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ABSTRACT
Understanding the properties of the internal magnetic field of neutron stars remains a theoretical
challenge. For almost ten years now, twisted-torus geometries have been considered both in
Newtonian and general-relativistic equilibrium models, as they represent a potentially good
description of neutron star interiors. All of these works have found an apparent intrinsic
limitation to geometries that are poloidal-field dominated, with a toroidal-to-poloidal energy
ratio inside the star that are �10 per cent, unless surface currents are included and magnetic
fields are allowed to be discontinuous. This limitation is in stark contrast with the general
expectation that much higher toroidal fields should be present in the stellar interior and casts
doubt about the stability and hence the realism of these configurations. We here discuss how to
overcome this limitation by adopting a new prescription for the azimuthal currents that leads to
magnetized equilibria where the toroidal-to-total magnetic field energy ratio can be as high as
90 per cent, thus including geometries that are toroidal-field dominated. Moreover, our results
show that for a fixed exterior magnetic field strength, a higher toroidal-field energy implies a
much higher total magnetic energy stored in the star, with a potentially strong impact on the
expected electromagnetic and gravitational-wave emission from highly magnetized neutron
stars.
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1 IN T RO D U C T I O N

Magnetic fields represent a key aspect of the physics and astro-
physics of neutron stars (NSs). Observational evidence points at
very strong external (polar) magnetic field strengths, up to 1013 G
for ordinary NSs and 1015 G for magnetars (Duncan & Thompson
1992), while the internal fields might be even stronger. All the dy-
namical processes connected to present observations of NSs are
affected or even directly produced by magnetic fields as, for exam-
ple, the dipole radiation or the magnetar flaring activity. Moreover,
magnetically induced deformations of the stellar structure can make
rotating NSs potentially detectable sources of gravitational waves
(GWs) (Bonazzola & Gourgoulhon 1996; Cutler 2002; Frieben &
Rezzolla 2012). Both the GW and the electromagnetic emissions
depend sensitively on the amount of magnetic field energy stored
in the NS and on its geometrical distribution. Despite its great rele-
vance, observations have not yet provided direct constraints on the
internal magnetic field configuration.

Understanding the properties of the internal magnetic field of
NSs is a theoretical challenge which dates back to the early work of
Chandrasekhar & Fermi (1953). Since then, a number or analytical
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and numerical studies have been devoted to the construction of
equilibrium models of magnetized NSs, at first considering the
simple purely poloidal and purely toroidal geometries. However,
already from the analytical work on non-rotating magnetized stars of
Markey & Tayler (1973), Wright (1973) and Tayler (1973), there has
been growing evidence that these simple geometries would suffer
from the so-called Tayler (or kink) instability, acting on Alfvén
time-scales, and that a long-lived magnetic field has to consist of
mixed poloidal–toroidal fields. These perturbative predictions have
recently seen a number of confirmations through fully non-linear
simulations in general relativity (Ciolfi et al. 2011; Kiuchi, Yoshida
& Shibata 2011; Lasky et al. 2011; Ciolfi & Rezzolla 2012). These
studies also show that a significant magnetic helicity is produced and
that the system tends to an equipartion between poloidal and toroidal
fields (Ciolfi & Rezzolla 2012). Unfortunately, the prospects of
detecting GWs produced by the instability are pessimistic (Ciolfi
& Rezzolla 2012; Lasky, Zink & Kokkotas 2012; Zink, Lasky &
Kokkotas 2012).

Among the possible configurations with a mixed magnetic field,
the so-called twisted-torus geometry has recently emerged as a
good candidate for NS interiors. It consists of an axisymmetric
mixed field where the poloidal component extends throughout the
entire star and to the exterior, while the toroidal one is confined
inside the star, in the torus-shaped region where the poloidal field
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lines are closed. An important feature of this geometry is that the
magnetic field is not entirely confined to the interior of the star,
as considered, e.g. by Ioka & Sasaki (2004), Haskell et al. (2008),
Duez & Mathis (2010) and Yoshida, Kiuchi & Shibata (2012), thus
in better agreement with the observational evidence of external
fields. Furthermore, in a twisted-torus configuration, both of the
magnetic field components are continuous at the stellar surface.
A discontinuity in the magnetic field would require the inclusion
of surface currents (Colaiuda et al. 2008), for which there is no
obvious way to generate and sustain them. An important indication
in favour of the twisted-torus configuration comes from the work
of Braithwaite & Nordlund (2006), where this geometry emerged
as the final outcome of the evolution of initial random fields in a
non-rotating fluid star. A twisted-torus magnetic field also appears
natural in terms of the poloidal and toroidal-field instabilities. The
first one takes place in the closed-line region and produces there a
stabilizing toroidal component, while the toroidal-field instability
occurs near the symmetry axis and produces there a poloidal field.

