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Letting the Environment Do the Work

Ralph Hertwig
Ulrich Hoffrage
Laura Martignon

We may look into that window [on the mind] as through a
glass darkly, but what we are beginning to discern there
looks very much like a reflection of the world.

Roger N. Shepard

“September 30, 1659. 1, poor, miserable Robinson Crusoe, being ship-
wrecked, during a dreadful storm in the offing, came on shore on this
dismal unfortunate island, which I called ‘the Island of Despair,” all the
rest of the ship’s company being drowned, and myself almost dead” (De-
foe, 1719/1980, p. 74). Thus begins Robinson Crusoe. Daniel Defoe’s clas-
sic novel has been interpreted as everything from a saga about human
conquest over nature to an allegory about capitalism. At a much more
mundane level, however, Crusoe’s adventures illustrate the crucial impor-
tance of being able to estimate the frequency of recurrent natural events
accurately. Of his first attempt to sow grain, he wrote in his journal: “Not
one grain of that I sowed this time came to anything; for the dry months
following, the earth having had no rain after the seed was sown” (p. 106).
From then on, Crusoe kept track of the rainy and dry days in each month,
and subsequently sowed seed only when rainfall was highest. He reaped
the rewards of this strategy, later reporting: “I was made master of my
business, and knew exactly when the proper season was to sow; and that
I might expect two seed times, and two harvests, every year” (p. 107).}

1. Crusoe’s story may not be completely fictitious. Before the publication of
Robinson Crusoe, Defoe might have read about Alexander Selkirk, a sailor who
survived five years on a desert island—Juan Fernandez Island off the coast of
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Defoe equipped the fictional Crusoe with a journal, which helped him
to predict rainfall. Are real humans equipped to estimate environmental
quantities even without the benefit of written records? One domain where
we would expect to find evidence of such an ability—if it exists—is in
foraging for food. Humans have spent most of their evolutionary history
in hunter-gatherer foraging economies in which they have had to decide
what to hunt. The Inujjuamiut, a group of Eskimos who live in Canada,
afford us an opportunity to observe how contemporary human hunter-
gatherers select strategies for obtaining food (Smith, 1991). One of the In-
ujjuamiuts’ food sources is the beluga whale. When hunting belugas, the
Inujjuamiut encircle a group of them and drive them into shallow water.
Exploiting the whales’ sensitivity to noise, the hunters then “herd” them
by pounding on the gunwales of their canoes and shooting in a semicircle
around them. While the whales are being killed with high-powered rifles
and secured with floats, the pursuit of the next group of belugas gets un-
derway.

Inujjuamiut foraging strategies—their strategies for choosing prey and
hunting methods—can be modeled by the contingency prey model. Ac-
cording to the anthropologist Eric Alden Smith (1991, p. 237), this model
is the best tool yet devised for explaining hunter-gatherer prey choice. It
suggests why the Inujjuamiut undertake time-consuming and dangerous
whale hunts rather than pursuing easier prey, such as ducks, geese, and
seals. Its basic intuition, shared by other foraging models, is that a forager
who has encountered a food item (prey or patch) will only attempt to
capture it if the return per unit time for doing so is greater than the return
that could be obtained by continuing to search for another item. Hence
prey choice depends on rankings of food items in terms of return rates
(see chapter 15). Setting aside the details of this model (see Smith, 1991),
one of its crucial assumptions is that to be ranked according to their net
return, food items (from prey) must be classified according to their statisti-
cally distinct return rates (per-unit handling time, i.e., time spent in pur-
suit, capture, and processing) and encounter rates (per-unit search time).
Thus, just as Defoe equipped Crusoe with journal entries from which to
estimate rainfall, the contingency prey model endows humans with the
cognitive abilities necessary to estimate environmental quantities (e.g., the
rate at which they encounter a certain type of prey).

But literary devices and theoretical assumptions aside, the question re-
mains: Do humans actually have this ability, and how can it be modeled?
According to Brown and Siegler (1993), psychological research on real-
world quantitative estimation “has not culminated in any theory of esti-

Chile. Selkirk was left there at his own request after quarreling with his captain.
When it was published, Selkirk’s story was a sensation. The public was fascinated
by the way this man had survived—as was Defoe, who may even have met him, as
some scholars believe (see Swados’s Afterword in Defoe, 1719/1980).
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mation, not even in a coherent framework for thinking about the process.
This gap is reflected in the strangely bifurcated nature of research in the
area. Research on heuristics does not indicate when, if ever, estimation is
also influenced by domain-specific knowledge; research on domain-spe-
cific knowledge does not indicate when, if ever, estimation is also influ-
enced by heuristics” (p. 511). In this chapter, we attempt to bridge this
gap by designing a heuristic adapted to make fast and frugal estimates in
environments with a particular statistical structure. Before describing this
heuristic, we review previous research on quantitative estimation, focus-
ing on how people estimate numbers of events (both types and tokens);
the events in question may be objects, people, or episodes.” We review
two classes of estimation mechanisms: estimation by direct retrieval and
estimation by inference.

Estimation by Direct Retrieval

The Scottish Enlightenment philosopher David Hume believed that the
mind unconsciously and automatically tallies event frequencies and ap-
portions degrees of belief in events accordingly. Hume (1739/1975)
claimed that the psychological mechanism for converting observed fre-
quency into belief was extremely finely tuned: “When the chances or ex-
periments on one side amount to ten thousand, and on the other to ten
thousand and one, the judgment gives the preference to the latter, upon
account of that superiority” (p. 141).

Recent research on human monitoring of event frequencies (Hasher &
Zacks, 1979, 1984) supports Hume’s position by suggesting that memory
is extremely sensitive to frequency of occurrence information (Hasher &
Zacks, 1984, p. 1379), although not as finely tuned as Hume suggested.
People’s sensitivity to natural frequency of occurrence has been demon-
strated using a variety of stimuli. For instance, several authors have docu-
mented that people’s judgments of the frequency with which letters and
words occur generally show a remarkable sensitivity to their actual fre-
quencies (e.g., Attneave, 1953; Hock et al., 1986; Johnson et al., 1989).°

Hasher and Zacks (1979, 1984) assumed that people automatically en-
code the occurrences of an event, store a fine-grained count of its fre-
quency, and when required to estimate its frequency, access this count.
They proposed that people can estimate frequencies accurately because

2. This chapter does not review research on estimation of psychophysical stim-
uli (e.g., Haubensack, 1992; Mellers & Birnbaum, 1982; Parducci, 1965), probabili-
ties (e.g., Kahneman et al., 1982; Peterson & Beach, 1967), or statistical parameters,
such as central tendency, variability, and correlation (e.g., Busemeyer, 1990).

