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Purpose of review

The human brain supports acquisition mechanisms that can

extract structural regularities implicitly from experience

without the induction of an explicit model. Reber defined the

process by which an individual comes to respond

appropriately to the statistical structure of the input

ensemble as implicit learning. He argued that the capacity

to generalize to new input is based on the acquisition of

abstract representations that reflect underlying structural

regularities in the acquisition input. We focus this review of

the implicit learning literature on studies published during

2004 and 2005. We will not review studies of repetition

priming (‘implicit memory’). Instead we focus on two

commonly used experimental paradigms: the serial reaction

time task and artificial grammar learning. Previous

comprehensive reviews can be found in Seger’s 1994

article and the Handbook of Implicit Learning.

Recent findings

Emerging themes include the interaction between implicit

and explicit processes, the role of the medial temporal

lobe, developmental aspects of implicit learning, age-

dependence, the role of sleep and consolidation.

Summary

The attempts to characterize the interaction between

implicit and explicit learning are promising although not well

understood. The same can be said about the role of sleep

and consolidation. Despite the fact that lesion studies have

relatively consistently suggested that the medial temporal

lobe memory system is not necessary for implicit learning, a

number of functional magnetic resonance studies have

reported medial temporal lobe activation in implicit learning.

This issue merits further research. Finally, the clinical

relevance of implicit learning remains to be determined.
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ACS associative chunk strength
AGL artificial grammar learning
FMRI functional magnetic resonance imaging
MTL medial temporal lobe
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SRT serial reaction time
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Introduction
Implicit acquisition of knowledge about structured pat-

terns embedded in stimuli can occur as an unintentional

consequence of human experience. This phenomenon

can be found in, for example, the sensorimotor domain,

language, and music [1]. Seger [2], following Reber [3–5],

suggested four characteristics for the phenomenon of

implicit learning: limited explicit accessibility to the

acquired knowledge (i.e. subjects typically cannot pro-

vide sufficient, in many cases, any explicit account of

what they have learnt) the nature of the knowledge

acquired is more complex than simple associations or

based on simple exemplar-specific frequency counts;

implicit learning does not involve explicit hypothesis

testing but is an incidental (automatic) consequence of

the type and amount of processing performed on the

stimuli; and implicit learning does not rely on declarative

memory mechanisms that engage the medial temporal

lobe (MTL) memory system. Thus, to characterize

implicit learning it is necessary to address issues related

to the nature of the acquisition process (e.g. implicit

versus explicit, automatic versus controlled, incidental

versus intentional), the nature of the acquired knowledge

and its representation (e.g. implicit versus explicit access,

abstract versus concrete, structural versus surface-based,

complex versus simple), and to characterize their func-

tional role (e.g. implicit versus explicit strategies, auto-

matic versus controlled processing). From a cognitive

neuroscience perspective it is also of interest to charac-

terize the neural infrastructure sub-serving these aspects

of implicit learning and how the knowledge is put to use.

The serial reaction time task
Implicit learning is typically investigated with three

different stimulus structures (patterns, sequences, or

functions) and three different response modalities (con-

ceptual fluency, efficiency, or prediction and control)

[1,2]. Besides artificial grammar learning (AGL), one

of the most intensely investigated implicit learning
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paradigms is the serial reaction time (SRT) task [6], in

which implicit learning is inferred from faster reaction

times in responding to reoccurring versus, for example,

random sequences, while the participants typically report

no or little awareness of reoccurring sequences. There are

several proposals for how knowledge of sequence struc-

ture is acquired, including the acquisition of stimulus–

stimulus, stimulus–response, response–response associ-

ations, or perhaps more abstract representations [1]. The

learning of sequences with a fixed order can be viewed as

a special case of acquiring knowledge about more general

structural regularities or temporal contingencies in

stimuli. These regularities can be deterministic, prob-

abilistic, or non-deterministic as in the case of AGL.

