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Abstract

The achromatic number of a graph is the greatest number of colors in a coloring
of the vertices of the graph such that adjacent vertices get distinct colors and for
every pair of colors some vertex of the first color and some vertex of the second color
are adjacent. The problem of computing this number is NP-complete for general
graphs as proved by Yannakakis and Gavril [14]. The problem is also NP-complete
for trees [3]. Chaudhary and Vishwanathan [4] gave recently a 7-approximation
algorithm for this problem on trees, and an O(y/n)-approximation algorithm for
the problem on graphs with girth (length of the shortest cycle) at least six. We
present the first 2-approximation algorithm for the problem on trees. This is a
new algorithm based on different ideas than [4]. We then give a 1.15-approximation
algorithm for the problem on binary trees and a 1.58-approximation for the problem
on trees of constant degree. We show that the algorithms for constant degree trees
can be implemented in linear time. We also present the first O(n®/8)-approximation
algorithm for the problem on graphs with girth at least six. Our algorithms are
based on an interesting tree partitioning technique. Moreover, we improve the lower
bound of Farber et al. [6] for the achromatic number of trees with degree bounded
by three.

1 Introduction

Graph Coloring is one of the oldest and most widely studied problems in computer
science. It finds applications in many problems, like: time tabling, scheduling or se-
quencing in their many variations (see [9, 13, 11]).

The achromatic number of a graph is the maximum size k of a vertex coloring of the
graph, where every pair of the k colors is assigned to some two adjacent vertices and
adjacent vertices are colored with different colors. The concept was first introduced in
1967 by Harary et al. [8] in a context of graph homomorphism (see also [7, 6]). The
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achromatic number of a graph is a problem different in nature from finding the chromatic
number of a graph, as discussed by Saaty and Kainen [13], and also by Chaudhary and
Vishwanathan [4].

1.1 Previous Work

The problem of computing the achromatic number for general graphs has been proved
NP-complete by Yannakakis and Gavril [14]. The problem is NP-complete also for bi-
partite graphs as proved by Farber et al. [6]. Further, Bodlaender [1] proved that the
problem remains NP-complete when restricted to connected graphs that are simultane-
ously cographs and interval graphs. A result by Cairnie and Edwards [3] shows that the
problem is NP-complete even for trees.

There are known exact polynomial time algorithms for two very restricted classes
of trees: for trees with not more than k (k is a fixed constant) leaves, and for trees
with (?) edges and with at least (";')+1 leaves [6] (see [11]). Recently, Chaudhary and
Vishwanathan [4] have presented a constant, 7-approximation algorithm for the problem
on general trees. They also give an O(y/n)-approximation algorithm for n-vertex graphs
with girth (i. e. length of the shortest cycle in the graph) at least six.

An a-approzimation algorithm [10, 12] for a maximization problem P is a polynomial
time algorithm, that always computes a solution to the problem P, whose value is at
least a factor % of the optimum. We call a the approzimation ratio. For a definition of
asymptotic approximation ratio see [12].

1.2 Owur Results

Our main result is the first and new approximation algorithm for trees, with approxima-
tion ratio of 2, which substantially improves the 7-approximation algorithm of Chaud-
hary and Vishwanathan [4]. Our algorithm is based on a different idea from that of
[4]. We also present a 1.15-approximation algorithm for binary trees (i.e. with degree
at most 3). Generalizing this algorithm we obtain a 1.58-approximation algorithm for
arbitrary trees with bounded constant degree. The ratios 1.15 and 1.58 are proved to
hold asymptotically as the achromatic number grows. We show that the algorithms for
bounded degree trees can be implemented in linear time in the unit cost RAM model.

Our next result is the first O(n%/ 8)-approxima.tion algorithm for n-vertex graphs with
girth at least six, which improves the O(n!/?)-approximation in [4]. This algorithm is a
consequence of our 2-approximation algorithm for trees.

Chaudhary and Vishwanathan [4] conjectured that the achromatic number of a graph
can be approximated to within V¥, where ¥ is achromatic number of the graph. They
prove a ratio of O(¥?%/%) for graphs with girth > 6, and also state a theorem that for
graphs with girth > 7, the achromatic number can be approximated to within O(ﬁ )
We improve the bound for graphs of girth 6 and partly answer this conjecture proving
that the achromatic number of a graph with girth > 6 can be approximated with ratio
oO(VY).

All our approximation algorithms are based on an interesting partitioning technique,
specifically suitable for trees. With this technique we prove some combinatorial results



for trees, that can be of independent interest.

We also improve a result of Farber et al. [6] giving a better lower bound for the
achromatic number of trees with degree bounded by three.

Our paper is organized as follows. In Section 2 we introduce basic definitions and
prove preliminary facts. Section 3 contains approximation algorithms for the achromatic
number. In Section 4 we prove a better bound for the achromatic number of binary
trees, and finally in Section 5 we state some open problems.

In order to understand our algorithm for general trees (algorithm GENERALTREE
in section 3.5) one needs only read Preliminaries and section 3.1. However to follow
the algorithms for bounded degree trees (sections 3.1, 3.2, 3.3 and 3.4) one needs the
informations of a previous section to understand the next one. Moreover, algorithm
GRAPHGIRTHSG in section 3.6 uses as a subroutine the algorithm GENERALTREE.

2 Preliminaries

In this paper we consider only undirected finite graphs. For a given graph G, we denote
by E(G) the set of edges of G, and by V(G) the set of vertices of G. Given vy,v2 € V(G),
the distance between v; and v, is the number of edges in the shortest path between v;
and vy. For two given edges e;,es € E(G) let the distance between e; and ez be the
minimum of the distances between an end-vertex of e; and an end-vertex of e;. We
say that the edges e;,es € E(G) are adjacent if the distance between e; and ez is 0.
Moreover, we say that a given vertex v € V(G) and a given edge e € E(G) are adjacent
if v is an end-vertex of e.

We first introduce basic notation for trees. For a rooted tree T' = (V, E) and a vertex
v € V, we introduce the following notation:

e c(v) > 0 - a color assigned to v, and ¢(v) = 0 if v has no color,
e p(v) - the parent of v (if v is a root, then p(v) = ¢),
e Ch(v) - the set of all children of v.

A coloring of a graph G = (V, E) with k colors is a partition of the vertex set V
into k disjoint sets called color classes, such that each color class is an independent set.
A coloring is complete if for every pair C1, C; of different color classes there is an edge
{v1,v2} € E such that v; € Ci1, vz € Cz (C; and C; are adjacent). The achromatic
number ¥(G) of the graph G is the greatest integer k, such that there exists a complete
coloring of G with k color classes. A partial complete coloring of G is a coloring in
which only some of the vertices have been colored but every two different color classes
are adjacent. :

Next lemma establishes a lower bound on the achromatic number by looking at
subgraphs of the graph. It allows to restrict the attention to subgraphs in order to
approximate the achromatic number of the whole graph.

Lemma 2.1 Any partial complete coloring with k colors can be extended to a complete
coloring of the entire graph with at least k colors.



Proof: Consider a vertex v without color, and check the colors of all its neighbors.
If the neighbors have all the colors used so far, we color v with some new color. Else, we
color v with a color, which is not used by its neighbors. We continue until everything
is colored. m]

Corollary 2.1 The number of colors of a partial complete coloring is a lower bound for
the achromatic number.

