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While wave-packet solutions for relativistic wave equations are oftentimes thought to be approx-
imate (paraxial), we demonstrate that there is a family of such solutions, which are exact, by
employing a null-plane (light-cone) variables formalism. A scalar Gaussian wave-packet in trans-
verse plane is generalized so that it acquires a well-defined z-component of the orbital angular
momentum (OAM), while may not acquire a typical “doughnut” spatial profile. Such quantum
states and beams, in contrast to the Bessel ones, may have an azimuthal-angle-dependent proba-
bility density and finite uncertainty of the OAM, which is determined by the packet’s width. We
construct a well-normalized Airy wave-packet, which can be interpreted as a one-particle state for
relativistic massive boson, show that its center moves along the same quasi-classical straight path
and, what is more important, spreads with time and distance exactly as a Gaussian wave-packet
does, in accordance with the uncertainty principle. It is explained that this fact does not contradict
the well-known “non-spreading” feature of the Airy beams. While the effective OAM for such states
is zero, its uncertainty (or the beam’s OAM bandwidth) is found to be finite, and it depends on the
packet’s parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-
variables formalism and the approximate ones in the usual approach is indicated, generalizations of

these states for a boson in external field of a plane electromagnetic wave are also presented.

PACS numbers: 03.65.Pm, 42.50.Tx, 41.75.Fr
I. INTRODUCTION

As was demonstrated in 1990s first theoretically and
then experimentally, laser beams and even single photons
with a doughnut spatial profile can carry orbital angu-
lar momentum (OAM) quantized along the propagation
axis (see e.g.,[l] and references therein). Appearance of
this orbital angular momentum owes to the peculiar (he-
lical) spatial structure of the photonic beam and not to
the polarization degree of freedom. Some 15 years later,
in 2007, somewhat more intricate photon beams were
brought into life, namely the Airy beams having such
features as being spreading free, self-healing and moving
along a curvilinear trajectory without an external force
ﬂj] More recently, in 2010-2011, several groups man-
aged to create massive particles, namely electrons with
a kinetic energy of ~ 300 keV, carrying orbital angular
momentum with its quanta up to 100 Eﬁ] Finally, the
electronic Airy beams of the energy of ~ 200 keV were
also created experimentally just recently ﬂﬂ] All these
novel quantum states open up many different perspec-
tives in quantum optics ﬂ], in electron microscopy and
material properties studies M], in physics of electromag-
netic radiation B], and even in the high-energy physics

Theoretical studies of these non-plane-wave states (or
beams) commonly deal with the “pure Bessel” or the
“pure Airy” states having the features of being non-
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normalizable in infinite volume, exactly as the plane
waves (see e.g., ﬂﬂ, @]) When applying these simpli-
fied states to the real physical problems, one has to ei-
ther quantize them in a finite volume HE] or add some
(usually, Gaussian) envelope function, thus turning these
states into the wave-packets ﬂﬂ, |E] This is where the
theoretical studies for massive bosons and fermions are
not so vast yet. First of all, the spreading feature is in-
herent to all the feasible quantum wave packets, since
it is closely connected with the coordinate-momentum
uncertainty relations. While introduction of an envelope
makes the energy of an Airy beam finite [15] (unlike in the
“pure Airy” case), this simultaneously brings about ne-
cessity of spreading — the feature that is known to absent
for Airy beams. This contradiction is worth exploring in
more detail.

Secondly, the wave-packet states used for describing
the observed electrons and photons represent approx-
imate (paraxial) solutions of the corresponding wave
equations, whereas when applying these states, for in-
stance, to the quantum scattering problems in the high-
energy physics it is highly desirable to have appropriate
exact solutions. Here, we show that such solutions for
the Klein-Gordon equation can be obtained in the well-
known formalism of the null-plane (light-cone) variables.
A new set of exact solutions for relativistic wave equa-
tions represents an independent interest also for mathe-
matical physics, of course.

Thirdly, as we know from optics with these twisted
(or vortex) photons, practical interest oftentimes repre-
sent even not the simple Gaussian-Bessel wave-packets
with azimuthally-symmetrical intensity profile ﬂﬂ] but
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somewhat more sophisticated superpositions of the OAM
eigenstates with the 2D Gaussian packets HE] For in-
stance, photonic states having finite quantum uncer-
tainty of the OAM (or the beam’s OAM bandwidth,
see e.g.ﬂﬂ, @]) were used for creating pairs of pho-
tons entangled in their OAM values after the paramet-
ric down-conversion process, and the feature of non-
vanishing OAM bandwidth turned out to be crucially
important ﬂE, @] To the best of our knowledge, exact
wave-packet states of this type for massive particles have
not been presented before, which, in particular, hampers
development of the idea to create OAM-entangled pairs
of electrons, protons and other massive particles m]

Finally, the quantum wave-packet states with such de-
grees of freedom as, for instance, OAM can exist even in
some external electromagnetic fields, if operators associ-
ated with the corresponding quantum numbers commute
with the (Klein-Gordon or Dirac) Hamiltonian [21]. A
plane electromagnetic wave counter-propagating to the
particle is known to leave the particle’s effective trans-
verse dynamics unchanged. Physically, it means that if
a twisted particle is brought into collision with a laser
pulse, effective OAM of the former, unlike the linear mo-
mentum, would not change considerably when leaving the
wave (neglecting the radiation losses). Corresponding so-
lutions for relativistic wave equations with an external
field could allow one to calculate radiation (scattering)
processes with the particles in these new quantum states
non-perturbatively (in the Furry picture [22]).

In this paper, we study in detail wave-packets carry-
ing OAM and generalize the well-known OAM-less quasi-
classical Gaussian states (the so-called squeezed par-
tially coherent states ﬂﬁ) Mathematically, the wave-
packets being described belong to one class of exact so-
lutions for Klein-Gordon equation having quasi-classical
averages (in initial moment of time) and differing from
each other in momentum representation only in the gen-
eral complex phase. We demonstrate, in particular, that
there are some states (and beams), which have a well-
defined z-projection of the OAM but do not have a typi-
cal “doughnut” spatial profile of the probability density.
This extends validity of the Berry’s statement in optics
that there is no direct relation between phase vortices
and the OAM [26]. A physical reason for absence of this
azimuthally-symmetric profile is a finite quantum uncer-
tainty of the orbital angular momentum, whose value is
determined by the packet’s width. This result is general-
ized for a boson in external field of the electromagnetic
wave.