Previous work suggests that implicit motor sequence

learning is sensitive to the statistical structure of

sequences. Lungu and colleagues [7��] investigated the

effect of probabilistic patterns at the perceptual,

stimulus–response, and execution levels, with the aim

of identifying mechanisms by which these regularities are

acquired. Their results suggest that both absolute fre-

quencies and transitional probabilities are important, that

these characteristics might be detected in different

temporal order depending on the statistical properties

of the stimuli, and they argued that different neural

circuits are involved in detecting absolute frequencies

and transitional probabilities. In addition to effector-

independent learning, and consistent with the notion

of parallel acquisition networks, Verwey and Clegg [8�]

provided evidence for implicit effector (i.e. hand execu-

tion) dependent learning after extensive practice in an

effector transfer SRT task (transfer generally refers to the

transfer of knowledge acquired in one response modality

to another response modality). These findings suggest

that a hardwired and slowly adaptable local network

might process effector specific information in addition

to a more flexible global (i.e. interhemispheric) proces-

sing network.

It is likely that systems supporting both implicit and

explicit learning can be engaged, and may perhaps also

interact, during acquisition. Tubau and colleagues [9]

provided evidence suggesting that relevant stimulus

dimensions (location/symbol) engage different sequence

learning mechanisms in the formation of internal repres-

entations and argued that a response–control shift (i.e.

from stimulus–control to internal representational con-

trol) correlate with the emergence of explicit knowledge

in the symbol condition. Wilkinson and Shanks [10] used

a process dissociation procedure to separate automatic

from intentional forms of processing [11] and argued that

sequence knowledge can be brought under intentional

control. Reinterpreting previous results [12], based on

data from their inclusion–exclusion paradigm, they

argued that participants can express (include) as well

as avoid to express (exclude) acquired sequence knowl-

edge, which they suggest is consistent with the idea that

information acquired during sequence learning is explicit

in nature.

Recent studies suggest an age-dependent capacity to

acquire higher-order regularities in the SRT task. Both

Howard and colleagues [13�] and Dennis [14�] investi-

gated this in young and older subjects. The former

showed that second-order structure (i.e. the correct move

depends on the previous two) could be acquired by both

age groups (young more than old), while only the young

group acquired third-order structure in an alternating

SRT task (i.e. interleaved structured and random

sequences). Similarly, Dennis [14�] demonstrated first

and second-order deterministic sequence acquisition in

both groups, while only young adults acquired sequences

with second-order probabilistic structure. In another

alternating SRT study, Negash [15] showed greater

trial-type effects in young than in older patients. In a

generation task (i.e. self-generated sequences) the young

made more expectancy-based errors than the older group,

suggesting greater implicit pattern knowledge. In a SRT

study by Thomas and colleagues [16�], adults outper-

formed children (7–11 years; larger and more rapid

learning effect). The functional magnetic resonance

imaging (FMRI) results showed a significant overlap in

the neural systems recruited by adults and children

(including extrastriate, superior temporal/insula, basal

ganglia, middle frontal, and anterior cingulate regions).

The right caudate activity correlated with behavioral

measures of implicit learning for both age groups, while

learning-related developmental differences were

observed in the right MTL (adults, sequence greater

than random; children, random greater than sequence).

Thomas and colleagues [16�] argued against the idea of

developmental invariance in implicit learning and

suggested that development in the implicit and explicit

learning systems take place in parallel.

It is well-established that skill improvements not only

occur during practice but also during off-line periods (i.e.

between practice sessions), a so-called consolidation

effect [17–19]. However, the contribution of rapid eye

movement (REM) and non-REM sleep in consolidation

of implicitly acquired sequence knowledge is still not

well understood. Robertson and colleagues [20�] showed

a sleep-dependent dissociation for implicit and explicit

sequence learning: off-line improvement was sleep-

dependent for explicit sequence learning and correlated

with non-REM sleep, while off-line improvements in

implicit learning seemed to be sleep-independent and

only to depend on the time interval between practice

sessions. Cajochen and colleagues [21] showed that the

acquisition of different sequence structures improved

after controlled sleep with multiple naps versus sleep
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deprivation, in particular with naps that followed the

circadian REM-peak.

Functional neuroimaging and lesion studies
FMRI and lesion studies implicate several cortical and

subcortical structures in the SRT task [22–25], including

motor regions, parietal regions, the basal ganglia, and the

cerebellum. Implicit learning of the SRT task appears to

be independent of the MTL memory system including

the hippocampus [26], although a recent study [27]

suggested that the MTL may be involved in both implicit

and explicit learning of visuomotor sequences. Similarly,

in a FMRI study of the number reduction task with

performance feedback, Rose and colleagues [28] argued

that the MTL plays a role in implicit acquisition of

complex as opposed to simple relations (i.e. digit-strings

with or without response–sequence mirror symmetry).

