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Abstract

In modal logics we are interested in classes of frames which

determine the logic under consideration. Such classes are

usually distinguished by their respective frame properties,

often also called the modal logic's background theory. In

general these characterizations are not unique and it is de-

sireable (and that not only from a theorem prover's per-

spective) to �nd a strongest possible. In this paper an ap-

proach is presented which helps in this respect. It allows

us to transform a given background theory into one which

is more general and which modal logics cannot distinguish

from the former because of their syntactic and semantic re-

strictions. The underlying technique is based on the idea

to �nd conservative extensions (of a given logic) whose de-

termining properties serve as a starting point from which it

is possible to extract signi�cantly stronger characterizations

of the original logic.

Keywords

Modal logic, correspondence, completeness, frame properties, auxiliary

modal operators
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Chapter 1

Introduction

Normal modal logics, just like most other logics, are described syntactically

by axiomatizations and semantically by model theories. The former allows

us to enumerate the theorems of the logic, the latter provides us with the

notion of an interpretation (together with a satis�ability relation) such that

the logic essentially consists of all the formulae which are valid in all such

interpretations (under certain conditions). Evidently, the two descriptions

are supposed to coincide in the sense that the set of theorems and the set of

valid formulae should be identical.

Axiomatizations for (propositional) normal modal logics extend the classi-

cal propositional calculus (with Modus Ponens) by the so-called Necessitation

Rule, the K-Axiom (see below), and some further additional axioms. On the

other hand, modal logic interpretations are based on so-called frames which

consist of worlds and accessibility relations on worlds. It was Saul Kripke who

discovered in [3] that there are certain relationships between modal axioms

and accessibility relation properties which bridge the gap between syntax and

semantics. Finding out about such relationships is nowadays a matter of the

so-called modal logic correspondence theory.

A slightly di�erent notion, the modal logic completeness theory, comes into

play whenever we are interested in comparing accessibility relation properties

with whole logics and not only with single axioms. In this case we say that

a logic is determined by some theory (the accessibility relation properties)

if and only if the theorems of the logic are exactly the formulae that are

valid in all interpretations for which the theory holds. Interestingly, such

theories are in general not unique, although the correspondence properties

for modal axioms are. For instance it is known that the modal logic K
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is determined by the class of all frames, but also it is determined by the

class of all irre
exive frames. Intuitively, the reason for this is that the

syntactic restrictions we put on the modal formulae in the Kripke semantics

are so tough that modal logics cannot distinguish between all frames and

all irre
exive frames. Similarly, although for some other reason, the modal

logic S5 is determined by an equivalence relation but also by the universal

relation. Again, modal logics are unable to tell the di�erence. Knowing

about this is of quite some importance for several reasons: We learn about

the limitations in the expressive power of modal languages but also we can

simplify the reasoning within modal logics in particular in reasoning tools

which are based on semantic translations. Note that the axiomatization

could quite possibly be used as a derivation engine in principle. However, as

all the readers who ever tried to prove some non-trivial theorems valid (even

in the classical propositional calculus) will probably immediately con�rm, it

is of no real practical use. Thus, whenever we are about to reason within

modal logics on semantical grounds we have to be able to deal with the

determining theory and, evidently, the simpler the theory is the easier the

resoning gets. We are therefore interested in �nding theories which are as

simple as possible. Usually this can be achieved if we have a means at hand

with which we can extract the strongest possible such theory. Although

it is not guaranteed that stronger theories are indeed simpler they at least

subsume the original one and therefore serve as a good candidate (witness

the logic S5 where the universal relation is both stronger and simpler than

the equivalence relation).

Quite a lot has been done in this �eld during the last decades. Typical

notions that occur in the standard literature are canonical frames, gener-

ated frames, �ltration, bulldozing, unravelling, p-morphisms, etc. All these

techniques have in common that they construct for each frame an equivalent

canonical (generated, �ltration, unravelled etc) frame with stronger proper-

ties and because of this equivalence modal logics cannot distinguish between

them, hence the stronger properties may consistently be assumed.

In this paper a somewhat di�erent technique is proposed for extracting

such stronger properties. It also has to do with alternative frames, how-

ever, it is better characterized by the notion of alternative inference systems

or axiomatizations. The main idea is brie
y sketched as follows: Given a

modal logic L we �rst try to �nd an extension Lex of L such that all the

newly derivable theorems do not belong to the language of L. Then we

look for a determining property for Lex and that with the help of predicate
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quanti�er elimination techniques as they are known from the modal logic

correspondence theory. The same techniques can then be used to extract a

determining property for L, the logic we are actually interested in. This all

does not necessarily lead to stronger determining properties but it does so

for many interesting examples. It also makes some �rst-order representation

apparent for axiomatizations (logics) where this is not at all immediate.

The paper is organized as follows: First, all the explanations from above

are put on more formal grounds, i.e., some basic notions are introduced and

the most important techniques as they are used throughout the paper are

presented. This includes a method to eliminate predicate quanti�ers and

a means to �x appropriate normal conservative extensions of a given logic.

After that the reader is made acquainted with the main technique to �nd

suitable determining properties (theories). It mainly consists of a certain

combination of the techniques described before. Some application examples

follow immediately after that. They show the strength of the approach but

they also show some weaknesses. Therefore some possible generalizations are

brie
y examined, although this is actually part of some future work. The

paper concludes with a short summary and an outline of future extensions.

Note that the contents of this paper is not fully self-explanatory. The

reader is assumed to have some knowledge on modal as well as �rst-order

predicate logic.
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Chapter 2

Preliminaries

In this paper we only consider propositional modal logics, i.e., the (modal)

formulae we are dealing with are built of propositional variables, classical

connectives as, for instance, ! and : and modal operators �i and �i in the

usual way.

By a Hilbert calculus we understand a �nite set of axioms and rules of the

form ` 	 and `�1:::`�n
`	

respectively, where �j and 	 are modal formulae. At

least the classical propositional calculus (with rule Modus Ponens) is required

for our purposes. We call such a logic1 normal if for each �-operator we know

that every instance of K(�) is an element of the logic, where2

K(�) =

(
` �(�! 	)! (��! �	)

` �) ` ��

)

The simplest normal modal logic K is then given by an axiomatization of

the classical propositional calculus (with Modus Ponens) together with K(�).

For simplicity we will use the terminology

K(�1) + : : :+ K(�n) +

8><
>:

Ax1
� � �

Axm

9>=
>;

to indicate that the logic under consideration knows about the modal opera-

tors�1; : : : ;�n (and their duals �1; : : :�n of course), that each�i is a normal

1In the sequel we will often use the term logic or logical system when we mean a Hilbert
calculus (an axiomatization).

2Observe the di�erence between ! and ). Whereas the former denotes logical impli-
cation the latter is used as a meta-entailment.
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operator in the above sense and that the additional axioms Ax1; : : : ;Axm
hold (the presence of a classical propositional calculus is always implicitly

assumed). So, for instance, S4 is then given by

S4 = K(�) +

(
��! �

��! ���

)

This way we have a means to derive new theorems by applying the inference

rules to axioms or intermediate results. However, for practical purposes this

is of very limited use. In order to obtain more \e�cient" calculi we need a

model theory and this is given below.

