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Abstract

We introduce a new decidable fragment of first-order logic with equality, which strictly
generalizes two already well-known ones—the Bernays–Schönfinkel–Ramsey (BSR) Fragment
and the Monadic Fragment. The defining principle is the syntactic separation of univer-
sally quantified variables from existentially quantified ones at the level of atoms. Thus, our
classification neither rests on restrictions on quantifier prefixes (as in the BSR case) nor on
restrictions on the arity of predicate symbols (as in the monadic case). We demonstrate
that the new fragment exhibits the finite model property and derive a non-elementary upper
bound on the computing time required for deciding satisfiability in the new fragment. For
the subfragment of prenex sentences with the quantifier prefix ∃

∗
∀
∗
∃
∗ the satisfiability prob-

lem is shown to be complete for NEXPTIME. Finally, we discuss how automated reasoning
procedures can take advantage of our results.

1 Introduction

The question of whether satisfiability of first-order sentences of a certain syntactic form is decidable
or not has a long tradition in computational logic. Over the decades different dimensions have
been introduced along which decidable first-order fragments can be separated from undecidable
ones. Löwenheim’s pioneering work [26] shows that confinement to unary predicate symbols (i.e.
to the Relational Monadic Fragment) leads to decidability, while the set of sentences in which
binary predicate symbols may be used without further restriction yields a reduction class for
first-order logic. Another dimension is the confinement to certain quantifier prefixes for formulas
in prenex normal form, e.g. to ∃∗∀∗—the Bernays–Schönfinkel (BS) Fragment [5]—consisting of
decidable sentences. The inclusion or exclusion of the distinguished equality predicate yields yet
another possibility. Löwenheim had already considered it for the Relational Monadic Fragment,
and Ramsey [30] extended the BS Fragment in this way, leading to the Bernays–Schönfinkel–
Ramsey (BSR) Fragment, which also remains decidable. Already in the nineties, the classification
along those dimensions was considered to be mainly completed, cf. [12, 7].

In the present paper we introduce another dimension of classification: syntactic separation
of existentially quantified variables from universally quantified ones at the level of atoms. We
disallow atoms P (. . . , x, . . . , y, . . .) that contain both a universally quantified variable x and an

∗CNRS, LORIA, UMR 7503, 54506 Vandoeuvre-lès-Nancy, France
†Inria, 54600 Villers-lès-Nancy, France
‡University of Lorraine, LORIA, UMR 7503, 54506 Vandoeuvre-lès-Nancy, France

1

http://arxiv.org/abs/1511.08999v3


existentially quantified variable y at the same time. We call the class of first-order sentences built
from atoms with thus separated variables the Separated Fragment (SF). The Separated Fragment
is decidable. It properly includes both the BSR Fragment and the Relational Monadic Fragment
(monadic formulas without non-constant function symbols) without equality and is to the best of
our knowledge the first known decidable fragment enjoying this property. Consequently, separation
of differently quantified variables constitutes a unifying principle which underlies both the BSR
Fragment and the Relational Monadic Fragment. More concretely, our contributions are:

(i) We introduce the new decidable first-order fragment SF (Sections 3, 4). Its sentences can be
transformed into equivalent BSR sentences and thus enjoy the finite model property. Our
current upper bound on the size of small models is non-elementary in the length of the
formula (Theorem 17).

(ii) For SF formulas in which blocks of existentially quantified variables are pairwise disjoint the
size of small models is at most double exponential (Theorem 15).

(iii) For SF sentences of the form ∃∗∀∗∃∗ϕ, where ϕ is quantifier-free, the size of small models
is single exponential in the length of the formula. Therefore, satisfiability is NEXPTIME-
complete in this setting (Theorem 14).

(iv) Sentences from the Monadic Fragment with unary function symbols or from the Relational
Monadic Fragment with equality can be translated into SF sentences. The translation pre-
serves satisfiability and increases the length of the formulas only polynomially (Section 4.2).

(v) We provide a methodology for the translation of SF sentences of the form ∃∗∀∗∃∗ϕ into the
BS(R) fragment, which facilitates automated reasoning (Section 5).

The paper concludes with a discussion of related and future work in Section 6.
The present paper is an extended version of [32].

2 Preliminaries

We consider first-order logic formulas. The underlying signature shall not be mentioned explicitly,
but will become clear from the current context. For the distinguished equality predicate (whose
semantics is fixed to be the identity relation) we use ≈. If not explicitly excluded, we allow
equality in our investigations. As usual, we interpret a formula ϕ with respect to given structures.
A structure A consists of a nonempty universe UA (also: domain) and interpretations fA and PA

of all considered function and predicate symbols, respectively, in the usual way. Given a formula ϕ,
a structure A, and a variable assignment β, we write A, β |= ϕ if ϕ evaluates to true under A and
β. We write A |= ϕ if A, β |= ϕ holds for every β. The symbol |=| denotes semantic equivalence
of formulas, i.e. ϕ |=| ψ holds whenever for every structure A and every variable assignment β we
have A, β |= ϕ if and only if A, β |= ψ. We call two sentences ϕ and ψ equisatisfiable if ϕ has a
model if and only if ψ has one.

We use ϕ(x1, . . . , xm) to denote a formula ϕ whose free variables form a subset of {x1, . . . , xm}.
In all formulas we tacitly assume that no variable occurs freely and bound at the same time and
that all quantifiers bind distinct variables. For convenience, we sometimes identify tuples ~x of
variables with the set containing all the variables that occur in ~x.

A structure A is a substructure of a structure B (over the same signature) if (1) UA ⊆ UB, (2)
cA = cB for every constant symbol c, (3) PA = PB ∩ UmA for every m-ary predicate symbol P ,
and (4) fA(a1, . . . , am) = fB(a1, . . . , am) for every m-ary function symbol f and every m-tuple
〈a1, . . . , am〉 ∈ UmA . The following is a standard lemma, see, e.g., [13] for a proof.

Lemma 1 (Substructure Lemma). Let ϕ be a first-order sentence in prenex normal form without
existential quantifiers and let A be a substructure of B. B |= ϕ entails A |= ϕ.

2



We denote substitution by ϕ
[
x/t
]
, where every free occurrence of x in ϕ is to be substituted by

the term t. For simultaneous substitution of pairwise distinct variables x1, . . . , xn with t1, . . . , tn,
respectively, we use the notation ϕ

[
x1/t1, . . . , xn/tn

]
. For example, P (x, y)

[
x/f(y), y/g(x)

]
results

in P (f(y), g(x)). We also write
[
~x/~t

]
to abbreviate

[
x1/t1, . . . , xn/tn

]
.

Lemma 2 (Miniscoping). Let ϕ, ψ, χ be first-order formulas, and assume that x does not occur
freely in χ.

(i) ∃x.(ϕ ∨ ψ) |=| (∃x1.ϕ) ∨ (∃x2.ψ)
(ii) ∃x.(ϕ ◦ χ) |=| (∃x.ϕ) ◦ χ with ◦ ∈ {∧,∨}
(iii) ∀x.(ϕ ∧ ψ) |=| (∀x1.ϕ) ∧ (∀x2.ψ)
(iv) ∀x.(ϕ ◦ χ) |=| (∀x.ϕ) ◦ χ with ◦ ∈ {∧,∨}

Consequently, if x1 6∈ vars(χ) and x2 6∈ vars(ϕ) holds for two first-order formulas ϕ and χ, we
get (∃x1.ϕ) ∧ (∃x2.χ) |=| ∃x1x2.(ϕ ∧ χ) and dually (∀x1.ϕ) ∨ (∀x2.χ) |=| ∀x1x2.(ϕ ∨ χ).

3 Separated Variables and Transposition of Quantifier Blocks

Let ϕ be a first-order formula. We call two disjoint sets of variables ~x and ~y separated in ϕ if and
only if for every atom A occurring in ϕ we have vars(A) ∩ ~x = ∅ or vars(A) ∩ ~y = ∅.

We first show how we can transpose quantifier blocks if the variables they bind are separated.
Throughout this section we admit equality or other predicates with fixed semantics in the formulas
we consider. Moreover, function symbols may occur, even in an arbitrarily nested fashion.

Proposition 3. Let ϕ(~x, ~y,~z) be a quantifier-free first-order formula in which ~x and ~y are sepa-
rated. There exists some m ≥ 1 and a quantifier-free first-order formula ϕ′(~x, ~y1, . . . , ~ym,~z) such
that ∀~x∃~y.ϕ(~x, ~y,~z) and ∃~y1 . . . ∃~ym∀~x.ϕ′(~x, ~y1, . . . , ~ym,~z) are semantically equivalent, and the
length of each of the tuples ~yk is identical to the length of ~y. Moreover, all atoms in ϕ′ are variants
of atoms in ϕ, i.e. for every atom A′ in ϕ′ there is an atom A in ϕ that is identical to A′ up to
renaming of variables.

Proof. We first transform the matrix ϕ into a disjunction of conjunctions of literals. Since the
sets ~x and ~y are separated in ϕ, the literals in every conjunction can be grouped into three parts:
(1) ψi(~x,~z), containing none of the variables from ~y,
(2) χi(~y,~z), containing none of the variables from ~x, and
(3) ηi(~z), containing neither variables from ~x nor from ~y.
Employing Lemma 2, we move the existential quantifier block ∃~y inwards such that it only

binds the (sub-)conjunctions χi(~y,~z). The emerging subformulas
(
∃~y.χi(~y,~z)

)
shall be treated as

indivisible units in the further process.
After moving the ∃~y block inwards, the resulting formula has the form ∀~x.ϕ′′. Next, we

transform ϕ′′ into a conjunction of disjunctions, and move the universal quantifier block ∀~x inwards
in a way analogous to the procedure described for the ∃~y block. The shape of the result then
allows to move the existential quantifiers outwards first (renaming variables where necessary) and
the universal ones afterwards so that we again obtain a prenex formula, this time with an ∃∗∀∗

prefix.

∀~x∃~y.ϕ(~x, ~y,~z)

|=| ∀~x.∃~y.
∨

i

ψi(~x,~z) ∧ χi(~y,~z) ∧ ηi(~z)

|=| ∀~x.
∨

i

ψi(~x,~z) ∧
(
∃~y.χi(~y,~z)

)
∧ ηi(~z)

|=| ∀~x.
m∧

k=1

ψ′
k(~x,~z) ∨

∨

ℓ

(
∃~y.χ′

k,ℓ(~y,~z)
)
∨ η′k(~z)
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|=|
m∧

k=1

(
∀~x.ψ′

k(~x,~z)
)
∨
(
∃~y.

∨

ℓ

χ′
k,ℓ(~y,~z)

)
∨ η′k(~z)

|=| ∃~y1 . . . ∃~ym∀~x.
m∧

k=1

ψ′
k(~x,~z) ∨

∨

ℓ

χ′
k,ℓ(~yk,~z) ∨ η

′
k(~z)

The subformulas ψi, χi, ηi, and χ
′
k,ℓ are conjunctions of literals, and the ψ′

k and η′k are disjunctions
of literals.

The following example illustrates how quantifiers can be transposed in accordance with Propo-
sition 3 and what the limits are.