This and several other studies, also using performance

feedback, have reported MTL activation during learning

of material generated from artificial grammars/languages

[29–31]. In a recent study of the weather prediction task

(a category learning task in which good/bad weather is

probabilistically determined by card sequences), MTL

activity was associated with receiving positive feedback

but not with correct classification [32], suggesting that the

MTL might be involved in associative feedback predic-

tion, perhaps based on sequence recognition at some

level. Results from an important case study of a densely

amnesic patient with bilateral MTL lesions [33��]

indicate that this region has a limited role in implicit

learning of recurrent sequences, both in the SRT and

Hebb’s supra-span learning tasks (subjects echo digit

strings in a series in which every third string is identical;

learning is quantified in terms of increased accuracy on

repeated strings compared with non-repeated). These

findings are consistent with previous work on implicit

sequence learning [34,35] and AGL [36] in amnesic

patients as well as a recent rat model of the SRT task

[37�]. Similarly, using a computer version of the radial-

arm maze [38], Hopkins and colleagues [39�] found that

amnesic subjects with selective MTL (hypoxic) lesions

learned procedural sequences to the same degree as

controls when compared with random sequences. In

contrast, the controls performed significantly better than

the amnesic patients on declarative sequences.

Whereas MTL lesions typically impair explicit but not

implicit learning and memory, cases of implicit impair-

ment and explicit sparing following basal ganglia lesions

have been less consistent. It has been suggested that

implicit and explicit sequence learning can proceed

concurrently without interference [40], although explicit

processing can interfere with implicit learning [41],

suggesting that explicit and implicit processes can inter-

act during learning. Aizenstein and colleagues [42�]

found support for a multiple systems view on implicit

and explicit learning, which generate complementary

representations. Decreased cortical activation was

observed during processing of implicitly acquired pat-

terns, while explicitly acquired patterns were associated

with increased activation. Interestingly, they observed

striatal activation in both conditions. They argued that

this might be due to task-overlap (i.e. an implicit com-

ponent in the explicit condition) or that both explicit and

implicit learning involve processes supported by the

striatum. In another study of standard and alternating

SRT tasks, Fletcher and colleagues [43�] investigated the

interaction between implicit and explicit learning. The

results suggested right prefrontal, caudate nucleus,

thalamus, and MTL engagement during sequence learn-

ing. The right prefrontal engagement seemed to be

related to the explicit acquisition of alternating sequence

structure. They suggested that explicit attempts to learn

the alternating sequence reduced implicit learning and

behavioral data indicated that the reduction in implicit

acquisition was related to the suppression of learning

itself rather than the expression of acquired knowledge.

While they observed a negative fronto-thalamic inter-

action irrespective of task instruction with the standard

SRT task, they observed a positive correlation between

the right prefrontal region and the left thalamus in the

explicit compared with the implicit alternating SRT

condition. Finally, Kincses and colleagues [44�] report

that transcranial direct current stimulation of the left

prefrontal cortex, which probably increases neural excit-

ability, improved implicit probabilistic classification.

The role of the subcortical structures
Implicit motor learning as indexed by the SRT task has

been shown to be impaired in Parkinson patients and

most convincingly for sequences that require the acqui-

sition of second-order information. Smith and McDowall

[45��] showed impairment on both first and second-order

sequences in a verbal version of the SRT task with

reduced motor demands in Parkinson patients. Using

dual-task conditions to reduce influence of attention

and strategic learning, Kelly and colleagues [46�] showed

that both Parkinson patients and controls acquired

sequences including both first and second-order infor-

mation, while neither group acquired sequences includ-

ing only second-order. Kim and colleagues [47�] found no

implicit learning in early stage Huntington patients. A

direct comparison between groups (FMRI) suggested

reduced activation of the bilateral middle frontal, and

the left middle occipital and precuneus regions in the

Huntington group. Another study of patients with basal

ganglia lesions (stroke; focus in the putamen) suggests

explicit instructions to disrupt acquisition (this was not

the case in the controls) [48]. Boyd and Winstein [48]

argued that the basal ganglia are important in determin-

ing the efficacy of explicit information for implicit motor

sequence learning, related to the increased task demands
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placed on working memory by explicit information. In a

FMRI study, van der Graaf and colleagues [49�] inves-

tigated prolonged skill practice in a bimanual variant of

the SRT task (simultaneous finger movements in

response to randomly ordered pairs of visual stimuli).