As usual, by a modal frame F we understand a tuple (W;<i) where W

denotes a non-empty set (of worlds) and each <i is a binary relation on W,

a so-called accessibility relation. A modal interpretation (or model) M is a

frame augmented by an actual world � and some valuation V which maps

propositional variables to sets of worlds. Such interpretations immediately

induce a satis�ablity relation j= by:

((W;<i); V; �) j= P i� � 2 V (P )

if P is a propositional variable

((W;<i); V; �) j= �i� i� ((W;<i); V; �) j= �

for every � with <i(�; �)

and the usual homomorphic extension for the other connectives.

We write F j= � whenever we want to indicate that (F ; V; �) j= � for all

valuations V and worlds � 2 W.

Saul Kripke (see [3]) examined interrelations between classes of frames

and logics. For instance he showed that a formula is a theorem of the logic

T if and only if it is valid in all re
exive frames3. We therefore say that T is

determined by the class of all re
exive frames, or simply: T is determined by

re
exivity. Quite a lot of such results have been found since then. They are

particularly useful in translation-based modal theorem proving. What turned

out to be especially interesting was that the resulting properties found by

Kripke can be strengthened in the sense that it is often possible to �nd a

stronger property which determines the logic just as well. A typical example

can be found in the modal logic S5 which was shown to be determined by

3It has become quite usual to talk of frame properties when actually accessibility rela-
tion properties are meant.
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all frames with an equivalence as accessibility relation. Krister Segerberg

showed in [7] that modal logics cannot distinguish between frames and their

generated subframes. I won't provide with the whole generated subframe

theory here. Intuitively it states that we may assume that there is an ini-

tial world o such that all worlds (including o) are accessible from o by the

re
exive and transitive closure of the accessibility relation (or the union of

the accessibility relations if there are more than one) without violating valid-

ity or (un-)satis�ability. This generated subframe property is in itself not a

�rst-order property since being a transitive closure of some relation cannot be

represented by means of classical predicate logic. However, in case of S5 we

even have that < is already both re
exive and transitive and thus the re
ex-

ive and transitive closure of < is < itself and so we may add 9u 8w <(u; w)

to the determining property. This { together with the equivalence relation

properties for < { then results in < being the universal relation on the set

of worlds. Thus, a formula is an S5 theorem i� it is valid in all equivalence

frames i� it is valid in all universal frames. This information is of high im-

portance for we can de�nitely work much easier with universal relations than

with equivalence relations.

But there are even more such possibilities. For instance it can be shown

that irre
exivity or asymmetry and many more such negative properties (or

any weaker such properties) are not modally axiomatizable. How this can

be proved shall not concern us here4. It implies, however, that modal logics

cannot tell arbitrary frames from irre
exive frames and hence the modal logic

K is determined by the class of irre
exive, asymmetric, etc frames.

This all might yet sound a bit vague. It therefore makes sense at this

stage to provide with some useful de�nitions. They are given in the lines of

[6].

Notation 2.1

By L0 we understand the �rst-order language (with equality) on the binary

predicate letters Ri (denoting accessibility relations). L1 is L0 with { in

addition { unary predicate symbols and L2 is L1 with predicate quanti�ers.

4Most common is a model-theoretic proof by showing that irre
exivity is not preserved
under so-called p-morphisms (see, e.g., [9]). Another method which is based on the unrav-
elling technique for models can be found in [6]. Also quite interesting is a proof-theoretical
approach described in [4] where it is shown that a negative property like irre
exivity could
never contribute to a proof provided it is at all consistent with the rest of the occurring
properties.
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As usual we may regard frames as ordinary relational structures for L2.

Given a L2-formula � and a frame F we write F j= � to indicate that

the accessibility relations in F have property �, or, in other words, that F

is an �-frame. Notice that we use the same symbol for both modal logic

satis�ability and L2-satis�ability. It will always be clear from the context

which of the two is meant.

Definition 2.2 (Relational (Standard) Translation d e)

The relational translation from modal formulae into L1-formulae is de�ned

by:

dP ex = P (x)

d:�ex = :d�ex

d� ^ 	ex = d�ex ^ d	ex

d�i�e
x = 8y Ri(x; y)! d�ey

with the usual homomorphic extensions for the other connectives.

Then d�e =def 8xd�e
x and 8d�e =def 8P1; : : : Pn d�e where P1; : : : Pn are all

the unary predicate symbols that occur in d�e.

It is well known (see, e.g., [4]) that this relational translation behaves well,

i.e.,

Lemma 2.3

The relational translation is sound and complete.

All the above is quite standard, so let us now come to the de�nitions and

lemmas that are essential for the rest of this paper.

Definition 2.4

Let � be an L2-formula and let L be a normal modal logic with operators

�1; : : : ;�n. We denote the accessibility relation symbols associated with

�i in the Kripke-style semantics for L by Ri. Now let fS1; : : : ; Smg be the

set of all binary accessibility relation symbols that occur in � but not in

fR1; : : : ; Rng. Then by 9L� we understand 9S1; : : : ; Sm �, which means

that 9L� is � with an existential quanti�cation for each \unknown" (to L)

binary relation symbol.

As a little example consider a logic L which knows about the operators

� and � and let � be an L2-formula over the binary relation symbols R, S,

and T where R and S are the accessibility relation symbols associated with
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� and � respectively. Then 9L� = 9T � since T is the only accessibility

relation symbol that does not belong to some modal operator in L.

According to [6] we now de�ne:

Definition 2.5 (Sahlqvist)

Given a modal formula A and a frame property � we call A �-valid whenever

it holds in every frame with property �. Formally: A is called �-valid if and

only if for every frame F

F j= �) F j= A

We say that A re
ects � if the converse holds, i.e., if for every frame F

F j= A) F j= �

Definition 2.6 (Sahlqvist)

A modal formula A corresponds to an L2-formula � if and only if

8F F j= �, F j= A

Thus correspondence is just the combination of validity and re
ection.

A modal logic L is determined by � if and only if for every formula A

`L A ,
�
8F F j= �) F j= A

�

which means that determination is tantamount to the equivalence of prov-

ability and validity.

Thus A trivially corresponds to 8dAe. Moreover we get

Lemma 2.7

A modal formula A is �-valid if and only if j= �! 8dAe.