3. For instance, Attneave (1953) asked participants to judge the relative fre-
quencies of all the letters in the alphabet and found a correlation of .79 between
actual relative frequencies and the medians of the judged frequencies.
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registering event occurrences is a fairly automatic process, that is, it re-
quires little to no attentional capacity. In this view, frequency is one of
the few attributes of stimuli that seems to be encoded automatically (oth-
ers being spatial location, temporal information, and word meaning). Al-
though the claim that event frequencies are automatically encoded may
be too strong and has been seriously criticized (see Barsalou, 1992, chap.
4), there seems to be broad agreement with the conclusion that Jonides
and Jones (1992) summarized as follows: “Ask about the relative numbers
of many kinds of events, and you are likely to get answers that reflect the
actual relative frequencies of the events with great fidelity” (p. 368). A
similar conclusion has also been drawn in research on probability learn-
ing, about which Estes (1976) remarked: “The subjects clearly are ex-
tremely efficient at acquiring information concerning relative frequencies
of events” (p. 51).

Estimation by tnference

Where Hasher and Zacks assume that people have access to a count of the
event, the advocates of a rival approach contend that people infer this
value from cues correlated with it. The researchers who advocate this ap-
proach may be divided into two groups according to their postulate of the
nature of these cues: ecological versus subjective.

Inference by Ecological Cues

According to Brunswik (1952, 1955), the perceptual system estimates a
distal variable (e.g., distance) by using proximal cues that are probabilis-
tically related to it (e.g., perceived size of an object, converging lines). For
the system to respond successfully, Brunswik argued that cues should be
utilized according to their ecological validity (see discussion in Ham-
mond, 1966, p. 33), and that this concept is best measured by correlational
statistics. Thus, ecological validity was defined as the correlation between
a proximal cue and a distal criterion (Brunswik, 1952).

Unlike Hasher and Zacks’s theory, Brunswikian theories of human
judgment (e.g., Gigerenzer et al., 1991; Hammond et al., 1975) assume that
the criterion—for instance, the frequency of sunny days in Rome in May—
will typically not be directly retrieved from memory. Instead, it will be
inferred based on proximal cues—for instance, the fact that Rome is lo-
cated in southern Europe. Nevertheless, the Brunswikian research shares
an interesting link with that of Hasher and Zacks (1984): While the latter
assumes and provides evidence that people store accurate records of event
frequencies, the former assumes and provides evidence that people keep
fairly accurate records of ecological cue validities (e.g., Arkes & Ham-
mond, 1986; Brehmer & Joyce, 1988). Learning cue validities, however,
requires the ability to register event frequencies and their co-occurrences
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accurately, except when knowledge of the validities is evolutionarily built
in (e.g., in depth perception).

Inference by Subjective Cues: Availability

In a classic study by Tversky and Kahneman (1973), people had to judge
whether each of five consonants (K, L, N, R, V) appears more frequently
in the first or the third position in English words. Although all five conso-
nants are more frequent in the third position, two-thirds of the partici-
pants judged the first position to be more likely for a majority of the let-
ters.

Tversky and Kahneman (1973) proposed the availability heuristic as
a mechanism of real-world quantitative estimation that can account for
systematic biases in people’s estimates. According to the availability ex-
planation, assessments of frequency (or probability) are based on the num-
ber of instances of the event that “could be brought to mind” (p. 207).
That is, its basic assumptions are that people draw a sample of the event
in question (e.g., by retrieving words that have the letter “R” in the first
and third position, respectively) or assess the ease with which such a sam-
ple could be drawn, and then use the sample statistics to estimate the
criterion. However, sample parameters may systematically deviate from
population parameters (e.g., if it is easier to retrieve words with a certain
letter in the first than in the third position, the sample will not be repre-
sentative of the population). In this way, use of the availability cue may
lead to systematic biases. Because the ability of a sample to predict the
criterion can only be evaluated with respect to the sample drawn by a
specific person, the availability cue is subjective rather than ecological.

Since Tversky and Kahneman (1973) proposed availability and other
heuristics as important mechanisms underlying judgments of (relative)
frequency and probability, their findings and the proposed heuristics have
stimulated a tremendous amount of research and have raised serious con-
cerns about people’s ability to estimate event frequencies and probabili-
ties accurately, At this point, the operation of availability is “one of the

4. Tn discussing Tversky and Kahneman’s study, Lopes and Oden (1991) ob-
served that 12 of the 20 English consonants are more frequent in the first position
than in the third position, possibly explaining their results. In contrast, if one as-
sumes that people have experienced a representative sample of letters and their
positional frequencies (e.g., during reading), then their mental models should be
well adapted to a representative sample presented by the experimenter. Sedlmeier
et al. (1998) gave participants a representative sample of consonants (i.e., some that
are more and some that are less frequent in the second position) and vowels. In
each of three studies, they found that the estimated relative frequencies in the first
versus the second position closely agreed with the actual rank ordering, except for
an overestimation of low and underestimation of high values. Neither of the two
versions of the availability heuristic that Sedlmeier et al. tested was able to account
for these results.
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most widely shared assumptions in decision making as well as in social
judgment research” (Schwartz et al., 1991, p. 195). For example, it has
been suggested that availability may account for people’s tendency to ex-
aggerate the frequency of some specific causes of death such as tornadoes
(Lichtenstein et al., 1978) and for their performance in estimating demo-
graphic parameters such as countries’ population size (Brown & Siegler,
1992, 1993).

Paradoxical Assumptions and Contradictory Findings

Here is the puzzle. Hasher and Zacks (1984) argued that people encode
occurrences of an event, store a count of its frequency, and when required
to estimate its frequency, access this count. Tversky and Kahneman
(1973), in contrast, seemed to assume that people do not keep a record of
event frequencies but construct a sample of the event in question and then
infer event frequencies from the ease with which the sample could be
constructed. Hasher and Zacks (1984) concluded that their experiments
“reliably and unequivocably [sic] demonstrate remarkable knowledge of
the frequency of occurrence of all events so far tested” (p. 1373), whereas
Tversky and Kahneman (1973) took their results as evidence that the use
of the availability heuristic leads to “systematic biases” (p. 209).

These contradictory assumptions and findings have been reported side
by side in scientific journals and textbooks, without much discussion
about how each line of research qualifies the other’s findings (for excep-
tions, see Ayton & Wright, 1994; Holyoak & Spellman, 1993; Williams &
Durso, 1986).° Suppose one tried to resolve the conflict by assuming that
the two accounts—accurate judgments based on memorized experienced
frequencies and (in)accurate judgments based on subjective cues—apply
to different situations: The former holds whenever humans have experi-
enced and encoded events one by one before making judgments, and the
latter holds whenever humans have not directly experienced the criterion
and thus have to rely on (subjective) cues correlated with it to derive a
judgment.