However, for trees we are able to prove even stronger result.

Lemma 2.2 Let T = (V,E) be an arbitrary tree, and T' be a subtree of T. If there
exists a complete coloring of T' with k > 1 colors, then there exists a complete coloring
of T with these k colors.

Proof: Let T be a rooted tree with 7" colored with colors K = {1,...,k}. We
show an algorithm to color the rest of the vertices in T'. We traverse T top-down, using
breadth first search. Let v be the current vertex we meet. If v has no color, then we
color v with any color from K not used in Ch(v) U {p(v)}. If there is no such color,
then Ch(v) U {p(v)} has been colored with all colors from K, and we assign to v any
color cg used in Ch(v), different from c(p(v)). We set c(w) « 0, for all w € X, where
X C Ch(v) is the set of all vertices colored with ¢o. In this way we guarantee all
connections between cy and the colors of all children of the vertices in X. Further, we
have to guarantee the connection between the color ¢y and the previous color c; of v,
only in the case the color ¢; is moved to p(v) by some previous step of the algorithm.
But then, the new colors assigned are c¢(v) = ¢p and ¢(p(v)) = c1, so the connection is
guaranteed as well. o

We now define a notion of path with trees.

Definition 2.1 A star is a tree whose all edges are adjacent to a common vertez, called
the center of the star. The arity of a star is the number of edges of the star.

A path with trees is a path with trees hanging from some internal vertices of the
path. These trees are called path trees and the path is called spine.

A path with stars is a path with stars hanging from some internal vertices of the
path. These stars are called bunches. A bunch of arity one (i.e. consisting of a single
edge) is called tendril.

Later we will use paths with trees of special types, for example: paths, paths with
bunches of arity one, paths with bunches of bounded arity, and so on.

For a given tree T' we call a leaf edge an edge which is adjacent to a leaf of T. A
system of paths with trees for T is a family {7}, ..., Ty} of subtrees of T such that:

1. each subtree T; is a path with trees,

2. any two subtrees Tj, T; (¢ # j) are vertex disjoint, and
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3. the family is maximal, i.e. if we add to the family any edge of the tree which does
not belong to the family, then we violate the conditions 1 or 2.

The edges of the tree which do not belong to any subtree T; of the given system of
paths and are not adjacent to any leaf, are called links. If a given system of paths with
trees consists of paths with stars of arity 0 (so it consists just of single paths) then we
call it system of paths. We proceed with two easy facts.

Fact 2.1 For a given tree T and a given system S of paths with trees for T, we have
#( links ) < #( leaf edges ).

Proof: Because of maximality of S each link connects at least one path from S with
some another path of S, so #( links ) < #( paths in S). The result follows since each
path with trees contains at least one leaf edge. O

Fact 2.2 Let T = (V,E) be any tree and S be any system of paths for T. Then S
contains at least |E| — #( leaf edges of T') + 1 edges.

Proof: Since each path from S contains at least one leaf edge, we have that |E(T" \
S)| = #( leaf edges of T') — #( leaf edges in S) + #( links ) < #( leaf edges of T') — #(
paths in S) +#( links ). And since #( links ) = #( paths ) —1, we have |[E(T'\ S)| < #(
leaf edges of T') — 1. |

3 Coloring Algorithms

In this section we give coloring algorithms for special kinds of trees, for general trees
and for large girth graphs.

3.1 Coloring Paths
We show how to optimally color any path.

Lemma 3.1 There is a linear time algorithm, that finds a complete coloring of any
path P with ¥(P) colors.

Proof: Let
1) = (5) if 1 is odd
() +52 if I iseven
Let P consists of f(I) edges. We show how to color P with ! colors. Let / be odd. We

proceed by induction on l. For ! = 1 and ! = 3 the appropriate colorings are respectively:
(1) and (1) — (2) — (3) — (1). Note that the last color is 1. Now let us suppose we can



color any path with f(I) edges, such that the last vertex is colored with 1. Then, we
extend this coloring appending to the end, the following sequence of colored vertices

@y =il =@ = +2) =@ —{+1) =1~
A =S D D
BT (L N O

Let now ! be even. For ! = 2 the coloring is (2) — (1). Here, again the last color is
1. Now, suppose we have colored a path with f(I) edges, such that the last vertex is
colored with 1. We extend this coloring appending to the end, the following sequence
of colored vertices

(1)-(+1)—(2)-(+2)-@)-(+1)-(4)-
L), = = D= (e T4
D) e (D) e D=,

In this case, the connection between the colors [ + 1,1 + 2 is realized twice.

Note, that in the case of an odd [ , the number of colors we use is obviously optimal.
For an even [, the optimality follows from the fact that each color has to be adjacent to
1 — 1 other colors, which is an odd number. But there are only 2 vertices in P with odd

degree.
To color optimally P, we first compute f(I) (! is equal to ¥(P)). It is straightforward
to check that the above algorithm runs in linear time. O

The above lemma can easily be extended to any system S of paths in which each
link is adjacent to the beginning of some path (this property will be used later). Let
us consider a path p of our system, such that there is a vertex u on p with links:
e1 = (v1,u),...,e; = (v, u). Let p(e;) denotes the path of the system with the vertex
v;, for 2 = 1,...,1. If I > 1, then we require that the number of paths preceeding p
among the paths p(e;),...,p(e;) is at most one. This partial order on the paths of the
system can be extended to a linear order, which we call the path order. Then we form
one big path P by connecting subsequent paths by the path order. Now we can color P
as in the proof of Lemma 3.1. However this could cause some conflicts, when a vertex
of some path is colored with the same color as the end of an adjacent link. Let s be the
first position in P where such a conflict appears. We can remove it by replacing colors
of all vertices of P starting from this position, with the colors of their right neighbors.
We continue the procedure.

Next we prove the bound on time complexity. Observe that our partial order on the
paths is a dag where the vertices are the subtrees of the system of paths, and links are
arcs. Thus the total size (number of the vertices plus number of the arcs) of the dag is
O(|S|). So we can extend the partial order to a linear order using the topological sort
in time O(|S|) (see [5]). Computing P thus takes linear time as well.

Then we can store P in an array, say P, where P[i] corresponds to the i** vertex of

P. Let p denote the number of vertices of P. Assume initially val(P[:]) = 0, for each ¢,



and set j « 0, i2 + 0.
Step(*): If there are no conflicts, set i1 « p and val(P[i']) « val(P[i]) + j for each
i =iy + 1,49 + 2,...,7;. Otherwise let ¢; be a first conflict position, so there is an
io < 41 such that c¢(P[ig]) = c(P[i1]) and the vertices i and i, are connected by a link
in P. If j = 0, then set i5 « i;. Then we set val(P[i']) « val(P[i']) + j for each
' =iy +1,ip+2,...,91 —1and j « j + 1, and also val(P[i1]) < val(P[i1]) +j. Also
we assign iy + i1. If i; < p, then go to Step(x).

After the procedure stops, the new colors of the vertices are c¢(P[i]) = c¢(P[i +
val(P[i])]), for each i, and clearly the procedure runs in linear time. Therefore, we
obtain the following lemma.