Proof: This follows immediately from the soundness and completeness of

the relational translation.

j= �! 8dAe

i� 8F F j= �) F j= 8dAe

i� 8F F j= �) F j= A

i� A is �-valid
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Corollary 2.8

A modal formula A corresponds to an L2-formula � if and only if

j= �$ 8dAe

A modal logic L is determined by � if and only if for every formula A

`L A , j= �! 8dAe

Thus correspondence tells us about the relation between modal axioms

and frame properties whereas determination is concerned with the relation

between modal logics and such properties. Both are particularly useful in case

the property � belongs to L0 (it is �rst-order). Notice that correspondence

properties are always unique (up to logical equivalence) whereas determining

properties need not. Whenever we have a �rst-order property � determining

a logic L we can use any theorem prover for classical predicate logic to show

the derivability of arbitrary L-theorems A and that simply by showing the

�rst-order validity of �! dAe. It is thus of quite some importance not only

to �nd such a �rst-order property (if it at all exists) but also to �nd one which

is rather strong. There are several approaches which lead us towards such

strong frame properties, witness the generated model assumption mentioned

earlier which allows us to consider the universal relation instead of an equiva-

lence relation. As another example consider the modal logic S4:2 (see Section

3.3.2 on page 21) which is determined by re
exivity, transitivity, and direct-

edness, where the latter is 8x; y; z R(x; y) ^ R(x; z) ! 9u R(y; u) ^ R(z; u),

or, in words, any two worlds with a common predecessor also have a common

successor. This property can be further strengthened with the help of the

generated model assumption. Notice that for S4:2 R is re
exive as well as

transitive. We may therefore assume that 9u8v R(u; v), i.e., every world

is accessible from some initial world by (the re
exive and transitive closure

of) R. This however means that any two worlds have a common predeces-

sor, namely this very initial world and thus the directedness property can

be strengthened to strong directedness 8x; y 9z R(x; z) ^ R(y; z). Evidently,

this stronger property is to be preferred over the weaker one. But can we

�nd even stronger properties which determine S4:2? There are some positive

answers (see, e.g., [7]) which are based on model-theoretic considerations (�l-

trations). The results we get from the approach proposed in this paper are

similar, the way how they are obtained is di�erent, though.
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Definition 2.9

For any logic L let LL be the set of formulae (the language) of L. We call a

logic Lex a normal conservative extension of L if Lex is a normal modal logic

with LL � LLex and for every A 2 LL: `L A i� `Lex A, i.e., L
ex contains

exactly the same LL-theorems as L does.

Lemma 2.10

If N is a normal conservative extension ofM andM is a normal conservative

extension of L then N is a normal conservative extension of L.

Proof: Let A 2 LL. Then A 2 LM , thus

`L A, `M A, `N A

A logic is sound with respect to � whenever its axiomatization is �-valid.

On the other hand completeness with respect to � can be shown for a logic

L if L's axioms re
ect � and L is adequate, which means that for every non-

theorem F of L there exists a frame validating each derivable (in L) formula

but does not validate F . Hence correspondence implies determination if the

logic under consideration is adequate. Since corresponding properties are

unique up to equivalence this is of little use for us for we actually want to

strengthen determining properties and stronger determining properties can

impossibly correspond to the axiomatization anymore.

We therefore emphasize on the correspondence property for the extended

logic's axiomatization and from that try to extract a determining property

for the original logic.

Lemma 2.11

For any A 2 LL:

j= �! 8dAe i� j= 9L�! 8dAe

Proof: Let S1; : : : ; Sm be the binary relation symbols occurring in � but not

in 8dAe and let R1; : : : ; Rn be the binary relation symbols occurring in

8dAe. Then

j= �! 8dAe

i� j= 8R1; : : : ; Rn; S1; : : : ; Sm (�! 8dAe)

i� j= 8R1; : : : ; Rn ((9S1; : : : ; Sm �)! 8dAe)

since S1; : : : ; Sm do not occur in 8dAe

i� j= 9L�! 8dAe

by de�nition of 9L
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Theorem 2.12

If Lex is a normal conservative extension of L and Lex is determined by �

then L is determined by 9L�.

Proof: Lex is determined by �, thus for all A 2 LLex:

`Lex A , j= �! 8dAe

Now consider an arbitrary B 2 LL. Then B 2 LLex and

1. `L B i� `Lex B (Lex is a normal conservative extension of L)

2. j= �! 8dBe i� j= 9L�! 8dBe (by Lemma 2.11)

Hence

`L B , `Lex B , j= �! 8dBe , j= 9L�! 8dBe

and so L is determined by 9L�.
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Chapter 3

The Approach

Theorem 2.12 tells us what has to be achieved. Given a logic L we try to �nd

a normal conservative extension Lex of L, search for a determining property

� for Lex and then compute 9L�. Remains the question how to �nd suitable

normal conservative extensions. And even if the search for this was successful,

how can we possibly �x � and 9L�? For the latter problem there are some

well-known solutions nowadays. Recall that it su�ces to �nd correspondence

properties for a given axiomatization provided the logic under consideration

is adequate. Adequacy, on the other hand, can sometimes even be shown

syntactically, witness the so-called Sahlqvist formulae as they are described in

[6]. Hence we can apply known second-order quanti�er elimination techniques

for solving both problems, �nding � and extracting 9L�. There are various

such elimination methods available today. Best known are probably the

approaches by Sahlqvist [6], van Benthem [9], and Gabbay and Ohlbach [2].

Quite recently a further elimination method has been published in [5] which

at least subsumes the former two. It is based on a �xpoint approach as

described below.

3.1 Second-Order Quanti�er Elimination

We say that a formula � is positive w.r.t. some predicate symbol P if the

negation normal form1 of � contains only positive P -literals. By �(P ) we

indicate that P is a free predicate letter in �. This notation allows us to write

1The negation normal form is obtained after elimination of all implication and equiva-
lence signs and moving the negation symbols inwards as far as possible.
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�(Q) to specify � with every occurrence of P replaced by Q. In particular,

�(>) then means � with every occurrence of P replaced by true. We might

call this a predicate substitution. Occasionally we also need two other kinds of

substitutions, a subformula substitution and the usual variable substitution.

The former is represented by �[P (�)  Q(�)] where this means that we

are considering � with every occurrence of the subformula P (�) replaced by

Q(�). The notation for variable substitutions is as usual, i.e., we write �x
�

whenever we want to express that we are considering � with every occurrence

of the variable x replaced by the term �.

Theorem 3.1 (Elimination Theorem)

Let �(P ) and 	 both be positive with respect to P . Then

9P (8x (P (x)! �(P )) ^	)

$

	

�
P (�) 

h
�P (x):�(P )

ix
�

�

where �P (x):�(P ) is a �xpoint formula representing the in�nite conjuction

�P (x):�(P ) =
^
i2!

�i(>)

with �i+1(>) = �(�i(>)) and �0(>) = >.

Proof: can be found in [5].

Evidently, the above theorem holds as well if P is replaced by :P and � and

	 both are negative w.r.t. P .

Actually, for the purpose of this paper it is more general than necessary.

Note that in case � has no mention of P at all then �P (x):�(P ) is just �

itself and we end up in the special case described by Andrzej Sza las in [8].

We want to make use of the Elimination Theorem in order to �nd �rst-

order equivalents for formulae 8dAe and 9L8dAe respectively. Such formulae

are obviously not always of the form required for the application of the Elim-

ination Theorem. However, it can quite easily be shown (see [5]) that we

are always able to produce the appropriate form provided we allow (for some

cases) second-order skolemization. In the worst case this results in another

(or even identical) second-order formula. This, however, should not surprise

us too much for we certainly cannot transform every L2-formula into an

equivalent formula of (in�nite) L0.
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If we succeeded in such a suitable transformation without generating

Skolem functions2 we obtain a �xpoint formula which can be \computed",

which means that either this �xpoint formula is bounded and therefore can be

transformed into an equivalent �rst-order formula we end up with an in�nite

formula3.