This resolution, however, cannot work. Tversky and Kahneman’s ex-
periments also included situations where participants actually experi-
enced the events sequentially. In one study, for instance, participants were
serially presented with names of well-known personalities of both sexes
(e.g., Elizabeth Taylor), and one group was then asked to judge whether
the list contained more names of men or women (Tversky & Kahneman,
1973). Another example is their classic study of positional letter frequen-

5. One reason why this conflict did not attract more attention may be that
Hasher and Zacks (1984) seem to have downplayed it. In a footnote they wrote:
“The conflict between our view and that of Tversky and Kahneman is more appar-
ent than real” (p. 1383; see their arguments in their footnote 9}.
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cies, mentioned above, in which they asked participants to judge events
they had previously experienced sequentially. Both studies illustrate that
availability is also intended to apply to experienced events.

In our view, the conflicting findings about the accuracy of people’s fre-
quency judgments and the conflicting claims about the underlying mecha-
nisms cannot be reconciled simply by running more experiments in
which people’s estimates are observed to be either correct or incorrect.
Contexts that elicit both biased and unbiased estimates can no doubt
be found. The more interesting issue is how we can make theoretical
progress in modeling the cognitive processes underlying quantitative esti-
mation. Toward this goal, we pose two interrelated questions that are per-
tinent to both Hasher and Zacks’s and Tversky and Kahneman’s ap-
proaches. First, what do humans need to count in order to meet their
adaptive goals? Second, what is the structure of the environments in
which quantification occurs, and what heuristics can exploit that struc-

ture?

What Needs Counting?

The world can be carved up into an infinite number of discrete events or
objects. Which of them deserve monitoring? Hasher and Zacks (1984, p.
1373) did not explicitly address this question, but proposed that for the
frequency of a stimulus to be encoded and stored, it must at a minimum
be “attended” to. The notion of “attention” was not precisely explicated.’
How plausible is such a domain-general encoding mechanism, that is, a
mechanism constrained only insofar that it requires attention (or “con-
scious” attention, as later proposed by Zacks et al., 1986)?

Consider, for instance, the processing that might occur when we walk
down the street engaged in an engrossing conversation. We are generally
successful at avoiding collisions with objects and other people, thus indi-
cating that we take note of their locations. But later, would we be able to
judge the relative frequency of their locations in relation to us (e.g., how
many objects to the right and how many to the left of us), or the relative
frequency of men and women who were wearing hats? Why should we be
able to make such judgments retrospectively if we did not consider them
useful at the time? More generally, do we encode every event and keep
track of its frequency of occurrence, just because we have experienced it?

This is a question that neither the British empiricists nor Hasher and
Zacks (1984) seriously addressed. For instance, David Hartley (1749) sug-
gested a domain-general physiological mechanism of frequency counting

6. However, we can exclude one possible definition: intentional monitoring.
Hasher and Zacks (1984) argued that a stimulus can be automatically encoded even
if it is not intentionally monitored, which implies that intentional monitoring was
not part of their definition of attention.
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designed in analogy to Newton’s theory of vibrations (Daston, 1988, p.
203). According to this mechanism, repeated occurrences of an object cre-
ate cerebral vibrations until “grooves of mental habit” are etched into the
brain. Hartley’s is a content-general mechanism, insofar as it does not put
any constraints on the type of objects to be counted. One can also find
modern “cognitive” relatives of Hartley’s physiological mechanism that
are similarly unconstrained. Take, for instance, MINERVA 2 (e.g., Hintz-
man, 1984, 1988), which has been used to model frequency judgments.
This model keeps copies (in terms of memory traces) of all events we
have experienced over a lifetime (although one may bring content-specific
considerations in through the back door by way of learning parameters,
as Hintzman, 1988, does).

Should we be able to judge the relative frequency of men and women
wearing hats? Marcia Johnson and her colleagues (Johnson et al., 1989)
suggested that this is unlikely. On the basis of a series of ingenious stud-
ies, they demonstrated that, for frequency judgments to reflect presenta-
tion frequency accurately, two conditions must be met: The exposure time
must be >2 seconds, and processing must involve directing attention to
the identity of objects as well as their spatial location. Although their find-
ings imposed an initial constraint on the mechanism, it remains essen-
tially unconstrained with respect to what is counted.

Brase, Cosmides, and Tooby (1998) have proposed a more stringent
constraint. They argued that another way to restrict the counting mecha-
nism is to consider the nature of what is counted; there are aspects of the
world that one would not expect a human inference mechanism to count
spontaneously. According to their account, individuated whole objects
rather than arbitrarily parsed objects (i.e., random chunks, nonfunctional
fragments, etc.) are the natural unit of analysis: Toddlers may spontane-
ously count teddy bears, but not teddy bears’ ears (as long as they have
not been broken off the parent object).

A variation on Brase et al.’s approach is to consider the adaptive value
of what is counted: Keeping track of event frequencies is most likely to
occur in domains where knowing frequency counts has a plausible adap-
tive value for the organism. It is easy to see the value of monitoring the
frequencies of specific events in the domains of mating and foraging (e.g.,
among the Inujjuamiut). But can considerations of adaptive value help us
to derive counterintuitive predictions in other domains? We think so. De-
spite Tversky and Kahneman’s (1973) seemingly unsupportive results (in
their letter study), there is good reason to predict that people can quantify
the statistical structure of language because of its adaptive value.

What s Adaptive About Knowing the Statistical Structure

of Language?

In any specific language certain sound sequences are more likely to occur
within some words than in others. For instance, consider the sound se-
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quence “pretty baby”: The transition probability from “pre” to “ty” is
greater than that from “ty” to “ba.” Thus we would be more likely to ex-
pect a word break between the latter two syllables. For babies acquiring
language, keeping track of these transition probabilities may have an im-
portant function, because these probabilities help them to identify bound-
aries between words (a problem that continues to hamper attempts to
build a computer that “understands” spoken language). Recent results re-
ported by Saffran, Aslin, and Newport (1996) indicate that babies are in-
deed sensitive to such transition probabilities.

To test whether babies have access to this kind of statistical informa-
tion, Saffran et al. tested infants’ ability to distinguish between “words”
and “part-words” (using nonsensical stimuli in both cases). The stimulus
words included sound sequences such as “bidaku” and “padoti” and a
sample of the speech stream is “bidakupadotigolabubidaku. . .. ” The ba-
bies listened to a two-minute tape of a continuous speech stream consist-
ing of three-syllable words repeated in random order. A synthesized wom-
an’s voice spoke the sound stream with no inflection or noticeable pauses
between words, removing the word boundary cues contained in normal
speech. The only possible cues were the relative frequencies of co-occur-
rence of syllable pairs, where relatively low relative frequencies signal
word boundaries.