Lemma 3.2 There is a linear time algorithm which finds an optimal complete coloring
of any system of paths in which each link is adjacent to the beginning of some path.

3.2 Coloring Paths with Small Stars

In this section we show how to color paths with tendrils. We need some more notations.
Let P be a path with tendrils, and let |E(P)| = (’2°) We design an algorithm that
finds a complete coloring of P with k — 9 colors. Thus the algorithm gives an absolute
approximation (see [12]) for the achromatic number of P with ¥(P) — 9 colors. The
algorithm is a generalization of the algorithm from Lemma 3.1.

The subpath of the spine of P (together with its path trees) used to add two new
colors {41, 1+2 (for an odd [ - see the proof of Lemma 3.1) is called a segment (I+1,1+2).
The colors [ + 1 and [ + 2 are called segment colors, while the colors 1,2,...,1 are called
non-segment colors for the segment (I+ 1,1+ 2). The vertices of the spine with segment
(resp. non-segment) colors are called segment (resp. non-segment) vertices. During the
coloring of the segment (I + 1,/ + 2), we want to guarantee the connections between the
segment colors and the non-segment ones. Notice that in the proof of Lemma 3.1, all
the segments begin and end with the color 1. This will also be the case for the paths
with tendrils. For simplicity we now assume:

1. The end-vertex of a segment is the beginning vertex of the next segment.
2. Each segment begins and ends with a vertex with color 1.

3. We number the consecutive positions (vertices of the spine) of the segment by the
numbers 1,2, . ...

We will show how to color P with k—9 colors. We will color P segment by segment.
Define the following sets

P(.)_{{i+1,i+2,...,k} if i isodd
UE\{i+2,i+3,...,k} if i iseven.

P(i) is intended to contain all the segment colors of the segments that should contain
i as a non-segment color. The sets P(i) will be changing during the course of the
algorithm we describe.



We define moreover a sack S to be a set of some pairs (z,y) of colors such that
z # y. Intuitively S will contain the connections between some pairs of colors such
that we have to guarantee these connections. These connections will be realized in the
last phase of the algorithm. We need moreover a counter waste to count the number of
edges that we lose (do not use effectively) in the coloring we shall build.

We give first an intuitive description of main steps of the algorithm. Assume that
we have just colored all the previous segments (,7+1) of P for¢ = 2,4,6,...,l—2, and
thus we have taken into account all the connections between the colors 1,2,...,1 —1 (!
is even). For an odd [ the proof is almost identical. The main ideas to color the next
segment (I,! + 1) are the following.

(A) The tendrils with centers in segment vertices will be used to shorten the segment.
Namely we can skip a colored fragment (1) — (z) — (I + 1) — (y) — (!) of the spine if we
find four segment vertices with four tendrils and such that two of them has the color !
and two — the color [ + 1. We just assign the colors I,I + 1 to centers of the tendrils,
and the colors z,y to appropriate end-vertices of the tendrils. Thus the edges of the
tendrils are colored with the pairs: (I,z),({,y),({ + 1,z),(I + 1,y). To use economically
the tendrils with centers in segment vertices, we will guarantee the same number (£1)
of tendrils for the segment vertices with the color !/, and for the segment vertices with
the color I + 1. We will do this by exchanging the two segment colors, starting from
some position p of the spine (balancing).

(B) The tendrils with centers in non-segment vertices will be used to reduce sizes
of the sets P(i). A set P(i) can be considered as the set of segment colors: j € P(i)
means that the color ¢ will be to appear (as a non-segment color) in a segment, in which
j is a segment color. But possibly we can realize the connection (3, j), before j becomes
a segment color. Namely, before we start coloring the segment (j,j + 1), if we find a
tendril with center colored by z, then we will color the end-vertex of the tendril with
some jo € {j,j + 1}. This let us reduce the number of non-segment colors we have to
consider during coloring of the segment (j,j + 1). We then delete the color jo from the
set P(7).

BEGIN ALGORITHM PATHTENDRILS

Set S «+ 0 and waste < 0.

Perform steps 2 and 3 for all segments ({,! + 1).

COMMENT: Assume that we have colored all the previous segments (i,i+ 1) of P
fori=2,4,6,...,1—2. Steps 2 and 3 realize coloring of the nezt segment (I,1+1).

1. If the segment (I,I + 1) is a simple path without tendrils, then the length of the
segment (I,1 + 1) is 2I, and:

(a) Put segment colors [,/ + 1 on the even positions.



(b) Put color 1 on the positions 1 and 2/, and a segment color € {l,1+1} on the
position 2/ — 1.

(c) Put non-segment colors 2,3,...,l — 1 on the remaining positions.
2. If the segment (I, + 1) is a path that has tendrils, then:

(a) Begin to color the segment (/,! + 1) by calculating an ending position of the
segment. Let N(j) = {i : j € P(i)} for j € {I,l + 1} and let W([,l +1) =
N() N N(l +1). As the end of the segment take minimum !’ such that if r
is the number of the tendrils with centers at the segment vertices (positions
2,4,...,' =1),then 2- [W(,1 +1)| +3< (' -1)+4- | 5]

(b) S« SU{(a,D),(bl+1):ae NO\W({I+1),be NI+1)\W(,1+1)}.

(c) Assign colors I, + 1 to the segment positions (I to: 2,6,10,...,and [ +1 to:
4,8,12,...), and color 1 to the position I'.
If |Z] > 1, then:

i. If #( tendrils on positions = 0 mod 4) (+1) = #( number of tendrils on
positions = 2 mod 4), then choose arbitrary 2 - | ] colors € W(l,1 + 1)
and for each such color put it on an end-vertex of some tendril with
center color [, and on an end-vertex of some tendril with center color
[+1.
else: ,

ii. balancing: Let 6(s) = #( tendrils on positions < s and = 0 mod 4) — #(
tendrils on positions < s and = 2 mod 4). Let p be the smallest position,
such that )

5®{g%lﬂam<o
> )it 5(1) > 0.

Exchange the segment colors ! and [ 4+ 1 with each other on all segment
positions to the right of the position p. Let I € {l,] + 1} be a color of
the first position to the right of p. Set S «+ S U {(l",c(p))}. Color the
end-vertices of segment tendrils, as in step (2(c)i).

(d) Assign the remaining colors from W(l,! + 1) to the non-segment vertices on
the spine.

(e) Assign the colors to the end-vertices of tendrils rooted at non-segment ver-
tices: if ¢ is a non-segment color on the vertex-center of a tendril, then assign
to the end of the tendril, the greatest color from the set P(¢), and delete this
color from P(7).

Realize the connections from the sack S: greedily use every other edge from the spine
to the right of the ending position of the last colored segment.
END ALGORITHM



Lemma 3.3 Given a path P with tendrils, |E(P)| = (’2'), algorithm PATHTENDRILS
finds a complete coloring of P with k — 9 colors. Running time of the algorithm is
linear.