Further details about this elimination technique shall not concern us here.

The interested reader is again referred to [5].

3.2 Finding Normal Conservative Extensions

Two major problems have to be solved for the approach presented in this

paper: �rst, we have to be able to eliminate predicate quanti�ers and sec-

ond, a means is needed which helps us to �nd suitable normal conservative

extensions of a given logic. For the former problem a solutions is given in

the last section, namely the Elimination Theorem. Remains the question

how we can �nd such a suitable extension. The idea we are following here

has to do with the de�nition of auxiliary modal operators which are based

on existing operators. Such a de�nition will usually have some in
uence on

what becomes provable and what not. What we will have to ensure is that

the \newly provable theorems" do not belong to the language of the original

logic. This can be guaranteed by a suitable choice of modalities.

Definition 3.2 (Modalities)

Given a logical system L which knows about the modal operators �1; : : : ;�n

and �1; : : : ;�n we understand by a modality MOD any �nite sequence with

members taken from f�i j 1 � i � ng [ f�i j 1 � i � ng [ f:g.

Such a modality is called normal w.r.t L if

1. `L MOD (�! 	)! (MOD �! MOD 	)

2. `L �) `L MOD �

An auxiliary modal operator � is de�ned by the axiom �� $ MOD �.

Again we use � as an abbreviation for :�:.

2There are cases, however, were Skolem functions are to be introduced but nevertheless
a �nal \deskolemization" is possible.

3witness the famous L�ob-Axiom �(�� ! �) ! �� which results in transitivity to-
gether with (the non-�rst-order) backward well-foundedness
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From a pure syntactic point of view adding such a de�ning axiom won't

let us prove more formulae of the original language than before. However,

what we have lost is a nice Kripke-style possible world semantics for the new

logic then for this new operator is not necessarily normal. Simply forcing

the new operator to be normal is but a dangorous thing to do, though.

After all, this would mean that for any provable formula � the formula

MOD � becomes provable as well even though this may not have been the

case without this new operator. We therefore have to be aware of the \extra

formulae" that get provable, or, to turn it the other way round, we have

to choose the modality accordingly such that the corresponding K-axiom

and necessitation rule cannot lead to anything new what the original logic

language is concerned. This then means that K(MOD) is to be derivable

already in the given logic and it seems not at all immediate why this can

lead to any new interesting results. Nevertheless it does and why this is so

is shown below.

Lemma 3.3

Given a normal modal logic L and a modality MOD which is normal w.r.t.

L. Then

Lex = L + K(�) + f��$ MOD �g

is a normal conservative extension of L.

Proof: Lex is obviously a normal extension of L since it contains both L and

K(�). Remains to be shown that for every A 2 LL : `Lex A) `L A.

To this end we de�ne a translation � from LLex into LL as:

�(P ) = P

for propositional letters P

�(��) = MOD �(�)

where the other operators and connectives are treated by the homomor-

phic extension of the above. We now show that for every A 2 LLex

`Lex A) `L �(A)

and that by induction on the derivation of A.

Base Case: A is an instance of one of the axioms. In case of an axiom

taken from L there is nothing to be shown. Otherwise the only candi-

dates are the K-axiom for � or the axiom ��$ MOD �. The former

is done because of MOD being a normal modality and the latter because
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�(A) = MOD �(�) $ MOD �(�) which is provable even within the

classical propositional calculus.

Induction Step: Then A is obtained by an application of one of the

inference rules, say
`Lex �1; : : : ;`Lex �n

`Lex �

If this rule is taken from L then we are already done for � distributes

over the logical symbols of L. Otherwise there is only one possible

candidate left, the necessitation rule for �, i.e., `Lex � ) `Lex ��.

By the induction hypothesis we then have that `L �(�). Now, MOD

is normal hence `L MOD �(�) and thus also `L �(MOD �). But

�(MOD �) = �(��) by the construction of � and therefore it also

holds that `L �(��) and this completes the induction step.

Now, for every B 2 LL we know that �(B) = B. Therefore

`Lex B ) `L �(B)) `L B

and we are done.

At this stage we have a means at hand to �x appropriate normal conservative

extensions Lex of a given normal modal logic L. Also there are possibili-

tites to extract correspondence and determination properties for Lex. Thus,

according to Lemma 3.3, we have everything that is needed to �nd some

determination properties for L. This will be exempli�ed in the sections to

follow.

3.3 Application Examples

It is sometimes not very easy to check wether the auxiliary modality or

operator is normal or not. In fact, we do not know of many general results

on this. The following one turns out to be useful, though.

Lemma 3.4

Let MOD be a modality made up of � and � in a modal logic extending

KD4, i.e., the axioms �� ! ��� and �� ! �� are contained or at least

derivable in the logic under consideration.

If ` MOD �! : MOD :� then MOD is a normal modality.
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Proof: Validity of the necessitation rule follows immediately from the ne-

cessitation rule for � and the axiom �� ! ��. For the K-axiom it

su�ces to show that

MOD A ^MOD B ! MOD (A ^ B)

for if B is set to A! C we obtain the desired result.

The case were MOD is of the form �� � � �� is trivial. Hence assume

that MOD is of the form �n1�m1 � � ��nk�mk with at least one �. Then

MOD A! �
n1�

m1�
m1�

n2�
m2�

m2 � � ��nk�mk�
mk A

and that essentially with the axiom ��! ���. Moreover we are able

to derive

MOD B

! MOD �mkB

by ��! ���

! :MOD: �mkB

by MOD�! :MOD:�

! �n1�m1 � � ��nk�mk�mkB

by ��$ :�:�

! �n1�m1�m1�n2�m2�m2�n3 � � ��mk�1�nk�mk�mkB

by ��! ��� again

Now recall that for every normal modal logic we know that ��^�	!

�(� ^ 	) and �� ^ �	 ! �(� ^ 	). Hence from both MOD A and

MOD B together we can get

�
n1�

m1�
m1�

n2�
m2�

m2 � � ��nk�mk�
mk (A ^B)

which can be simpli�ed by ���! �� to

�
n1�

m1�
n2�

m2 � � ��nk�mk (A ^ B)

and this is just MOD (A ^B).
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3.3.1 Logics extending S4.1

Let us consider modal logics which extend S4.1, i.e., we assume that the

following axioms are contained in (or are derivable from) the axiomatization

we are interested in.

L = S4:1 = K(�) +

8><
>:
��! �

��! ���

���! ���

9>=
>;

The problem with the third axiom is that it does not correspond to a �rst-

order property. Nevertheless, under the transitivity-axiom ��! ��� this

logical system is determined by a �rst-order property (see [9]). The proof of

this fact is somewhat hard to grasp, though.