After listening to the speech stream, the infants heard four three-sylla-
ble test words one at a time. Two words were from the speech stream and
two were part-words. The part-words consisted of the final syllable of a
word and the first two syllables of another word. Thus, a part-word con-
tained sounds that the infant had heard, but it did not correspond to a
word. Infants would be able to recognize part-words as novel only if the
words from the original speech stream were so familiar to them that new
sequences crossing word boundaries (i.e., the part-words) would sound
relatively unfamiliar. In fact, the infants did listen longer to part-words
than to words, indicating that they found them more novel than the
words.

This example illustrates the importance of asking what information is
adaptive to encode, store, and quantify. With this question in mind, one
can derive interesting and counterintuitive predictions, for instance, that
language learners will learn the statistical structure of language quickly.
We now turn to the second important question: What is the structure of
the environments in which quantities need to be estimated?

The Importance of “Ecological Texture”

“Although errors of judgments are but a method by which some cognitive
processes are studied, the method has become a significant part of the
message” (Kahneman & Tversky, 1982, p. 124). This quotation illustrates
Kahneman and Tversky’s awareness that the heuristics-and-biases pro-
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gram came to focus on humans’ cognitive errors at the expense of their
cognitive successes. In fact, their initial framing of the availability heuris-
tic stressed an ecological perspective that was later largely abandoned. Of
the availability heuristic Tversky and Kahneman (1973) wrote:

Availability is an ecologically valid clue for the judgment of fre-
quency because, in general, frequent events are easier to recall or
imagine than infrequent ones. However, availability is also affected
by various factors which are unrelated to actual frequency. If the
availability heuristic is applied, then such factors will affect the per-
ceived frequency of classes and the subjective probability of events.
Consequently, the use of the availability heuristic leads to system-
atic biases. (p. 209)

Not only did Tversky and Kahneman (1973) conceptualize availability
as an “ecologically valid clue” to frequency, but they also stressed that it
exploits the structure of the environment in the sense that objectively fre-
quent events have stronger representations because these are strengthened
by event repetitions, and thus, ceteris paribus, are easier to recall than
infrequent ones. In light of its beginnings, the availability heuristic could
have been developed into a cognitive strategy that reflects the texture of
the environment as well as the mind, but was not.

Several decades ago, Egon Brunswik (1957) already emphasized the
importance of studying the fit between cognition and the environment: “If
there is anything that still ails psychology in general, and the psychology
of cognition specifically, it is the neglect of investigation of environmental
or ecological texture in favor of that of the texture of organismic structures
and processes. Both historically and systematically psychology has forgot-
ten that it is a science of organism-environment relationships, and has
become a science of the organism” (p. 6).

In what follows, we propose an estimation heuristic that differs from
those identified in the heuristics-and-biases program (e.g., availability) in
several ways. First, how it exploits a particular environmental structure
is specified. Second, it has a precise stopping rule that terminates memory
search. Finally, it is formalized such that we can simulate its behavior.
For these reasons, it exhibits bounded rationality. Before we analyze the
structure of a specific class of environments in which various quantities
have to be estimated, let us consider what adaptive value estimating one
such quantity—population size—might have. We speculate that estima-
tion of population demographics may be a descendant of an evolutionarily
important task, specifically, estimation of social group size.

Estimation: Using Ecological Cues in a J-Shaped World

Because humans have always lived in groups (e.g., families, clans, tribes),
it is very likely that social environments played a major role in shaping
the human mind. Until recently, this possibility has largely been over-
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looked in research on human reasoning and decision making. Wang
(1996a, 1996b), however, demonstrated how social cues can affect deci-
sion making in surprising ways. Using Tversky and Kahneman’s (1981)
famous Asian disease problem, he found preference reversals (often con-
sidered irrational because they violate the invariance axiom of expected
utility theory) when the text indicated that the decision was to be made
for a large group. When the text indicated that the decision would affect
a smaller group, however, most participants favored the risky outcome in
both the loss and the gain framing.

Wang’s (1996a) finding suggests that humans are sensitive to group size
when making decisions. One may speculate that this sensitivity rests on
an evolved ability to estimate group sizes. In fact, the ability to estimate
the size of social groups accurately might have been of value in a number
of circumstances encountered by our evolutionary ancestors, for instance,
when they had to make quick decisions about whether to threaten to fight
over resources with other families, clans, or tribes. Humans’ social struc-
tures have changed since the time when we lived in hunter-gatherer socie-
ties. Group size has been directly affected by the shift from nomadic
bands to small agricultural and pastoral communities to large populations
of many thousands of people whose economic and social center is the city
(e.g., Reynolds, 1973). Interestingly, in samples of American and Chinese
participants, Wang (1996a) found that decision making is sensitive to cul-
turally specific features of social group structure. Evolutionary considera-
tions aside, we assume that the estimation heuristic proposed here is
adapted to modern group sizes. We now consider the statistical structure
of the environment in which the heuristic operates.

Let us start to analyze the statistical structure of population demo-
graphics by considering the following question. What distribution results
if one makes a scatterplot of people’s performance on the following task?
Name all the characters in Shakespeare’s Comedy of Errors. If we plotted
people’s performance on this task (e.g., the number of people who can
name no, one, two, three, etc. characters), we would probably find that
many people would get a low score, and that only a few people can attain
a high score. Thus, contrary to the typical assumption of educational re-
searchers that knowledge, learning, and performance generally conform
to a bell-shaped distribution across individuals, in which moderate values
are most frequent, human performance is often best characterized by the
“empirical law of the higher, the fewer” (Walberg et al., 1984, p. 90), or in
other words, by positively skewed, J-shaped distributions (where the “J”
is rotated clockwise by 90 degrees).”

7. These distributions are related to Zipf’s law (Zipf, 1949), which is the obser-
vation that frequency of occurrence of some event (P) as a function of the rank (i}
when the rank is determined by the frequency of occurrence, is a power-law func-
tion P; ~ 1/i" with the exponent a close to unity. The most famous example of Zipf’s
law is the frequency of English words. Assume that “the,” “to,” and “of” are the
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Athletic performance can also follow such J-shaped distributions. Take
the final distribution of medals in the 1996 Summer Olympics in Atlanta
as an example. A total of 197 nations competed for 842 medals in the
Atlanta games. Figure 10-1 plots the total number of medals won (gold,
silver, and bronze) by each nation, excluding those that won no medals.
The average number of medals won was 4.3. At one extreme, the United
States, Germany, and Russia won 101, 65, and 63 medals respectively; in
other words, 1.5 percent of the participating nations (and 8.5% of the
world population) won almost one-third of all medals. At the other ex-
treme, 118 participating nations won no medals at all. Highly positively
skewed distributions also characterize many processes and phenomena in
biology (e.g., fluctuations in neural spikes plotted by amplitude), geogra-
phy (e.g., earthquakes plotted by severity), psychology (e.g., distribution
of memory traces plotted by the likelihood they are needed; Anderson &
Schooler, 1991), and other fields.