Proof: Notice first, that the algorithm is correct. It produces a coloring such that
for each pair of colors used, it guarentees an edge connection between them. To see this
just observe that in a phase of coloring a segment (I,! + 1), the algorithm guarantees
connections between each color {1,2,...,I — 1} and each color of {/,l + 1}. However
some number of these connections may be realized in the last step of the algorithm,
when it realizes the connections from the sack S. More formally we can proceed by
induction on I: if we assume we have colored all the previous segments (i, + 1) of P for
i=2,4,6,...,1 —2, then we have taken into account all the connections between the
colors 1,2,...,] — 1. Some of them may have been added to S. We present below only
the most important observations that need be used in the induction step.

OBSERVATION 1. Notice that part 2 of the algorithm PATHTENDRILS is identical to
the algorithm from Lemma 3.1. The following observation is straightforward after this
step of the algorithm.

Observation 3.1 If we permute arbitrarily these non-segment colors on their positions
3,5,7,..., then we will still obtain a right coloring of the segment (I,1+1). And secondly:
we can exchange the two segment colors l,1 + 1 with each other, obtaining still a right
coloring.

The above observation also holds after step 3 of the algorithm. We make use of it
in phase of balancing (step 2(c)ii).

OBSERVATION 2. Note that from step 2a of the algorithm follows that while coloring
the segment (I,]+ 1), we take into account only colors from the intersection of N () and
N(l+1). The remaining colors a € N(I) \W(l,l+1)and be N(I+1)\ W(l,l+1) are
added to the sack S.

OBSERVATION 3. After balancing in step (2(c)ii) clearly each of the colors I and
1+ 1 is assigned to at least | §] vertices with tendrils. A fragment of the spine near the
position p, before the balancing looks like (1) — (p') — (I+1) (or (I+1)—(p') — (1)) where
p' = c(p) is a non-segment color on the position p. After the balancing, this fragment
looks like (1) — (p') — (1) (or resp. (I +1) — (p') — (I +1)). We have to guarantee later
the connection (I + 1,p’) (in this case I"” = I + 1) (or resp. ({,p'); in this case I" = I),
and so we add to the sack S the pair (I + 1,p') (or ({,p")).

Now, we argue that the algorithm uses at least kK — 9 colors. In step 2e we use the
greatest element from P(i). Note, that this assures that N(I 4+ 1) C N(I), and therefore
no pair (b,! + 1) will be added to S at the step 2b. Moreover this also gives that for
each color a € {1,...,k}, there exists at most one segment color /, such that (a,l) will
be added to the sack S.

Next, in all operations (e.g. balancing) of the algoritm, if we do not use some edges,
then there is at most a constant number of such edges for one segment. So, the size
of the sack S can be estimated as follows: |S| < # - ( maximal number of colors ) + (
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number of segments ) < k (the contribution of the number of segments to |S| follows
from the balancing).

The connections from the sack are realized at the end of the coloring: we use every
other edge from the spine to the right of the ending position of the last colored segment.
In this way, we waste at most 4 edges per one edge from S (since after the last segment
there can be many tendrils). And thus we can estimate the value of the counter waste:
waste < ( at most 3 remaining tendrils in each segment (since we color only each group
of 4 tendrils) ) + ( the tendrils rooted at colors 1 (unused) ) + ( unused tendrils at
segment vertices (if a non-segment color ¢ has used all the colors from P(z)) )+4-|S|+(
unused segment tendrils (at the segment vertex next to the position p of the balancing
) <3-£+%4k+4.k+% =175k So the following claim holds.

Claim 3.1 The number of wasted edges can be estimated as: waste < 7.5 - k.

Our algorithm could fail only when it would attempt to use more than (g) edges.
However this is not the case, since (*;°%) +7.5- (k —9) < (), for every k.

This is not hard to see that the above algorithm has polynomial running time. It
can also be implemented to run in linear time. To give a linear time implementation of
the algorithm in the unit cost RAM model, we store the P(i), ¢ =1,...,k, ina kx*k
array, where indices are the elements of the sets P(i). Observe that k * k is still a linear
function of |E(P)| = (’;) We also maintain pointers to the greatest elements of the sets
P(i) in the array. We show the number of operations during coloring of the segment
(1,1 + 1) is linear in the number of edges (vertices) of the segment. Since we can in
constant time check whether j € P(¢) and the maximum size of S is k, the steps 2a and
2b can be performed in linear time. Counting of tendrils in the step 2(c)i can obviously
be done in linear time. In the balancing, we compute 4(I') by passing the vertices of the
segment (I,]+1) left to right, and computing a current difference d(s) (see the definition
of §). By passing the vertices for the second time, we compute the position p. One more
pass suffices then to exchange the colors ! and [+ 1. Due to our representation of P(3)s,
the operations 2d and 2e can also be performed in linear time. The final realization of
the connections of S is done in linear time, as well, since |S| < k. O

3.3 Coloring Binary Trees

Here, by a binary tree, we mean a tree with maximum degree 3. In this section we first
present a simpler approximation algorithm for binary trees with ratio 1.22. Then, we
discuss how to improve this ratio to 1.15. The reason for such presentation is that we
will need this simpler algorithm also in section 3.4.

Lemma 3.4 In any binary tree T = (V,E), there erists a system S of paths with
tendrils, consisting of at least % - |E| edges from E. Moreover, each link is adjacent to
the first vertez of some path.

11
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Figure 1: Some trees of height 2 and corresponding systems of paths.

Proof: We can restrict ourselves to trees T, with the root of degree < 2, since we
can root T in some leaf. Each vertex of T' has at most two sons. By induction on the
height h(T') of T', we show that there exists a system S of paths with tendrils, such that
one of the paths in S begins with the root of T and |E| >3- |E \ E(S)| + 1.

If h(T) < 2, then all cases of trees T, where we must skip some edge to obtain a
system of paths with tendrils, are listed in Figure 1. In these cases the desired inequality
obviously holds. In all other cases it holds as well, since we take the whole tree as our
system.

Now assume that A(T) > 2. There are two cases — that are drawn in Figure 2.
Assume first, that the subtrees T'1 and T2 are nonempty. Let S;, S» be the two systems
for T'1 and respectively for T2, with |E(T1) \ E(S1)| = &1, |E(T2) \ E(S53)| = l;. We
show how to build the system S for the whole tree T. In the case (a) we just skip the
edge e2 (it is a link) from T and we take the systems S; (with the edge el added to the
path originating from the root of 71) and S for S. So |E(T)\ E(S)| =1, +1l2+1, and
|E(T)| = |E(T1)| + |E(T2)|+2>31 +1+3lo+1+2=3(; +12+1) + 1. If one of
the trees T'1,T2 is empty (say T¢), then we do not skip the edge e: from our system S
(it will be a tendril). So in this case the inductive step is even simpler. Thus the proof
follows in case (a). Case (b) is simpler since we add to S one extra edge (edge el), and
we do not enlarge the number of edges of T, that are not used in S. So the induction
step follows as well. O

Tl T2 Tl
(@) (b)

Figure 2: The cases in the induction step for binary trees.

We show now how to extend the algorithm PATHTENDRILS of section 3.2 to color a
binary tree. Let T = (V,E) be a given binary tree with k = maz{p : (§) < 2|E|}. So

k> \/2V3E]

12



First, we give an intuitive description of some steps of the algorithm. We compute
in T a system of paths with tendrils. We have many paths with tendrils and some of
them are connected by links. We show how to color segment by segment, interleaving
the phases of coloring a segment and taking dynamically next paths with tendrils from
our system according to the path order defined in subsection 3.1. We will be taking the
consecutive paths with tendrils and concatenating them, forming finally a big path with
tendrils. To color this big path we will basically use our algorithm PATHTENDRILS.