We also present well-normalized Airy wave-packet
states of a boson (including these states in the external
field) and calculate such averages as trajectory, disper-
sions and the OAM. It is shown that effective value of
the Airy packet’s OAM is zero, analogously to the opti-
cal case ﬂﬂ], and the spreading rate of the packet coin-
cides with that of the ordinary Gaussian beam (i.e. in
accordance with the uncertainty relations). We explain
this feature by noting that this spreading occurs at the

expense of the exponential “tail”, which only makes the
Airy packet normalizable, while its central peak stays
practically unchanged in time, in agreement with the ex-
periments. At the same time, we found that quantum
uncertainty of the OAM for these Airy wave-packets (or
the beam’s OAM bandwidth) is finite, and it is deter-
mined by the packet’s parameters. Another interesting
observation here is that this quantum OAM-uncertainty
does not turn into zero even in the case of the vanishing
transverse momentum, unlike the one of the Gaussian
beam. This means that while the OAM-bandwidth of
the Gaussian beam may be said to be extrinsic (in terms
of Ref.[2§]) because its value depends upon the choice of
the quantization axis, the Airy beam’s OAM-bandwidth
has both extrinsic and intrinsic contributions.

The feature of finiteness of the OAM uncertainty, both
for Gaussian wave-packets and the Airy ones, could be
rather useful in view of possible experiments with the
OAM-entangled electrons and other massive particles. In
quantum optics, it is this feature that determines degree
of entanglement of the down converted photons, and the
entanglement practically vanishes for the “pure” OAM
states (see e.g.,[19]).

The structure of the paper is as follows. In Sec. II we
describe basic properties of the OAM-possessing quan-
tum states, and in Sec. III we show how one can re-
duce the 4D Klein-Gordon equation to the easier 2D
Schrédinger one by using the light-cone variables formal-
ism. In Sec. IV we describe relativistic bosons’ wave-
packets without OAM, including Airy one-particle states,
in momentum and coordinate representations. In Sec. V,
we generalize them adding OAM quantized along the z-
axis, calculate the OAM uncertainty and discuss some
features as well as possible generalizations of the Airy
states. Similar wave-packets in external field of a plane
electromagnetic wave are presented in Sec. VI. A system
of units i = ¢ =1 is used throughout the paper.

II. QUANTUM STATES WITH OAM

A quantum-mechanical approach to the one-particle
states with the OAM was developed earlier — see e.g.,
Refs. ﬂE, @] Here we employ quantum-field-theoretic
methods, which are more convenient for the purposes
of quantum scattering problems. In a general case, the
scalar quantum states with the OAM, |p|, s, £), represent
complete and orthogonal set, which obeys the following
orthogonality relation:

<p1|7"$17€/|p||7"$7£> = )
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K

where: e(p) = /p?+m? = Mpﬁ—l—m?—i—m{ Kk is an

absolute value of the transverse momentum, py is a lon-
gitudinal component of the momentum, ¢ = 0,+1,+2, ...
is the OAM, and the momentum’s azimuthal component



remains unfixed. The one-particle states with the OAM
in coordinate representation can be defined in the usual
way:
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Here we used ( = (z|\/2¢(p) a}|0) = \/2e(p)e —ipz

(see e.g., Ref. 1), and J denotes a Bessel function.
Hence, in momentum representation the one-particle
state is:
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Creation and annihilation operators commute as fol-
lows:
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and all the rest are zero. The secondary-quantized field
operator can be written by analogy with the plane-wave

case:
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so that the one-particle state, as might be easily checked,
will be Yy, () = <0|1/}(£C)|p||,li,€>. Generalization of
these formulas for the vectorial or spinor fields is straight-
forward. Using Eq.( ), the commutator for field opera-
tors is found as:
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o) =3 f

% ( —ie(t—t")+ip) (z 2 +1Z(¢7T or) c. C) (6)

To(rkp) To(rep)

In fact, the r.h.s. here is a standard Pauli-Jordan func-
tion (see e.g., Ref. [31]). Indeed, the summation over
¢ can be done using the formula (8.530) in Ref.[32] and
after that it is easy to show that the field commutator
coincides with its commonly-used “plane-wave” form.

III. SOME SCHRODINGER
NON-PLANE-WAVE STATES

The non-plane-wave quantum states for relativistic
bosons and fermions (no matter free or the ones put in

some background field) can be obtained with the use of
at least two methods:

In the first one, we reduce the differential equation
under consideration (the Klein-Gordon or the Dirac one)
to the somewhat easier Schrodinger equation, for which
the set of known exact solutions is far more vast (see
e.g., [21, 23]). This method is mathematically rigorous
and elegant yet, at the same time, it lacks for explicit
Lorentz invariance, and a physical interpretation of the
Schrodinger equation’s solutions might remain somewhat
hidden.

In the second approach, we represent a quantum state
as a superposition of ones forming an orthonormal set of
the known exact solutions for the corresponding equation
and then choose the overlap of these states according to
the desired physical model. This approach leaves more
freedom, it preserves relativistic invariance (to a needed
extent), and it seems to be more physically illustrative.
At the same time, such properties of the resultant solu-
tions as orthogonality and completeness are not obvious
here, so they should be checked separately. In what fol-
lows, we will combine both approaches for complemen-
tarity.

Firstly, let us illustrate how the Klein-Gordon equation
could be reduced to the 2D Schrédinger one (see e.g,
(21, 23]), for which many non-plane-wave solutions are
already known. The Klein-Gordon equation,

KU(z) =0, K =p* —m?, p' =id",

written in terms of the null-plane (the light-cone) vari-
ables (see e.g., [23,133)),

§i=(na) =t 42 &= (Ar) =t -2,
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has the following form
(102 + 52 +m?) e ér) =0 (®)

A more general case with the vectors n = {1,n}, n =
{1,—n}, n? = 1 may be obtained by a simple rotation
of the coordinates. Then if one considers a “monochro-
matic” state:

N (5 év Tl) = A\P(f,g, Tl)a
A= (np) = p° +p* = 2i0;, (9)
we will have

W(EEri) =v(Er1)exp {—%Aé} . (0

One can get rid of the mass term by substituting
W€, 1)) oc exp{—im?¢/2)\}. Changing variables to the
dimensionless ones,

T=2N, ] = 2)r, so that 2
W(EErs) = {35} an

O(1, 2 )exp 5



we arrive at the free particle’s 2D Schrodinger equation:
(i@T - H) ®(rw,) =0, H=—A, = 02— 02, (12)

There are several non-plane-wave solutions to this equa-
tion. Here, we mention only the ones we will need in this
paper.