Example 4. Consider the sentence ∀x∃y.P (x) ↔ Q(y). On the one hand, it is easy to see
that direct transposition of ∀x and ∃y does not preserve semantics: whilst the structure A with
UA := {a, b} and PA := QA := {a} is a model of ∀x∃y.P (x) ↔ Q(y), it does not satisfy the
version with transposed quantifiers ∃y∀x.P (x) ↔ Q(y).

On the other hand, we can show equivalence of ∀x∃y.P (x) ↔ Q(y) and ∃y1y2∀x.
(
P (x) →

Q(y1)
)
∧
(
Q(y2) → P (x)

)
:

∀x∃y.P (x) ↔ Q(y)

|=| ∀x∃y.
(
¬P (x) ∨Q(y)

)
∧
(
P (x) ∨ ¬Q(y)

)

|=| ∀x.
(
¬P (x) ∧ (∃y2.¬Q(y2))

)
∨
(
(∃y1.Q(y1)) ∧ P (x)

)

|=|
(
(∀x.¬P (x)) ∨ (∃y1.Q(y1))

)

∧
(
(∃y2.¬Q(y2)) ∨ (∀x.P (x))

)

|=| ∃y1y2∀x.
(
¬P (x) ∨Q(y1)

)
∧
(
¬Q(y2) ∨ P (x)

)

|=| ∃y1y2∀x.
(
P (x) → Q(y1)

)
∧
(
Q(y2) → P (x)

)
.

Next, we demonstrate how the transposition of quantifiers affects the length of formulas.

Proposition 5. In the worst case transposing quantifier blocks in accordance with Proposition 3
leads to a blow-up in the number of existentially quantified variables that is exponential in the
length of the original formula.

Proof. Consider the following first-order sentence and how we can transpose the quantifier blocks
therein. ϕ := ∀x∃y.(P1(x) ↔ Q1(y)) ∧ . . . ∧ (Pn(x) ↔ Qn(y)) can be transformed into the
equivalent ϕ′ :=

∃ y〈0,...,0〉 . . . y〈1,...,1〉︸ ︷︷ ︸
2n variables

∀x.

∧

b̄∈{0,1}n

(( ∧

1 ≤ i ≤ n,
bi = 1

Pi(x) ∧
∧

1 ≤ j ≤ n,
bj = 0

¬Pj(x)

)

−→

( ∧

1 ≤ i ≤ n,
bi = 1

Qi(yb̄) ∧
∧

1 ≤ j ≤ n,
bj = 0

¬Qj(yb̄)

))

Consider the following model A of ϕ and ϕ′:

UA :=
{
ab̄
∣∣ b̄ ∈ {0, 1}n

}
∪
{
a′b̄

∣∣ b̄ ∈ {0, 1}n
}
,

PA
i :=

{
a〈b1,....bn〉

∣∣ bi = 1
}

for i = 1, . . . , n ,

QA
i :=

{
a′〈b1,....bn〉

∣∣ bi = 1
}

for i = 1, . . . , n .
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We make the following observation and shall keep it in mind: (∗) removing any of the a′
b̄
with

b̄ 6= 〈0, . . . , 0〉 from A does not lead to a model of ϕ. We will argue that any sentence ϕ∗ (in
prenex normal form), which is semantically equivalent to ϕ and starts with a quantifier prefix of
the form ∃∗∀∗, contains at least 2n − 1 existential quantifiers.

Let ϕ∗ := ∃y1 . . . yk∀x1 . . . xℓ.χ∗ (with χ∗ being quantifier-free) be a sentence with minimal k
that is semantically equivalent to ϕ. Since A is also a model of ϕ∗, we know that there is a sequence
of elements c1, . . . , ck taken from the domain UA such that A, [y1 7→c1, . . . , yk 7→ck] |= ∀x1 . . . xℓ.χ∗.
Consequently, we can extend A to a model A∗ (over the same domain) of the Skolemized formula
ϕSk := ∀x1 . . . xℓ.χ∗

[
y1/c1, . . . , yk/ck

]
by adding cA∗

j := cj for j = 1, . . . , k. On the other hand,
every model of the Skolemized formula ϕSk immediately yields a model of ϕ∗.

The signature underlying ϕSk comprises exactly the constant symbols c1, . . . , ck and does not
contain any other function symbols. Suppose k < 2n−1. Hence, there is some a′

b̄
with b̄ 6= 〈0, . . . , 0〉

such that for every j it holds cA∗

j 6= a′
b̄
. By the Substructure Lemma, the following substructure

B of A∗ constitutes a model of ϕSk: UB := UA∗
\ {a′

b̄
}, PB

i := PA∗

i ∩ UB and QB
i := QA∗

i ∩ UB for

every i, and cBj := cA∗

j for every j.
However, then B must also be a model of both ϕ∗ and ϕ, since every model of ϕSk is a model of

ϕ∗, and because we assumed ϕ∗ and ϕ to be semantically equivalent. This contradicts observation
(∗), and thus we must have k ≥ 2n − 1.

This evidently shows that ϕ′ is (almost) optimal regarding the number of existentially quan-
tified variables it contains.

It is possible to generalize Proposition 3 to the case of several quantifier alternations as long
as all universally quantified variables are separated from all existentially quantified ones.

Lemma 6. Let ϕ(~x1, . . . , ~xn, ~y1, . . . , ~yn,~z) be a quantifier-free first-order formula in which the
sets ~x1 ∪ . . . ∪ ~xn and ~y1 ∪ . . . ∪ ~yn are separated. There exists a quantifier-free first-order
formula ϕ′(~u, ~v,~z) such that ∀~x1∃~y1 . . . ∀~xn∃~yn.ϕ(~x1, . . . , ~xn, ~y1, . . . , ~yn,~z) and ∃~u∀~v.ϕ′(~u, ~v,~z)
are semantically equivalent and all atoms in ϕ′ are variants of atoms in ϕ. Notice that ~x1 and ~yn
may be empty.

Proof. We apply a syntactic transformation following the strategy of the proof of Proposition 3,
but in an iterated fashion:

∀~x1∃~y1 . . . ∀~xn∃~yn.ϕ(~x1, . . . , ~xn, ~y1, . . . , ~yn,~z)

|=| ∀~x1∃~y1 . . . ∀~xn∃~yn.
∨

i

ψi(~x1, . . . , ~xn,~z)

∧ χi(~y1, . . . , ~yn,~z) ∧ ηi(~z)

|=| ∀~x1∃~y1 . . . ∀~xn.
∨

i

ψi(~x1, . . . , ~xn,~z)

∧
(
∃~yn.χi(~y1, . . . , ~yn,~z)

)

︸ ︷︷ ︸
=: χ

(1)
i (~y1,...,~yn−1,~z)

∧ ηi(~z)

|=| ∀~x1∃~y1 . . . ∀~xn.
∧

k

ψ′
k(~x1, . . . , ~xn,~z)

∨ χ
′(1)
k (~y1, . . . , ~yn−1,~z) ∨ η

′
k(~z)

|=| ∀~x1∃~y1 . . . ∃~yn−1.
∧

k

(
∀~xn.ψ

′
k(~x1, . . . , ~xn,~z)

)

︸ ︷︷ ︸
=: ψ

(1)
k

(~x1,...,~xn−1,~z)

∨ χ
′(1)
k (~y1, . . . , ~yn−1,~z) ∨ η

′
k(~z)

|=| ∀~x1∃~y1 . . . ∃~yn−1.
∨

i

ψ
′(1)
i (~x1, . . . , ~xn−1,~z)

∧ χ
′′(1)
i (~y1, . . . , ~yn−1,~z) ∧ η

′′
i (~z)
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|=| ∀~x1∃~y1 . . . ∀~xn−1.
∨

i

ψ
′(1)
i (~x1, . . . , ~xn−1,~z)

∧
(
∃~yn−1.χ

′′(1)
i (~y1, . . . , ~yn−1,~z)

)

︸ ︷︷ ︸
=: χ

(2)
i (~y1,...,~yn−2,~z)

∧ η′′i (~z)

...

|=| ∀~x1.
∧

k

ψ
′′(n−1)
k (~x1,~z) ∨ χ

′(n)
k (~z) ∨ η∗k(~z)

|=|
∧

k

(
∀~x1.ψ

′′(n−1)
k (~x1,~z)

)

︸ ︷︷ ︸
=: ψ

(n)
k

(~z)

∨χ
′(n)
k (~z) ∨ η∗k(~z)

|=| ∃~u∀~v.
∧

k

ψ̂
(n)
k (~u,~z) ∨ χ̂

(n)
k (~v,~z) ∨ η∗k(~z) .

The χ
′(ℓ)
k are disjunctions of subformulas χ

(ℓ)
j , whereas the χ

′′(ℓ)
k are conjunctions of such formu-

las. Dually, the ψ
′(ℓ)
k are conjunctions of subformulas ψ

(ℓ)
j and the ψ

′′(ℓ)
k are disjunctions of such

formulas. The ψ̂
(n)
k (~u,~z) and the χ̂

(n)
k (~v,~z) are quantifier-free variants of ψ

(n)
k (~z) and χ

′(n)
k (~z),

respectively, i.e. quantifiers have been moved outwards and variables have been renamed appro-
priately.

Notice that every transformation into a disjunction of conjunctions or a conjunction of dis-
junctions in the above proof causes at most an exponential increase in the length of the formula.
Moving quantifier blocks inwards causes at most a factor of two per moved block. Roughly speak-
ing, the length of ϕ′ is thus at most 2n-fold exponential in the double length of ϕ. This constitutes
a very crude upper bound, and it does not take into account that redundant subformulas may be
removed. The complexity results in Section 4.1 will be based on semantic arguments, and thus do
not rely on this rough estimate.

4 The Separated Fragment of First-Order Logic

We next explore a striking consequence of Lemma 6. It is well-known that the Bernays–Schön-
finkel–Ramsey (BSR) Fragment is decidable. This fragment comprises all first-order sentences in
prenex normal form with quantifier prefixes of the form ∃∗∀∗. Moreover, equality may occur in
BSR sentences but non-constant function symbols may not. By virtue of Lemma 6, we can now
extend this decidability result to the following class of first-order sentences.

Definition 7 (Separated Fragment (SF)). The Separated Fragment (SF) of first-order logic shall
consist of all existential closures of prenex formulas in which existentially quantified variables are
separated from universally quantified ones.

More precisely, it consists of all first-order sentences with equality but without non-constant
function symbols that are of the form ∃~z∀~x1∃~y1 . . .∀~xn∃~yn.ϕ(~x1, . . . , ~xn, ~y1, . . . , ~yn, ~z) in which
ϕ is quantifier-free and the sets ~x1 ∪ . . . ∪ ~xn and ~y1 ∪ . . . ∪ ~yn are separated.

As already stated, Lemma 6 shows that every sentence in SF can be transformed into an equiv-
alent one which belongs to the BSR Fragment: just replace the subformula ∀~x1∃~y1 . . .∀~xn∃~yn.ϕ
with an equivalent one of the form ∃~u∀~v.ϕ′. This proves our main result:

Theorem 8. Satisfiability of sentences in SF is decidable.

It is worth noticing that SF is not only a proper superset of the BSR Fragment but also of one
more well-known decidable first-order fragment, namely the Relational Monadic Fragment without
equality, i.e. the set of first-order sentences without non-constant function symbols in which only
predicate symbols of arity one are allowed.