We use here the sets P(i), the sack S and the counter waste as defined in section
3.2 for algorithm PATHTENDRILS. And we also assume:

1. The end-vertex of a segment is the beginning vertex of the next segment.
2. Each segment begins and ends with a vertex with color 1.

3. We number the consecutive positions (vertices of the spine) of the segment by the
numbers 1,2,....

Assume that we have colored all the previous segments (7,i+1), for i = 2,4,6,...,1—
2. We show how to color the next segment (I,! + 1). We first take some next paths
with tendrils (from our system) that follow the path order, so that we might color the
whole segment (1,1 + 1). We concatenate these paths one by one. In some cases this
concatenation will be improved later. We call a segment the portion of the big path
composed with these concatenated paths. These paths are called segment paths.

BEGIN ALGORITHM BINARYTREE
Using Lemma 3.4 find in T a system of paths with tendrils with > §|E| edges.

Set S « 0 and waste < 0. Take the minimal path with tendrils according to the
path order, and some number of the paths with tendrils that follow the path order in
order to color the first segment.

Perform steps 1, 2 and 3 for all segments (I, + 1).

COMMENT: Assume that we have colored all the previous segments (i,i + 1) of
P fori=2,4,6,...,l —2. Steps 1, 2 and 3 realize coloring of the next segment
(,1+1).

1. Take some next (following the path order) paths with tendrils from the system,
so that one might color the whole segment (l,! +1). Concatenate these paths one
by one.

COMMENT: In some cases this concatenation will be improved later.

13




2. fizing positions: Establish the segment and non-segment positions like in the algo-

3.

rithm PATHTENDRILS with some exceptions due to presence of links. Let p; and
p2 be any two segment paths, such that p; has a link e from a vertex z of p; to
the beginning vertex v; of ps. Let vy, vs,...,v; be the consecutive vertices of the
path p2, and v be the last vertex on p; (see Figure 3).

If v; is asssigned a segment position, then if p, has an odd length, then improve
the concatenation of the segment paths, reversing p»: glue the vertex v with vy.
If the segment path p; is of even length, and v, is assigned a segment position,
then:

(a) If there is a tendril centered at v;, then make an end-vertex (say w) of this
tendril, the first vertex of the segment path ps: glue v with w (improving the
concatenation). (Figure 4).

(b) If there is no tendril centered at v;, and there is a tendril (v2, w) centered at
va, then:

i. If p; and p, are located within the segment (I,{ + 1), then if z has a
segment position (color ! or ! + 1), then glue v with w (improving the
concatenation), and treat the edge (v, v;) as a new tendril (Figure 5).

ii. If p; is located in some previous segment than (I,! + 1), then 2z has
been colored so far, and if ¢(z) ¢ {I,! + 1}, then do not improve the
concatenation (v is glued with v;, and v; has a segment position). If
c(z) € {l,! + 1}, then perform the steps from-the previous step 2(b)i
with “improving the concatenation” (as in Figure 5).

(c) If there are no tendrils with centers at v; and at vs, then glue vy with v (im-
proving the concatenation) and the edge (v2,v;) is treated as a new tendril.
Thus, v, is assigned a segment position and v; — a non-segment position.

COMMENT: At this point we have fized all the segment and non-segment positions
in the segment (I,1 + 1). From now on, our invariant is: never change a position
from segment to non-segment position or vice versa (however we may change the
colors at some positions).

(a) Begin to color the segment (I, + 1) by calculating an ending position of
the segment. Let N(j) = {i : j € P(¢)} for j € {l,l + 1} and let W(l,l +
1) = N(I)N N(l +1). As the end of the segment take minimum !’ such
that if r is the number of the tendrils with centers at the segment vertices
(positions 2,4,...,I' = 1), then 2 - [W(l,I+1)|+3 < (I' = 1) +4-[]]. Set
S« SU{(a,l),(b,l+1):ac NO)\W(II+1),be NI+1)\W(,l+1)}.

(b) Perform balancing, as in step 2(c)ii of the algorithm PATHTENDRILS.

(c) coloring;: Color all the segment positions with colors [ and [ + 1.

(d) colorings: Color all non-segment positions on the spine of the segment (I,/+1)
and on the end-vertices of the tendrils. The coloring is performed dynamically
to avoid conflicts. During the coloring, take the consecutive non-segment

14



colors from the set W (I,1+ 1) and put them on arbitrary non-segment spine
positions or end-vertices of the tendrils (called non-segment positions as well).
If a non-segment color ¢ € W(l,1 + 1) causes a conflict on some non-segment
position u with the same color ¢ via some link, then color u with any other
non-segment color, avoiding the conflict. If ¢ gives conflicts on each non-
segment position, then put all other non-segment colors on that positions,
and add (c,1), (¢,! + 1) to the sack S. Set waste «— waste + 3.

If during the improving of concatenation in phase 2, one glued two vertices,
each with a link, into a vertex z, then this may cause a conflict for two non-
segment colors ¢ and ¢’: one cannot color z with neither ¢ nor ¢'. There may
be several such conflict positions z within the segment (I, +1). In this case,
proceed by analogy to the case with only one conflict color c: if there is a
conflict for ¢, ¢’ on each such position z, then put on that positions other
non-segment colors, and add (¢,{), (¢, + 1), (¢,1), (¢',1 + 1) to the sack S.
Increase also the counter waste by a constant.

(¢) Put the segment colors from the sets P(i), on end-vertices of the non-segment
tendrils: if ¢ is a non-segment color on the vertex-center of a tendril, then
assign to the end v of the tendril the greatest color from the set P(i), and
delete this color from P(i). If this gives a conflict via some link, then assign
to v the next greatest color in P(i), delete it from P(i) and if |P(i)| = 1,
then set waste < waste + 1.

Realize the connections from the sack S: greedily use every other edge from the
spine to the right of the ending position of the last colored segment.
END ALGORITHM

pl

p2
Figure 3: The segment paths in the fizing positions phase.

Theorem 3.1 The algorithm BINARYTREE approzimates the achromatic number of
any binary tree asymptotically to within 1.22. Its running time is linear.
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Figure 4: Improving the concatenation in the fizing positions phase, subcase (a).

Proof: This proof is an extension of the proof of Lemma 3.3.
We first argue there are no conflicts caused by links during coloring and that we
waste at most constant number of adges per one segment/color.

OBSERVATION 1. In step 2 we have fixed the segment and non-segment positions,
such that if there is a link between one segment path and the first vertex v of a second
segment path, then v is assigned a non-segment position.

In the first coloring phase 3c we color all the segment positions with the colors ! and
{+ 1. It follows that there will be no conflicts, since for each link at least one of its
end-vertices has a non-segment position, so it will be assigned a non-segment color.

The second coloring phase 3d has been performed such that it allows no conflicts
itself.

Observe that in phase 3e a conflict may appear due to step 2(b)i and we avoid it
by assigning the next greatest color of P(z). This in turn causes a “hole” in P(z). But
notice that the hole will disappear in the next segment in which we use P(z). If this
conflict appears if |P(i)| = 1, then there is no next greatest element in P(z), and in this
case we might loose one tendril (for one color), so we set waste + waste + 1.