Cities plotted by actual population also form J-shaped distributions. In
any given region, there are a few large settlements and a large number of
small settlements. Herbert Simon (1955b) argued that in the special case
of city population size, such a distribution is expected if the population
growth is due solely to the net excess of births over deaths, and if this net
growth is proportional to the present population size. Urban growth mod-
els that use techniques originally developed to model clumping and mo-
tion of particles in liquids and gases also predict this city size distribution
(Makse et al., 1995). Figure 10-1 also shows the populations of German
cities with more than 100,000 inhabitants ranked by their size. This distri-
bution reflects the empirical law of the higher, the fewer in three ways:
the largest value (here Berlin) is an extreme outlier; the mean (309,000),
which is strongly influenced by such extreme observations, is much
higher than the median (180,000); and the standard deviation (428,000) is
large relative to the mean.

To what extent is it plausible to assume that people actually know
about the J shape of distributions such as that of German cities? We asked
74 German participants to estimate the number of German cities in 25 size
categories (100,000-199,999; 200,000-299,999; etc.). Figure 10-2 shows
the distribution of their mean frequency judgments in comparison with
the actual frequency distribution. (Note that compared with figure 10-1
the axes are reversed.) Although participants underestimated the relative
number of cities in the smallest category (100,000-199,999), the results

three most frequent words (i.e., receive ranks 1, 2, and 3); then, if the number of
occurrences is plotted as the function of the rank, the form is a power-law function
with exponent close to 1. There are several variants of Zipf's law, such as Pareto’s
law, which essentially form J-shaped distributions. More generally, Grineis et al.
(1989) proved that J-shaped distributions belong to a class of distributions that can
be modeled in terms of an adjoint Poisson process.
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Figure 10-1: Distribution of medals won per nation at the 1996 Summer
Olympics in Atlanta, and of the population size of the 83 largest German
cities (Fischer Welt Almanach, 1993).

indicate that they were well aware of the skewness. Now that we have
established that people have an intuition about the higher, the fewer char-
acteristic of the German city size distribution, we turn to the next ques-
tion: How might a heuristic exploit this J-shaped ecological structure so
as to reduce the computational effort needed to make an estimate?

Fast and Frugal Estimation: The QuickEst Heuristic

Let us start by considering a technical problem, namely, sorting pieces of
coal according to size. One way to sort them is to use a conveyor belt that
carries the coal pieces across increasingly coarse sieves. The belt is de-
signed so that first small pieces fall through the “small” sieve into the
crusher below, then medium-sized pieces fall through the “medium”
sieve, and so on. Pieces that make it across all the sieves are dumped into
a catchall container. Let us assume that the sizes of the coal pieces follow
a J-shaped distribution, that is, most pieces are small and only a few
pieces are (very) large. The conveyor belt’s design minimizes the time re-
quired for the sorting process by exploiting this fact, sorting out the large
number of small pieces first, then the fewer larger ones, and finally the
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Figure 10-2: Percentage of German cities in 25 size categories, along with
estimates made by participants (percentage values derived from frequency

estimates).

very few largest ones. Figure 10-3 illustrates the design features of such a
conveyor belt. We now propose an estimation heuristic, the Quick Estima-
tion heuristic (QuickEst), which exploits the J-shaped distribution in a
way similar to the conveyor belt for sorting coal.

QuickEst’s Design Properties

QuickEst’s policy is to use environmental structure to make estimates for
the most common objects (e.g., in the cities environment, the smallest
cities) as quickly as possible. What design features of the heuristic enable

it to implement this policy?
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Figure 10-3: Illustration of a conveyor belt that sorts pieces of coal ac-
cording to their size. (Although this is a fictitious example, its design re-
sembles that of actual conveyor belts advertised at the Web sites of vari-

ous manufacturers.)

How Are the Cues Ranked? When a person is asked to estimate the popu-
lation of a city, the fact that it is a state capital may come to mind as a
potential ecological cue. Cities that are state capitals (e.g., Munich, the
capital of the state Bavaria) are likely to have larger populations than
cities that are not state capitals, the major exceptions to this rule being in
the United States. For any binary cue J, one can calculate the average size
of cities that have this feature (s/, e.g., the average size of all the German
cities that are state capitals) and the average size of those cities that do
not have this feature (s;). Note that for the purpose of the simulations, we
calculated s (s;') from the actual sizes of the German cities that do not (or
do) have the property. The input for this calculation, however, need not
be the actual values, but could instead be imprecise subjective values.
Because positive cue values by definition indicate larger cities, s; is
smaller than s/, For this reason, cues are ranked in the QuickEst heuristic
according to s-, with the smallest s~ first. This design follows the coal-
sorting analogy, insofar as the cues (sieves) are ranked according to their
coarseness, with the smallest cue first. For this ranking, the heuristic does
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not need to know s~ exactly; it only needs to estimate a relative ranking
of cues according to 5.

When Is Search Stopped? Each cue asks for a property of a city, for in-
stance, “Does the city have a university?” QuickEst has a simple stopping
rule: Search is terminated when the first property is found that the city
does not have (i.e., the response to the question is “no”). If a city has the
property, then search continues, and its value on the cue with the next
lowest s™ is retrieved from memory. This stopping rule has a negative bias,
that is, a negative but not a positive value terminates search. This has an
important consequence: As there are only a few cities with mainly posi-
tive cue values and many with mostly negative values, a stopping rule
with such a negative bias generally enables the heuristic to stop earlier in
the search and arrive at estimates quickly.’

Owing to its stopping rule, QuickEst’s inference is based on the first
property a city does not have. In contrast to computationally expensive
strategies such as multiple regression, QuickEst does not integrate cue val-
ues. An important consequence of QuickEst’s stopping rule is that the
heuristic is noncompensatory. Further cue values (even if all of them are
positive) do not change the estimate based on the first negative cue value
encountered. By virtue of its simplicity, noncompensatory decision mak-
ing avoids dealing with conflicting cues and the need to make trade-offs
between cues.