Perhaps, the best known non-plane-wave solution is a
normalized to unity (on a plane 7 = const) Gaussian
wave-packet (or a squeezed partially coherent state — see

e.g., Refs. ])7

a( ) a 1 { L 1_
T))=4/— e i T, —-x, | —
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which has the quasi-classical averages

(1) =21 =21 0+27PpL, (PL) = DL (14)

Here, a is a (real-valued) constant determining the
packet’s spreading with “time” 27.

The second example is an Airy beam M], which can

be obtained by combining both approaches mentioned in

the beginning of this section. A Fourier expansion for
the function ® obeying Eq.(2) is[52]

d2pl —irp? —+1 T
q’(T,wL):/W@(PL)@ propLEL, - (15)
and when the Fourier transform is chosen as ®(p,) =
const exp{i(p3 + pj)/3}, we arrive at the “pure Airy”
beam:

®(1,x, ) = const Ai(x — T2)Ai(y _ 72)

4
xexp{iT(:v—i-y) —2373}. (16)
The square of this maximizes in a vicinity of Ai(—1),
which gives a parabolic motion, Z,,, ¥, ~ —1+72. How-
ever similar to a “pure Bessel” state with OAM, which is

(see e.g., Refs. ﬂﬂ, @])
(p1) < 6(p1 — k)P = D(r,21) o Jo(rp)e' T (17)

solution (I6) is non-normalizable in infinite volume since
Airy functions are not square integrable. The last is clear
already from the fact that the Fourier transform is non-
normalizable either. That is why interpretation of this
parabolic behavior is quite limited; see below and ﬂﬂ]

We would like to emphasize that these solutions to the
2D Schrodinger equation are exact and do not require
paraxial limit. After substituting this back into Eq.(TTl),
one obtains exact solutions to the Klein-Gordon equa-
tion. Developing this technique, one could also construct
wave-packet solutions of Bessel and Airy types, however,
we prefer to obtain these ones within the second approach
developed in the next section.

IV. RELATIVISTIC PARTICLES’
WAVE-PACKETS AND AIRY STATES

To begin with, let us consider a case without OAM.
The simplest choice in momentum representation is a

widely-used Gaussian wave packet in transverse plane:

Y(p; K, p),0) =

_(2m)¥/? 1 5
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which is normalized according to (¥|¢) =

J @plv(p)|?/(2m)> = 1, and has a
limit” in the following sense:

“plane-wave
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Here, regularization of the delta-function squared is done
in the usual way: (6(p.—p)))*> — L/276(p.—py), with L
being some (large) length of the normalization cylinder.

These states are obviously orthogonal in longitudinal
momenta but have some overlap in transverse momenta:

d3
/ﬁw*m &', |, o )(pik, p. o) =

4t oo’ (k — K')?
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Then, as long as the transverse momenta are not fixed,
this state is no longer monochromatic. Indeed, if the
momentum distribution is sharp, 0 < k, we can expand
the energy as a function of the transverse momenta as
follows:

e(pr)~eo+ul(p—K)+

to (0ij —uriuy ;) (P —K)i(p — K)j,
€0
K

g0 =¢e(K), u = —, (21)
€o

which yields

In all practical cases, difference of this from &q is negligi-
bly small (see characteristic values of u below).

When calculating the wave function in the coordinate
representation, the integral over transverse momenta can
be evaluated with the use of the following formula

1
/d"w exp {—xiai - §$iBz'j£Cj} =

27)"/2 1
= % exp { gaiBiglaj} , (23)

with B;; being some n X n non-singular matrix. The
result is found to be
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i.e. represents a wave packet in the transverse plane while
being delocalized (periodic) both in z and t. Here, we
have used the following denotations:

1 it it
Bij = dij (— + —> ULAULG
0

202 €0
1 it 1 it
det B = + +—(1—u?)).(25
(202 ) (202 €0 ( 1))-25)
With an accuracy of high-order terms, this state is essen-
tially quasi-classical, since the wave packet center moves
along a classical trajectory with the zero initial condi-
tions:

(r1) = / vy (@) = uit+O0@w?), (p) = K(26)

Actually, the smallness of u? as compared to unity just
means that the transverse motion of the wave packet
stays non-relativistic while staying relativistic along z
axis. For 200 — 300 KeV vortex- and Airy electrons ex-
perimentally realized so far, the values of x are less than
10 KeV (see e.g., [34]) which gives the following estimate:

ui <1074

With the same accuracy we can calculate the disper-
sions and find that the uncertainty relations are mini-
mized only in the initial moment of time:

2
<<Am2>=<ri>—<m>2 21 v2t (L))
(Ap.)) = )~ (pu)? =20

(Ar )2 (Ap1)?) =1+ (2a —) e
while ((Az)?)i—o((Ap.)?) = 1/4.

Such approximate (paraxial) states are widely used,
for instance, in the theory of neutrino oscillations (see
e.g., m, @]) In more recent studies, these wave-packets
have been generalized in the covariant way, so that they
acquire different longitudinal- and transverse dispersion
rates [37-39].

In terms of null-plane variables, a similar wave-packet,
which is now normalized on a hyperplane £ = const @],
can be obtained from Eq.(I3]) of the previous section:

V(@) = %@GXP{ - X - e
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det B
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with

T, =T10+KT, <7'J_>:'FJ_ (29)

A
representing a sort of the relativistic particle’s “classical
trajectory” in the null-plane-variables formalism. Note
that now we consider a general case of non-zero initial
conditions for the coordinates.

A distinctive feature of these states (which in terms of
Refs. ] also could be called the squeezed partially
coherent states) as compared to (24]) is that they repre-
sent an exact solution of the Klein-Gordon equation. Its
Fourier-transform is found as:

Y(p) = / d*zop(z)e* =

= (2m"2np)y - 5067 — )5 ((np)

xexp{—im_o (pJ_—%n) — %a(pj_—n)z} =
= 2w (np)d (p* — m?) ¥(p) =
= 2o ((ﬁp) - M) ¥(p).