Notice moreover, that in step 3d we may waste at most 3 edges adjacent to a potential
(not used) position for the color ¢ (two edges on the spine, and one tendril), so we set
waste < waste + 3.

Claim 3.1 gives a bound on the number of wasted edges in algorithm PATHTENDRILS.
In algorithm BINARYTREE there are additionally at most ¢’ - k¥ wasted edges and also
edges added to the sack S, where ¢’ is a fixed constant. So by analogy to the proof
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Figure 5: The fizing positions phase, subcases for (b).

of Lemma 3.3, the number of colors we have used is at least k — ¢, where c is some
constant. Now recall that k£ > \/g v2|E|, and thus k — ¢ > \/g\II(T) — c. Finally, the

asymptotic approximation ratio is (%)%, which is about 1.22.

It is not difficult to see, that the algorithm has polynomial running time. It can also
be implemented to achieve linear running time in the unit cost RAM model. We deal
with the path order like in the proof of Lemma 3.2. The recursive procedure described
in Lemma 3.4 to compute the system of paths 7', runs in linear time, since it touches
each vertex once and performs a constant number of operations associated with it. Step
2 of fixing positions can be performed in linear time as follows. We remember each
path of our system as a double-linked list with pointers to its first and last element.
Thus to improve a concatenation one just manipulates the pointers to the first and last
elements of these lists. In step 3e we have to use the next greatest element of P(i). If
a current greatest element of P(i) causes a conflict there, then we can always get (it
suffices only once) the next greatest element instead of the first, and we are guaranteed
there is no conflict. And thus to maintain the whole situation, it suffices to remember
only a constant size fragment with current greatest elements of each P(i).

The dynamic coloring in phase 3d can be performed in the following way. We go
through the non-segment positions. Let v be such a position. Then we check whether
a current non-segment color c gives a conflict on v. If not, then ¢(v) < c¢. Otherwise,
we pick for v any other unused non-segment color. Thus, we can charge each v with a
constant number of operations. O

We now discuss how to improve algorithm BINARYTREE to a 1.15-approximation.
As the path trees we allow the tendrils and additionally: paths of length 2. Let a 2-
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tendril mean a path of length at most two. Each 2-tendril has its first vertex as the
root. We present an analogon of Lemma 3.4.

Lemma 3.5 In any binary tree T = (V, E) there ezists a system S of paths with 2-
tendrils, consisting of at least % - |E| edges from E. Moreover each link is adjacent to
the first vertez of some path.

Proof: Here a proof is the same as the proof of Lemma 3.4, but the only case,
we have to skip an edge in, is (b) in Figure 1, and instead of proving the formula
|E| >3- |E\ E(S)| + 1, we prove here: |E| > 4-|E\ E(S)| + 2. O

Theorem 3.2 The achromatic number of any binary tree can be approzimated asymp-
totically to within 1.15 (in linear time).

Proof: We use Lemma 3.5 to compute a system of paths with 2-tendrils, consisting
of at least % of the number of edges of our tree. Then the algorithm and the proof
follow basically algorithms PATHTENDRILS, BINARYTREE and the proofs of Lemma
3.3 and of Theorem 3.1. The difference is that we now have also 2-tendrils of length
two. For such two 2-tendrils: (v;) — (v2) — (v3) and (w1) — (w2) — (w3), if vy, w; are at
segment positions, then we use them to shorten the segment. We just take a colored
fragment (I) — (z) — (I +1) — (y) — (1) like in (A) of section 3.2, and assign the following
colors: c(ve) « x, c(wp) + y and I,I + 1 respectively to v;, w; (1 = 1,3). Moreover, in
the algorithms PATHTENDRILS and BINARYTREE, we use the sets P(i) more carefully.
Namely, we pair all the colors {i : P(i)} = {1,2,...,k}, getting (1,2),(3,4),(5,6),....
For each pair (41,i2), we want the greatest elements: t; of P(i;) and 2 of P(iz) to be
“close to each other”. We achieve this in the following way.

1. If once we assign ¢; to the end of some tendril rooted at color the 7;, and we meet
another tendril ¢ rooted at the same color 77, then we permute the non-segment
colors assigning to the root of ¢’ the color i instead of ¢; (see Observation 3.1)
and we assign t» to the end of ¢/, and skip ¢» from P(iz).

2. Now assume we meet a 2-tendril t” = (v1)— (v2) —(v3) with ¢(v1) = 4;. If currently
t1 = to, then we assign: c(vs) ¢ t; and c(v3) < 42. If t; = ¢2 + 1, then we assign
c(vz2) < t2 and c(v3) « i2. This causes a “hole” in the set P(i;) — such a hole
will be repaired if we meet a tendril " rooted at a color #; (if ¢" is rooted at
some another non-segment color, then we permute and assign ¢; to its root), then
we simply assign ¢; to the end of ¢"’. If we do not meet "/, before meeting some
other 2-tendrils t”, then this will reduce P(i;) and P(i2), enlarging the hole in
P(i;). But notice, that for each pair (7;,2), there is at most one hole. Thus, we
will add to S at most one connection for one pair (i1,72). So we can use a similar
argumentation like in the proof of Lemma 3.3 to bound the size of the sack S and
the counter waste.
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This is easy to check, that the above will not affect our previous analysis of the
algorithm from the proofs of Lemma 3.3 and Theorem 3.1. To see that the algorithm
can be implemented in linear time, we use similar argumentation as in the proof of
Theorem 3.1, and we notice, that the above “hole” is maintained by the algorithm such
that it has constant size. O

3.4 Coloring Bounded Degree Trees

Now we can generalize the algorithm BINARYTREE and the proof of Theorem 3.1 to
trees of bounded degree. The difference is, that now we consider paths with stars of
greater arity.

Lemma 3.6 In any tree T = (V, E) with mazimum degree (d+1) (d is an arbitrary fized
constant), there exists a system S of paths with bunches consisting of at least gg—_}i - |E|
edges from E. Moreover each link is adjacent to the first vertez of some path.

Proof: By induction on the height h(T') of the tree T' we show that there exists a
system S of paths with tendrils, such that one of the paths in S begins in the root of
T and |E(S)| > € - |E| + ¢, where ¢ = (2it§_d, eh= (dz(lz)gf;iﬁl) —2and ¢c = %.
The desired thesis will follow, since it is easy to check that € > 0 for all d > 1, and that
€< % for all d > 4. For d € {1,2, 3}, substituting these values for d in €, we have even
better ratios than these required in Lemma 3.6.