How Coarse Are the Estimates? The estimate of QuickEst is the s~ of the
first property a city does not have, rounded to the nearest spontaneous
number. According to Albers (1997), spontaneous numbers are multiples
of powers of 10 {a 10 ae {1, 1.5, 2, 3, 5, 7}}, where i is a natural number.
For instance, 300, 500, 700, and 1,000 are spontaneous numbers, but 900
is not. By building in spontaneous numbers, the heuristic takes into ac-
count two frequently observed properties of people’s estimates. First,
spontaneous numbers are related to what Albers (1997) described as num-
ber “prominence,” that is, the phenomenon that in cultures that use the
decimal system the powers of 10 “are the most prominent alternatives
which have highest priority to be selected as responses, or terms by which
given responses should be modified” (Albers, 1997, part I, p. 6). Second,
spontaneous numbers relate to the phenomenon that, when asked for
quantitative estimates (e.g., the price of a Porsche Carrera), people provide
relatively coarse-grained estimates (e.g., $70,000, i.e. 7 x 10" rather than
$75,342). This graininess of estimates, or crude levels of “relative exact-

8. For instance, in the reference class of all the German cities with more than
100,000 inhabitants and for the following eight ecological cues—soccer team, state
capital, former East Germany, industrial belt, license plate, intercity train line, ex-
position site, and university (see chapter 4)—the German cities have on average
about six (5.7) negative values.
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ness” (Albers, 1997, part I, p. 12), reflects people’s uncertainty about their
judgments (see also Yaniv & Foster, 1995).°

The property that s™ is rounded to the nearest spontaneous number has
two implications: First, for the numerical estimation the heuristic does
not need to estimate s™. It only needs to estimate which of two neighboring
spontaneous numbers is nearer to s7, and this spontaneous number is then
given as the estimate.' Second, the heuristic’s estimates can only achieve
the precision and not exceed the graininess of spontaneous numbers.

How Can the Heuristic Deal With the Few Very Large Cities? The present
stopping rule speeds up estimation by terminating search as soon as a
property is found that the city in question does not have. Still, there are
a handful of very large “outlier” cities that do have most properties. To
avoid an unnecessarily time-consuming search for a possible property
they do not have, QuickEst has a “catchall” category in reserve. That is,
the heuristic stops adding more cues to its cue order as soon as most cities
(out of those the heuristic “knows,” i.e., the training set) have been sifted
out. For our simulations, we assume that searching cues is stopped as
soon as four-fifths of all the cities have already been sifted out by the
heuristic. The remaining fifth of the cities are put into a catchall category
and automatically assigned an estimate of s/ (where cue j is the cue by
which these largest cities were “caught” last) rounded to the nearest spon-
taneous number.

How Is QuickEst Ecologically Rational? QuickEst exploits the characteris-
tics of the city population domain in two ways. First, its stopping rule—
stop when the first negative cue value is found—Ilimits the search process
effectively in an environment in which negative cue values predominate.
Second, its rank ordering of cues according to s7, with the smallest s first,
gives QuickEst a bias to estimate any given city as relatively small. This
is appropriate for objects that fall in J-shaped distributions, in which most

9. Because there are more of them in the range of small digits (1, 1.5, 2, 3) than
in the range of large digits (5, 7), spontaneous numbers also seem to be predicated
on Benford’s law. Benford’s law (1938; Raimi, 1976) states that if numerical data
(e.g., atomic weights) are classified according to the first significant digit, the nine
classes that result usually differ in size. Whereas in a randomly generated data set,
each number would be the first significant digit with frequency 1/9, in many real-
world data sets, this frequency is approximately equal to log,(p + 1)/p. Thus, the
digit “1” is first about 30% of the time, “2” somewhat less often, and so on, with
“9” occurring as the first digit less than 5% of the time. Consistent with Benford’s
law, 57% of German cities with more than 100,000 inhabitants begin with “1,”
whereas only 1.2% begin with “9.”

10. Suppose that s~ lies in the interval between the spontaneous numbers
300,000 and 500,000, To decide whether s is to be rounded up or down, the heuris-
tic only needs to know whether s™ belongs to the right or to the left of the interval’s
midpoint (i.e., 400,000). This only requires a choice {i.e., is s~ larger or smaller than
400,000).
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objects have small values on the criterion, and only a few objects have
(very) large values. In addition to being ecologically rational, QuickEst is
psychologically plausible in that it provides estimates with the precision
and graininess of spontaneous numbers.

Hustration

An American colleague of ours, Valerie, knows the approximate popula-
tion size of five German cities from previous trips to Germany (Munich,
1,000,000; Frankfurt, 700,000; Nuremberg, 500,000; Bonn, 300,000; and
Heidelberg, 150,000). Valerie also knows the cities’ values on three cues
(exposition site, state capital, and university). Given her limited knowl-
edge about the reference class, German cities, how accurately could she
infer the size of, for instance, Leverkusen? To answer this question, we
first describe how QuickEst, as a model for Valerie’s inferences, learns its
parameters.

Training QuickEst ranks cues according to the average population size of
cities that have negative values (s). Given Valerie’s knowledge, the cue
with the smallest s~ is “exposition site,” which provides the estimate
200,000." The next cue is “state capital,” which yields the estimate
500,000. Based on these two cues, the heuristic can sift out most of the
cities Valerie knows: four out the five (i.e., 80%) have a negative value on
at least one of these two cues. Thus, the only city that has positive values
on the exposition site and state capital cues, Munich, is put into the catch-
all category. The estimate for this category is derived from the last cue in
which Munich was “caught,” here the state capital cue. The estimated
size is 1,000,000 (which simply equals the size of Munich).

In sum, given Valerie’s knowledge of German cities, the realization of
the QuickEst heuristic includes two of the three cues she knows (exposi-
tion site and state capital), and a catchall category. This design allows
QuickEst to derive one of three unique estimates for any given city in the
reference class: 200,000, 500,000, and 1,000,000 inhabitants. How well
does this realization of QuickEst perform when applied to new cities, for
instance, Leverkusen and Hamburg?

Estimation To estimate the size of Leverkusen, QuickEst first retrieves
that city’s values on the exposition site cue. Because it does not have an
exposition site, search is stopped and Leverkusen is estimated to have a
population of 200,000, close to the 160,000 inhabitants it actually has. To
derive an estimate for Hamburg, QuickEst looks up its value for the expo-

11. This figure is calculated as follows: Two of the five cities Valerie knows,
Heidelberg and Bonn, do not have an exposition site. That is, Swp, equals the aver-
age size of Heidelberg and Bonn (225,000) rounded to the nearest spontaneous

number (200,000).
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sition site cue; as the value is positive, it then retrieves the value for the
state capital cue, which is also positive. As a result, Hamburg ends up in
the catchall category and is estimated to have a population of 1,000,000,
which is not very close to the 1,650,000 inhabitants it actually has.