Extended practice resulted in a gradual reaction time

decrease associated with the putamen, globus pallidus,

and the posterior cingulate region. Decreased anterior

cingulate and left occipito-temporal activations observed

in parallel suggest attentional requirement reduction.

They interpreted their findings as a shift from neocortical

to basal ganglia involvement associated with learning the

random order stimulus–response task.

Boyd and Winstein [50�] provided evidence for a cerebel-

lar role in implicit motor learning in a study of individuals

with unilateral cerebellar lesions (stroke) on an implicit

motor learning task (sequence tracking). They suggested

that the cerebellum supports the formation of predictive

strategies for the timing of motor responses and that

this function is not lateralized but that cerebellar output

may affect the formation of an internal model for timing

movements in both extremities. Moreover, Torriero

and colleagues [51�] showed that repetitive transcranial

magnetic stimulation of the lateral cerebellum interfe-

res with the acquisition of SRT task sequence knowl-

edge and provided some evidence for hemispheric

cerebellar differences with respect to the expression of

learning.

Representation of sequential structure can occur with

respect to the order of perceptual events or the order in

which actions are linked. Bischoff-Grethe and colleagues

[52] showed with event-related FMRI that transfer type

(motor versus perceptual) interacted with sequence

retrieval (sequencing versus rest) which revealed signifi-

cantly greater activation in the bilateral supplementary

and cingulate motor areas, ventral premotor cortex, left

caudate, and inferior parietal lobule for participants in the

motor group, suggesting successful sequence retrieval at

the response level. Based on these results, Lungu and

colleagues [7��] suggested that cortical brain regions

including the prefrontal and motor regions encode the

transitions from one element to the next early in learning,

while the basal ganglia encode the full sequence structure

toward the end of learning.

Artificial grammar learning
Previous work on AGL suggests that participants

implicitly acquire both rule-based and exemplar-specific

knowledge. In the typical AGL experiment, participants

process (e.g. in a short-term memory task) a sample of

grammatical strings during the acquisition phase and are

subsequently informed that the strings were generated

by a complex set of rules after which new strings are

classified as grammatical or non-grammatical on the

basis of the immediate intuition (‘guessing’). Participants

typically perform reliably above chance with little, if any,

explicit knowledge about their classification capacity.

The results of Chang and Knowlton [53��] showed that

the sensitivity to grammaticality status was not affected

by a change in low-level visual features (font/case), while

this change reduced the sensitivity to associative chunk

strength (ACS) (i.e. the similarity of the classification

items to the acquisition set in terms of two and three

letter substring frequencies). The addition of a secondary

task (articulatory suppression) during the acquisition

phase eliminated font sensitivity and reduced the con-

tribution of ACS to the classification performance. Con-

sistent with FMRI data, showing reduced activation

levels for high versus low ACS items in early visual

regions [54�], some aspects of classification performance

might be related to perceptual fluency (e.g. repetition

priming), since changes in surface features reduced the

ACS sensitivity. In an event-related FMRI study, using a

balanced chunk strength design, Lieberman and col-

leagues [54�] reported several brain regions that may

contribute to AGL classification. The main findings

suggested that the caudate nucleus was more active for

grammatical versus non-grammatical items, while the

MTL seemed to be more active for high versus low

ACS. Moreover, they reported some evidence for a nega-

tive correlation between the caudate and hippocampal

activations, which they interpreted as suggesting a com-

petitive relationship between the two regions. However,

the observation of a negative correlation does not necess-

arily imply a competitive relationship and there is also

some evidence suggesting that the MTL and the caudate

nucleus can interact cooperatively [55].