6



Theorem 9. SF properly contains the BSR fragment and the Relational Monadic Fragment
without equality.

Proof. Let ϕ := ∃~z ∀~x.ψ be a BSR sentence, i.e. it may contain equality but non-constant function
symbols may not appear. Moreover, assume that ψ is quantifier free. The sentence ϕ may
be considered as the existential closure of the formula ∀~x.ψ. Since ∀~x.ψ does not contain any
existentially quantified variables, the separation criterion in Definition 7 is trivially fulfilled. Hence,
ϕ lies in SF.

Let ϕ′ be a relational monadic sentence without equality and without non-constant function
symbols. Since all predicate symbols in ϕ′ have an arity of at most one, any two disjoint sets of
variables are trivially separated in ϕ′. Therefore, ϕ′ belongs to SF.

In Section 4.2 we show how SF can be extended so that the Relational Monadic Fragment with
equality and also the Full Monadic Fragment without equality (i.e. Relational Monadic plus unary
function symbols) become proper subsets of the extension.

4.1 Range-Restricted Skolemization

In this section we shall demonstrate another approach to showing decidability of SF. This approach
emphasizes the small model property of SF, i.e. we can give a computable function hSF which takes
any SF sentence ϕ as input and yields a positive integer hSF(ϕ) such that whenever ϕ has a model
then it also has a model based on a universe with at most hSF(ϕ) elements.

It is well-known that BSR sentences exhibit the small model property, where the size of small
models is linear in the number of occurring constant symbols plus the number of occurrences
of existential quantifiers in the sentence at hand. Hence, the number of constant symbols and
existentially quantified variables in any BSR sentence ϕ′ that is semantically equivalent to an
SF sentence ϕ would yield an upper bound on the size of small models of ϕ. However, the
transformations carried out in the proof of Lemma 6 do not immediately admit a reasonable
estimate on the number of variables in the resulting BSR sentence. This is why we tackle the
problem in a different way. As it turns out, this alternative approach does not only facilitate the
derivation of tighter upper bounds on the size of small models in subfragments of SF. In addition,
automated reasoning procedures may benefit from the developed methods and results. We shall
assess this potential in Section 5.

On an abstract level, our semantic approach is akin to proofs of the small model property
of relational monadic sentences. Usually, the central argument goes as follows: any sentence ϕ
without equality and without non-constant function symbols which contains exactly k predicate
symbols P1, . . . , Pk—all of them unary—cannot distinguish more than 2k domain elements. To
formalize this, we associate with every domain element a ∈ UA of a given structure A a fingerprint
with respect to the predicates PA

1 , . . . , P
A
k , namely the set λ(a) := {i | a ∈ PA

i }. Hence, λ(a)
contains exactly the indices i, 1 ≤ i ≤ k, for which a belongs to A’s interpretation of Pi. In a
certain sense, this fingerprint of a domain element is all that matters for a relational monadic
sentence ϕ under A, i.e., if two elements a, b have the same fingerprint λ(a) = λ(b), then ϕ
cannot distinguish the two. As a consequence, given a model of ϕ, domain elements with identical
fingerprints can be merged, and the resulting structure is still a model of ϕ. Since there are at most
2k distinct fingerprints, this entails the small model property for relational monadic sentences.

In order to treat SF sentences, we need to modify the just described idea of fingerprints in
several ways:

(a) Since the definition of SF does not pose any restriction on the arity of predicate symbols,
we have to generalize the idea of a fingerprint from single elements to tuples of elements.

(b) We shall concentrate on the parts of sentences which contain existentially quantified
variables—by definition of SF these can be isolated from the ones containing universally quantified
variables. The rationale behind this approach is rooted in the idea underlying the Substructure
Lemma, namely that only the part of the domain is of interest, which is generated by the inter-
pretations of function symbols. And since in the SF setting non-constant function symbols are
only introduced by Skolemization, we focus on existentially quantified variables.
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(c) Instead of regarding the membership of a tuple~a in predicates PA ⊆ UmA as the characteristic
feature to define fingerprints, we consider whether ~a satisfies certain subformulas of normal forms of
ϕ. More precisely, we refer to the disjunctive normal form (DNF)

∨
i ψi or the conjunctive normal

form (CNF)
∧
j ψ

′
j and ask the question whether the part ηi(~y) of a conjunction (or disjunction)

ψi = χi(~x) ∧ ηi(~y) is true under A, [~y 7→~a ] or not. If (and only if) it is, then the index i belongs
to the fingerprint of ~a.

(d) In general settings with several quantifier alternations we cannot only rely on a single finger-
print function, but rather construct one for every existential quantifier block occurring in the quan-
tifier prefix. The fingerprints associated with the earlier quantifier blocks will be nested in the sense
that they comprise all the potential fingerprints that may be produced starting from the current
point. For example, consider the sentence ∀x1∃y1∀x2∃y2.

(
Q1(x1, x2)∧R1(y1, y2)

)
∨
(
Q2(x1, x2)∧

R2(y1, y2)
)
and the structure A with UA := {a, a′, b} and RA

1 := {〈a, b〉, 〈a′, a〉, 〈a′, a′〉, 〈b, b〉},
RA

2 := {〈a, a〉, 〈a, a′〉, 〈a, b〉, 〈a′, a〉, 〈a′, a′〉, 〈a′, b〉, 〈b, a〉}. (QA
1 and QA

2 may be defined arbitrarily.)
First, we define a fingerprint function λ2 for pairs of elements from UA such that for every pair
〈c, d〉 ∈ U2

A and every index i = 1, 2 we have i ∈ λ2(c, d) if and only if A, [y1 7→c, y2 7→d] |= Ri(y1, y2).
Concretely, λ2 assigns fingerprints as follows:

λ2 a a′ b

a {2} {2} {1, 2}
a′ {1, 2} {1, 2} {2}
b {2} ∅ {1}

Based on λ2 we next define the fingerprint function λ1 for single domain elements such that
for every element c ∈ UA and every λ2-fingerprint S ⊆ {1, 2} it holds S ∈ λ1(c) if and only
if there is another element d ∈ UA such that S = λ2(c, d). In the above example, this means
λ1(a) = λ1(a

′) =
{
{2}, {1, 2}

}
, and λ1(b) =

{
∅, {1}, {2}

}
. We will see later that the fact that

λ2 assigns the same fingerprint to a and a′ entails that the quantifier ∃y1 does not have to take
both a and a′ into account. It suffices to consider only one of them. Hence, after Skolemizing ∃y1,
we may restrict the range of the Skolem term fy1(x1) under A to {a, b} or {a′, b}, but we do not
have to consider the full range {a, a′, b}. This is what we call range-restricted Skolemization (cf.
Lemma 12 and similar results in Section 4.1.2).

In what follows we shall use the notation [k] to abbreviate the set {1, . . . , k} for any positive
integer k. Moreover, P shall be used as the power set operator, i.e. PS denotes the set of all
subsets of a given set S.

4.1.1 Sentences with prefix ∃∗∀∗∃∗

We develop the following for sentences with the ∀∗∃∗ quantifier prefix, because leading existential
quantifiers may be replaced by constant symbols (under preservation of satisfiability). Let ψ(~x, ~y)
be a quantifier-free first-order formula without non-constant function symbols in which ~x and
~y are separated. We can transform ϕ := ∀~x∃~y.ψ(~x, ~y) into an equivalent sentence ϕDNF :=
∀~x∃~y.

∨mDNF

k=1 χk(~x) ∧ ηk(~y), such that χk and ηk are conjunctions of literals and mDNF is some
non-negative integer.

Intuitively speaking, we combine two complementary fingerprint functions in this setting, where

the second one will only appear implicitly. Given a structure A, for any tuple ~b ∈ U
|~x|
A of domain

elements assigned to ~x it is only of importance which subformulas χk(~x) it fulfills. Hence, the

fingerprint function λ(~b) :=
{
k ∈ [mDNF]

∣∣ A, [~x 7→~b] |= χk(~x)
}
is a reasonable choice. Comple-

mentary to every ~b a tuple ~a ∈ U
|~y|
A is necessary, for which A, [~y 7→~a ] |= ηk(~y) holds for at least

one k ∈ λ(~b). Note that empty ηk are treated as the Boolean constant true. Together, two such
matching tuples satisfy the formula in the structure A. In order to formally classify tuples ~a in

accordance with the fingerprint feature just described, we define the sets Û1, . . . , ÛmDNF ⊆ U
|~y|
A by

Ûk :=
{
~a ∈ U

|~y|
A

∣∣ A, [~y 7→~a ] |= ηk
}
for k = 1, . . . ,mDNF. Invoking the axiom of choice, we pick

one representative αk ∈ Ûk for every nonempty Ûk and fix it. In addition, we define a mapping
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µ : U
|~x|
A → [mDNF] such that µ(~b) yields some fixed index k ∈ λ(~b), for which Ûk is nonempty.

If no such k exists for ~b, µ(~b) shall be undefined. If A |= ∀~x∃~y.ψ(~x, ~y), then for every ~b ∈ U
|~x|
A

the value µ(~b) must be defined, and we have A, [~x 7→~b, ~y 7→αµ(~b)] |= ψ(~x, ~y), by definition of the

representative αµ(~b). This means, no matter which values are assigned to the variables in ~x, for the

valuation of the variables in ~y it is sufficient to consider exclusively values from {αk | k ∈ [mDNF]}.
Hence, we can restrict the choice for the ~y to the representatives α1, . . . , αmDNF . Therefore, the

sentences ∀~x∃~y.ψ(~x, ~y) and ∀~x∃~y.ψ(~x, ~y)∧
∨mDNF

ℓ=1

∧|~y|
i=1 yi ≈ cℓ,i are equisatisfiable, where the cℓ,i

are fresh constant symbols. If there is a model at all, then there is one, under which the tuples of
constant symbols ~c1, . . . ,~cmDNF are interpreted by the representatives α1, . . . , αmDNF , respectively.

Remark 10. For this simple setting there is also a shorter argument leading to an even stronger
result. We have used the more complicated one, however, since it is easily applicable in the more
general case in Section 4.1.2, where the simple argument does not work in a straight-forward
fashion.

Due to Lemma 2, ϕDNF = ∀~x∃~y.
∨mDNF

k=1 χk(~x) ∧ ηk(~y) is equivalent to ∀~x.
∨mDNF

k=1 χk(~x) ∧
∃~yk.ηk(~yk). Now inner Skolemization (cf. [27]) leads to ∀~x.

∨mDNF

k=1 χk(~x) ∧ ηk(~yk)
[
~yk/~ck

]
. This

immediately entails equisatisfiability of the latter sentence and ϕDNF.

Dually, we can transform the sentence ϕ = ∀~x∃~y.ψ(~x, ~y) into an equivalent one ϕCNF :=
∀~x∃~y.

∧mCNF

j=1 χ′
j(~x)∨η

′
j(~y) in which the χ′

j and η
′
j denote disjunctions of literals andmCNF is some

non-negative integer. Given a structure A, we define the fingerprint function λ : U
|~y|
A → P[mCNF]

by setting λ(~a) :=
{
j
∣∣ A, [~y 7→~a ] |= η′j(~y)

}
. The fingerprints assigned by λ induce a partition of

U
|~y|
A into at most 2mCNF equivalence classes: two tuples ~a,~a′ are equivalent if and only if they have

the same fingerprint λ(~a) = λ(~a′). For every fingerprint S ⊆ [mCNF], for which some tuple ~a with

λ(~a) = S exists, we fix a representative αS ∈ U
|~y|
A of ~a ’s equivalence class, i.e. λ(αλ(~a)) = λ(~a).

