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Abstract

The ion acoustic beam-plasma instability is known to excite strong solitary waves near the

Earth’s bowshock. Using a Double Plasma experiment, tightly coupled with a 1-dimensional Par-

ticle-in-Cell simulation, the results presented here show that this instability is critically sensitive

to the experimental conditions. Boundary effects, which do not have any counterpart in space or

in most simulations, unavoidably excite parasitic instabilities. Potential fluctuations from these

instabilities lead to an increase of the beam temperature which reduces the growth rate such that

non-linear effects leading to solitary waves are less likely to be observed. Furthermore, the in-

creased temperature modifies the range of beam velocities for which an ion acoustic beam plasma

instability is observed.
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I. INTRODUCTION

Space plasmas are generally considered collisionless, which immediately implies two prop-

erties: the dynamics is dominated by collective kinetic physics [1] and the velocity distribu-

tion is often non-Maxwellian. A beam propagating as a minority population is a particularly

strong deviation from a Maxwellian distribution, and has been observed to excite kinetic

instabilities in different regions of space. For example at the boundaries of supernova rem-

nants [2, 3], reconnection events [4], bowshocks [5, 6] or coronal mass ejections [7–9]. Due to

their fast growth rate and the absence of collisional damping, beam-plasma instabilities in

space are generally observed in a state of non-linear saturation, either as turbulence [10, 11]

or as solitary waves [12, 13]. In the case of an ion beam moving with the ion acoustic velocity,

as observed in the earth’s bowshock [5], the solitary waves are associated with anomalous

resistivity [14–16] which makes this instability particularly interesting.

The linear theory for the Ion Acoustic Beam-Plasma Instability (IABPI) is well under-

stood for simplified cases, and will be outlined in section II. To investigate non-linear effects

and to overcome diagnostic difficulties, simulations have been a useful tool [e.g. 17–21] to the

point where comparisons with naturally observed structures can be made with remarkable

accuracy [22, 23].

Complementary investigations of the IABPI in laboratory experiments have proven more

challenging. Diagnostics for ion phase space are notoriously difficult [24, 25] and the insta-

bility itself is sensitive to experimental conditions. While in space the instability is almost

exclusively observed in a fully non-linear saturated state, there appears to be only one pub-

lished observation from a laboratory experiment of solitary waves driven by an ion beam

in a stationary state [26]. Also, one of the more common experiments relates to the de-

pendence of the instability on the beam velocity. As shown in table I, large variation has

been found. This paper presents evidence from experiments in the linear plasma device

VINETA [27], and numerical studies using a particle-in-cell (PIC) simulation which explic-

itly includes boundaries [28] to show that the boundaries themselves can be responsible for

both of these observations.

In the work presented here, and all of the experiments in table I, a Double Plasma

(DP) setup is used to generated the ion beam. As the name suggests, a DP consists of

two thermionic plasmas, separated by a strongly negative dividing grid. Electrons can not
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TABLE I: Lower and upper limits for the ion beam velocity in terms of the ion acoustic velocity,

for which ion beam driven acoustic instabilities have been observed in experiments.

Lower Limit Upper Limit Ref.

– 2.2 [29]

0.5 1.7 [19]

0.5 2.65 [30]

0.8 2.0 [31]

1.0 2.0 [32]

1.0 2.65 [33]

1 3 [34]

1 4 [35]

1.3 2.0 [36]

1.7 3.5 [27]

0.5m0.5m

FIG. 1: Schematic showing the Double Plasma setup, including the potential profile.

pass through the grid, which allows the potential of the plasmas (φp,s and φp,t) to be set

independently. In each case, the plasma potential is dictated by the potential of the most

positive boundary (plus a small offset for the sheath potential). The setup is represented in

the diagram in Fig. 1. Ions passing from the source to the target plasma are accelerated as

they approach the central grid, and decelerated again after passing through it. Their energy

Eb when they exit the sheath is given by the difference in the two plasma potentials.
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FIG. 2: Distribution functions (top row) and dispersion relations (bottom row) for different beam

properties: a&b: vb = cs, Tb = Ti = 0.1 eV. c&d: vb = 1.7cs, Tb = Ti = 0.1 eV. e&f: vb = 1.7cs,

Tb = 20Ti = 2.0 eV.