(np)

which is similar to ([I8). Note that the averages are
calculated in momentum representation with the mea-
sure d®p = 1d(np)d*p. (i.e. on a plane (fip) = const):

= [dpp.|¢(p)*/(27)® = k. When proving this
identity, it is convenient to take the normalization factor
appearing when squaring the delta-function of a light-
cone variable twice smaller as compared to the Cartesian
analogue:

() 3 = [ %P2 exp{ S ((np) - A)}
1L

1dé
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(30)

(31)

Similarly to (21)), one can calculate the dispersions and
find the uncertainty relations. We arrive at the following:

2
(arof =a+ 1 ($) L (@p0 =1,

2
(arpi@e =1 (5) . @
As is clearly seen from Eq.(I8]), the mean value of the

OAM, (ﬁz), equals zero for paraxial states. However,



this is not the case for non-paraxial states from Eq.(28]),
and the result is:

(L:) = [rLox Kl = [(ri)emo x (P1)]s,  (33)

thanks to the non-zero initial conditions for the coordi-
nates. Nevertheless this OAM has “kinematic” nature,
as it vanishes for the zero initial conditions or the zero
transverse momentum (see also [28,[40]). Indeed, explicit
dependence on these initial conditions implies indirect
dependence on time, since the moment ¢t = 0 (£ = 0)
could be chosen absolutely arbitrarily. However for a
free particle, L. is one of the exact integrals of motions,
since its operator commutes with the Hamiltonian. In
other words, this OAM has extrinsic nature because it
appeared as a result of the choice of the quantization

2
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axis shifted from the beam’s center in initial moment of
time. That is why an effective (intrinsic) value of this
OAM may be said to be zero.

In a similar manner we can obtain Airy wave-packets
by multiplying the Fourier transform in Eq.(30) on

exp{ibipi/?) + ibfjpj?’/?)} = exp{(ibipi + ibgpfj)/3h3}

with b = {b,, b,} being some real-valued vector charac-
terizing initial position of the Airy beam’s central peak.
Note that these additional factors do not influence nor-
malization of the states but just change their transversal
overlap. Thus we still have a well normalized one-particle
state. Returning back into the configuration space, we
arrive at the following:

1
KT10— 22 + —=(a+1i&/N)(x — xp —iaky)+

2 2b3

x

12 e

x Ai (bwl (w — 0 — iakg + M)) Ai (byl (y — Yo — Gak, + M)) (34)
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Putting b, = b, = 0, we return to the ordinary Gaussian
partially coherent states, though this is not quite obvious
from the last formula.

If needed, one can also write down an approzimate
(paraxial) Airy-packet solution in approach with the vari-
ables ¢, z instead of £,£. As easy to see from the above
analysis, when u? < 1 this can be done by the following
substitutions:

i~ i_m? . :
exp{—i){—ifT}%QXP{_ZEM"’_W'Z}’
&t

a— —

952" X — a (35)

Moreover, this rule does not depend on the physical
model of states we consider, so that these substitutions
are applicable for “switching” between exact solutions in
the null-plane variables formalism and approximate ones
in the usual approach for a wide range of models. We will
present another example of this rule in the next section.

Dealing with all these wave-packet states, it is much
easier to calculate averages in momentum representation
in which & = i9,, + p.§/(np), and the second term has
appeared due to dispersion law, p? = m?2. The trajectory
calculated with these Airy states is:

b3 (1
<ZZT> = <$>bI:0 — ?;E <a —|— 2/4,%) = XO —|— Km%’

b3
=0 - 2 (3 422) =Totn)§ (30

ab3

with (2)s, =0, (¥)s,=0 taken from Eq.[29) and Xo, Y are
some new constants. Thus, despite the parabolic behav-
ior of the Airy functions’ arguments, the wave-packet’s
center still moves along the same quasi-classical straight
path. Tt is interesting to note, however, that new con-
stants, X, Yy, contain the Planck constant in the de-
nominator and, therefore, have no smooth behavior in
the quasi-classical limit A — 0.

Furthermore, one can also calculate the dispersions,
((Ar1)?), ((ApL)?), and make sure that they coincide
with the ones in Eq.[82), i.e. the Airy packet spreads
with time and z exactly as a Gaussian beam does, in
accordance with the uncertainty relations. In other
words, the Airy wave-packet (34]) also represents a quasi-
classical state in a sense that it minimizes the uncertainty
relations in initial moment of time (or when £ = 0), de-
spite the terms of higher powers of A. This is also a
curious example of a quasi-classical state that is non-
Gaussian in the configuration space.

We would like to emphasize that there is no contra-
diction here with the experimentally verified fact that
the Airy packets are (almost) non-spreading revealing
some diffraction-free and self-healing properties (see e.g.,
E, 1, ]) The point is that the Airy wave-packet spreads
mostly at the expense of its tail, while preserving the
shape and width of the central peak (similar to the opti-
cal Airy beam: see e.g., [2]). Indeed, an effective time
when the coordinate uncertainty doubles is (compare
with ﬂﬂ], we will use a “usual” ¢,z approach here for
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FIG. 1: (Color online) Probability density of the one-particle Airy wave-packet at zero distance (paraxial ¢,z approach).
Parameters: . = 200 keV, by = by =1pum ,y = ky =0, Kz = 0.1 eV, 0 = 0.01 eV. It has an exponentially decaying tail at
macroscopic distances (left panel) while resembling a “pure® Airy beam at the microscopic scale (right panel).
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FIG. 2: (Color online) Airy packet’s tail for different packet’s
widths. Solid line: o = 0.04 eV (closer to a “pure Airy”
beam), dashed line (decreased in 10" times): ¢ = 0.02 eV
(closer to a Gaussian beam). Here, b, = by, = 1 nm, and
other parameters are the same as in Fig[ll

simplicity):

€0

T= 557 (37)
For 200 KeV electrons of the experiment [7] with the co-
ordinate uncertainty of the order of transverse size of the
beam, o, ~ 10pum, and the corresponding momentum
uncertainty o ~ 1/0, ~ 2 x 1072 eV, we obtain the fol-
lowing estimate for the minimum distance needed for a
packet to spread twice:

L=uT ~125m, (38)

which exactly is of the order of the maximum distance
at which measurements were carried out in Ref. ﬂ] How-
ever registered FWHM of Airy beam at the distance 100
m was slightly less than 10% higher than the one right
after the experimental setup, which just means that the
estimate (B8], being applicable for the beam as a whole,
is not so for the central Airy peak.