Clearly, two tuples ~a, ~a′ are indistinguishable by the formulas η′j(~y), if they are associated with
the same fingerprint. Analogous to our previous result, we could immediately derive equisatisfia-

bility of ϕ and the formula ∀~x∃~y.ψ(~x, ~y) ∧
∨2mCNF

j=1

∧|~y|
i=1 yi ≈ cj,i, where the cj,i are fresh.

However, it turns out that being indistinguishable is more than we need. In fact, even in the

worst case we do not need to consider 2mCNF different representatives. A tuple ~a ∈ U
|~y|
A covers

a tuple ~a′ ∈ U
|~y|
A , denoted ~a ⊒ ~a′, if and only if λ(~a′) ⊆ λ(~a). Of two representatives α, α′ with

α ⊒ α′ we do actually only need one, namely α. More formally speaking, it is sufficient to partition

U
|~y|
A into parts Ũ1, . . . , ŨκCNF such that (i) in every part Ũℓ for all distinct ~a,~a

′ ∈ Ũℓ either ~a ⊒ ~a′

or ~a′ ⊒ ~a, and (ii) for all distinct parts Ũℓ, Ũℓ′ all tuples ~a ∈ Ũℓ and ~a′ ∈ Ũℓ′ are pairwise non-
covering, i.e. we neither have ~a ⊒ ~a′ nor ~a′ ⊒ ~a. But now, we have to choose the representatives
more carefully: a representative α̃S ∈ Ũℓ has to cover all tuples ~a ∈ Ũℓ. Formulated differently, we

have α̃λ(~a) ⊒ ~a for every ~a. Putting things together, we observe for all tuples ~b ∈ U
|~x|
A and ~a ∈ U

|~y|
A

that A,
[
~x7→~b, ~y 7→~a

]
|= ψ(~x, ~y) entails A,

[
~x7→~b, ~y 7→α̃λ(~a)

]
|= ψ(~x, ~y).

It remains to pinpoint the value of κCNF. Put differently, we need to determine the maximal
number of pairwise non-inclusive fingerprints. The answer is provided by Sperner’s Theorem.

Theorem 11 (Sperner’s Theorem [31]). Let m be a positive integer. Consider the lattice formed
by the partially ordered set 〈P[m],⊆〉. There are κ =

(
m

⌊m/2⌋

)
sets M1, . . . ,Mκ ⊆ [m] such that

for all distinct i, j we have Mi 6⊆Mj . There are no more than κ such sets.

As a consequence, ∀~x∃~y.ψ(~x, ~y) is equisatisfiable to ∀~x∃~y. ψ(~x, ~y) ∧
∨κCNF

j=1

∧|~y|
i=1 yi ≈ cj,i,

where κCNF :=
(

mCNF

⌊mCNF/2⌋

)
and the cj,i are fresh.

Together with the dual case, we observe that it is possible to restrict the range of the quantifier
block ∃~y even further to m∗ := min

(
κCNF,mDNF

)
different tuples of domain elements (preserv-

ing satisfiability). After Skolemization these restrictions apply to the freshly introduced Skolem
functions and affect their range. These results are summarized in the following lemma.
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Lemma 12 (Range-restricted Skolemization). The following sentences are pairwise equisatisfiable:

(1) ∀~x∃~y.ψ(~x, ~y),

(2) ∀~x∃~y.ψ(~x, ~y) ∧
∨m∗

ℓ=1

∧|~y|
i=1 yi ≈ cℓ,i,

(3) ∀~x.ψ(~x, ~y)
[
y1/f1(~x), . . . , y|~y|/f|~y|(~x)

]

∧
∨m∗

ℓ=1

∧|~y|
i=1 fi(~x) ≈ cℓ,i,

wherem∗ = min
(
mDNF,

(
mCNF

⌊mCNF/2⌋

))
and the cℓ,i are fresh constant symbols and the fi are Skolem

functions of appropriate arity.

Please note that the just stated result nicely fits together with Proposition 3, which states the
equivalence of ∀~x∃~y.ψ(~x, ~y) and some sentence ∃~y1 . . . ~ym∀~x.ψ′(~x, ~y1, . . . , ~ym), which results in
∀~x.ψ′(~x, ~y1, . . . , ~ym)

[
~y1/~c1, . . . , ~ym/~cm

]
, when existentially quantified variables are Skolemized.

Small model property

Let us call the sentence (1) in Lemma 12 ϕ and number (3) ϕ′. Employing the Substructure
Lemma, we can derive the small model property of SF sentences with the ∃∗∀∗∃∗ prefix from the
equisatisfiability of ϕ and ϕ′. Suppose ϕ is a satisfiable sentence belonging to SF. In particular, this
means ϕ does not contain any non-constant function symbols. Let B be a model of ϕ′. We define
the structure A by UA :=

{
a ∈ UB | there is some constant c in ϕ′ such that a = cB

}
; cA := cB

for every constant c in ϕ′; fA(~a) := fB(~a) for every m-ary function symbol f in ϕ′ and every
tuple ~a ∈ UmA ; PA := PB ∩ UmA for every m-ary predicate symbol P occurring in ϕ′. Since A is a
substructure of B, it is a model of ϕ′. It is easy to see that A is also a model of ϕ. Moreover, we
have defined A’s universe so that it contains at most |consts(ϕ′)| = |consts(ϕ)|+m∗ · |~y| elements.

We next bound m∗ from above in terms of the length of ϕ. Again, consider ϕDNF = ∀~x∃~y.∨mDNF

k=1 χk(~x) ∧ ηk(~y), which is equivalent to ϕ. Without loss of generality, we may assume the
following: (i) the conjunctions χk∧ηk contain only literals which appear in ψ after transformation
into negation normal form, and (ii) there are no distinct indices k1, k2 such that the set of literals
occurring in χk1∧ηk1 is a subset of the set of literals occurring in χk2∧ηk2 (otherwise, χk2∧ηk2 would
be redundant and could be removed from the disjunction). Consequently, mDNF is bounded from
above by the maximal number of pairwise non-inclusive subsets of the set of all literals occurring in
ϕ. Hence, by virtue of Sperner’s Theorem, an upper bound formDNF is

( len(ϕ)
⌊len(ϕ)/2⌋

)
≤ 2len(ϕ), where

len(·) shall denote a reasonable measure of length of formulas (taking into account occurrences of
quantifiers, Boolean connectives, variables, and occurrences of predicate, function, and constant
symbols; we assume len(ϕ → ψ) = len(¬ϕ ∨ ψ) and len(ϕ ↔ ψ) = len((¬ϕ ∨ ψ) ∧ (ϕ ∨ ¬ψ))).
All in all, we may conclude |UA| ≤ len(ϕ) + 2len(ϕ) · len(ϕ) ≤ 23·len(ϕ). This means that if ϕ is
satisfiable, then it has a model of size at most 23·len(ϕ).

Worst-case time complexity

Lewis employed the following lemma in [24] to find upper bounds on the required time for Bernays–
Schönfinkel sentences and relational monadic sentences without equality.

Lemma 13 ([24], Proposition 3.2). Let ϕ be a first-order sentence in prenex normal form con-
taining n universally quantified variables. The question whether ϕ has a model of cardinality m
can be decided nondeterministically in time p

(
mn · len(ϕ)

)
for some polynomial p.

Together with our previous results and known lower bounds on time complexity (cf. [24]) this
yields the following theorem.

Theorem 14. Satisfiability of sentences in SF with the quantifier prefix ∃∗∀∗∃∗ is NEXPTIME-
complete.
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Proof. Let ϕ := ∃~z∀~x∃~y.ψ be an SF sentence, in which ψ is quantifier-free. Due to previous

observations we know that the sentence ϕ′′ := ∀~x∃~y.ψ
[
~z/~d

]
∧
∨m∗

ℓ=1

∧|~y|
i=1 yi ≈ cℓ,i (for Skolem

constants d1, . . . , d|~z|) has a model (based on a universe with at most 23·len(ϕ) elements) if and
only if ϕ has one. Clearly, every model of ϕ′′ is also a model of ϕ. By Lemma 13, we can
nondeterministically check whether ϕ has a model of size 23·len(ϕ) in at most p

(
2(3·len(ϕ)

2) · len(ϕ)
)

computational steps for some polynomial p.
Lewis [24] has shown NEXPTIME-hardness of satisfiability of BS sentences, i.e. of ∃∗∀∗ sen-

tences. By Theorem 9, these are included in the ∃∗∀∗∃∗ subfragment of SF.

It is worth noting that satisfiability of ∃∗∀3∃∗ sentences, in which variables are not separated,
is known to be undecidable for several subcases, see [7] for references.

4.1.2 Sentences with several blocks of quantifiers

As in the previous section we replace leading existential quantifiers with constant symbols in this
section.

The special case of strong separation

Consider a sentence ϕ := ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ for some quantifier-free first-order formula ψ with-
out non-constant function symbols. We assume that the sets ~y1, . . . , ~yn and ~x1 ∪ . . . ∪ ~xn are all
pairwise separated in ψ. Hence, we can transform ψ into a disjunction of conjunctions of the form
ψDNF :=

∨mDNF

j=1 χj(~x1, . . . , ~xn) ∧
∧n
k=1 ηj,k(~yk), in which the χj and the ηj,k are conjunctions of

literals. The additional requirement of ~y1, . . . , ~yn being pairwise separated relieves us from the
need to use nested fingerprints, since at the level of atoms every tuple ~yk occurs isolated from the
others, i.e. the values assigned to one tuple ~yk1 do not influence the truth values of the subformulas
ηj,k2(~yk2 ) under A for k2 6= k1. Nested fingerprints will be necessary in the general case later on.

Let A be an arbitrary structure over the signature of ϕ. For every index k ≤ n we define a

fingerprint function λk : U
|~yk|
A → P[mDNF] such that for every tuple ~ak ∈ U

|~yk|
A it holds λk(~ak) :={

j
∣∣ A, [~yk 7→~ak] |= ηj,k

}
. If two tuples ~ak, ~a

′
k are assigned the same fingerprint by λk, then they

result in the same truth value for ηj,k(~yk) under A , i.e. for every j we have A, [~yk 7→~ak] |= ηj,k if
and only if A, [~yk 7→~a

′
k] |= ηj,k. Since the variables in ~yk do not occur in other subformulas than the

ηj,k, we conclude the following for every k and an arbitrary variable assignment β: A, β[~yk 7→~ak] |=
∀~xk+1∃~yk+1 . . .∀~xn∃~yn.ψDNF holds if and only if A, β[~yk 7→~a′k] |= ∀~xk+1∃~yk+1 . . .∀~xn∃~yn.ψDNF.
In other words, ~ak and ~a′k are interchangeable as values for ~yk, whenever they are assigned the
same fingerprint by λk.