II. DISPERSION RELATION

Beam-plasma instabilities are collective, kinetic instabilities. Waves with a phase veloc-

ity vph = ω
~k

will be resonantly excited when ∂f
∂~v

∣∣
~vph

> 0. ω is the wave frequency, ~k the

wavenumber and f(~v) is the particle velocity distribution function. If the distribution func-

tion is reduced to a double Maxwellian distribution for the ions, and a single Maxwellian

for the electrons, and only one dimension is considered such that vectors collapse to scalars,

the dispersion relation for the IABPI can be written as [32, 37]

1 +
1

kλD
− 1

2
Z ′

[
ω

kcs

(
me

mi

) 1
2

]
− 1

2

nbTe
niTb

Z ′

[
ω − vbk

kcs

(
Te
2Ti

) 1
2

]
= 0 (1)

where Z is the plasma dispersion function, m is the mass of a species, v its mean velocity,

T its temperature and n its density. The relevant species are designated by subscripts e

for electrons, i for bulk ions and b for beam ions. λD =
√

ε0Te
nee

is the Debye length and

cs =
√

e(Te+γTi)
mi

∼
√

eTe
mi

is the ion acoustic velocity. When not used as a subscript, e

represents the elementary charge and ε0 is the permittivity of free space.

When solving (1) for ω, a complex solution indicates unstable growth. Plotting the

solutions for ω as a function of k allows the dispersion relation to be visualised, as shown

in fig. 2b for a standard case with vb = cs, Tb = Ti = 0.1Te. The plasma can support

three modes in the range of wavenumbers and frequencies shown - the fast beam mode, the

slow beam mode and the ion acoustic mode. Each is plotted as a separate line. Where

two lines meet (0 < k < 1.8), the solution is complex-conjugate. Over the same range, the
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TABLE II: Numerical parameters as used for the PIC simulations. Note that the parameters have

not been optimised for execution time, since this was not a restricting factor.

Parameter Description Parameter Normalised setting

dte electron timestep 0.1
ωpe

dti ion time step 0.4
ωpe

dte,coll electron inelastic collision time step 5
ωpe

dti,coll ion inelastic collision time step 8
ωpe

dx spatial resolution 0.3λD

mi
me

mass ratio mAr
me

= 73500

nsp

λD
superparticle density 30

imaginary component of the solution can be seen in cyan. The corresponding distribution

function is shown in fig. 2a. The bulk has zero mean velocity and the beam is visible as a

“bump on tail” centred at 1 cs. Note that the gradient ∂f
∂v

is steepest for v = 0.81cs, which

corresponds to the phase velocity with the maximum growth rate, marked by the circle in

fig. 2b vph =
0.746ωpi

1.02λ−1
D

= 0.73cs, where the ion plasma frequency ωpi =
√

ne2

mε0
.

As the velocity is decreased, the beam is absorbed into the bulk distribution, ∂f
∂v
< 0 over

all velocities. Trivially, the instability no longer appears. At higher beam velocities, ∂f
∂v
< 0

only for v > cs, which is the maximum phase velocity for an ion acoustic wave. This case is

shown in fig. 2c, with the corresponding dispersion relation in fig. 2d. The modes are now

clearly separated, and have no complex component.

Fig 2e and f show a similar situation, but now with a higher beam temperature. For

moderate vb ∼ cs, the gradient ∂f
∂v

would be reduced, and hence the growth rate would also

be smaller. However, for higher vb the growth rate actually increases with increasing beam

temperature. As shown in the figure, the region where ∂f
∂v
> 0 now extends below cs and now

the dispersion relation predicts a finite growth rate, albeit smaller than in the first example.
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FIG. 3: Results from a simulation with initial beam and bulk distribution independent of position.

a) Ion phase space f(x, v) at time= 0. b) Electric field as a function of position and time, with time

in units of the ion plasma period Tpi = 2π
ωpi

. c) Ion phase space f(x, v) at a time where non-linear

effects are particularly prevalent.