In Fig[llwe depicted the central peak of the Airy wave-
packet (right panel) and the packet’s tail (left panel). For
simplicity, we use the “ordinary” ¢,z approach. As we
consider one particle in the Universe, the tail’s peak may
be far away from the Airy’s central peak. As can be seen,
the tail peak’s position is scaled with the third power of
bz, by, while the main Airy peak is scaled with the first
power. So that for initial conditions, for instance, of
by = by = 1 nm (instead of 1 gm) and the other parame-
ters staying the same, we would obtain the same figures
as in Fig[ll when changing 10'* — 10° in the left panel’s
caption and ym — nm in the right panel’s caption. We
illustrate this in Fig2 while also showing that the limit-
ing case of a tightly focused in configuration space state
(larger values of o) corresponds to a “pure” Airy beam.
Note that in the non-paraxial case with o ~ k the “usual”
t, z approach becomes inapplicable, whereas the one with
the null-plane variables still works.

Now let us address the question of whether an Airy
beam may possess some orbital angular momentum with
respect to the z-axis ﬂﬁ] Calculating mean value of the
OAM'’s z-projection with the Airy states we obtain the
following quasi-classical result:

(L2) = ([P x pL)s) = Ry ( L (1 . 2>) .

b /1 )
—kgz | Yo — ?y <E +2ﬂy)> =
= kyXo — kYo = [(P1)e=0 X (PL)], (39)

We see that the OAM generally does not vanish, and it
can be turned into zero only by a very special choice of
the initial conditions:

X0:Y0:O<:§
b (1., - by (1 5,2
To = <E+2f%>vyo—§ 54'2’% - (40)

On the other hand, this result coincides, up to notations,
with Eq.([33]) calculated for an ordinary Gaussian beam.



This means that such an OAM also may be treated as
“kinematic” or extrinsic as it can be turned into zero by
the choice of the quantization axis or the initial condi-
tions. In other words, its effective value is zero as was
indicated in Ref.[27].

However, as we will demonstrate below, vanishing
mean value of the OAM itself is not sufficient for a gen-
eral statement that this wave-packet does not carry any
OAM (analogously to the optical case: see Ref.[40]). If
the second moment of the OAM does not vanish, such
wave-packet has some distribution in the orbital mo-
menta space or, in other words, has finite OAM band-
width (see e.g., [17-[19]) related to the overall number of
the OAM modes carried by such a wave-packet.

V. RELATIVISTIC PARTICLES’
WAVE-PACKETS WITH OAM

Now let us add OAM quantized along the z-axis. The
Gaussian wave-packets we considered had plane-wave
limit when o — 0, so that OAM effectively vanishes in
this case (see below). One can also construct normalized
one-particle Gaussian wave-packets with an azimuthal-
independent probability density pattern and a “pure-
Bessel” limit:

V2

1/1+erf(\/’%g)

1 5(p= —p)) (pL —rK)*
VIm2e U Vo exp {—7402 + zM} ,

) _
li [0 .y, . O = (2270002 — p) L)

w(p; K, P50, f) = (27T)3/2(_i)e

so that the momentum’s azimuthal angle has no “mean

value”.  We will call such wave packets Gaussian-
Bessel ones. Note that they are orthogonal in OAM,
J @pi*(p: ) (p; £)/(2m)* o be,00.

The coordinate representation for the wave function,

3
vw) = [ i) =

[ a —3/2 i -
P(x) = i% <a+i§) exp{—§)\§

eip I z4il

VrL(r202)/4, /1 —l—erf(\/’%a)

x/dpL./pl Jg(plp)exp{ —ite(py)—
0

1

—@(Zu - 5)2}7 (42)

represents an eigenfunction for L. operator, and the
probability density profile has a typical “doughnut” spa-
tial structure with the central minimum (see e.g., ﬂﬁ] and
also the recent experiment m]) These wave-packets rep-
resent direct generalization of the “pure Bessel” states,
and they can be useful for analyzing problems of scatter-
ing with the twisted particles [‘]_Llﬂ

Even more useful objects are obtained by embedding
OAM into the “usual” 2D Gaussian wave-packets with
the plane-wave limit. This is done by multiplying the
wave functions in momentum representation on the fol-
lowing factor: (p; &, py, a,€) = (~i) e i(p; k, py, ).
In the null-plane variables, this will be [here, ¥ (p) is
taken from (B0)]:

3
v(o) = [ )i e e

a i~ .m?2 a o 1 .
_1/Eexp{—§)\§—z§ﬁ—§f<& —|—§m_,on+z€go}

X/dpoue(mR) eXp{—pi% <a+l§)} (43)

0

Here, R = ry — 710 — iak = R{cosp,sinp}, so that
@ acquires an imaginary part. The last integral is done
with the help of Eq.(6.631) in [32] and the final result is

i 1 R?

,gm2 a2 e
Sox T2t TRt T e Y

1 R? 1 R?
(e (3a5gm) ~ e () ) o

where I denotes a modified Bessel function. This expres-
sion, which can be called a Gaussian one-particle state
with the OAM (or a squeezed partially coherent state),
represents an ezact solution for the Klein-Gordon equa-

tion, and in the limiting case ¢ = 0 it coincides with the
“ordinary” coherent states (28]). As easy to show, an ap-
proximate solution with the OAM in the parametrization
([I8) can be obtained by the same substitution (BHl).



It might seem that this wave function is not an eigen-
function of L. in a general case. In particular, in the
plane-wave limit when a — oo (or ¢ — 0) we have
¢ — ¢n, R — —iak, so that the wave function does
not depend on ¢,, and this yields L.¢; 00(z) = 0. In
the opposite case of an ultra-tightly focused (in config-
uration space) wave packet, a — 0 (0 — o00), we have
@ — ¢, R— r,, sothat a phase vortex appears:

7/}(/)7 br, Z) = 7/}(/)7 Z)eiM)T = sz‘/)a%O(fE) = éi/faeo(ﬂf)-

The curious fact, however, is that even in general case of
finite a (or o), the mean z-component of the OAM still
equals ¢ for both approaches (null-plane and the usual
one). This could be easier seen in momentum represen-

tation where L, = —i0g,:
<LZ> =

3
/(;T];y/)*(p; K, D 05 L) Lob(p; K, ), 0, 0) = €, (45)
where an extra addend, which appears due to exponent
in (I8), vanishes after integration over ¢,,.