Every λk induces a partition of U
|~yk|
A into at most 2mDNF equivalence classes of tuples with

identical fingerprints with respect to λk. As we have done before, we can define representatives
αk,S for every fingerprint S ⊆ [mDNF], for which there is some tuple ~a with λk(~a) = S. In the end,
in analogy to the simpler case, we may derive equisatisfiability of ϕ and ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ ∧∧n
k=1

∨2mDNF

j=1

∧|~yk|
i=1 yk,i ≈ ck,j,i, where all the ck,j,i are fresh constant symbols.

Using the techniques we have seen earlier, we can improve this result in two ways. For one
thing, the last quantifier block ∃~yn does not need to range over 2mDNF tuples of constants, but
mDNF are sufficient, as we have already seen in Section 4.1.1. Secondly, the ~y1, . . . , ~yn−1 do not
need to range over 2mDNF tuples either, since we can stick to covering representatives instead of
representatives with exactly the same fingerprint and then apply Sperner’s Theorem again. Thus,
we need to consider at most κDNF :=

(
mDNF

⌊mDNF/2⌋

)
≤ 2mDNF representatives for every k < n.

Consequently, we may conclude that the original ϕ is equisatisfiable to ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ∧(∧n−1
k=1

∨κDNF

j=1

∧|~yk|
i=1 yk,i ≈ ck,j,i

)
∧
(∨mDNF

j=1

∧|~yn|
i=1 yn,i ≈ cn,j,i

)
where all the ck,j,i are fresh.

Applying a similar analysis as in Section 4.1.1 leads to the observation that if ϕ has a model,

then it has one with at most |consts(ϕ)| + κDNF ·
∑n−1
k=1 |~yk| + mDNF · |~yn| ≤ 23·2

len(ϕ)

domain
elements.
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Theorem 15. Let ϕ := ∃~z ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ be a sentence in SF for some quantifier-free ψ
without non-constant function symbols. If the sets ~y1, . . . , ~yn are pairwise separated in ψ, then
satisfiability of ϕ can be decided nondeterministically in time that is at most double exponential
in len(ϕ).

The general case

Consider a sentence ϕ := ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ for some quantifier-free ψ without non-constant
function symbols in which the sets ~x1 ∪ . . .∪~xn and ~y1∪ . . .∪~yn are separated. We can transform
ψ into a disjunction of conjunctions ψDNF :=

∨mDNF

j=1 χj(~x1, . . . , ~xn) ∧ ηj(~y1, . . . , ~yn) in which
the χj and the ηj are conjunctions of literals. As we have already announced in the beginning
of Section 4.1, we need to deal with a nested form of fingerprints in the general case of several
quantifier alternations. The reason is that the truth values of the ηj depend on the values assigned
to variables across multiple existential quantifier blocks.

For the following definitions we enhance the power set operator P by allowing for iteration:
PkS shall denote the k-fold application of P to S. Let A be an arbitrary structure over the
signature of ϕ. We inductively define fingerprint functions λn−1, . . . , λ1 with signatures λk :

U

∑k
j=1 |~yj|

A → Pn−k[mDNF] as follows.

• λn−1 : U
∑n−1

j=1 |~yj |

A → P[mDNF] such that for all tuples ~a1 ∈ U
|~y1|
A , . . . ,~an−1 ∈ U

|~yn−1|
A and

every j ∈ [mDNF] it holds j ∈ λn−1(~a1, . . . ,~an−1) if and only if there exists a tuple ~an such
that A, [~y1 7→~a1, . . . , ~yn−1 7→~an−1, ~yn 7→~an] |= ηj ;

• λn−2 : U
∑n−2

j=1 |~yj |

A → P2[mDNF] such that for all tuples ~a1 ∈ U
|~y1|
A , . . . ,~an−2 ∈ U

|~yn−2|
A and

every S ∈ P[mDNF] it holds S ∈ λn−2(~a1, . . . ,~an−2) if and only if there exists a tuple ~an−1

such that λn−1(~a1, . . . ,~an−2,~an−1) = S;

...

• λ1 : U
|~y1|
A → Pn−1[mDNF] such that for every tuple ~a1 ∈ U

|~y1|
A and every S ∈ Pn−2[mDNF] it

holds S ∈ λ1(~a1) if and only if there exists a tuple ~a2 such that λ2(~a1,~a2) = S.

The following lemma expresses that sequences of tuples with identical fingerprints may be inter-
changed without affecting semantics.

Lemma 16. For every k < n and all tuples ~a1,~a
′
1 ∈ U

|~y1|
A , . . . , ~ak,~a

′
k ∈ U

|~yk|
A , ~b1 ∈ U

|~x1|
A , . . . ,~bk ∈

U
|~xk|
A if λk(~a1, . . . ,~ak) = λk(~a

′
1, . . . ,~a

′
k) then it holds

(i) A, [~x1 7→~b1, . . . , ~xk 7→~bk, ~y1 7→~a1, . . . , ~yk 7→~ak] |= ∀~xk+1∃~yk+1 . . . ∀~xn∃~yn.ψ
if and only if
(ii) A, [~x1 7→~b1, . . . , ~xk 7→~bk, ~y1 7→~a′1, . . . , ~yk 7→~a

′
k] |= ∀~xk+1∃~yk+1 . . . ∀~xn∃~yn.ψ.

Proof. We proceed by induction from k = n−1 to k = 1. For the sake of readability, we abbreviate
sequences such as ~x1 7→~b1, . . . , ~xk 7→~bk by ~x≤k 7→~b≤k.

Suppose k = n− 1. Let S be the value of λn−1(~a1, . . . ,~an−1) (which we assume to be identical
to λn−1(~a

′
1, . . . , ~a

′
n−1)). By definition of λn−1, S is a subset of [mDNF]. Assume (i) holds and

let ~c ∈ U
|~xn|
A be arbitrary. There must be some index j ∈ [mDNF] and some ~d ∈ U

|~yn|
A such that

A, [~x≤n−1 7→~b≤n−1, ~xn 7→~c ] |= χj and A, [~y≤n−1 7→~a≤n−1, ~yn 7→~d ] |= ηj . Hence, j ∈ S and thus

there is some ~d′ ∈ U
|~yn|
A such that A, [~y≤n−1 7→~a′≤n−1, ~yn 7→~d

′] |= ηj . Therefore, (ii) must hold too.
Since this argument is completely symmetric, (i) holds if and only if (ii) does.

Suppose that k < n − 1 and let S := λk(~a1, . . . ,~ak) = λk(~a
′
1, . . . , ~a

′
k). Assume (i) and let

~c ∈ U
|~xk+1|
A be arbitrary. Then there must be some tuple ~d ∈ U

|~yk+1|
A such that A, [~x≤k 7→~b≤k,

~xk+1 7→~c, ~y≤k 7→ ~a≤k, ~yk+1 7→~d ] |= ∀~xk+2∃~yk+2 . . . ∀~xn∃~yn.ψ. Because of λk+1(~a1, . . . ,~ak,~d) ∈ S,

there must be some tuple ~d′ ∈ U
|~yk+1|
A such that λk+1(~a

′
1, . . . , ~a

′
k,~d

′) = λk+1(~a1, . . . ,~ak, ~d). Hence,

12



by induction, we get A, [~x≤k 7→~b≤k, ~xk+1 7→~c, ~y≤k 7→ ~a′≤k, ~yk+1 7→ ~d′] |= ∀~xk+2∃~yk+2 . . .∀~xn∃~yn.ψ.
Consequently, (ii) must hold, too. Again, by symmetry, (ii) does also entail (i).

Having defined the functions λ1, . . . , λn−1 and having shown that tuples of elements, which are
associated with the same fingerprint, are interchangeable, we can now employ the same methods

as before: (i) partition the sets U

∑k
j=1 |~yk|

A in accordance with the fingerprints assigned by the
λk, (ii) fix representatives αℓk,S for every k and every occurring fingerprint S (the ℓ accounts for
multiple representatives with fingerprint S at level k), (iii) restrict the range of quantifier blocks
∃~yk to (parts of) the representatives αℓk,S . Step (ii) is slightly more complicated in this setting,
because the truth value of the subformulas ηj(~y1, . . . , ~yn) under A depends on all the values
assigned to ~y1, . . . , ~yn. The consequence is not only a nesting of fingerprints but also a nesting
of representatives: the αℓk,S at level k are extensions of some αℓ

′

k−1,S′ at level k − 1 with S ∈ S′,

respectively. More precisely, starting from some representative αℓ
′

k−1,S′ = 〈~a1, . . . ,~ak−1〉 with the

fingerprint λk−1(~a1, . . . ,~ak−1) = S′, we pick one representative αℓk,S = 〈~a1, . . . ,~ak−1,~ak〉 with
λk(~a1, . . . ,~ak−1,~ak) = S for every S ∈ S′. Obviously, this approach might produce more than one
representative with the fingerprint S at level k. In order to account for such multiplicities, we
formally annotate the αk,S with indices ℓ.

In the end, we can derive equisatisfiability of ϕ and ϕ′ :=

∀~x1∃~y1 . . . ∀~xn∃~yn.ψ

∧

|Pn−1[mDNF]|∨

j1=1

(
~y1 ≈ ~c〈j1〉 ∧

|Pn−2[mDNF]|∨

j2=1

(
~y2 ≈ ~c〈j1,j2〉

∧ . . .
(
. . .

|[mDNF]|∨

jn=1

~yn ≈ ~c〈j1,...,jn〉

)
. . .
))

,

where ~yk ≈ ~c〈j1,...,jk〉 stands for
∧|~yk|
i=1 yk,i ≈ c〈j1,...,jk〉;i and all the c〈j1,...,jk〉;i are fresh constant

symbols. In accordance with the approach described above, we introduce a nested form of range-
restricting constraint this time.

In order to compute the number of constant symbols in ϕ′, we first define the notation 2↑k(m)

inductively: 2↑0(m) := m and 2↑k+1(m) := 2(2
↑k(m)). The number of constants that occur in ϕ′

is |consts(ϕ)|+
∑n−1

k=0

(∏n−1
ℓ=k 2↑ℓ(mDNF)

)
· |~yn−k| ≤ len(ϕ) + n · len(ϕ) ·

(
2↑n(len(ϕ))

)n
.

Theorem 17. Let ϕ := ∃~z ∀~x1∃~y1 . . . ∀~xn∃~yn.ψ be a sentence in SF for some quantifier-free ψ
without non-constant function symbols. Satisfiability of ϕ can be decided nondeterministically in
time that is at most n-fold exponential in len(ϕ).

4.1.3 Open formulas and dependencies

Let ψ(~x, ~y,~z) be a quantifier-free first-order formula in which ~x and ~y are separated. We proceed
analogously to the case of closed formulas treated in Section 4.1.1. The only difference is that the
employed set constructions and the underlying fingerprint function depend on the valuation of the
parameter tuple ~z.

We transform ψ(~x, ~y,~z) into an equivalent formula
∨mDNF

k=1 χk(~x,~z)∧ηk(~y,~z) such that χk and
ηk denote conjunctions of literals and mDNF is some non-negative integer. Given a structure A

and a tuple ~c ∈ U
|~z|
A , we define the fingerprint function λ~c by setting λ~c(~b) :=

{
k ∈ [mDNF]

∣∣
A, [~x 7→~b,~z 7→~c ] |= χk(~x,~z)

}
for every ~b ∈ U

|~x|
A . In order to complement λ~c, we construct the

sets Û~c,1, . . . , Û~c,mDNF
⊆ U

|~y|
A such that Û~c,k :=

{
~a ∈ U

|~y|
A

∣∣ A, [~y 7→~a,~z 7→~c ] |= ηk
}
. For every

nonempty Û~c,k we pick one representative α~c,k ∈ Û~c,k. Based on these sets, we define the mapping

µ~c : U
|~x|
A → [mDNF] such that µ~c(~b) yields some fixed index k ∈ λ~c(~b) for which U~c,k is nonempty.