III. SIMULATION

Particle-in-Cell (PIC) simulations allow a full representation of ion phase space, which

is necessary to properly investigate kinetic instabilities. For the results presented here,

a 1-dimensional (1-D) PIC code [28] was used, with the special feature that boundaries

and the associated sheaths are self-consistently modelled. Although neither the earth’s

bowshock nor the laboratory experiments are 1-D systems, it is assumed that a 1-D model

is appropriate for planar waves where the wavelength in the direction parallel to the beam

propagation is much shorter than both the perpendicular wavelength (k‖ � k⊥) and the

perpendicular gradient length of plasma parameters. For linear laboratory experiments,

this is approximately the width of the plasma column (k‖ � 2π
plasma width

). The simple case

described in the previous section can be reproduced with no boundaries and a homogeneous

velocity distribution. (Homogeneous in the sense that it is independent of position.) Fig. 3a

shows the initial conditions in phase space co-ordinates where most ions are in the bulk
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FIG. 4: Results from a simulation with a beam injected into a homogeneous bulk plasma. a) Ion

phase space f(x, v). b) Electric field as a function of position and time.

population, centered on zero velocity, and a beam population with 10% of the bulk density

is moving with a velocity of vb = 1.4cs. Relevant numerical constants are listed in table II.

This kind of simulation has been conducted many times before, and as expected, the ion

acoustic wave is excited and grows to a significant amplitude. Fluctuations in the plasma

potential create electric fields of up to 500Vm−1 as shown in fig. 3b, which translates to

strong potential fluctuations on the order of the electron temperature. The mode growth

saturates non-linearly in so-called “phase space holes”. One of a chain of phase space holes

has been highlighted in fig. 3c. Phase space holes are aligned with regions of negative

potential and trap ions into closed trajectories (ellipses in 1-D phase space). Since these

holes have a propensity to merge, a chain can develop into solitary waves as observed in

space, providing collisional damping is small.

To tailor the simulation closer to the experiment, a source is added injecting ions at

x = 453λD and moving to the right. To prevent a discontinuity in the density, bulk ions

are removed from this position. The injected beam velocity and temperature are the same

as before. Fig. 4 depicts the results of this simulation, after the beam has been injected
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TABLE III: Collision frequencies for the simulated plasma conditions: ne = ni = 1015 m−3, Te =

2 eV, Ti = 0.1 eV, neutral pressure = 0.1 Pa.

Species Collision Frequency (normalised to the ion plasma frequency)

ion-ion 3.2 × 10−3

ion-neutral 6.8 × 10−3

charge exchange 9.5 × 10−3

ion-electron 1.4 × 10−2
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FIG. 5: Results from a simulation with a beam injected into the boundary sheath of a bulk plasma.

a) Ion phase space f(x, v). b) Electric field as a function of position and time.

for some time and the instability has reached a sort of steady state. The instability can be

observed to develop in space from the point of injection at the left to non-linear saturation

at the right in just a few wavelengths. Fig. 4b shows that the amplitude of electric field

fluctuations is approximately 400Vm−1 for x ∼ 480λD before being damped by collisions.

The collision frequencies for these conditions are listed in table III.
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FIG. 6: Results from a simulation with a beam driven by the potential difference between source

and target plasmas. a) Ion phase space f(x, v). b) Electric field as a function of position and time.