How good—or bad—is this performance, and how frugal is QuickEst in
comparison with other heuristics?

Test of Performance: Environment and Competitors

To test QuickEst’s performance more generally, we computed its estimates
for the real-world environment of German cities with more than 100,000
inhabitants. After its reunification in 1990, Germany had 83 such cities.
All of these cities (except Berlin) and their values on eight ecological cues
to population size (the same cues as were used in chapter 4, except the
national capital cue) were included in the test. (Berlin was excluded be-
cause it is an outlier and an error in estimating its population dwarfs er-
rors of proportionally comparable size.) To evaluate the performance of
QuickEst, we compared it with two competitors that demand considerably
more computation and/or knowledge: multiple regression and an estima-
tion tree (for quantification of the heuristics’ complexity, see chapter 8).

Multiple regression is a demanding benchmark insofar as it calculates
least-squares minimizing weights that reflect the correlations between
cues and criterion, and the covariances between cues. Multiple regression
has been proposed as both a descriptive and a prescriptive cognitive
model, although its descriptive status is debated, given the complex calcu-
lation it assumes (for references on this issue, see chapter 4},

The second benchmark is an estimation tree (for more on tree-based
procedures, see Breiman et al., 1993). With the aid of a computationally
expensive Bayesian search process (e.g., chapter 8; Chipman et al., 1998),
this tree was identified as one with a high probability of good perfor-
mance.” It collapses cities with the same cue profile—that is, the same
cue value on each of the eight ecological cues—into a class. The estimated
size for each city equals the average size of all cities in that class. (The
estimate for a city with a unique cue profile is just its actual size.) As long
as the test set and training set are identical, this algorithm is optimal, and
is equivalent to the exemplar-based algorithm model proposed by Persson
(1996)." When the test set and training set are not identical the tree will

12. The Bayesian search was limited to the subset of trees that classified each
new profile in the interval whose boundaries are defined by the cue profiles of
known cities.

13. The optimal solution is to memorize all cue profiles and collapse cities with
the same profile into the same size category. In statistics, this optimal solution is
known as true regression and approximates the profile memorization method for
optimal performance in choice tasks (see chapters 6 and 8).
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encounter new cities with possibly new cue profiles. If a new city matches
an old cue profile, its estimated size is the average size of those cities (in
the training set) with that profile. If a new city has a new cue profile, then
this profile is matched to the profile most similar to it. How is this done?

First, the cues are ordered within each profile according to their valid-
ity, with the one highest in validity first (for more on cue validity, see
chapter 6). Second, the cue profiles are ordered lexicographically such
that those with a positive value on the most valid cue are ranked first.
Profiles that match on the first cue are then ordered according to their
value on the second most valid cue, and so on. New cue profiles are filed
with the lexicographically ordered old profiles according to the same
logic. As an estimate of the size of a city with a new profile, the estimation
tree takes the average size of those cities whose profile is above the new
one in the lexicographical order. The estimation tree is an exemplar-based
model that keeps track of all exemplars presented during learning as well
as their cue values and sizes. Thus, when the training set is large, it re-
quires vast memory resources (for the pros and cons of exemplar-based
models, see Nosofsky et al., 1994).

We simulated population estimates, assuming varying degrees of
knowledge about this environment. We tested a total of 10 sizes of training
sets, in which 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 percent of the
cities (and their respective sizes) were known. In the training phase, the
three strategies—QuickEst, multiple regression, estimation tree—learned
a model (or parameters) of the data (i.e., cities and their cue values;
weights, s, s, etc.). To obtain reliable parameters, 1,000 random samples
were drawn for each training set. For example, we drew 1,000 samples of
41 cities (50% training set) randomly from the reference class of 82 cities.

In the test phase, we applied the strategies to the complete reference
class (i.e., test set, which includes the training set). The strategies’ task
was to estimate the populations of all the cities (assuming that the cities’
values on the cues were known). To make the simulation psychologically
more plausible, we assumed that the probability that a city belonged to
the training set was proportional to its size. This assumption captures the
fact that people are more likely to know about larger cities than smaller
ones.

How Frugal Is QuickEst?

QuickEst is designed to make estimates quickly. How many cues must
the heuristic consider before search is terminated? Figure 10-4 shows the
number of cues that had to be retrieved by each strategy for various sizes
of training sets. On average, QuickEst considers 2.3 cues per estimate—a
figure that remains relatively stable across training sets. In contrast, multi-
ple regression always uses all eight available cues. The estimation tree
uses more and more cues as the size of the training set increases—across
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Figure 10-4: Number of cues looked up by QuickEst, multiple regression,
and by the estimation tree as a function of size of training set. Vertical
lines represent standard deviations.

all training sets, it uses an average of 7.2 cues. Thus, QuickEst bases its
estimates on about 29% and 32% of the information used by multiple
regression and the estimation tree, respectively.

How Accurate Is QuickEst?

How accurate is QuickEst, which involves simple averaging and
rounding, compared with multiple regression, which involves complex
calculations? We compared the three strategies’ performance using two
different measures of accuracy. First, we used the most common measure
of estimation accuracy, according to Brown and Siegler (1993), that is, the
(mean) absolute error (i.e., absolute deviation between actual and esti-
mated size). Second, for the (82 x 81)/2 city pairs in the complete set of
paired comparisons, we simulated choices (“Which of the two cities is
larger?”) based on the estimates generated, and then calculated the pro-
portion of correct inferences drawn.

Absolute Error

What price does QuickEst pay, in terms of absolute error, for considering
only a few cues? Figure 10-5 shows the absolute error as a function of the
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Figure 10-5: Mean absolute error (i.e., absolute deviation between pre-
dicted and actual size) as a function of size of training set. Vertical lines
represent standard deviations. Note that some of the points have been
offset slightly in the horizontal dimension to make the error bars easier to
distinguish, but they correspond to identical training set sizes.

amount of learning (i.e., sizes of the training set). The 10% training set
exemplifies a situation where knowledge is scarce (which is likely to be
the rule rather than the exception in most domains). For this set, Quick-
Est’s estimates are incorrect by an average of about 132,000 inhabitants
(about half the size of the average German city in the simulated environ-
ment), compared with 303,000 for multiple regression, and 153,000 for
the estimation tree. That is, under the psychologically relevant circum-
stances of scarce knowledge, QuickEst outperforms multiple regresswn
clearly and the estimation tree by a small margin.