Now, according to our general recipe we now determine a suitable auxil-

iary modality. This can be found in MOD = �� and we de�ne

Lex = K(�) + K(�) +

8>>><
>>>:
��! �

��! ���

���! ��

��! ���

9>>>=
>>>;

Lemma 3.5

Lex is a normal conservative extension of L.

Proof: From Lemmas 3.4 and 3.3 we know that

Lex

+
= Lex + f��! ���g

is a normal conservative extension of L since �� ! ��� is just a

reformulation of ���! ��� under ��$ ���.

But in Lex we can already derive

���! ��! ���

and thus for every A 2 LL:

`Lex A) `Lex
+
A) `L A) `Lex A

and we are done.
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After we have found a normal conservative extension Lex of L we turn to the

problem of �nding a determining property for Lex. Fortunately, all axioms in

Lex are so-called Sahlqvist-formulae (see [6]) such that a determining prop-

erty is already given by the combination of the respective correspondence

properties for the axiomatization. It thus su�ces to �nd these correspon-

dence properties for each axiom in Lex.

Lemma 3.6

Let S denote the accessibility relation associated with �. The axioms of Lex

then correspond to re
exivity and transitivity of R and

8u; v S(u; v)! 9w (R(u; w) ^ 8x R(w; x)! x = v)

8u 9v R(u; v) ^ 8w R(v; w)! S(u; w)

Proof: It is well known that �� ! � corresponds to re
exivity of R

and that �� ! ��� corresponds to transitivity of R. For the re-

maining two axioms we have to compute 8�; u d��� ! ��eu and

8�; u d�� ! ���eu respectively and we do so with the help of the

Elimination Theorem. Recall that the Elimination Theorem requires �

to be existentially quanti�ed. We therefore negate the formulae �rst,

eliminate the quanti�er and �nally negate the result once again.

9u;� d��� ^ :��eu

$

9u;�

"
8v R(u; v)! 9w R(v; w) ^ �(w)

9x S(u; x) ^ :�(x)

#

$

9u; x;�

2
64 8y :�(y) _ y 6= x

S(u; x)

8v R(u; v)! 9w R(v; w) ^ �(w)

3
75

$

9u; x

"
S(u; x)

8v R(u; v)! 9w R(v; w) ^ w 6= x

#

which after the �nal negation results in

8u; v S(u; v)! 9w (R(u; w) ^ 8x R(w; x)! x = v)
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For the other axiom we have to compute

9u;� d�� ^��:�eu

$

9u;�

"
8x S(u; x)! �(x)

8v R(u; v)! 9w R(v; w) ^ :�(w)

#

$

9u 8v R(u; v)! 9w R(v; w) ^ :S(u; w)

whose negation leads to

8u 9v R(u; v) ^ 8w R(v; w)! S(u; w)

and we are done.

The properties obtained in the previous Lemma determine Lex. Their con-

junction therefore serves as the � of Theorem 2.12. From this we can quite

easily extract a determining property for L, which is 9L�. Recall that, ac-

cording to the de�nition of 9L, we have to �nd out which binary relations

have no associated �-operator in the language of L. In the case we are just

considering this is the relation symbol S and so 9L� is the conjunction of

re
exivity, transitivity and

9S

"
8u; v S(u; v)! 9w R(u; w) ^ 8x R(w; x)! x = v

8u 9v R(u; v) ^ 8w R(v; w)! S(u; w)

#

This is another case for the Elimination Theorem and its application results

in

8u 9v R(u; v) ^ 8w R(v; w)! 9y (R(u; y) ^ 8x R(y; x)! x = w)

which looks quite complicated. However, given transitivity, it is equivalent

to

8u9v R(u; v) ^ 8w R(v; w)! v = w

as can easily be proved with the help of any standard predicate logic theorem

prover. This latter formula describes the so-called atomicity of the underlying

structure and so we �nally end up with

Theorem 3.7

The S4.1 frames are determined by re
exivity, transitivity, and atomicity.
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Notice that re
exivity was actually never needed in the above proofs and

so atomicity holds already for K4:1 frames. Moreover, for any given logic

that extends K4:14 the above procedure can be performed and thus for any

such logic atomicity may be assumed as one of the frame properties that

determine the logic. Hence we may conclude

Corollary 3.8

Atomicity may consistently be assumed for any logic extending K4.1.

3.3.2 Logics extending S4.2

As another example let us again have a look at the modal logic S4.2. This

logic extends S4 by the axiom ��� ! ���, the mirror image of the addi-

tional axiom in S4.1. As it is known5 from the literature this axiom corre-

sponds to the so-called Diamond{Property which states that whenever there

is a branching in the structure the two branches will eventually come together

again. It is thus a question of con
uence that is described here. Formally,

we consider the following axiomatization

L = S4:2 = K(�) +

8><
>:
��! �

��! ���

���! ���

9>=
>;

and its corresponding theory (which also determines S4:2)

8u R(u; u)

8u; v; w R(u; v) ^R(v; w)! R(u; w)

8u; v; w R(u; v) ^R(u; w)! 9x R(v; x) ^ R(w; x)

Our aim is now to strengthen this theory, i.e., we are interested in a more

general property which also determines S4:2. To this end we consider the

following logical system

Lex = K(�) + K(�) +

8>>><
>>>:
��! �

��! ���

���! ��

��! ��

9>>>=
>>>;

4which means that the axioms ��! ��� and ���! ��� are at least derivable
5We might of course �nd out about this with the Elimination Theorem.
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Lemma 3.9

Lex is a normal conservative extension of L.

Proof: By Lemma 3.4

Lex

+
= Lex + f��! ���g

is a normal conservative extension of L. However, within Lex already we

can derive

���! ��! ��! ���

Hence, for every A 2 LL:

`Lex A) `Lex
+
A) `L A) `Lex A

from which it immediately follows what has been claimed.

We now have to detect a determining property � for Lex. Again, we are

in the lucky position that the axioms of Lex all are Sahlqvist-formulae. It

therefore su�ces to �nd their respective correspondence properties.

Lemma 3.10

The axiomatization of Lex corresponds to

8u R(u; u)

8u; v; w R(u; v) ^R(v; w)! R(u; w)

8u; v; w R(u; v) ^ S(u; w)! R(v; w)

8u9v S(u; v)

Proof: Only the third property from above is of some interest; the other

correspondences are trivial. We have to show that ��� ! �� corre-

sponds to 8u; v; w R(u; v)^S(u; w)! R(v; w) and we do so by another

application of the Elimination Theorem. To this end we have to examine

9x 9�

"
9y R(x; y) ^ 8z R(y; z)! �(z)

9y S(x; y) ^ :�(y)

#

After transformation into the form required for the Elimination Theorem

we get

9x; y 9�

2
64
9u R(x; u) ^ 8z R(u; z)! �(z)

S(x; y)

8z :�(z) _ y 6= z

3
75
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Applying the Elimination Theorem results in

9x; y S(x; y) ^ 9u R(x; u) ^ 8z R(u; z)! y 6= z

and after a �nal negation we obtain the desired result.

We thus have found the � we were looking for. Remains to derive the 9L�.