If the point of injection is moved to x = 0, we can start to investigate the role of the

boundary. Particles reaching the boundary are removed from the simulation, which leads

self-consistently to the formation of a sheath. The injected beam velocity must be adjusted

for the potential gradient in the sheath. The velocity of injected particles is set so that the

beam velocity is the same as before at x = 30λD, i.e. when the bulk velocity approaches

zero. Although the beam is injected with the same velocity spread as before, fig. 5a shows

the beam spreading in velocity space as it decelerates. To some extent, this is simply due to

the quadratic relationship between velocity and energy; all particles lose the same energy in

the sheath, but for the slower ones this equates to a larger change in velocity. This effect is

added to by small angle deflections from small local and transient changes in the potential

gradient. While the beam is decelerating in the sheath, the velocity difference between bulk

and beam is too large for an IABPI. Starting from x ∼ 30λD, growth of an ion-acoustic

wave is visible, but the growth rate is reduced due to the increased beam temperature, and

phase space holes are not observed. Fig. 5b shows that electric field fluctuation amplitudes

are less coherent and reduced to less than 200 Vm−1.
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Finally, the simulation is reconfigured to emulate a double plasma. The potential at a

central point x = 453λD is fixed strongly negative corresponding to a biased grid in the

plasma. To avoid numerical instability from trapped ions, a sink is created by removing

some ions from the region close to the grid every time-step. The simulation boundaries are

set to give the desired beam velocity φsource = φtarget+
1
2
mv2b
q

for a beam propagating through

the central grid from the source into the target plasma. To provide a similar beam density

to the previous cases, the source density is increased with respect to the target.

The result of this simulation is shown in fig. 6. In fig 6a the acceleration and deceleration

of the ions near the grid can be seen. The red line indicates the expected ion trajectory based

on the time averaged potential. Initially, ions approaching the grid from the source plasma

follow this trajectory fairly closely, and simultaneously reduce their velocity spread (i.e. the

reverse of what was explained for decelerating ions in fig. 5a). However, when exiting the

sheath on the other side, the beam has been spread dramatically in velocity space. Clearly,

the beam ions do not follow the trajectory given by the time-averaged potential, but are

dispersed by fluctuations of the potential.

Potential fluctuations in sheaths are common. Particularly for the sheaths surrounding a

grid in a double plasma, the sheath instability is well known in experiments [38, 39] and has

been reproduced in simulation [40]. The results from Rohde’s Vlasov simulation showing

bunching of ions within the sheath and in extreme cases expulsion of ‘tongues’ of ions into

the target plasma could be reproduced in the course of the current work (not shown).

Those potential fluctuations lead to an increase of the beam temperature, and a reduction

of the growth rate for the IABPI. Fig 6b shows that the amplitude of the electric field

fluctuations is less than 200 Vm−1 despite the basic parameters (beam density and velocity)

being the same as the other simulation runs.

From the four cases simulated here, the biggest difference is observed when the injection

location is changed from a homogeneous background plasma to the boundary. Holding all

other variables constant, this shows that the increase in ion beam temperature associated

with sheath dynamics are decisive for the evolution of the IABPI.

Having developed a simulation which closely replicates a DP, the IABPI can be studied

in detail by varying some of the variables in the simulation. Shown in the following are

examples of density fluctuations for varying beam velocity. By taking the two-dimensional

Fast Fourier Transform (2D-FFT), the fluctuations can be converted to frequency space
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FIG. 7: Plots of frequency against wavenumber from two dimensional Fourier spectra of the po-

tential fluctuations from a simulation of a double plasma experiment. Examples are shown for the

following beam velocities: a) 0.2cs, b) 1.2cs, c) 1.8cs, d) 2.5cs.

(ω, k) and compared to the analytical dispersion relation. Since the simulation provides

full access to the ion phase space, in particular the beam temperature, all of the input

parameters are available. Fig. 7 shows a series of comparisons for varying beam velocities.

In each case, the analytical dispersion relation, shown in black, corresponds very well with

the amplitude patterns from the simulation. At low velocities, as in fig. 7a, there is no

instability, and only the background noise is observed. For moderate velocities, fig 7b and

c, the instability is visible as an increased amplitude in the same region as predicted by

the dispersion relation. At high velocities two independently propagating modes can be

observed fig. 7d, corresponding to the beam mode (between the upper two black lines) and
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FIG. 8: Cross correlation between two probes, one stationary and one which was moved along the

beam propagation direction. The z axis gives the position of the moveable probe relative to the

central grid.

the acoustic mode. The beam modes are however not unstable and hence have a lower

amplitude. A discussion of the velocities at which the instability appears will be made in

conjunction with experimental results at the end of section IV.