If h(T) < 2, then among all possible cases of trees T, the worst case is (a) in
Figure 6. We assume, that the arity k& of the root of T in this case fulfils ¥ < d + 1,
since the maximum degree of T is d + 1. We also assume that £k > 2, since other
cases are straightforward. Our system S is built with all edges of T, besides the edges
e2,e3,...,ek (these are links). So |E(S)| =2k —(k—1) = k+1 and |E| = 2k, and

|E(S)| = k—;@HEI Now, since "zikl > -2% for £ < d+ 1, it is enough to show that

sty Bl > € - |E| + ¢, or that (354 —€)-2k > c Sincek>2, ¢ = % and
5d% + 6d + 1 = (d + 1)(5d + 1), we have

d+2 d+2

(m—el)' kZ(m—fl)"i:

d+2 242 +5d+1 |
'(2(d+1) - (d+1)(5d+1)) B
(d+2)(5d+1) — (4d> +10d +2),
(d+1)(5d + 1) )=
2(d? + d)
(d+1)(5d + 1)

Now, assume that h(T) > 2. We consider the case (b) in Figure 6. The case when
k = 1 is treated like in the proof of Lemma 3.4. Assume now, that 2 < k < d+ 1.

2-(
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Assume moreover, that all the trees T% are non-empty. Let S; be the system for T'
respectively, for ¢ = 1,2,... k, with |E(S;)| > € - |E(Tt)| + c. We show how to build
the system S for the whole tree T. The system S is built with all systems S; for
¢t =1,2,...,k, and additionally with the edge e; (edges ez, ..., e, are links). In this
case we have |[E(S)| = |E(S1)|+ ...+ |E(Sk)|+1, so from the induction assumption we
have

|E(S)| >¢€ - (|[E(TD)| + ...+ |E(Tk)|) + kc+1

=€ - (|E(T1)| +... + |B(Tk)| + k) — €k + ke +1
=¢|E| -k +kc+1.
Thus to end the proof, it suffices to show that —e’k + k¢ + 1 > ¢. The last inequality

is equivalent to ¢ > ‘;ck__ll. We consider a function h(z) = €zl for2<z<d+1 It

z—1"
is easy to check, that the function A is increasing in its domain, so it has maximum for

r =d+ 1, and the maximum is

R+ -1
d
(d+1)(2d®> +5d+1)— (5d> +6d+1)
d(5d% + 6d + 1) B
(d+1)(2d* +5d+1)— (d+1)(5d +1) _
d(d + 1)(5d + 1)

h(d+1) =

2d? _
d(5d +1)
Now, if some of the trees T'7 are empty, then the induction step is even simpler, like
in the proof of Lemma 3.4. a

Theorem 3.3 The achromatic number of any tree with mazimum degree d + 1 (d is

an arbitrary fized constant) can in linear time be approrimated asymptotically with the

2.5-d

G341, which is about 1.58 as d — oo.

ratio

Proof: Essentially, this is a straightforward generalization of the 1.22-approximation
algorithm BINARYTREE and of the proof of Theorem 3.1. Using Lemma 3.6, we find a
system of paths with bunches consisting of at least %‘;‘_—b edges of the whole tree. In the
phase of balancing we just count the arities of the bunches instead of 1, which is the
arity of a tendril. The steps where the expressions of a form const - k appear, are now
valid as well, since d is also the constant. Any other step of the algorithm is analogous to
the steps in the algorithm BINARYTREE. Since —g—%’% > 21?, then by a similar argument
like in the proof of Theorem 3.1, the asymptotic approximation ratio is v/2.5 ~ 1.58.

The argumentation for a linear time implementation of the algorithm is a simple

generalization of arguments used in the proofs for binary trees. a
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(a)

(b)

Figure 6: The cases in the induction step for bounded trees.

3.5 Coloring General Trees

In this section we give a 2-approximation algorithm for general trees.

Let T = (V,E) be a given tree, and |E| = n. If v € V is an internal node of T,
then bunch(v) denotes the set of all leaf edges adjacent to v. Let ¥(T') = k, and o be
any complete coloring of T with k colors. By E' C E we denote a set of essential edges
for o, which for each pair of different colors ¢,5 € {1,...,k} contains one edge linking
a vertex colored with i and a vertex colored with j. Notice that |E'| = (5). Now we
proceed with an easy observation.

Observation 3.2 For each r < k and any internal vertices v1,...,v, € V we have

(k=1)+(k—r)
5 -7

| U, bunch(v;) N E'| <
for any E' as above.

This observation follows from the fact that centers of the bunches bunch(v;) can be
colored with at most 7 colors, so each of the edges U]_,bunch(v;) has one of its endpoints
colored with one of these r colors.

We now start describing our coloring algorithm. We say that a color ! is saturated
if during a course of the coloring algorithm, the color ! has edge connections with each
other color, that we use in the partial complete coloring. The condition Cond (++)
in step 2(c)ii of the algorithm below is defined in the proof of Theorem 3.4.

BEGIN ALGORITHM GENERALTREE
COMMENT: First we bound cardinality of the set of essential adges.

21



Set 74 < n, and for each edge e € E, mark e “possible”.
Step (+): Set k + max{i : (;) < A}. Select a maximum arity bunch bunch(v) (v € V)
and mark one of its edges “impossible” (and unmark “possible” for this edge). Keep
going on this marking process until Cond (+): for each set of r (r < k) bunches in
T number of “possible” edges is < gk_—l)“'zﬂ_—') -r. Set 71 + #( all edges of E marked
“possible”). End Step (+). If (§) > 7, then go to Step (+).
Now replace the tree 7' with the tree T with only “possible” edges.

1. If #( leaf edges of T') < %ﬁ, then compute a system of paths S in T', and optimally
color S by Lemma 3.2.

2. If #( leaf edges of T) > 37, then:

(a) Sort all the bunches {bunch(v) : v € V'} of T according to their arities. Let
I; >l > ... > l; be these arities. Find the smallest integer ¢ such that
L< % —i

2
(b) Ifi > % —1, then color the first ¢ largest bunches with [’;—‘ colors: the center

e
of the j-th bunch (j = 1,2,...,1) is colored with color j, and its \/7;:2! — j sons

are colored with the consecutive colors j +1,7 +2,..., -‘/Tj
(c) Ifi< %—_ﬂ;— —1, then use the procedure 2b for the first ¢ —1 largest bunches, sat-

urating the colors 1,2,...,¢ — 1: the center of the j-th bunch is colored with
the color j and its sons with the colors j+1,j+2,..., L;_‘, forj=1,2,...,i—1.

COMMENT: The remaining colorsi,t+1,..., % will be saturated in another
way, using a fact that now we have many bunches with small arities (the

bunches not used so far). Their arities are bounded by —é-_'%

i. Partition all the bunches into two sets B; and Bs of all bunches with
centers at odd distance from the root of T and resp. at even distance
from the root.

ii. Set j « i. Now we try to saturate the color j.

While Cond (++) do: take for B, one of the sets B,, By with greater
number of edges; keep on picking the consecutive maximum arity bunches
from B, until the color j is saturated; delete these bunches from By. Set
j < j+ 1. End While.

COMMENT: We pick the mazimum arity bunches from By and color their

centers with j and their sons with -‘é—-.—'j — 7 colors. Note, that the bunches

in the both sets By, Bo are independent, so we can color their vertices
with the same color. So in the last bunch we pick, we can lose at most

% edges for each color j.

END ALGORITHM
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Theorem 3.4 The algorithm GENERALTREE approzimates the achromatic number of
any tree to within 2.

Proof: Notice, that if the condition Cond (+) holds for any set of r (r < k)
bunches of the greatest arity, then it holds also for any set of 7 bunches. Therefore
it is possible to perform the procedure Step(4) in polynomial time. To prove the
approximation ratio we show the following claim.