Lemma 3.11

L is determined by re
exivity, transitivity and

8u 9v 8w R(u; w)! R(w; v)

Proof: According to our general procedure we have to compute

9S

"
8u; v; w R(u; v) ^ S(u; w)! R(v; w)

8u9v S(u; v)

#

which shows to be equivalent to the desired result.

Recall that we may consider the generated model assumption and in doing

so { by adding the formula 9u 8v R(u; v) { this property can be further

simpli�ed to

9x 8y R(y; x)

a property we call �nality. Thus

Theorem 3.12

The S4:2 frames are determined by re
exivity, transitivity, and �nality.

Actually, re
exivity was not really needed in order to obtain �nality by the

proposed method; seriality alone would have su�ced6. Thus we get as a

corollary:

Corollary 3.13

Finality may consistently be assumed for any extension of KD4:2.

Krister Segerberg de�nes in [7] a non-degenerated cluster as a collection of

worlds such that for any two worlds u and v taken from this cluster u is

accessible from v and vice versa. He then claims that one can prove with the

6Note that in this case the generated model assumption is to be re
ected by 9u 8v v =
u _ R(u; v), the re
exive closure of R.
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help of so-called Lemmon-�ltrations that KD4:2 is determined by seriality,

transitivity, and the existence of a last non-degenerated cluster. Now, if we

take a closer look at our �nality-property we realize that �nality expresses

just the fact that there is a �nal non-degenerated cluster. Thus the approach

proposed here mirrors to some extent what has otherwise been achieved by

certain special �ltration techniques.

Observe the di�erence between KD4:2 structures and KD4 structures

with a �nal cluster as given in the following �gure7. It re
ects the di�erence

of the two background theories

8u 9v R(u; v)

8u; v; w R(u; v) ^R(v; w)! R(u; w)

8u; v; w R(u; v) ^ R(u; w)! 9x R(v; x) ^ R(w; x)

and
9u 8w R(w; u)

8u; v; w R(u; v) ^R(v; w)! R(u; w)

which are indistinguishable for modal logics.

KD42 with

FinalityDirectedness

3.3.3 Logics extending weak dense KD4:3

The way we did proceed with the logics S4:1 and S4:2 might suggest to have

a try with the more simple S4 already. Now, if we take a look at S4, which

7Transitivity edges are omitted for readability. Small black circles denote worlds and
the bigger white circle represents a cluster.
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is axiomatized by

S4 = K(�) +

(
��! �

��! ���

)

an immediate candidate for an auxiliary modality presents itself, namely ��.

This modality is trivially normal and hence the logical system

K(�) + K(�) +

8><
>:
��! �

��$ ���

��! ��

9>=
>;

is a normal conservative extension of S4. But what would we gain if we now

derive a determining property for this extension (the �)? As a matter of fact

this would end up in

8u R(u; u)

8u; v S(u; v)$ 9w (R(u; w) ^R(w; v))

8u; v S(u; v)! R(u; v)

such that 9L� results in the re
exivity and transitivity of R. Thus we were

running in circles: The property we wanted to strengthen came right in again

through the backdoor.

Actually, this should not surprise us too much. Something like this will

always happen when we consider a modality of the form �� � � ��. The

reason for this is that in such cases the new accessibility relation is going to

be de�ned by some formula of the kind

8x; y S(x; y)$ �

where � contains no mention of S. The formula 9L� will then inevitably be

identical to the original correspondence property.

A similar situation occurs when we consider dense transitive frames. Den-

sity is axiomatized by ���! �� and it states that whenever v is accessible

from u there is a world \inbetween" u and v. This axiom thus corresponds

to the �rst-order property 8u; v R(u; v)! 9w (R(u; w) ^R(w; v))8. Here as

well it does not make sense to consider the modality ��. This would just

not lead to anything new.

8In the literature this corresponding property is often called weak density for it does
not really guarantee that the worlds \inbetween" u and v are di�erent from both u and
v. For instance it is already provable under ��! �, the re
exivity-axiom.
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The idea how to overcome this problem is to �rst extend the logic in a way

such that the density axiom can be reformulated more appropriately9. With

this extension we proceed as before, i.e., we look for some further extension,

derive its background theory � and then extract 9L�. Usually, however, there

is a price to be paid for this. Since the new auxiliary modality will contain

operators of the original language and of its �rst extension, it will usually

not be normal. We then have to force it to be normal and this will often be

accompanied by an extra property to be assumed for the original logic. In

case of the example below this extra property will be (right-)linearity. To

wit, we consider the logical system L = weak denseKD4:3, which is

L = K(�) +

8>>><
>>>:

��! ��

��! ���

���! ��

�� ^ �	! �(� ^ �	) _ �(� ^ 	) _ �(�� ^ 	)

9>>>=
>>>;

Moreover, we examine

Lex = K(�) + K(�- ) + K(�) +

8>>>>>>>><
>>>>>>>>:

�! ��- �

�! �- ��

��! ��- �

�- �! ��

��! ��

�- ��! (�- � _ � _ ��)

9>>>>>>>>=
>>>>>>>>;

The reader familiar with temporal or tense logics might recognize some kind

of \past-operators" in �- and �- .

Lemma 3.14

Lex is a normal conservative extension of L.

Proof: First consider

Lex

1
= L + K(�- ) +

(
�! ��- �

�! �- ��

)

These two extra axioms state that the accessibility relation associated

with �- is just the converse of the accessibility relation associated with

9Note the di�erence to the examples above. There we extended the language in order
to, for instance, replace directedness of R by seriality of S. Here the reformulation is just
syntactically, the property on R will remain the same.
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�. Thus Lex

1
is a normal conservative extension of L.

Now it is easy to show with the Elimination Theorem that the axiom

�- ��! (�- �_�_��) corresponds to the same property as ��^�	!

�(� ^ �	) _ �(� ^ 	) _ �(�� ^ 	) and therefore may be used as a

substitute for the latter. Similarly we show that we may interchange

�� ! ��� with �- � ! ��- � and ��� ! �� with ��- � ! ��.

Moreover, the modality ��- is normal w.r.t. Lex

1
thus { according to

Lemma 3.3 {

Lex

2
= K(�) + K(�- ) + K(�) +

8>>>>>>>>>>><
>>>>>>>>>>>:

��! ��

�! ��- �

�! �- ��

��$ ��- �

�- �! ��- �

��- �! ��

�- ��! (�- � _ � _ ��)

9>>>>>>>>>>>=
>>>>>>>>>>>;

is a normal conservative extension of Lex

1
and { according to Lemma 2.10

{ it is also a normal conservative extension of L. Now, the �rst of these

axioms turns out to be redundant and, moreover, the de�nition of the �

allows us to reformulate the �fth and the sixth axiom to �- �! �� and

�� ! �� respectively such that we still have a normal conservative

extension of Lex

1
and L. Now, the de�ning axiom for � can be split into

��! ��- �

��! ��- �

The di�erence between Lex and the logic we have obtained lies in the

extra axiom �� ! ��- �. Trivially, whatever is provable within Lex is

also provable within Lex

2
. It thus su�ces to show that the L-theorems

(the Lex

1
-theorems) are also Lex-theorems. This is fairly easy, however,

since
�- �! ��! ��- �

��- �! ��! ��

and this completes the proof.