For almost ten years now, twisted-torus geometries were con-
sidered in Newtonian (Tomimura & Eriguchi 2005; Yoshida &
Eriguchi 2006; Lander & Jones 2009, 2012; Fujisawa, Yoshida
& Eriguchi 2012; Glampedakis, Andersson & Lander 2012) and
general-relativistic frameworks (Ciolfi et al. 2009; Ciolfi, Ferrari
& Gualtieri 2010; hereafter Paper I and Paper II). In spite of the
different approaches adopted, all the twisted-torus models proposed
so far have given rather similar results in terms of the possible con-
figuration of magnetic fields. The most important of these results is
the apparently unavoidable restriction to poloidal-field-dominated
geometries, with an upper limit of ∼10 per cent for the toroidal-to-
poloidal energy ratio in the star, unless surface currents and discon-
tinuous magnetic fields are included (Fujisawa & Eriguchi 2013).

This limitation is far more serious than it may appear. First, a
much higher toroidal-field content is expected from the formation
scenario of highly magnetized NSs, simply as a result of strong
differential rotation in the nascent NS (Thompson & Duncan 1993;
Bonanno, Rezzolla & Urpin 2003). Secondly, higher toroidal-field
energies are needed when considering the magnetothermal evolu-
tion of magnetars, their bursting activity and the pulse profiles (Pons
& Perna 2011). Finally, all evidence is that poloidal-field-dominated
geometries are unstable on Alfvén time-scales (Braithwaite 2009;
Ciolfi et al. 2011; Lasky et al. 2011; Lander & Jones 2012) and
hence the twisted-torus configurations considered so far may not be
realistic.

In this Letter, we overcome this limitation by adopting a new
prescription for the azimuthal currents that leads to more generic
twisted-torus configurations. In this way we construct a new sample
of magnetized equilibria where the toroidal-to-total magnetic field
energy ratio can be as high as 90 per cent, thus including toroidal-
field-dominated geometries. Moreover, we find that for a fixed ex-
terior magnetic field strength, a higher relative content of toroidal
field energy implies a much higher total magnetic energy in the star,
with a potentially strong impact on the expected electromagnetic
and GW emission properties of highly magnetized NSs.

2 T H E M AT H E M AT I C A L M O D E L

We consider axisymmetric equilibrium configurations of a non-
rotating magnetized NS, infinitely conducting and surrounded by
vacuum, obtained assuming that the magnetic field acts as a pertur-
bation of a spherically symmetric background star [see Paper I for a
discussion on these assumptions and on the conditions under which
a superfluid interior may not be considered (Lander 2013)]. The

background NS has a (gravitational) mass of M = 1.4 M� and is de-
scribed as a barotropic fluid with polytropic equation of state (EOS)
p = Kρ� , where p is the fluid pressure and ρ the rest-mass density,
with K = 100 and � = 2 (in units in which c = G = M� = 1).
More sophisticated EOSs could be considered (as done in Papers I
and II), but a polytropic choice is sufficient for our purposes and
has the advantage that the configurations obtained can be easily
employed as initial data for dynamical simulations. Magnetic fields
can be considered as a perturbation on the stellar structure as long
as the magnetic energy is much smaller than the binding energy and
essentially if �1017 G, see Giacomazzo, Rezzolla & Baiotti (2011)
for a recent example. In practice, we fix the field strength at the pole
to Bp = 1015 G, consistent with the observed order-of-magnitude of
magnetars.

An equilibrium magnetic field configuration is found by solving
the Grad–Shafranov equation for the unknown function represented
by the azimuthal component of the vector potential Aφ ≡ ψ(r, θ )
(see Paper I and II for details)

− e−λ

4π

[
∂2

rψ + ∂rν − ∂rλ

2
∂rψ

]
− 1

4πr2

[
∂2

θψ − cot θ ∂θψ
]

= J̄φ + F (ρ + 2p)r2 sin2 θ

= e−ν

4π
β

dβ

dψ
+ F (ρ + 2p)r2 sin2 θ , (1)

where the rest-mass density ρ, the pressure p and the metric func-
tions ν(r), λ(r) are known from the background solution, while β(ψ)
and F(ψ) are two arbitrary functions, the former one expressing the
azimutal current J̄φ . Once a solution is found for ψ , the magnetic
field components can be computed from the curl of the vector po-
tential. As surface boundary conditions we impose that ψ and its
derivatives match the exterior vacuum solution. We simplify the
problem by assuming that the magnetic field is dipolar and thus that
ψ(r, θ ) = −a1(r)sin 2θ . Adding higher multipoles is possible and
was considered in Papers I and II; here, however, it would represent
just an additional complication that would not affect the main re-
sults of this work. Such an extension will be investigated in a future
work.