Note also that whereas the Gaussian-Bessel packets are
obviously orthogonal in ¢ (but not in x!), this is not the
case for the 2D Gaussian wave-packets. Indeed, calculat-
ing their overlap in momentum representation we arrive
at the following;:

Pp S
W P (pJFG,p||70',£)1/)(p;,g7p”70-7€) _
Ro?(o')?

27.‘.3/2
L (02+(0/)2)3/2

xexp{— (%)2 - (%)24- 2(0(5170(/35)2)}

% (I% (£—0'—1) <2(0(5+0(/3:/~)2))/):

- (758 57) ) 40

where the following mnotation is used: k=
f{cos¢,sing} = k/20% + K'/2(c’)%.  In the coor-
dinate representation, non-orthogonality in OAM is
clearly seen from the fact that despite the equality
d’p = d’R, both R and ¢ depend on x and o. Note
that orthogonality is recovered in the case of the zero
transverse momenta: &, k" — 0.

We would like to stress that both, the Gaussian-Bessel
wave-packets and the 2D Gaussian ones, represent quan-
tum states with a well-defined z-component of the OAM,
dependence of []? on the azimuthal angle in the latter
case notwithstanding. In fact, such a dependence has a
useful interpretation in view of the uncertainty relations
for the angular momentum (see e.g, [43]):
i(cos o). (47)

(=3) =" =6 (p — p))

(AL:)*){(Asing,)?) >

Indeed, it is a lack of this dependence for Gaussian-Bessel
wave packets as well as for the “pure-Bessel” states that
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FIG. 3: (Color online) Probability density [¢|* (in arbitrary
units) for a 2D Gaussian beam with OAM at zero time instant
(paraxial t,z approach) for £ = 1,¢. = 0 (ky = 0). Left
panel: o/k = 0.1 (Gaussian limit), right panel: o/xk = 0.7.
An azimuthally symmetric distribution with a phase vortex
is recovered in the formal limit o > k.

leads to their zero uncertainties of the OAM, ((AL,)?) =
(L?)—(L.)? = 0, and finite uncertainties of the azimuths,
<(A sin ¢r)2> = <(A COS ¢r)2> - <Sin2 ¢T> - <COS2 ¢r> -
1/2. At the same time, for 2D Gaussian wave-packets
we have a finite uncertainty of the OAM — a fact, which
is closely related to their non-orthogonality. And as can
be calculated using, for instance, the paraxial states, the
OAM-dispersion is (note that here r, o = 0)

PR
(AL = (52) (48)
20
while uncertainties for the azimuths stay the same. The
r.h.s. of [ 1) in these cases is just 0. Note that as the 2D
Gaussian wave-packets represent 2m-periodic functions of
¢, the L.-operator is still self-adjoint on the space of these
functions.

There exist alternative representations for the uncer-
tainty relations ([{@T), where the Lh.s. contains dispersion
of the azimuthal angle itself, while the r.h.s. gets an
additional addend (see e.g., [44]). Note that these uncer-
tainty relations were successfully checked experimentally
in optics (see e.g., [49, [46]).

As the “almost plane-wave” states correspond to nar-
row packets in the momentum space, o < k, the OAM-
dispersion gets bigger in this case, ((AL,)?) > 1. Con-
sequently, effective OAM may be said to vanish in the
plane-wave limit, which is a very natural result. On the
other hand, the formula ([@8]) might seem to reveal such a
property of the tightly-focused scalar matter waves as to
acquire induced OAM. This feature is known to exist for
vectorial laser beams appearing thanks to the spin-orbital
coupling (see e.g., HE]), however, in the scalar case under
consideration it is not the OAM’s mean value which in-
creases when the beam gets focused, but the OAM band-
width (see e.g., [17]) just gets narrower so that the OAM-
uncertainty decreases.

The Gaussian states with OAM, Eq.([#4), also illustrate
that the Berry’s statement that there is no direct connec-
tion between phase vortices (points where [¢)|> vanishes
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FIG. 4: (Color online) Probability density |¢|*> (in arbitrary units) for a 2D Gaussian beam with OAM at zero time instant
(paraxial ¢, z approach) and o/k = 0.1. a.: £ =0,¢, =0 (ky =0), b.: £=20,¢. =0 (ky =0), c.: £ =20, =7/4 (ka = Ky),
d.: £=20,¢x =7/2 (ke =0), e.: £ =20,¢, = 31/4 (ks = —ky). The beam’s center moves to the direction of a vector k x e.

and the phase stays undetermined) and the presence of
some OAM @] stays valid for massive particles as well.
While a typical “pure-Bessel” state or a Gaussian-Bessel
packet has a “doughnut” spatial profile, the states being
considered here remain practically Gaussian when o < K
or even when o < & (see Fig[)), as the “pure Bessel” case
corresponds to the formal limit o > k, where the Gaus-
sian in momentum space turns into the delta-function. In
the latter case, however, paraxial states are no longer ap-
plicable, and the exact solutions ([#4]) should be used in-
stead. Asthe OAM increases, the beam’s center moves to
the direction of a vector k X e, as Figllshows. Note that
the density profile in Figld] stays azimuthally-symmetric
(around the central peak) for any ratio between r, and

K

(AL)Hairy = (52

ky, which is different from the Hermite-Gaussian modes
and similar to the Laguerre-Gaussian ones.

Let us now note that though a Gaussian wave-packet
with the OAM and the Airy states are quite different in
the configuration space, in the momentum space their
wave functions differ from each other only in the gen-
eral complex phase, which does not change the state’s
norm. Mathematically speaking, these states belong to
the same class of functions having quasi-classical aver-
ages. That is why, an Airy wave-packet also has finite
quantum uncertainty of the OAM or the finite OAM
bandwidth (in terms of Refs.[17-19]). Direct calculations
with the paraxial Airy wave-packet in the general case of
the non-zero initial conditions yield the following result:

2
) + 027“3_,0 +[riox n]z + 2b§ (yoliwliy(?)UQ + Ki) — :vo(02 + Iii)(dz + “12;)) +

+2b§ (ivoﬁmﬁy(?)dz + “5) —yo(o? + K2)(0? + Iiz)) — Qbibgﬁmmy(302 +k2)(302 + Faz)—f—

6/ 2 2 4 2.2 4 6/ 2 2 4 2,2 4
+0,(07 + k) (30" + 607Ky, + ky) + by (07 + k3) (30" + 607K, + K,).