IV. EXPERIMENTAL RESULTS

Experiments were conducted in the linear plasma device VINETA [41], which was con-

verted to a double plasma setup. The densities and potentials of each plasma could be set

(almost) independently, such that an ion beam with the desired density and velocity propa-

gated from the source to the target plasma. An electron density of ne = 2.9× 1014 m−3 and

electron temperature of Te = 4.0 eV were measured in the target plasma with a Langmuir

probe. The plasma was not magnetised for these experiments. The beam velocity and den-

sity were measured with a Retarding Field Energy Analyser (RFEA) [42]. Measurements

of the floating potential fluctuations were taken with a pair of electrostatic probes - one

stationary and one which was moved along the direction of beam propagation. The sig-

nals were high-pass filtered and amplified using amplifiers with a high bandwidth to extract

fluctuations on the order of the ion plasma frequency.

Fig 8 shows the space-time evolution of the cross correlation amplitude between the

floating potential fluctuations. The z co-ordinate is the distance from the dividing grid.
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FIG. 9: Plots of frequency against wavenumber from two dimensional Fourier spectra of the cross-

correlation of floating potential fluctuation measurements by two probes, which is compared to the

analytical dispersion (black lines). Examples are shown for the following beam velocities: a) 0.0cs,

b) 1.7cs, c) 2.7cs, d) 3.2cs.

The diagonal pattern shows a propagating wave, whose phase velocity is close to the ion

acoustic velocity as indicated by the black line. The wave has been excited by an ion beam

with velocity vb = 2.2cs. A sheath instability was also observed, with almost the same

frequency, but much faster propagation: k ∼ 0. The discontinuity at x ∼ 140 mm is caused

by the proximity of the two probes to each other.

Similar to the simulation results, the experimental measurements can be compared with

the dispersion relation by taking the 2D-FFT of the cross-correlation. Fig 9 shows some

examples, starting with a situation where there is no beam and no instability in frame (a).
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Tb = Ti in black and Tb = 6Ti in cyan. This is compared with observed amplitudes from simulation

(blue) and experiment (red) which have been normalised to the maximum observed amplitude.

The axes have been normalised for λD = 0.9 mm and fpi =
ωpi

2π
= 0.6 MHz. In (b), there is

a low amplitude instability excited by a beam with velocity vb = 1.7cs. Frame (c) shows a

faster beam with the maximum amplitude observed in this experiment. Still, no non-linear

effects were detected. In the final frame, the beam is too fast to generate an instability.

In all cases, the black lines show the analytical dispersion relation, whereby it should be

noted that despite attempts with RFEA and Laser Induced Fluorescence [42], it was not

possible to obtain an accurate measurement of the ion beam temperature. In the absence of

a reliable measurement, it was assumed that the beam ions retained the same temperature

as in the source, which was measured to be 0.13 eV. Given this and other experimental

uncertainties, the quantitative agreement between the measured and expected dispersion

relation is reasonable. The qualitative agreement is good, for example the trend of shifting

the instability to shorter wavenumbers (higher phase velocities) at higher beam velocities

which can be seen by comparing the two unstable cases in fig. 9.

