertical
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Rotorcraft 

Aeroelastic A/RPC

FCS

   Pilot 

● Cockpit vibration 
excites the pilot

● Pilot exerts 
involuntary controls

● BDFT is (device and) 
task dependent [1]

Biodynamic Feedthrough (BDFT)

[1] Venrooij, J., Abbink, D. A., Mulder, M., van Paassen, M. M., and Mulder, M., “Biodynamic 
feedthrough is task dependent,” 2010

laterallateral longitudinallongitudinal verticalvertical

coupled systemcoupled system
can become unstablecan become unstable
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Robust Stability Analysis

Vehicle: linear time invariant (LTI), asymptotically stable system

Can be modified using Linear Fractional Transformation (LFT)

G'(s) yu

G'(s,p)

yu
G(s)

Δ(s,p)

G'(s): vehicle ( + pilot)
G(s): vehicle
Δ(s, p): pilot
y: acceleration
u: control input
p: uncertain parameters
    (within bounds)
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Robust Stability Analysis

Assumptions:
• The baseline system is stable (either the possibly augmented 

vehicle alone is stable, or a baseline pilot model stabilizes it)
• The nominal pilot transfer function is stable for allowable 

values of the uncertain parameters

The coupled system

is stable when the loop transfer matrix

is stable (Generalized Nyquist Criterion, GNC: Nyquist criterion 
applied to eigenvalues of H).

{yη}=[G11 G12

G21 G22
]{uζ} ζ=−Δη

y=(G11−G12Δ ( I+G22Δ )
−1G21)u

H (s , p)=G22(s)Δ(s , p)
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Robust Stability Analysis

Nyquist eigenloci: distance of eigenvalues of nominal H = G
22

Δ

from point (-1, j*0) determines stability margin



14

AHS 68th Annual Forum, Fort Worth, Texas, May 1-3, 2012

Robust Stability Analysis

Distance of eigenvalues of H = G
22

Δ

from (-1, j*0):
• Magnitude: generalized gain margin
• Direction: generalized phase margin

Determine stability limits;
can be mapped on value of uncertain parameters p

• When magnitude resulting
from uncertain params envelope
is below limit amplitude,
instability is not possible

• Otherwise, instability occurs
when phase matches direction
towards (-1, j*0)

unstableunstable

stablestable

unstableunstable
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forces forces 
involuntary forcesinvoluntary forces

(admittance)(admittance)

Biodynamic Feedthrough

● Voluntary interaction (PIO)
● Involuntary interaction (PAO)

   Pilot 

FCS

Rotorcraft 

vehiclevehicle
accelerationacceleration

deflectionsdeflections
involuntary deflectionsinvoluntary deflections

(BDFT)(BDFT)

controlcontrol
devicedevice
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Biodynamic Feedthrough

SIMONA research simulator
• Control devices: 

 Electrically actuated coll. & cyclic

• Input signals:
 Motion dist. (on sim): BDFT
 Force dist. (on stick): admittance

• Results [1]:
 Admittance estimate
 BDFT estimate

[1] Venrooij, Yilmaz, D., Pavel, M. D., Quaranta, G., Jump,
M., and Mulder, M., “Measuring Biodynamic Feedthrough
in Helicopters,” 37th European Rotorcraft Forum, 2011

laterallateral longitudinallongitudinal verticalvertical
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Biodynamic Feedthrough

Admittance & BDFT are task dependent
Admittance not so important for collective

admittanceadmittance BDFTBDFT
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Robust Stability of RPC

Current focus: BDFT associated to collective bounce
• Vehicle TF: collective pitch to vertical acceleration of seat
• Pilot BDFT: vertical acceleration of seat to collective control inceptor

Loop TF:

Gearing ratio G
c
 logically belongs to vehicle, but is intrinsically related to 

haptics and ergonomy considerations

Reference pilot control TF is 0!:
• Free controls (no control input)
• Infinitely stiff pilot (no involuntary input)

Limits on pilot TF:

H L( jω)=−H z̈ θ( jω)Gc⏟
G22( jω)

H η z̈⏟
−Δ( jω)

H η z̈ ( jω)=
1

GcH z̈θ( jω)
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Robust Stability of RPC

Pilot band
of interest

• Stability limits of simplified heave models of helicopters
 “rigid” (one dof)
 “cone” (two dofs: rigid + rotor cone)
 detailed (shown later)

• “ectomorphic” pilot BDFT function (Mayo, 1989)
• “bands”: half/double gearing ratio
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Robust Stability of RPC

Detailed aeroservoelastic rotorcraft model obtained using MASST [1,2]

• Elastic airframe (normal modes)
• Aeroelastic rotors (linear, time-averaged, trimmed)
• Drive train dynamics
• Servoactuator dynamics
• Control system dynamics
• Pilot biodynamics
• Selected nonlinearities (time domain, descriptive function)

• Frequency and time domain analysis

[1] Masarati, P., Muscarello, V., and Quaranta, G., “Linearized Aeroservoelastic Analysis of Rotary-
Wing Aircraft,” 36th ERF, 2010

[2] Masarati, P., Muscarello, V., Quaranta, G., Locatelli, A., Mangone, D., Riviello, L., and Viganò, L., 
“An Integrated Environment for Helicopter Aeroservoelastic Analysis: the Ground Resonance Case,” 
37th ERF, 2011
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Robust Stability of RPC

SA 330 TF between collective and vertical acceleration (0, 50, 100 kts)
includes actuators delay but no FCS delay

Pilot band of interest

Model much more complex, but 
same interface with pilot: 
complexity of analysis is identical
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Robust Stability of RPC

Vertical axis BDFT compared to stability margins at 0 kts
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Robust Stability of RPC

Vertical axis BDFT compared to stability margins at 50 kts
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Robust Stability of RPC

Vertical axis BDFT compared to stability margins at 100 kts
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Robust Stability of RPC

Vertical axis BDFT compared to stability margins at 100 kts

• Line shows averaged BDFT
• Shades indicate variance (1, 2, 3 σ, ...)

Position task:
• At low frequency no specific problem arises
• At pilot BDFT resonance potential problem
• Mean amplitude at limit & 2σ phase crossing

(no speculation because no cross-probability
information available)

Other (less aggressive) tasks: no specific problem
(force task not meaningful for collective)

FCS delays would bring the vehicle phase curve
downwards, increasing the probability of crossing
BDFT curves
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Conclusions & Future Work

Conclusions
• Robust stability analysis applied to RPC using BDFT data

• Powerful, simple and intuitive graphical approach presented

• Example application to vertical axis
of conventional helicopter

• Effective tool for RPC proneness
evaluation

Future work
• Multi-input multi-output problems (longitudinal and lateral axes)

• Further statistical interpretation of results

• Include control device dynamics in “certain” portion of model
(friction, bobweights & other mechanical devices in uncertainty)
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Thank you for your attention

Questions?
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