Now we have to derive a determining property for Lex

1
and from this we shall

extract one for L.
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Lemma 3.15

L is determined by

2
64
8u; v; w R(u; v) ^R(v; w)! R(u; w)

8u; v R(u; v) _ u = v _ R(v; u)

8u 9v R(u; v) ^ 8w R(u; w)! R(v; w)

3
75

Proof: As we know already the two axioms � ! ��- � and � ! �- ��

ensure that R� (the accessibility relation which belongs to �- ) is just the

converse of R. Right-linearity is also ensured by �- ��! (�- �_�_��).

Remains to have a look at

��! ��- �

�- �! ��

��! ��

Applying the Elimination Theorem we get

8u; v; w S(u; v) ^R(u; w)! R(v; w)

8u; v R(v; u)! S(v; u)

8u 9v S(u; v) ^R(u; v)

Since all axioms involved are Sahlqvist formulae we thus have that Lex

is determined by

� =

2
6666664

8u; v R�(u; v)$ R(v; u)

8u; v; w S(u; v) ^ R(u; w)! R(v; w)

8u; v R(v; u)! S(v; u)

8u 9v S(u; v) ^ R(u; v)

8u; v; w R(u; v) ^R(u; w)! R(v; w) _ v = w _R(w; v)

3
7777775

With the help of the Elimination Theorem we now have to compute

9L� = 9S 9R� � which { together with the generated model assumption

results in what has been claimed.

Thus transitivity and linearity are not a�ected by this approach. It is the

density property which gets strengthened. In fact, the newly obtained prop-

erty is a bit surprising at the �rst glance. One strange thing about it is that it

implies the existence of accessible re
exive worlds which act as something like

next worlds. The reason for this can be found in the rather loose de�nition of

density. According to this de�nition even the structure (N ;�) is dense simply
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because it is re
exive. From the achieved result we are ensured that under

seriality, transitivity and linearity modal logics are not able to distinguish

weak dense structures from quasi-discrete ones where quasi-discreteness is

de�ned by

8u 9v R(u; v) ^ 8w R(u; w)! R(v; w)

It is evident that quasi-discreteness implies weak density and therefore in

weak dense KD4:3 structures we may assume for every world that it is either

re
exive or it is immediately followed by a cluster. Hence a typical weak

dense structure looks like this:

KD43 with quasi-discreteness

Note that weak dense KD4:3 extends KD4:2 and therefore we may assume

that there exists a �nal cluster.

Corollary 3.16

Quasi-discreteness may consistently be assumed for any logic extending weak

dense KD4:3.

As another side-e�ect consider (Q ; <), the structure we get from the

rational numbers with the usual < comparison. Evidently, < is serial, tran-

sitive, linear and dense but as we just found out modal logics are not able

to tell this structure from one we obtain if we additionally assume arbitrary

intermediate clusters and so we get

Corollary 3.17

(Q ; <) is not modally axiomatizable.

3.3.4 Logics extending KD4:3

For weak dense KD4:3 we reformulated both the density axiom and the

transitivity axiom and �nally ended up with a stronger property for density.

There is no reason why we should not try the same for transitivity alone and
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see what we can get out of that then. In this case we consider

L = K(�) +

8><
>:

��! ��

��! ���

�� ^ �	! �(� ^ �	) _ �(� ^ 	) _ �(�� ^ 	)

9>=
>;

and

Lex = K(�) + K(�- ) + K(�) +

8>>>>>><
>>>>>>:

�! ��- �

�! �- ��

��$ ��- �

�- �! ��

�- ��! (�- � _ � _ ��)

9>>>>>>=
>>>>>>;

and similarly to the former case we �nd out that Lex is a normal conservative

extension of L. Now Lex is determined by

� =

2
6666664

8u; v R�$ R(v; u)

8u; v; w S(u; v) ^R(u; w)! R(v; w)

8u 9v R(u; v) ^ 8w R(w; v)! S(u; w)

8u; v R(u; v)! S(v; u)

8u; v; w R(u; v) ^ R(u; w)! R(v; w) _ v = w _ R(w; v)

3
7777775

and hence L is determined by 9L�, which is

2
64
8u; v; w R(u; v) ^R(v; w)! R(u; w)

8u 9v R(u; v) ^ 8w R(w; v)! 8w0 R(u; w0)! R(w;w0)

8u; v; w R(u; v) ^R(u; w)! R(v; w) _ v = w _R(w; v)

3
75

Evidently, under the generated model assumption we get linearity from right-

linearity again so that we �nally have

Lemma 3.18

KD4:3 is determined by

2
64 8u; v; w R(u; v) ^R(v; w)! R(u; w)

8u 9v R(u; v) ^ 8w R(w; v)! 8w0 R(u; w0)! R(w;w0)

8v; w R(v; w) _ v = w _ R(w; v)

3
75

Notice that the extra property we have got here is somewhat related to the

property we got for dense structures. As a matter of fact it is trivially true
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for re
exive worlds (just take v = u) and also for worlds which have an

irre
exive next world (let v be this next world then). Only in cases where

a world is neither re
exive nor has an irre
exive next world this property

tells us something new and that there is a following cluster. Thus a typical

KD4:3 structure can be illustrated as follows (recall that we may assume the

existence of a �nal cluster here as well):

{ !! KD43

Observe the little di�erence to the former �gure for weak dense KD4:3. There

the situation emphasized by the \!!" would not be allowed.

From a proof-theoretical perspective adding this property can hardly be

recommended. From a model-theoretic point of view this result is quite

interesting, though.

3.4 Towards a Generalization

One of the main di�culties we are faced with when we want to apply the

technique proposed is that the requirement of the new modality to be nor-

mal often induces other properties which may be undesired. As an example

consider the logic KT2 (or KD2) which is like S4:2 but without the transi-

tivity axiom �� ! ���. Unfortunately, chosing again �� as an auxiliary

modality doesn't help here for �� is not normal w.r.t. KT2. Transitivity

would su�ce as an additional property but what should we do if this extra

property is to be avoided?

One possible solution to this problem can be found in an appropriate

weakening of the requirements we had up to now. Although we know that

�� is not normal w.r.t. KT2 we nevertheless know (or at least can easily

�nd out) that the rule
�! 	

���! ��	

is valid. The reader familiar with minimal models and neighbourhood se-

mantics (see, e.g., [1]) will immediately recognize that this rule is associated
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with the so-called strong neighbourhood semantics. This kind of semantics

is slightly more general than the relational Kripke-semantics and de�nes ��

to be true at world u if there exists a neighbourhood for u whose elements

all are �-worlds. We are thus talking about neighbourhoods instead of ac-

cessibility relations. This strong neighbourhood semantics is indeed more

general than the Kripke-semantics as can be seen by the fact that under the

assumption that the intersection of all neighbours of an arbitrary world u is

itself a neighbour of u we may switch from neighbourhoods to accessibility

relations.