Claim 3.2 The algorithm GENERALTREE finds a complete coloring with at least i
colors.

S

VR

Notice Ve equals to half of optimal number of colors.

Step 1 of the algorithm explicitly uses at least va colors, since by Fact 2.2, S has
V2

at least %ﬁ edges, so the resulting partial complete coloring uses > -‘\/f—j colors. Now we
prove this also holds for step 2.

In step 2 we have many edges in the bunches. We show that the algprithm colors
the bunches with at least —*\%_l colors. By the procedure with Step (+) and Observation
3.2, the number of edges in the i — 1 bunches we have used before steps 2(c)i and 2(c)ii
is at most

(vV2vA - 1) +(\/_\/~ i+1)

(i -1). ‘ (1)
Notice that in fact (1) is equal to:
YB_14¥B 41 -
R e+ Y2
5 (z—-1)+ 7 (z—1). (2)

The first element of this sum can be considered as the number of edges we have used
effectively in the coloring, while the second element of this sum can be considered as
the number of edges we have lost (before steps 2(c)i and 2(c)ii).

Now we explain what Cond (+4+) means and prove that the procedure with steps

2(c)i and 2(c)ii will saturate all the colors ¢,7 +1,..., —‘/-_;—’ Cond (++) is true iff:

e1 = #( edges in B;) > % — j or e; = #( edges in By) > :;__ — j. So the procedure

stopsife; +e3 <2- (‘/T_—]—l)—é

Notice that the formula for (1) together with (2) can be generalized also to the
case of the coloring in the case “i < ‘é—_ 17 together with the “While Cond (++)”
procedure. (We just glue all centers of the bunches used to saturate the color j in “While
Cond (++)” (into one bunch), for j =7,i+1,....) So after the above procedure when
the Cond (++) is not true any more, we have used so far at most

A WAVAR-D+ (V2VR—j+1)
2

(-1
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edges. Thus Cond (++) will not be true if %r‘z — A < 4. We show that the smallest
j, such that %ﬁ — A < 4, is in fact greater than the number of colors %-_';3 to saturate.

Namely %7‘1 — A < § is equivalent to j2 + (3 — 2V2V7) -j +4 + -g-ﬁ < 0. The binomial
at the left hand side has the discriminant greater than zero, so the minimization is for
the smaller root of the binomial, which is:

2V2/f — 3 — /28 — 12v2V7 — 7
; .

And it is straightforward to check that the root is greater than %

Obviously the presented algorithm has polynomial running time. O

3.6 Coloring Large Girth Graphs

In this section we prove that the achromatic number can be approximated with the ratio
O(n®/®) for graphs with girth at least six. Our algorithm is based on the algorithm of
Chaudhary and Vishwanathan [4]. The crucial difference is that we use in the algorithm
our procedure for tree coloring and that our different analysis (of the tree coloring
algorithm) enables us to obtain the desired result. After [4] we define in a given graph
G = (V,E) a subset M C E to be an independent matching if no two edges in M have
a common vertex and there is no edge in E \ M adjacent to more than one edge in M.

Theorem 3.5 The achromatic number of any n-vertex graph G with girth at least siz,
can be approzimated to within (V2 + €)/¥(G) (for any € > 0), which is O(n3/?).

Proof: Let G = (V, E) be a given graph, with [V| = n, and with girth > 6. For a
given edge e € E, let N(e) denote the set of all edges at a distance at most one from e.
We first will describe the coloring algorithm of Chaudhary and Vishwanathan [4] with
our modification.

BEGIN ALGORITHM GRAPHGIRTH6
The steps below are performed for all parameters f =1,2,...,n.

1. Set I « 0,7« 1.
2. Choose any edge e; € E and set I « I U {e;}, E < E\ N(e;).
3. If E # 0 then set ¢ « i + 1, go to step 2.

4. If |I| > f then output a partial complete coloring using edges in I, else partition
each N(e;) into two trees by removing the edge e;. Then use the coloring algorithm
GENERALTREE to produce a partial complete coloring for each such tree and
output the largest size coloring.
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END ALGORITHM

It is easy to see that I is an independent matching and that having any independent
matching of size (é), we can generate a partial complete coloring of size I. Thus, in
this case we have a coloring of size > /2f. In the other case, since the girth is > 6,
removing the edge e; from N(e;), the vertex set of N(e;) can be partitioned into two
trees. Consider a maximum coloring of G and let E’ denote a set of essential edges
for the coloring. If |I| < f, then at least one of the sets N(e;), say N(e;,), contains
> (|E'|/ f) essential edges. N(e;,) consists of two trees, so one of them contains at least

Ui'izﬁﬂ essential edges. So now we can set 7 = E,sz =1 in the proof of Theorem
3.4 (see Step(+) of the algorithm GENERALTREE), and we have from Claim 3.2, that

the tree can be colored with at least ¢ = \/g colors. Thus the number of colors is ¢ =
718_}-\/\1’(‘9 —1) —2f, where ¥ = ¥(G), and |F'| =(§') To get a good approximation,
we pick f in the algorithm, such that ¢ = /2f (number of colors from the case |I| > f),

SO
%,/w(w— 1) — 2f = V2F,

. : : 5 VI6WI—16W+1— .
which after simple calculations gives f = ﬂ—z—lleil’—u. Finally, the number of colors

o _ 1
is ¢ = V2f = L\/VISTE — 16 + 1 - L.
It can be easily shown that

1
— 16‘112—16\I’+1—1>'-\/\I’,
\/§‘/‘/ =¢

for some constant ¢’ = 7§1+—e and € > 0. This holds asymptotically for any fixed € > 0,
and almost all values of ¥ (e.g. if ¥ > 2, then ¢’ ~ 0.545).

. 12 _ 1 . . . .
Now, since ¢ > V¥ = T TE \/@\P’ our approximation ratio is (v/2+¢€)v/¥. Further,

any n-vertex graph with girth at least g has at most n[ nﬁ‘l edges (see [2]), and
¥ = O(y/]E]), so the approximation ratio is O(n%/8). O

4 Lower Bound for Binary Trees

In the paper [6] Farber et al. prove, that the achromatic number of a tree with n edges
and maximum degree (4n)'/%, is at least \/n. Moreover, an obvious upper bound is
v2y/n. They do not investigate a case of trees with bounded constant degree. In this
case, for binary trees, we improve this lower bound to 1.224 - \/n — ¢, for some constant
c.

Theorem 4.1 Let T be any tree with n edges and mazimum degree 3. Then U(T) >
1.224 - \/n — ¢, for some constant c.
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Proof: Using the coloring algorithm for binary trees (Theorem 3.2), in the proof
we color almost optimally at least %n edges of T. Namely, we use k — c colors, for some

constant ¢, where k — ¢ > \/g v2n — ¢ (look at the proof of Theorem 3.1). Now, from
Lemma 2.2 ¥(T) > k — ¢, so finally ¥(T) > \/§\/2n -c>1224-\/n—c O

5 Open Problems

The main open problems are to improve the approximation ratios for computing the
achromatic number of a tree and of other graphs. In particular, can one give an O(V¥)-
approximation algorithm for other classes of graphs ?
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