If no such k exists, µ~c(~b) remains undefined.
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If A, [~z 7→~c ] |= ∀~x∃~y.ψ(~x, ~y,~z), then for every ~b ∈ U
|~x|
A we have A, [~x 7→~b, ~y 7→α~c,µ~c(~b),~z7→

~c ] |=

ψ(~x, ~y,~z). Hence, for every quantifier prefix Q~z—some of the variables in ~z may be existentially
quantified and some universally—the following sentences are mutually equisatisfiable:

(1) Q~z∀~x∃~y.ψ(~x, ~y,~z),

(2) Q~z∀~x∃~y.ψ(~x, ~y,~z) ∧
∨mDNF

ℓ=1

∧|~y|
i=1 yi ≈ gℓ,i(~z),

(3) Q~z∀~x.ψ(~x, ~y,~z)
[
y1, . . . , y|~y|

]
f1(~x,~z), . . . , f|~y|(~x,~z)

∧
∨mDNF

ℓ=1

∧|~y|
i=1 fi(~x,~z) ≈ gℓ,i(~z),

where the gℓ,i are fresh function symbols of appropriate arity and the fi are Skolem functions of
appropriate arity.

Dually, we can transform ψ(~x, ~y,~z) into an equivalent formula
∧mCNF

i=1 χ′
i(~x,~z)∨η

′
i(~y,~z) in which

the χ′
i and η

′
i are disjunctions of literals. Given a structure A and a fixed tuple ~c ∈ U

|~z|
A of domain

elements, we define the fingerprint function λ~c : U
|~y|
A → P[mCNF] such that for every ~a it holds

λ~c(~a) :=
{
i ∈ [mCNF]

∣∣ A, [~y 7→~a,~z7→~c ] |= η′i(~y,~z)
}
. The function λ~c induces a partition of U

|~y|
A

into 2mCNF equivalence classes. For every fingerprint S ⊆ [mCNF] such that there is some tuple ~a

with λ~c(~a) = S we fix a representative α~c,S ∈ U
|~y|
A of ~a’s equivalence class, i.e. λ~c(α~c,λ~c(~a)) = λ~c(~a).

Then for all tuples ~b ∈ U
|~x|
A and ~a ∈ U

|~y|
A , we have A, [~x 7→~b, ~y 7→~a,~z7→~c ] |= ψ(~x, ~y,~z) if and

only if A, [~x 7→~b, ~y 7→α~c,λ~c(~a),~z 7→~c ] |= ψ(~x, ~y,~z). Consequently, for every quantifier prefix Q~z the
following sentences are mutually equisatisfiable:

(1) Q~z∀~x∃~y.ψ(~x, ~y,~z),

(2) Q~z∀~x∃~y.ψ(~x, ~y,~z) ∧
∨2mCNF

j=1

∧|~y|
i=1 yi ≈ gj,i(~z),

(3) Q~z∀~x.ψ(~x, ~y,~z)
[
y1, . . . , y|~y|

]
f1(~x,~z), . . . , f|~y|(~x,~z)

∧
∨2mCNF

j=1

∧|~y|
i=1 fi(~x,~z) ≈ gj,i(~z),

where the gj,i are fresh function symbols of appropriate arity and the fi are Skolem functions of
appropriate arity.

Together with the dual case, we have inferred equisatisfiability of the sentences Q~z∀~x∃~y.

ψ(~x, ~y,~z), and Q~z∀~x∃~y.ψ(~x, ~y,~z) ∧
∨m∗

j=1

∧|~y|
i=1 yi ≈ gj,i(~z), where m∗ := min(2mCNF ,mDNF) and

Q~z can be any quantifier prefix closing the formula—some of the variables in ~z may be existentially
quantified and some universally.

Relation to Henkin quantifiers

In [19] Henkin introduced a generalized notion of quantifiers, sometimes called finite partially or-
dered quantifiers or branching quantifiers or nonlinear quantifiers. We have seen that separation of
variables leads to a weaker dependency of existentially quantified variables on universally quanti-
fied ones (cf. Proposition 3 and Lemma 12). The arity of Skolem functions may even be decreased
at the price of a possibly exponential increase in the length of the formula (cf. Proposition 5).
However, we have also seen that this does not lead to complete independence, as it would in the
case of quantification in Henkin’s style.

Example 18. Consider the following equivalent sentences

• ∀z∀x∃y. Q(z, y) ↔ P (x),

• ∀z∀x∃y.
(
¬Q(z, y) ∧ ¬P (x)

)
∨
(
Q(z, y) ∧ P (x)

)
,

• ∀z∃y1y2∀x.
(
Q(z, y1) → P (x)

)
∧
(
P (x) → Q(z, y2)

)
,

which we shall address by ϕ, ϕDNF and ϕ′, respectively.
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Standard Skolemization of ϕ introduces a binary Skolem function fy and replaces the single
occurrence of y with the term fy(z, x), whose value fully depends on the value assigned to x
(distinct values for x may cause distinct values for fy(z, x)). In contrast to this, Skolemization of
ϕ′ replaces the two variables y1, y2 with the terms fy1(z) and fy2(z), respectively, for two unary
Skolem functions fy1 , fy2 . Interestingly, neither of the new terms depends on x.

On the other hand, range-restricted Skolemization reconciles the two previous approaches
by introducing three terms fy(z, x) and g1(z), g2(z)—one depending on x and two which are
independent of x—and by adding the restriction ∀z∀x.fy(z, x) ≈ g1(z) ∨ fy(z, x) ≈ g2(z). This
limits the dependence of the value of fy(z, x) on the value assigned to x to a finite degree (over
infinite domains, distinct values for x cannot always result in distinct values for fy(z, x)). However,
it still does not lead to complete independence from x.

Henkin quantifiers can explicitly express dependencies of existentially quantified variables on
universally quantified ones. For instance, we could write ψ := ∀z∀x∃zy.Q(z, y) ↔ P (x) to express
that the value of y depends on the value of z but not on x’s value. Then ψ is equisatisfiable to
ψSk := ∀z∀x.Q(z, f ′

y(z)) ↔ P (x) for some Skolem function f ′
y. Due to the enforced independence

of y from x in ψ, it is easy to construct a model A of ϕ which cannot be extended to a model B of
ψSk (e.g., set UA := {0, 1}, PA := {0} and QA := {〈0, 0〉, 〈1, 1〉}). Finding a satisfying extension
B of A is not a problem in any other case of Skolemization that we have described above (for
example, set UB := UA, P

B := PA, QB := QA, fB
y1(0) := gB1 (0) := 1, fB

y1(1) := gB1 (1) := 0,

fB
y2(0) := gB2 (0) := 0, fB

y2(1) := gB2 (1) := 1, and fB
y (0, a) := gB2 (a), f

B
y (1, a) := gB1 (a) for every

a ∈ {0, 1}).

Altogether, the example illustrates that separation of existentially quantified variables from
universally quantified ones does lead to a certain degree of independence, but it does not reach
the level of independence Henkin quantifiers can guarantee. This is not at all surprising, because
Henkin quantifiers increase the expressiveness of first-order logic.

4.2 Extensions of the Separated Fragment

In this section we describe methods extending SF into a proper superset of the Full Monadic
Fragment (with unary function symbols but without equality)—shown to be decidable indepen-
dently by Löb [25] and Gurevich [18]—and the Relational Monadic Fragment with equality (but
without non-constant function symbols). We will show how sentences from both fragments can be
transformed into ones pursuant to Definition 7 under an at most quadratic increase in the length
of the formulas.

Adopting a method already used by Löb in [25] and also by Grädel (cf. proof of Proposition
6.2.7 in [7]), we can handle unary function symbols under certain restrictions.

Proposition 19. Let ϕ be a first-order sentence without non-unary function symbols (constants
are allowed). If the unary function symbols exclusively occur in atoms starting with a unary
predicate symbol, then we can find an equisatisfiable sentence ϕ′ without non-constant function
symbols such that any model B of ϕ′ can be transformed into a model A of ϕ over the same
domain. The length of ϕ′ lies in O(len(ϕ)). Moreover, if ϕ belongs to SF, then ϕ′ is also an SF
sentence.

Proof. Let f1, . . . , fk be the unary function symbols occurring in ϕ. We apply the following
transformation iteratively. Assume ϕ contains the atom P (fi(t)) for some term t. We may
transform ϕ into ϕ

[
P (fi(t))

/
R(t)

]
∧∀x.P (fi(x)) ↔ R(x), where the R is a fresh unary predicate

symbol and ϕ
[
P (fi(t))

/
R(t)

]
is the formula we obtain from ϕ by replacing every occurrence of

P (fi(t)) by R(t). Exhaustive application of this transformation to ϕ yields a sentence ϕ′′ of the

form ψ ∧
∧k
i=1

∧
j ∀x.Pj(fi(x)) ↔ Ri,j(x), where ψ does not contain any of the fi anymore. If we

conceive the fi in ϕ
′ as Skolem functions and revert the Skolemization, the fi vanish completely

and we end up with the equisatisfiable sentence ϕ′ := ψ ∧ ∀x∃y1 . . . yk.
∧k
i=1

∧
j Pj(yi) ↔ Ri,j(x).

Because of len(ψ) ≤ len(ϕ) and since for any occurrence of an fi in ϕ at most one new conjunct
of a fixed length is introduced, it holds len(ϕ′) ∈ O(len(ϕ)).
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If we now allow for unary function symbols occurring in monadic atoms in SF, as Proposition 19
suggests, this extended fragment becomes a proper superset of the Full Monadic fragment without
equality.

Equality in SF, as defined in Definition 7, is subject to the separation condition. However,
there is no such restriction in monadic formulas with equality. For instance, while the sentence
∀x∃y.x ≈ y is admitted for the Relational Monadic Fragment with equality, the sets {x} and {y}
are not separated in this sentence. Next, we show why the separation restriction may be discarded
for equations, if the sentence at hand exhibits the small model property. We start by treating the
case of monadic sentences with equality but without non-constant function symbols.

Proposition 20. For every sentence ϕ in the Relational Monadic Fragment with equality we can
construct an equisatisfiable relational monadic sentence ϕ′ without equality. Moreover, the length
of ϕ′ is of order O(len(ϕ)2).

Proof. Let ϕ be a first-order sentence without non-constant function symbols and containing at
most the unary predicate symbols P1, . . . , Pn (besides the equality predicate). Let k be the number
of occurrences of quantifiers in ϕ plus the number of constant symbols in ϕ, and set κ := ⌈log2 k⌉.
We extend the underlying signature with fresh unary predicate symbols Q1, . . . , Qκ and define the
formula

ψ≈(x, y) :=

n∧

i=1

(
Pi(x) ↔ Pi(y)

)
∧

κ∧

i=1

(
Qi(x) ↔ Qi(y)

)
.