As usual, in order to obtain a similar expression for
“exact” states it is enough to substitute o? — 1/2a.
As we discussed earlier, choice of the zero initial con-
ditions, 71 9 = 0, turns OAM of the ordinary Gaus-
sian beam into zero, and the experimentally observ-
able OAM bandwidth is just x/20. Let us check now
whether this trick works for Airy states as well. Accord-
ing to Eq.([#0), the special choice of the initial conditions,
xo = b3(0® 4+ K2),y0 = b} (0? + k), turns OAM of the
Airy beam into zero. The OAM uncertainty from Eq.(49)
in this case becomes:

2
(AL airy = (55 ) — 862630 kar,+
+20802 (02 + 2k2)(0? + /12)—!—
6_2( 2 2y( 2 | .2
+2b,0%(0" + 2k;) (07 + Ky). (50)

Thus, the vector b gives non-vanishing “dynamical” con-

(49)

tribution to the observable OAM bandwidth. Qualita-
tively, this result could have been expected as a trans-
verse profile of the Airy beam is highly azimuthally-
asymmetric (see figures in e.g., Ref. ﬂﬂ]), unlike the simple
Gaussian packet. Consequently, its azimuthal dispersion,
((A¢,)?), does not coincide with that of the Gaussian
packet either. As this dispersion is connected with the
one of the OAM by the uncertainty relations, the value
of ((AL,)?) also should differ from its value for b = 0,

On the other hand, the finite OAM uncertainty of the
Gaussian beam ([@8) may be explained in the way that
the quantization (z) axis does not coincide with the mean
trajectory (r). If this were the case, the transverse mo-
mentum x would turn into zero along with the OAM
uncertainty[54]. As we mentioned above, the Gaussian



states become orthogonal in OAM in this case. That
is why in terms of Ref.[28] such an OAM-bandwidth
could be called extrinsic. In optics, such (almost) Gaus-
sian states of photons with the OAM and finite OAM-
uncertainty are obtained experimentally by using diffrac-
tion gratings with a fork dislocation shifted from the
beam’s center (see e.g., [16]; compare Fig.4 there with
Fig[3 here), so that the transverse momentum becomes
finite. These states turned out to be very useful for pur-
poses of the quantum entanglement in OAM of photons
produced in the parametric down-conversion process (see
e.g., [16, 18, [19]). Roughly speaking, it is a finite OAM-
uncertainty that allows one to successfully manipulate
the OAM-entangled photons.

As is seen from Eq.(50), the OAM dispersion could
easily be much larger than unity, so that an Airy state,
in fact, carries some OAM modes with their overall
number of the order of ((AL,)?). This finiteness of
the OAM bandwidth makes Airy electrons and other
Airy particles potentially useful for experiments with the
OAM-entangled particles (see optical examples e.g., in
Refs.[16, [19]) or with the particles correlated in their
OAM- vs. azimuthal-angle-distributions (see optical ex-
ample e.g., in Ref.[46]). Another remarkable feature of
the Airy wave-packet is that, unlike in the Gaussian case,
its OAM uncertainty does not turn into zero simultane-
ously with the transverse momentum. As is seen, the
r.h.s neither of Eq.[@3) nor of Eq.(50) vanishes when
k = 0, so that the Airy beam’s OAM-bandwidth may
be said to have intrinsic contributions. In the case of the
zero OAM, (L.) = k = 0, this is just

(AL airy = 20°(05 + by), (51)

and, unlike the extrinsic part [@8]), it increases for tightly-
focused (in configuration space) beams. On the other
hand, dependence of ([@9) upon a choice of the quan-
tization axis also means that the OAM distribution is
spatially inhomogeneous (see also [27]). That is why
the Airy beams, similarly to the Bessel beams or the
Laguerre-Gaussian ones ﬁi, also can be used for trapping
and rotating micro-particles if the sizes of these parti-
cles are smaller than the beam’s effective width, or even
for rotation of the much bigger objects — similar to the
experiment of Ref.[48].

Finally, recalling similarity of the Airy states and
the Gaussian ones, one can consider a (not necessar-
ily Gaussian) wave-packet in momentum representation
with some arbitrary complex phase:

Y(p) — ¥(p)exp{ig(p)}, (52)

with ¢(p) being the OAM-less wave-function [say,
Eq.@0)]. Then if the phase g(p) represents a sum of the
OAM-term, {¢,, and another function, f(p), the OAM

of the resultant state will, in turn, represent a sum:
- 1
(L) = £+ (£ (), (53)

where f(;l) means derivative over ¢,. For example by
choosing f(p) according to the Airy case and taking the
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same Gaussian envelope, one can obtain an Airy-Bessel
wave-packet with the OAM, which would be a massive
generalization (exact solution in the light-cone variables)
of the corresponding paraxial beam in optics ﬂﬂ, @] Itis

easy to check that in this case the mean value ( féi) (p))

matches Eq.[89), so that OAM of such a beam, being
formally additive, has an effective value of just ¢, and its
OAM bandwidth is also finite. From experimental point
of view, these Airy-Bessel wave-packets could be realized
by transmitting an (electron) beam through two spatially
separated gratings (holograms), the first of which, having
a fork dislocation, would induce OAM and the second
one would induce the cubic phase (or vice versa). It is
also interesting to note that a Bessel beam or a Gaussian
beam with the OAM must not change its mean OAM
value (while changing its spatial structure and the OAM
bandwidth) when transmitting through an Airy grating.

Drawing an analogy to the quantum optics, such Airy-
Bessel electrons could be useful for experiments dealing
with entanglement in the OAM. While a Bessel electron
has zero OAM-uncertainty, which makes it useless for
entanglement purposes, its experimentally realized OAM
values can be as high as ~ 100Ah ﬂa, ] For such “highly
twisted” particles, it is an Airy grating that may be used
to enrich the OAM spectrum, making it broader while
effectively preserving the average OAM value. As can be
shown, in a scattering process (say, in the Compton scat-
tering) the finiteness of the OAM bandwidth is crucially
important for OAM-entanglement of the final particles
to occur, exactly as in the parametric down-conversion
process.