How does performance change as a function of learning (i.e., more
cities known)? When 50% of the cities are known, for example, QuickEst
and multiple regression perform about equally well, and the estimation
tree outperforms both by a small margin. When the strategies have com-
plete knowledge (all cities are known), multiple regression outperforms
QuickEst by a relatively small margin—their respective absolute errors are
about 93,000 and 103,000—and the estimation tree outperforms both com-
petitors (absolute error is about 65,000, which equals the optimal perfor-
mance, see footnote 13). That is, under the psychologically rather unlikely
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circumstances of complete knowledge, QuickEst falls only slightly below
the performance of multiple regression but is clearly outperformed by the
estimation tree. (Even when multiple regression uses only those cues
whose weights are significantly different from zero—7.3 on average in-
stead of 8—its absolute error improves so slightly that the difference could
hardly be seen if plotted in figure 10-5, except for the 10% training set.)

This result is similar to that reported by Chater et al. (1997). They
tested the fast and frugal choice heuristic Take The Best (chapter 4), of
which QuickEst is a relative, against four computationally expensive strat-
egies, including neural networks and exemplar models. The task was to
determine which of two German cities had the larger population size.
Chater et al. found that when the training set was less than 40% of the
test set, Take The Best outperformed all other competitors. Only when the
training set grew beyond 40% did the competitors’ performance increase
above that of Take The Best.

Where does QuickEst make substantial errors? Figure 10-6 shows the
deviations between actual and estimated size (in the 100% training set)
for each strategy as a function of population size. Each heuristic has a
distinct error pattern. Whereas QuickEst estimates the sizes of the many
small cities quite accurately, it makes substantial errors on the few large
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Figure 10-6; Deviation between actual and estimated size (in the 100%
training set) for the three estimation methods on all cities, rank ordered
according to population size.
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cities because it puts them in its catchall category. Multiple regression, in
contrast, makes substantial errors along the whole range of population
size. The estimation tree makes relatively small errors for both small and
large cities.

Another aspect of figure 10-6 deserves attention. More than the esti-
mates made by the estimation tree and multiple regression, QuickEst’s
estimates are regressed toward the mean: On average, it underestimates
the size of large cities and overestimates the size of small cities. Such a
regression effect is typical in human quantitative estimation (e.g., Att-
neave, 1953; Lichtenstein et al., 1978; Sedlmeier et al., 1998; Varey et al.,
1990). In figure 10-6, the overestimation of small city sizes appears minis-
cule compared to the underestimation of large city sizes. However, if the
deviations between predicted and actual size are divided by actual size,
then the regression effect for small cities is larger than for large cities. In
the 100% training set, the median regression across all cities is 56%, 45%,
and 23% for QuickEst, multiple regression, and the estimation tree, re-
spectively (we applied the analysis described in Sedlmeier et al., 1998,
footnote 1). Thus, QuickEst comes closest to showing the regression of
about 70% observed in people’s estimates in other tasks (Sedimeier et al.,
1998).

QuickEst uses only spontaneous numbers as estimates. What price will
multiple regression pay if it has to work with the same psychological con-
straint? Recall that under complete knowledge (i.e., when all cities are
known), muitiple regression outperformed QuickEst (absolute errors of
93,000 vs. 103,000). If multiple regression also rounds its estimates to the
nearest spontaneous number, however, it performs worse than QuickEst
(absolute errors of 114,000 vs. 103,000).

To summarize, although the QuickEst heuristic involves only about a
third of the information available to its competitors and fewer complex
calculations than multiple regression, it outperforms multiple regression
and the estimation tree when knowledge is scarce. In addition, QuickEst’s
performance is relatively stable across different amounts of learning: The
absolute error is only 1.3 times higher for the 10% training set than for
the complete knowledge case. In contrast, the absolute errors of multiple
regression and the estimation tree in the 10% training set are 3.3 and 2.3
times higher than the absolute errors for complete knowledge, respec-
tively. Only in the psychologically less plausible situation of abundant
knowledge (i.e., 50% or more of the cities are known) is QuickEst
(slightly) outperformed by its competitors.

Proportion of Correct Inferences

How many correct inferences do the heuristics make when comparing
pairs of cities? Figure 10-7a shows the results for the proportion of correct
inferences excluding cases of guessing (i.e., city pairs for which the heu-
ristics chose randomly because the predicted sizes were identical), and
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Figure 10-7: Percentage of correct city comparison inferences as a func-
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guessing (b). Vertical lines represent standard deviations. Note that some
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the error bars easier to distinguish, but they correspond to identical train-
ing set sizes.



234 BEYOND CHOICE: MEMORY, ESTIMATION, AND CATEGORIZATION

figure 10-7b shows the results including guesses. QuickEst’s performance
is excellent when it does not have to guess: Across all training sets, its
proportion of correct inferences is 81%), whereas those of multiple regres-
sion and the estimation tree are 73% and 77%, respectively.

In cases in which the predicted sizes are identical, each of the strate-
gies guesses randomly between the two cities, and thus, the proportion of
correct inferences in such cases is expected to be 50%. Because this value
is lower than the performance of the strategies without guessing, we can
predict that overall performance decreases when guessing is included (see
figure 10-7b). QuickEst suffers most because it falls back on guessing more
because it has a smaller set of numerically distinct estimates available:
Across all training sets, its proportion of correct inferences with guessing
is 66%, whereas those of multiple regression and the estimation tree are
71% and 75%, respectively.

Conclusion

Let us conclude, as we began, with one of Robinson Crusoe’s journal en-
tries. Once Crusoe realized that his island was regularly visited by sav-
ages, he prepared himself for a possible confrontation with them. One
early morning, he was surprised by

seeing no less than five canoes all on shore together on my side of
the island; and the people who belonged to them all landed, and
out of my sight. The number of them broke all my measures; for
seeing so many and knowing that they always came four, or six, or
sometimes more, in a boat, I could not tell what to think of it, or
how to take my measures, to attack twenty or thirty men single-

handed; so I lay still in my castle, perplexed and discomforted. (De-
foe, 1719/1980, p. 198)

For many evolutionarily important tasks, from choosing where to for-
age to deciding whether to fight, adaptive behavior hinges partly on organ-
isms’ ability to estimate quantities. Such decisions often have to be made
quickly and on the basis of incomplete information. What structure of
information in real-world environments can fast and frugal heuristics for
estimation exploit to perform accurately? We presented a heuristic, Quick-
Est, that exploits a particular environmental structure, namely, J-shaped
distributions. We demonstrated by simulation that where knowledge is
scarce—as it typically is in natural decision-making settings (e.g., Klein,
1998)—the fast and frugal QuickEst outperforms or at least matches the
performance of more expensive methods such as multiple regression and
estimation trees. QuickEst is an ecologically rational strategy whose suc-
cess highlights the importance of studying environmental structures.