The length of ψ≈(x, y) lies in O(len(ϕ)). Let ϕ′ be constructed from ϕ by replacing every oc-
currence of an equation s ≈ t with ψ≈(x, y)

[
x/s, y/t

]
. Since s, t cannot contain non-constant

function symbols, the length of ψ≈(x, y)
[
x/s, y/t

]
is the same as that of ψ≈(x, y). We show that

ϕ is satisfiable if and only if ϕ′ is so.
Let A be a model of ϕ over the domain UA. We construct a fingerprint function λ : UA → P[n]

for which λ(a) :=
{
i ∈ [n]

∣∣ a ∈ PA
i

}
for every a ∈ UA. We now partition UA into parts US such

that every US contains exactly the elements a with the fingerprint λ(a) = S.
Starting from A we construct an interpretation A′ by arbitrarily choosing subsets U′

S ⊆ US for
every S ⊆ [n] such that |U′

S | = min(|US |, k), and by defining A′’s domain to be UA′ :=
⋃
S⊆[n] U

′
S .

Moreover, we set PA′

i := PAi ∩UA′ for all Pi and define the predicates QA′

i so that for every S ∈ [n]

and for all elements a, a′ ∈ U′
S we can find an index j such that a ∈ QA′

j and a′ 6∈ QA′

j or vice
versa. Clearly, for every variable assignment β : X → UA′ it then holds A′, β |= x ≈ y if and only
if A′, β |= ψ≈(x, y)

Since a formula with k different variables and constant symbols cannot distinguish more than
k elements of the same color, A′ must also be a model of ϕ. This together with the equivalence of
x ≈ y and ψ≈(x, y) under A

′ entails that A′ is a model of ϕ′. This proves the “only if”-direction.
Now let B′ be an arbitrary model of ϕ′. We now construct a fingerprint function λ′ : UB′ →

P[n+κ] analogously to λ, but now also taking the predicatesQB′

i into account. Again, we partition
UB′ into parts US so that all elements in a set US are assigned the same color by λ′. We now define
the new universe UB by arbitrarily picking exactly one element from every part US , S ⊆ [n+ κ].
In addition, we set PB

i := PB′

i ∩ UB and QB
i := QB′

i ∩ UB.
Since ϕ′ can only distinguish elements of UB by means of their belonging to predicates PB

i and
QB
i , it is clear that B is a model of ϕ′. Moreover, for any variable assignment β : X → UB we get

B, β |= ψ≈(x, y) if and only if B, β |= x ≈ y. Put together, these two facts entail B |= ϕ.

More generally, we can formulate the above result for all sentences which exhibit the small
model property.

Proposition 21. Let ϕ be a first-order sentence with equality. Suppose we can compute a positive
integer k such that if ϕ is satisfiable, then there is a model A |= ϕ over a universe of cardinality at
most k. Let κ := ⌈log2 k⌉. We can transform ϕ into an equisatisfiable sentence ϕ′ without equality
using only the vocabulary of ϕ plus κ fresh unary predicate symbols Q1, . . . , Qκ. The length of ϕ′

lies in O(κ · len(ϕ)3). Moreover, if existentially quantified variables are separated from universally
quantified ones in all atoms in ϕ except for equations, then they are separated in all atoms in ϕ′.
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Proof. We generalize the argument from the proof of Proposition 20. Since ϕ may also contain
non-unary predicate symbols and non-constant function symbols, the encoding of equality requires
additional congruence axioms. First, ψ≈(x, y) becomes slightly simpler:

ψ≈(x, y) :=
κ∧

i=1

(
Qi(x) ↔ Qi(y)

)
.

In addition, we need the following congruence axioms:

ψpred := ∀xy.ψ≈(x, y) −→
∧

P

arity(P )−1∧

i=0

(
∀~ui~u

′
i. P (~ui, x, ~u

′
i) → P (~ui, y, ~u

′
i)
)
,

where P ranges over all predicate symbols in ϕ, except for the equality predicate, and ~ui, ~u
′
i are

disjoint sets of variables of cardinality |~ui| = i and |~u′
i| = arity(P ) − i − 1 for the respective P ,

and

ψfunc := ∀xy.ψ≈(x, y) −→
∧

f

arity(f)−1∧

i=0

(
∀~vi~v

′
i. ψ≈(x, y)

[
x/f(~vi, x, ~v

′
i), y/f(~vi, y, ~v

′
i)
])
,

where f ranges over all non-constant function symbols in ϕ, and ~vi, ~v
′
i are disjoint sets of variables

of cardinality |~vi| = i and |~v′
i| = arity(f)− i− 1 for the respective f .

We construct ϕ′ from ϕ by replacing every occurrence of an equation s ≈ t with the formula
ψ≈(x, y)

[
x/s, y/t

]
, and by conjunctively connecting ψpred and ψfunc to it.

LetA be a model of ϕ over the finite domain UA := {a1, . . . , ak}. Starting fromA, we construct
a structure B such that UB := UA, P

B := PA for every predicate symbol P occurring in ϕ, cB := cA

for every constant symbol c occurring in ϕ, fB := fA for every function symbol f occurring in ϕ.
Moreover, we define QB

1 , . . . , Q
B
κ such that for all distinct ai1 , ai2 ∈ UB we find some j, 1 ≤ j ≤ κ,

for which ai1 ∈ QB
j if and only if ai2 6∈ QB

j . This is possible, because, having κ = ⌈log2 k⌉ unary
predicates, one can distinguish 2κ ≥ k domain elements. Hence, for any variable assignment β it
holds B, β |= ψ≈(x, y) if and only if β(x) = β(y) if and only if B, β |= x ≈ y. Consequently, B is a
model of ϕ as well as of ϕ′. The finishes the “only if”-part of the proof.

Now let B be a model of ϕ′. Hence, B is also a model of ψpred and ψfunc. We define a fingerprint
function λ : UB → P[κ] where we set λ(a) :=

{
i ∈ [κ]

∣∣ a ∈ QB
i

}
for every a ∈ UB. Using λ,

we decompose UB into parts US := {a ∈ UB | λ(a) = S ⊆ [κ]} and fix for every such set one
representative αS ∈ US .

We now define a new structure A based on the representatives αS . To this end, we set
UA := {αλ(a) | a ∈ UB}, PA := PB ∩ UmA for every m-ary predicate symbol P occurring in ϕ,
cA := αλ(cB) for every constant symbol c occurring in ϕ, fA(~a) := αλ(fB(~a)) for every m-ary
function symbol f occurring in ϕ and every tuple ~a ∈ UmA .

We make the following observations:

(1) λ(αλ(a)) = λ(a) for every a ∈ UB.

(2) αλB(a) = a for every a ∈ UA.

(3) Given a, b ∈ UB, λ(a) = λ(b) implies B, β |= ψ≈(x, y) for every variable assignment β that
fulfills β(x) = a and β(y) = b.

(4) Given a1, . . . , am, b1, . . . , bm ∈ UB such that λB(ai) = λ(bi) for i = 1, . . . ,m, it holds

(a) λ(fB(a1, . . . , am)) = λ(fB(b1, . . . , bm)) and

(b) 〈a1, . . . , am〉 ∈ PB if and only if 〈b1, . . . , bm〉 ∈ PB

for every m-ary function symbol f and every m-ary predicate symbol P occurring in ϕ′,
respectively.
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All of these observations are consequences of the definition of the coloring λ and our assumption
B |= ψpred ∧ ψfunc.

Claim I: Let t be some term occurring in ϕ′, and let β, β′ be two variable assignments such
that β′(x) = αλ(β(x)) holds for every variable x occurring in t. We observe λ

(
A(β′)(t))

)
=

λ
(
B(β)(t))

)
.

Proof: The proof proceeds by induction on the structure of t.

Base cases: Suppose t = c for some constant symbol c. By definition of A, it holds
cA = αλ(cB). Observation (1) thus entails λ

(
A(β′)(c)

)
= λ

(
cA
)
= λ

(
αλ(cB)

)
= λ

(
cB
)
=

λ
(
B(β)(c)

)
.

Suppose t = x for some variable x. By assumption, we have β′(x) = αλ(β(x)). Observa-

tion (1) thus entails λ
(
A(β′)(x)

)
= λ

(
β′(x)

)
= λ

(
αλ(β(x))

)
= λ

(
β(x)

)
= λ

(
B(β)(x)

)
.

Inductive case: Let t = f(s1, . . . , sm) for some m-ary function symbol f and arbitrary
terms s1, . . . , sm. By definition of fA and Observation (1), we get

λ
(
A(β′)(f(s1, . . . , sm))

)

= λ
(
fA(A(β′)(s1), . . . ,A(β′)(sm))

)

= λ
(
αλ(fB(A(β′)(s1),...,A(β′)(sm)))

)

= λ
(
fB(A(β′)(s1), . . . ,A(β′)(sm))

)
.

By induction, we conclude λ
(
A(β′)(si)

)
= λ

(
B(β)(si)

)
for i = 1, . . . ,m. Hence, Obser-

vation (4a) leads to

λ
(
fB(A(β′)(s1), . . . ,A(β′)(sm))

)

= λ
(
fB(B(β)(s1), . . . ,B(β)(sm))

)

= λ
(
B(β)(f(s1, . . . , sm))

)
.

Consequently, λ
(
A(β′)(f(s1, . . . , sm))

)
equals λ

(
B(β)(f(s1, . . . , sm))

)
. ♦

Claim II: Let A be some atom occurring in ϕ′, and let β, β′ be two variable assignments such
that β′(x) = αλ(β(x)) holds for every variable x occurring in A. B, β |= A holds if and only
if A, β′ |= A.

Proof: Since ϕ′ does not contain equality, A must be of the shape P (t1, . . . , tm) for some m-
ary predicate symbol P and terms t1, . . . , tm. B, β |= P (t1, . . . , tm) holds if and only if〈
B(β)(t1), . . . ,B(β)(tm)

〉
∈ PB. By Claim I, we know λ

(
B(β)(ti)

)
= λ

(
A(β′)(ti)

)
for i =

1, . . . ,m, and thus Observation (4b) entails that
〈
B(β)(t1), . . . ,B(β)(tm)

〉
∈ PB holds true

if and only if
〈
A(β′)(t1), . . . ,A(β′)(tm)

〉
∈ PB does. And since all the domain elements

A(β′)(ti) belong to UA, it follows that
〈
A(β′)(t1), . . . ,A(β′)(tm)

〉
∈ PB is equivalent to〈

A(β′)(t1), . . . ,A(β′)(tm)
〉
∈ PB ∩ UmA = PA. Consequently, we have A, β′ |= P (t1, . . . , tm)

if and only if B, β |= P (t1, . . . , tm) holds. ♦

Claim III: B |= ϕ′ implies A |= ϕ′.

Proof: The proof proceeds by induction on the structure of ϕ′. However, we need to slightly
generalize the claim first: given any two variable assignments β, β′ for which β′(x) = αλ(β(x))
for every variable x occurring freely in ϕ′, we observe that B, β |= ϕ′ entails A, β′ |= ϕ′.

The base case is already handled by Claim II. Of the inductive cases only the ones with
quantifiers are of interest, the others are trivial.