The choice of the trial functions β(ψ) and F(ψ) represents
a prescription for the current distribution and determines the fi-
nal magnetic field geometry. We recall that the function β(ψ) is
related to the ratio of toroidal and poloidal fields (i.e. β = 0
gives a purely poloidal field) and we take one of the simplest
forms for a twisted-torus geometry with continuous fields, β(ψ) =
ζ0ψ (|ψ/ψ̄ | − 1) �(|ψ/ψ̄ | − 1), where ζ 0 is a constant, ψ̄ is the
value of ψ on the last closed-field line (the one tangent to the sur-
face) and �(x) is the Heaviside step function, which confines the
toroidal field in the closed-line region. Once the second arbitrary
function F(ψ) is also chosen, we can vary the constant ζ 0 to ob-
tain a set of configurations with varying toroidal-field content. The
simplest and common choice for F is that it is a constant, i.e.

F (ψ) = c0 , (2)

which then leads to the configurations shown in Fig. 1. The ini-
tial solution has ζ 0 = 0 (i.e. no toroidal field; left-hand panels)
and we increase ζ 0 to reach a higher internal toroidal-to-total mag-
netic field energy ratio Etor/E

int
m . As a result, the toroidal field

becomes stronger, but the closed-line region also shrinks, so that
the amount of toroidal magnetic energy reaches a maximum with
Etor/E

int
m = 5.5 per cent (middle panels) and then starts decreas-

ing (right-hand panels). This happens because the stronger toroidal
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Figure 1. Top panels: meridional view of magnetic field configurations
obtained with constant F(ψ). Shown in colour is the toroidal-field strength
in units of the polar value Bp = 1015 G. The labels on top of each panel
show the toroidal-field energy content Etor/E

int
m . Bottom panels: the same

as above but with a colour-coded representation of the azimuthal electric
current Jφ in units of 10−5 km−1.

fields require a stronger electric current in the closed-line region
(Fig. 1, bottom panels) and this affects the poloidal field lines by
moving the neutral point outwards. In practice, these examples sum-
marize the limitations of the previous twisted-torus models, which
could lead to NSs with only Etor/E

int
m � 10 per cent. In what fol-

lows we discuss how we can overcome these restrictions with a
more ingenious choice for F(ψ). For simplicity, we maintain the
same form for β(ψ) as different choices yield similar results (see
Paper II).

The first element of our prescription to increase the amount of
toroidal-field energy in the star consists in having a larger region
of closed field lines. In absence of toroidal fields, the closed-line
region can be enlarged by changing the prescription for F(ψ) so
that the electric currents are more concentrated near the symmetry
axis. Note that this also implies an increase of the magnetic energy
in the star for a fixed external field strength. Pushing this idea to the
limit would give a poloidal field entirely confined in the star (see
also Fujisawa et al. 2012). If toroidal fields are included, a larger
closed-line region would still undergo a contraction, but we expect
the maximum toroidal-field energy to be considerably larger. To
produce a larger region of closed field lines we extend (2) as

F (ψ) = c0

[
(1 − |ψ/ψ̄ |)4�(1 − |ψ/ψ̄ |) − k̄

]
, (3)

with c0 and k̄ constants.
The second element of our prescription aims instead at reduc-

ing the effect that toroidal fields have on poloidal field lines by
modifying (3) as F (ψ) → F (ψ) + F̄ (ψ), with the new term F̄ (ψ)
chosen so as to cancel as much as possible the toroidal-field contri-
bution to the Grad–Shafranov equation, i.e. the β term in equation
(1). In practice, we set F̄ = X(ψ) β (dβ/dψ), so that the complete

azimuthal current that we want to minimize is

Ĵφ ≡ J̄φ + F̄ (ρ + 2p)r2 sin2 θ

= β
dβ

dψ

[
e−ν

4π
+ X(ψ)(ρ + 2p)r2 sin2 θ

]
. (4)

Making this quantity negligibly small would allow us to add an
arbitrarily large toroidal field without changing the closed-line re-
gion and thus resulting in an arbitrarily high Etor/E

int
m . Despite our

freedom in choosing X(ψ), a perfect cancellation would be possible
only in the limit of a magnetic field entirely confined inside the star.
Nevertheless, the minimization of Ĵφ becomes more effective as the
closed-line region extends towards the symmetry axis and at some
point it starts increasing significantly the maximum toroidal-field
energy. Again, the possibility of storing more energy in toroidal
fields also leads to the increase of the total magnetic energy in the
star. Here we simply set X(ψ) = X0 = const., with X0 fixed so as
to minimize Ĵφ . Remarkably, prescription (3) and the addition of F̄

have a limited effect if adopted separately, but their combined use
yields a significant difference.