After we know that the chosen modality obeys the above rule there is

no di�culty in �nding a conservative extension10 of the given logic: we just

have to de�ne a new modal operator in terms of this modality and show that

no more theorems of the language we are interested in get provable this way.

The actual proof is omitted here for it would be almost identical to the proof

of Lemma 3.3.

Coming back to the example KT2 we therefore consider the logics

L = K(�) +

(
��! �

���! ���

)

Lex = K(�) + E(�) +

8><
>:

��! �

���! ��

��! ���

9>=
>;

where

E(�) =

�
�! 	

��! �	

�

It is immediate that Lex is a conservative extension of L, or in other words,

that for every formula A 2 LL: A is an Lex-theorem if and only if A is an L-

theorem. According to the strong neighbourhood semantics we now translate

modal formulae by

d��eu = 9x N(u; x) ^ 8v I(x; v)! d�ev

where the translation of the other operators and connectives remains as

before. Then ��� ! �� corresponds to 8u; v R(u; v) ! 9x N(u; x) ^

10The newly to be de�ned modal operator won't be normal; therefore we are not talking
of normal conservative extensions anymore.
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8w I(x; w) ! R(v; w) and �� ! ��� corresponds to 8u; v; x N(u; x) ^

R(u; v)! 9w I(x; w) ^R(v; w) such that L is determined by

9I; N

2
64 8u R(u; u)

8u; v R(u; v)! 9x N(u; x) ^ 8w I(x; w)! R(v; w)

8u; v; x N(u; x) ^ R(u; v)! 9w I(x; w) ^ R(v; w)

3
75

With the help of the Elimination Theorem this can be transformed into

re
exivity plus

9I 8u; v R(u; v)! 9x

"
8w R(u; w)! 9w0 I(x; w0) ^ R(w;w0)

8w I(x; w)! R(v; w)

#

which turns out to be equivalent to directedness, the property we already had

at the beginning11. Unluckily, we havn't really gained anything by consid-

ering this kind of neighbourhood semantics at least what the example from

above is concerned. Nevertheless, it is certainly worth a try whenever the

modality at hand is not normal.

An even stronger generalization can be thought of if we are prepared to

consider the usual (weak) neighbourhood semantics in which a formula like

�� is to be translated into

d��eu = 9x N(u; x) ^ 8v (I(x; v)$ �(v))

Dealing with this translation (semantics) is even more complicated. However,

it is indeed much more general for the only rule (no axioms) which is induced

by this semantics is

N(�) =
�$ 	

��$ �	

With this we may de�ne new modal operators more or less arbitrarily (not

necessarily by modalities) and still remain conservative.

11The Elimination Theorem does not show this directly. For examples like this one it
often helps to embed the second-order formula between two �rst-order formulae. To this
end we shift the �rst existential quanti�er to the right over the two following universal
quanti�ers and also shift the 9x to the left over the universal quanti�ers and try to �nd
�rst-order equivalents for the resulting formulae (where, obviously, the one is weaker and
the other is stronger than the original formula). For the example above both formulae turn
out to be equivalent to directedness and therefore the original formula denotes directedness
as well.
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For example, consider the de�nition �� $ (:� ^ ��). Under this

de�nition alone we have neither K(�) nor E(�) but we certainly do have

N(�). Then consider the modal logic

L = L�ob = K(�) + f�(��! �)! ��g

and its conservative extension

Lex = K(�) + N(�) +

(
���! ��

(��! �)! ��

)

The second of the two new axioms causes no real problems. The �rst, how-

ever, cannot be transformed into a �rst-order property by the Elimination

Theorem; it results in a formula with a second-order skolem function which

apparently cannot be \deskolemized". Therefore the � for Lex is second-

order and the 9L� for L remains second-order and we havn't really gained

anything.

Such a problem with the neighbourhood semantics occurs quite frequently

and it seems that this generalization can hardly be used for the technique

proposed in this paper unless better and more general second-order quanti�er

elimination techniques get developed.
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Chapter 4

Summary, Conclusion and

Further Work

Finding out about determining properties for modal logics is interesting in at

least two respects. From a model-theoretic perspective they tell us something

about the models underneath these logics and also about the (limits of the)

expressive power of modal logics. From a proof-theoretic point of view it

is of quite some importance to �nd characterizations which are \as strong

as possible" because predicate logic theorem provers will usually have less

di�culties then in proving the validity of theorems under semantics-based

translations. It might even be possible that such strengthenings can in
uence

other kind of calculi like tableaux for instance.

The approach presented in this paper is based on the observation that it

is often easy to �nd a determining property for some conservative extension

of the logic under consideration which then can be used to extract a stronger

determining property of this original logic. Such conservative extensions are

constructed in a more or less straightforward manner. Essentially we try

to �nd a suitable auxiliary modality which de�nes a new modal operator.

This is the only \creative" part of the method proposed. What remains to

be done consists merely of several applications of a second-order quanti�er

elimination and we are done.

Evidently, there are various possibilities where this approach may not

work or does not really help. What may go awry is the attempt to �nd

normal conservative extensions. In this case it is certainly worth having

a look at the possible generalizations as they are described in Section 3.4.

But even if we are able to �nd a normal conservative extension it is not yet
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guaranteed that we can �nd a determining property for this one. Usually,

however, both possible obstacles occur rarely, and if we are successful up

to this stage the most important steps have been performed. All the rest

can be done via the Elimination Theorem which either results in the original

determining property we already knew about (and this is the worst case to

happen for we didn't gain anything then) or we end up with a �rst-order

property which is strictly stronger than what we had before (the best we

can achieve) or, a �nal possibility, we get an existentially quanti�ed second-

order formula which is strictly stronger than the original one. In the latter

case the result obtained can still be used in refutation procedures although it

certainly requires a careful examination whether this stronger property really

simpli�es the derivation process (witness KD4:3).

What is interesting about the approach presented in this paper are not

only the results obtained; also the way how this is done is of some impor-

tance. Whereas other techniques with a similar goal are usually based on pure

model-theoretic considerations, the approach presented here is mainly proof-

theoretic and in my view requires much less \intuition" on the underlying

models and frames than other known techniques (as e.g. Lemmon-�ltrations).

A bit of a problem is that it cannot yet be decided how general this ap-

proach really is and where its limitations are. I have to admit, I have no idea

how powerful auxiliary modalities can be. Nevertheless, some limitations are

de�nitly known. The elimination of second-order quanti�ers is obviously one

of the bottlenecks and the better the techniques in this area are the better

(or the more) determination results can be expected from the method devel-

oped for this paper. To put it to an extreme: �nding conservative extensions

is actually no problem at all if we are willing to consider neighbourhood se-

mantics. The price we have to pay for this is that it is often very hard to

get �rst-order correspondence results out of this. Of course, it is not always

the case that there are such �rst-order correspondence results at all; it is

just that we want to be able to �nd out if there are. And the stronger the

elimination procedure is the better are the results that can be expected.
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