VI. GENERALIZATION FOR A PARTICLE IN
PLANE ELECTROMAGNETIC WAVE

Solutions we have discussed can be generalized to a
case when there is some background electromagnetic field
whose potential depends on the null-plane variables only.
The simplest case here is a plane electromagnetic wave
running in the negative z-direction:

AP = AM(€), 9,A" = (nA) =0, n = {0,0,—1}
= A= {0, A:(£), A4y (§), 0}, (54)

Usually, for such a geometry the well-known Volkov
states are used (see e.g., @, é, 50, @]), which closely
resemble the plane-wave ones since they are character-
ized with the four-quasi-momentum going to the “bare”
four-momentum when the field is switched off. At the
same time, it was indicated some time ago that there are
some non-Volkov states with a different set of quantum
numbers ﬂ2_1|] and, in particular, there are some quantum
states of an electron with the OAM for such a configura-
tion [29].

Here, we develop the idea that owing to the fact that
potential A depends on the light-cone variables only, the
4D Klein-Gordon equation can be mapped to the 2D



Schrédinger equation, as discussed by Bagrov and Git-
man in Ref. ] Taking the appropriate solutions for
the latter, which is much easier to do, one can obtain
corresponding exact solutions for the former. The 2D
Schrédinger equation, as we mentioned in Sec.2, has so-
lutions of the wave-packet types, in particular, of the Airy
beam and some others.

The Klein-Gordon equation in the null-plane variables
formalism,

(5 — cAnY —m?) W(e,Er) =0, (55)
after the substitution
blebrs) e {16 - o [dent + 2}
xt(&, m), (56)
gets the following form
(2iM0e — P71 + 2e(ApL)) ¥(&, L) =0, (57)

R

0'

w(Tv wJ—)

or an Airy wave-packet,

we arrive at the corresponding wave-packet states of a
boson in external field of a plane electromagnetic wave,
which are exact solutions of the Klein-Gordon equation.

We would like to emphasize that, in contrast to the
external magnetic field case (see e.g., ﬂﬁ]), correspond-
ing free-particle states are obtained from here just by
putting A — 0. At the same time, since our states are
not localized in longitudinal direction, we imply the adia-
batic switching-on and -off of the wave on t, z — +o0. It
means that generically such non-Volkov states stay well-
normalized one-particle ones obeying corresponding com-
pleteness relations and being non-orthogonal in trans-
verse plane. Though the completeness feature may not

((20) 2 +ir) " e exp { ;HwJ_)Q - (%)2 T 8(@0) 210

R2
(I%”( >+ZT>>_I%
K

—.’Bl—mLo—Z
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Then we observe that in terms of the new radius-vector
(here we follow mostly Ref.[21]; see also [29]),

m:n+§/d§A, (58)

the last equation is just a free 2D Schrodinger equation:

(&, r) = (§,m=u+§/du) N
= (2000 — p2) V(M) =0 (59)

Going to dimensionless variables, 7 = 2\, x; = 2\R,
we arrive, again, at Eq.(I2).

Then, writing down such normalized solutions to
Eq.([[2) as a 2D Gaussian wave-packet with the OAM,

K R?

+i7) +i€<p} )
2
(¢4+1) <W>) ’

3= = R{cosy,sin p} (60)
I

)2—% (%+%> ((20)7% +i7) }x

Ai (b;l (Ry | (20) ;3+w>2)> o

be obvious from the afore-given procedure, one can ob-
tain the very same solutions by expanding an arbitrary
state of a boson in external field of a wave, [1)), over the
Volkov “plane-wave” states, |q) , which are known to be
orthonormal. This expansion would be analogous in a
sense to the ordinary Fourier transform used in the pre-
vious sections and could always be reverted. Then by
choosing an appropriate physical model for the overlap
(g|1), one can obtain the same states, Eqs. (@), (@)).



VII. CONCLUSION

Progress in experimental creation of the electrons hav-
ing non-planar wave fronts and such new degrees of free-
dom as, for instance, OAM requires adequate theoretical
description of these novel quantum states. In this pa-
per, we presented and analyzed a family of quasi-classical
Gaussian wave-packets of massive bosons, which are ex-
act solutions of the Klein-Gordon equation thanks to the
null-plane-variables formalism. We compared these exact
solutions with the approximate (paraxial) ones and indi-
cated a link between them. Depending upon a choice of
the general complex phase in momentum representation,
such wave packets can carry OAM and may have finite
quantum uncertainty of the latter or can represent well-
normalized Airy one-particle states with the zero effective
value of the OAM but, again, with its finite uncertainty,
which is determined by the packet’s parameters. Depend-
ing on these parameters, the states obtained can resem-
ble either the OAM-less Gaussian packets (that is the
squeezed partially coherent states) or the “pure Bessel”
and the “pure Airy” beams.

Such features of the calculated quantum OAM-
uncertainty as its finiteness and its dual, intrinsic and
extrinsic, nature for the Airy states make these wave-
packets potentially useful for purposes of quantum en-
tanglement of the electrons and other massive particles
in their OAMs, by analogy with the quantum optics. It
is easy to show that exactly as in the optical case, a non-
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vanishing OAM-uncertainty is needed for the final par-
ticles in some reaction to be OAM-entangled. Detailed
calculations of such a scattering will be presented else-
where. We believe that the corresponding experiments,
similar to those described in Ref. m], could in princi-
ple be carried out with the vortex- and Airy-electrons
available at the moment or even with the hypothetical
Airy-Bessel electrons.

As also demonstrated, these quantum states exist in
external field of a plane electromagnetic wave. This
means that all the quantum numbers of vortex (or Airy-
) electrons entering the wave would remain (almost) the
same after electrons’ leaving the wave (neglecting the ra-
diation losses). The last fact, in particular, allows one
to propose schemes for acceleration of the vortex- and
Airy electrons up to the MeV energies, similar to those
we discussed earlier in Ref.[29].

Finally, generalizations of the wave-packets described
in this paper to the fermionic case could be easily ob-
tained by multiplying corresponding wave-functions in
momentum representation by a bispinor u(p) obeying
Dirac equation.
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