In four AGL experiments, Zizak and Reber [56��]

examined the links between the classic and structural

mere exposure effects (i.e. the preference of previously

encountered to novel items and the acquisition of syn-

tactic/structural regularities by being exposed to stimuli,

resulting in a positive correlation between preference and

grammaticality status on new items, respectively). In

these experiments, subjects either classified stimuli

based on grammaticality or rated them in terms of like-

ability. The grammar was instantiated with familiar and

unfamiliar symbols, and participants showed standard

AGL effects in all cases. However, whether the two

exposure effects emerged was dependent on symbol

familiarity (high familiarity produced the structural mere

exposure effect; moderate familiarity produced only the

classic mere exposure effect; unfamiliar symbols pro-

duced neither exposure effect). In another series of

behavioral experiments, Domangue and colleagues [57]

argued that learners can use at least two types of knowl-

edge: an explicit model or instance memories. The

subject performance was characterized in terms of
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response times and accuracy with respect to their ability

to generate letter sequences. The acquisition conditions

were experimentally controlled in order to manipulate

the availability of the two types of knowledge. The

memory-based condition yielded rapid response times

but less accuracy compared with the model-based acqui-

sition condition.

A complementary perspective on AGL, which recently

has received some attention, views this as a model for

investigating certain aspects of language acquisition

[58,59,60�] as well as exploring differences between

human and animal learning relevant to the faculty of

language [61]. Already Reber [1] proposed implicit learn-

ing as intrinsic to natural language acquisition. In an

event-related FMRI study, Petersson and colleagues

[60�] investigated the role of Broca’s region in grammati-

cality classification, after implicit acquisition. The results

suggested that Broca’s region is specifically activated

by artificial syntactic violations, consistent with similar

observations with respect to natural language. In a

follow-up study, using repeated acquisition sessions,

serial string presentation, and a balanced chunk strength

design, Forkstam and colleagues [62] observed that

Broca’s region was the only frontal region sensitive to

artificial syntactic violations and not sensitive to ACS

(C. Forkstam et al., in preparation). In addition, a signifi-

cant cortico-striatal processing network, including frontal,

cingulate, inferior parietal, and middle occipital/occipito-

temporal regions as well as the caudate nucleus, was

observed.

In a study of implicit acquisition of acoustic regularities

(transition probabilities between timbres), Tillmann and

McAdams [63] extend previous implicit learning results

to the domain of complex nonverbal auditory material.

Their results suggest that listeners become sensitive to

statistical regularities independent of acoustical surface

characteristics in the stimulus material. A recent study

[64] showed that readers are able to acquire an artificial

script both with explicit and implicit acquisition instruc-

tions. In a follow-up study, Bitan and Karni [65�] provided

data suggesting that letter decoding can evolve from

implicit training on whole-word recognition and that

the acquired knowledge was independent of explicit

letter knowledge (measured by declarative recognition).

They concluded that both implicit (procedural) and

explicit (declarative) knowledge contributed to letter

decoding and word-specific recognition, suggesting the

dependency on explicit knowledge as related to the

possibility that both routines become proceduralized

with practice.

Conclusion
A number of emerging themes can be discerned in the

recent study of implicit learning. These include the

interaction between implicit and explicit processes, the

role of the MTL, developmental aspects of implicit

learning, age-dependence, the role of sleep and consoli-

dation. The attempts to characterize the interaction

between implicit and explicit learning are promising

although the nature of this interaction is not well under-

stood. The same can be said about the role of REM/non-

REM-sleep and consolidation in implicit learning.

Despite the fact that lesion studies have relatively

consistently suggested that the MTL memory system

is not necessary for implicit learning, a number of

FMRI studies have reported MTL activation in various

implicit learning paradigms. The role of the MTL in

these activation studies is unclear and needs further

investigation. At least two FMRI studies of AGL

have related the MTL activity to the recognition of

superficial substring features (i.e. ACS). In addition,

and confirming previous results, a number of lesion

studies suggest that the basal ganglia play an important

role in implicit learning, while the MTL generally

appears to have a limited role in implicit acquisition

and performance. One possibility, however, is that

the MTL might have a role in acquiring long-distance

dependencies. Finally, the clinical relevance of implicit

learning remains to be determined, for example, whether

and to what degree implicit learning paradigms may serve

as sensitive predictors of therapeutic outcome in the

treatment of diseases affecting in particular the basal

ganglia.
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