Suppose ϕ′ is of the form ∀x.ψ. In order to show A, β′ |= ∀x.ψ, we must show that
A, β′[x7→a] |= ψ holds for every a ∈ UA. By Observation 2 and our assumption about

18



β and β′, we have
(
β′[x7→a]

)
(v) = αλ((β[x 7→a])(v)) for every variable v occurring freely in ψ,

and thus the updated variable assignments β[x7→a] and β′[x7→a] fulfill the requirements of
the inductive hypothesis. By induction, we derive A, β′[x7→a] |= ψ for any a ∈ UA from
B, β[x7→a] |= ψ.

Suppose ϕ′ is of the form ∃y.ψ. We need to find some a ∈ UA for which A, β′[y 7→a] |= ψ
holds true. Since we assume B, β |= ∃y.ψ, there is some b ∈ UB such that B, β[y 7→b] |= ψ. We
set a := αλ(b). Hence, we have

(
β′[y 7→a]

)
(v) = αλ((β[y 7→b])(v)) for every variable v occurring

freely in ψ. By induction, we obtain A, β′[y 7→a] |= ψ from B, β[y 7→b] |= ψ.

This finishes the proof of B, β |= ϕ′ implying A, β′ |= ϕ′. Since ϕ′ is assumed to be a
sentence and thus does not contain free occurrences of any variable, it immediately follows
that B |= ϕ′ entails A |= ϕ′ ♦

Due to the fact that all domain elements in UA are assigned a different fingerprint by λ, we
may conclude for every β that A, β |= ψ≈(x, y) if and only if A, β |= x ≈ y. Consequently, A |= ϕ′

entails A |= ϕ.

An inspection of the described construction leads to the following upper bounds on the length
of the resulting (sub)formulas: len

(
ψ≈(x, y)

)
∈ O(κ), len

(
ψ≈(x, y)

[
x/s, y/t

])
∈ O(κ · len(ϕ)),

len
(
ψpred

)
∈ O(κ + len(ϕ)3), and len

(
ψfunc

)
∈ O(κ · len(ϕ)3). All in all, this yields len(ϕ′) ∈

O(κ · len(ϕ)3).

The just proven proposition means that some sentences, which are almost SF sentences, can
be transformed into equisatisfiable SF sentences, if they exhibit the small model property. More
precisely, being almost SF in this context means they do not contain non-constant function symbols
and fulfill the separation condition only for non-equational atoms.

In fact, we can even allow certain occurrences of non-constant function symbols. For instance,
the setting of unary function symbols described in Proposition 19 is possible, i.e. equations of the
form f(g(f(x))) ≈ g(h(y)) with x being universally quantified and y existentially, may be allowed,
as long as the sentence at hand has a finite model, for which we can computer an upper bound
on its size. In this case, first applying the transformation given in the proof of Proposition 20 and
subsequently the construction from the proof of Proposition 19 finally leads to an SF sentence.
Combinations with other translation methods are also conceivable.

Remark 22. Other methods for the elimination of the distinguished equality predicate have been
proposed. For instance, Dreben and Goldfarb [12] (Chapter 8, Sections 1 and 2) describe nega-
tive identity reduction, which introduces a binary predicate I to capture equality. However, this
approach can obviously not resolve non-separated equations into separated atoms, and therefore
does not exactly meet our particular needs. On the other hand, this method is not restricted to
sentences possessing the small model property.

For an automated-reasoning perspective on the elimination of equality, consult [4, 2, 8, 23], for
instance.

5 Separation and Automated Reasoning

The size of the search space of a first-order automated reasoning procedure is related to the size of
the relevant subset of the Herbrand base that is actually explored by the procedure. Automated
reasoning on first-order formulas with an explicit or implicit finite Herbrand base has attracted a
lot of attention in recent years [16, 3, 28, 11, 20, 21, 6, 1]. In particular, all these procedures are
decision procedures for the BS(R) Fragment. But also a clause set with an explicit finite domain
axiom or a clause set enjoying an explicit or implicit acyclic atom structure generates only a finite
relevant subset of the overall Herbrand base. If the relevant subset of the Herbrand base is infinite,
implying the presence of non-constant function symbols, then the search space of an automated
reasoning procedure becomes infinite and it does not terminate anymore, in general. Even for a
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finite relevant subset generated over a finite number of constants the actual size of the set has an
important influence on the explored search space.

In this section we apply our results to the benefit of the above mentioned automated reason-
ing procedures. We show the techniques for one quantifier block alternation, but they can be
generalized to several blocks analogously to the results in Section 4. Note that given a set of
sentences where not all sentences are separated, our results are still applicable to the separated
sentences. Consider the separated sentence ∀~x∃~y.ψ(~x, ~y). This formula is satisfiable if and only
if it is satisfiable over a domain of m∗|~y|+ |consts(ψ)| (see Lemma 12) elements

∀~x∃~y.ψ(~x, ~y) ∧
∨m∗

ℓ=1

∧|~y|
i=1 yi ≈ cℓ,i.

Skolemizing the ~y and explicitly representing the substitution in ψ by equations yields

∀~x~y.
((∧|~y|

i=1 fi(~x) ≈ yi
)
→ ψ(~x, ~y)

)
∧
∨m∗

ℓ=1

∧|~y|
i=1 fi(~x) ≈ cℓ,i

that is a first-order sentence with an explicit finite domain axiom, so the relevant Herbrand base
is finite. Still, reasoning with equality on the fi is not needed here and we can further simplify
the formula to the equisatisfiable sentence

∀~x~y.
((∧|~y|

i=1Ri(~x, yi)
)
→ ψ(~x, ~y)

)
∧
∨m∗

ℓ=1

∧|~y|
i=1 Ri(~x, cℓ,i)

where we replaced the fi by relations Ri without the need to add further axioms. The transforma-
tion preservers satisfiability. Totality of the fi after translation to Ri is guaranteed by the finite

domain axiom
∨m∗

ℓ=1

∧|~y|
i=1 fi(~x) ≈ cℓ,i. If some Ri interpretation contains more than one value for

an ~x assignment, all values except one can simply be dropped, preserving satisfiability. This is
a consequence of the fact that all positive fi equational occurrences (Ri occurrences) are exactly
in the finite domain axiom. Eventually, if ψ(~x, ~y) does not contain any non-constant function
symbols, we moved a separated sentence that would have resulted after CNF generation in an
infinite Herbrand base to a clause set of the BS(R) Fragment.

The size of the finite domain axiom is worst-case exponential in the number mCNF of clauses
generated out of ∀~x∃~y.ψ(~x, ~y) by a CNF procedure without renaming [27]. Thus, if the number
of clauses can be reduced, it improves the size of the finite domain axiom. Redundant clauses
do not contribute to mCNF. For example, if two clauses subsume each other, only one needs
to be considered for mCNF. Note that mCNF without considering redundancy can be computed
without actually generating the CNF [27]. Renaming, i.e. the replacement of subformulas via fresh
predicates, cannot be applied for determining mCNF, because it may generate atoms in which
variables ~x and ~y are no longer separated. An analogous argument holds for the transformation
into DNF.

The only formula whose length may grow exponentially in the length of ψ(~x, ~y) in the above
transformation is the finite domain axiom. Instead of adding this axiom to the formula it could
as well be built into a decision procedure for the BS(R) Fragment. Although this is subject to
future work, one line of extension for resolution refutation building procedures, for example, is
to start with a finite domain axiom for a small number of constants. In case of a refutation,
extend the refutation derivation and the involved finite domain axiom by literals with further
constants, until the overall limit m∗|~y| + |consts(ψ)| is reached or a model is found. In case the
finite domain axiom is a priori small, an explicit instantiation of ψ(~x, ~y) can support the efficiency
of an automated reasoning procedure. Explicit instantiation is the typical method used by SMT
solvers when confronted with quantification [17]. In general, an exponential number of domain
elements can be necessary for finding a model of a separated sentence. So the exponential growth
cannot be escaped.

Lemma 23. The following sentences are equisatisfiable. (We assume that the fi are fresh Skolem
functions of appropriate arity, the Ri are fresh predicate symbols, and the constant symbols cℓ,i
do not occur in ψ.)

(1) ∀~x∃~y.ψ(~x, ~y) ∧
∨m∗

ℓ=1

∧|~y|
i=1 yi ≈ cℓ,i,

(2) ∀~x.ψ(~x, ~y)
[
y1/f1(~x), . . . , y|~y|/f|~y|(~x)

]
∧
∨m∗

ℓ=1

∧|~y|
i=1 fi(~x) ≈ cℓ,i,

(3) ∀~x~y.
((∧|~y|

i=1 fi(~x) ≈ yi
)
→ ψ(~x, ~y)

)
∧
∨m∗

ℓ=1

∧|~y|
i=1 fi(~x) ≈ cℓ,i,
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(4) ∀~x~y.
((∧|~y|

i=1Ri(~x, yi)
)
→ ψ(~x, ~y)

)
∧
∨m∗

ℓ=1

∧|~y|
i=1Ri(~x, cℓ,i).

Proof. (2) is the Skolemization of (1). Equisatisfiability of the sentences in (2) and (3) is obvious—
they are even equivalent. It remains to prove equisatisfiability of the sentences in (3) and (4). Let
us denote the former by ϕf and the latter by ϕR.

It is easy to convert any model A of ϕf into a model A′ of ϕR: simply take the function graphs
of the fA

i as the interpretation of the Ri under A′.
Conversely, let B′ be a model of ϕR. We define a structure B exactly like B′, except for the

interpretations of the fi and Ri. For every ~a ∈ U
|~x|
B we pick one index ℓ ∈ [m∗] such that for every

i = 1, . . . , |~y| it holds 〈~a, cB
′

ℓ,i〉 ∈ RB′

i , and set fB
i (~a) := cB

′

ℓ,i (which equals cBℓ,i). Such an index ℓ

must exists because of B′ |= ∀~x.
∨m∗

ℓ=1

∧|~y|
i=1 Ri(~x, cℓ,i). To finish the construction of B, we define

RB
i to be the function graph of the newly defined function fB

i for every index i. It is easy to check
that B is a model of both ϕR and ϕf .

6 Related and Future Work

Dreben and Goldfarb [12] (page 65) extend the Relational Monadic Fragment to a certain extent in
the direction of the BS Fragment and call the result Initially-extended Essentially Monadic Class.
In essence, they allow constants and discard the restriction to unary predicate symbols. However,
they require that every atom contains at most one variable (possibly with multiple occurrences).
Consequently, their fragment does not fully include BS.

A broad overview over decidable standard fragments of first-order logic is given in [7]. More
recent decidability results are often formulated as syntactic restrictions on clause sets [33, 14, 22]
that are incomparable to or subsumed by SF.

There is recent work [15, 34, 10, 29, 9] which considers the BS(R) Fragment in settings beyond
pure first-order logic. It might be of interest to investigate all those combinations and extensions
based on SF instead of the BS(R) Fragment. Furthermore, SF might also be meaningful to first-
order theories over fixed structures such as arithmetic.

Our results on the complexity of satisfiability of SF sentences left some gaps open, which
remain to be closed in the future. Moreover, the syntactic restrictions on SF sentences may be
weakened and still lead to a decidable fragment.
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[25] M. Löb. Decidability of the monadic predicate calculus with unary function symbols. J.
Symb. Logic, 32:563, 1967.
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