Considering now the strength of the instability with respect to the beam velocity, fig. 10

compares the maximum amplitude from simulation and experiment with growth rates from

analytical dispersion relations. The maximum amplitude is used as a proxy for the growth

rate since growth is limited by collisions and difficult to evaluate. The figure shows that

for both simulation in blue and experiment in red, the range of velocities over which an

instability occurs is higher than 0.3cs < vb < 1.7cs as would be expected if one assumed

14



Tb = Ti (the black curve). For the simulation, the noise level is relatively high even with

no beam. Nevertheless, an amplitude increase can be observed for 1.0cs < vb < 2.1cs. In

the experiment, the range is 2.0cs < vb < 2.8cs. When Tb is increased, the growth rate

drops, but the unstable range of velocities is shifted to higher velocities, thereby obtaining a

good agreement with the results from simulation or experiment. Since the sheath instability

depends on the same parameters as the IABPI - densities and relative potential of the

source and target plasmas - as well as neutral pressure and grid voltage, it is difficult to

predict exactly what the effect of this boundary on the IABPI will be. The interaction

between the two instabilities is far from trivial. The reason for the remaining difference

between simulation and experiment is not clear, but could easily be explained by 2-D or

3-D effects, small differences in the sheath instability or numerical effects, among a range of

other possibilities.

V. SUMMARY & CONCLUSIONS

The results presented here based on a 1-D PIC simulation and a double-plasma exper-

iment provide evidence that the well known sheath instability causes an increase in beam

temperature in double-plasma configurations. The dispersion relation for the IABPI in-

dicates that the increased beam temperature will lead to two effects: a reduction in the

growth rate, and a shift to higher values in the range of velocities over which an instability

is observed. These two effects could be confirmed by both simulation and experiment.

The PIC simulation resolves the complete ion phase space, such that the increase in

ion beam temperature can be clearly visualised and an excellent match with the dispersion

relation is obtained. In experiment, it was impossible to resolve the beam temperature,

but still the dynamics closely follow the trends of the analytical dispersion relation. The

simulation further allows the causality to be resolved in a stepwise progression from the

usual spatially homogeneous, temporally evolving IABPI to a model which closely resembles

the experimental DP. The instability is mostly unchanged between cases with a spatially

homogeneous and a locally injected beam. However, when the injection point is moved to

the boundary, the beam spreads in velocity space as it decelerates and traverses the sheath.

The amplitude of the electric field fluctuations in this case is reduced from 400 Vm−1 to less

than 200 Vm−1. In the final case, instead of the expected reduction in velocity spread when
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the beam is accelerated by the DP, the beam is scattered by small potential perturbations

caused by the sheath instability and Tb increases dramatically. The IABPI excited by this

warm beam again has an electric field fluctuation amplitude slightly less than 200 Vm−1.

The reduced growth rate implies that under these conditions, the IABPI is unlikely

to reach amplitudes where non-linear effects become dominant. This may be part of the

reason why experimental observations of the non-linear phase of the IABPI have been so

scarce. Since ion phase space holes, solitary ion acoustic waves and turbulence are commonly

observed near bowshocks and constitute an important component of their physics, these

results raise the question whether this particular experimental setup is an appropriate tool

for ongoing investigations of the IABPI, despite its popularity and past successes with respect

to linear dynamics.

The range of beam velocities over which an IABPI is observed was 1.7cs < vb < 3.0cs in

experiment, and 1.0cs < vb < 2.0cs in simulation, both of which are higher than would be

expected from the dispersion relation assuming Tb = Ti: 0.3cs < vb < 1.5cs. The sensitive

dependence of the IABPI on Tb, and in turn of Tb on the experimental conditions is offered as

one possible explanation for the quantitative difference between simulation and experimental

results in this paper. The same reasoning could provide an explanation for the incongruous

results presented in the literature and summarised in table I.

If this is the case, then our understanding of the IABPI near the Earth’s bowshock is not

contradicted by these seemingly disparate results. Given that measurements generally show

a cold ion beam near the bowshock, it is reasonable that common estimates for the range of

unstable velocities are at the lower end of what has been observed in experiments and close to

theoretical estimates for Tb = Ti. The more general message is that all relevant parameters

should be considered, even when they are difficult to measure and difficult to control, such

as Tb. In the case of the IABPI, where the boundary plays a role in determining such

parameters, this physics must be taken into account when evaluating experimental results

and extrapolating to space.
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