3 N E W T W I S T E D - TO RU S S O L U T I O N S

Using our new approach we consider different example models
with k̄ in the range [0.03, 0.35]. For each k̄, we span the full range
of ζ 0, obtaining geometries with varying Etor/E

int
m . All the other

constants are fixed once we choose Bp = 1015 G. Using the same
conventions as in Fig. 1, we show in Fig. 2 the configurations
having the maximum toroidal field content for three choices of
k̄, noting that in general a higher k̄ gives a higher energy ratio,
up to Etor/E

int
m = 89 per cent. This extreme case corresponds to a

toroidal-field-dominated geometry and clearly demonstrates that the
new prescription allows us to overcome the limitations of previous
twisted-torus models. Note also from the different colour scale that

Figure 2. The same as in Fig. 1 for three configurations of maxi-
mal Etor/E

int
m obtained with the new prescription; from left to right

k̄ = 0.03, 0.15, 0.35.
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Figure 3. Left-hand panel: the top part shows the radial profile of the toroidal magnetic field on the equatorial plane for models with k̄ = 0.25 and different
toroidal-field content Etor/E

int
m . The bottom part, instead, shows the radial profile of a1(r) = −ψ(r, θ = π/2) for the same models, with the filled dots marking

the extension of the closed-line region. Right-hand panel: the same as in the left-hand panel, but for models with fixed Etor/E
int
m and varying k̄.

the new configurations have much stronger maximum toroidal fields
Bmax

tor , up to ∼1016 G, while the currents are comparable.
Fig. 3 provides a more quantitative measure of the magnetic

field and the vector potential via the function a1(r), with the left-
hand panel illustrating configurations obtained with k̄ = 0.25 and
increasing Etor/E

int
m , from 40 to 80 per cent (the top part shows

the radial profile of the toroidal magnetic field on the equatorial
plane, while the bottom part shows the radial profile of a1(r) for
the same models). Note that for fixed k̄, a higher toroidal-field con-
tent reduces the extension of the closed-line region. On the other
hand, as this region expands when keeping fixed the polar field
strength Bp, both the interior poloidal and toroidal-field strengths
increase very rapidly. In the right-hand panel of Fig. 3, we report
the same quantities as in the left one but when varying k̄ and impos-
ing Etor/E

int
m = 50 per cent, i.e. the energy equipartition between

poloidal and toroidal fields. As the sequence shows, when approach-
ing k̄ = 0.35, the strength of the two components rapidly converges
to a minimum value. In terms of the internal magnetic energy, this
lower limit gives E int

m /E∗ � 68, where E∗ � 2.7 × 1048 erg is the
internal magnetic energy of the purely poloidal model shown in the
first panel of Fig. 1. We conclude that for Etor/E

int
m = 50 per cent,

the internal magnetic energy is at least one to two orders of magni-
tude larger than for the poloidal-field-dominated models built with
the previous prescription (2) and the same Bp. This result provides
an effective example of how a higher toroidal field content implies
a much higher internal magnetic energy.

Although our findings depend quantitatively on the particular
choice for F(ψ) and β(ψ), they imply the following result that we
expect to be general for twisted-torus geometries: if a more substan-
tial part of magnetic energy is in the toroidal-field component, i.e.
if Etor/E

int
m � 10 per cent, then higher internal magnetic energies

are not only possible but rather inevitable.

4 QUA D RU P O L A R D E F O R M AT I O N S

Magnetic fields alter the NS density and pressure distributions in-
ducing quadrupolar deformations that can be quantified in terms of
the quadrupolar ellipticity ε

Q
≡ Q/I , where Q is the mass-energy

quadrupole moment and scales as the magnetic energy (i.e. ∝B2),
while I is the mean value of the stellar moment of inertia [see also the
discussion by Frieben & Rezzolla (2012) on the difference between
surface and quadrupolar ellipticities]. Poloidal fields deform a non-

rotating star towards an oblate shape (equatorial radius larger than
the polar radius), corresponding to positive ε

Q
, whereas toroidal

fields have the opposite effect; therefore, the amount of deforma-
tion is reflected in the toroidal-to-poloidal energy ratio. In general, a
magnetized NS that rotates around an axis misaligned with respect
to the magnetic axis and having ε

Q

= 0, will emit a continuous GW

signal with amplitude h ∝ |ε
Q
|I�2/d (Bonazzola & Gourgoulhon

1996), where � is the angular velocity and d the source distance
from the observer. Following the procedure adopted in Paper II,
we can compute the deformations of our new set of configurations
and compare them with the typical predictions of previous twisted-
torus models. Considering a set of realistic EOSs would introduce
a variance of ∼2 in the results (see Paper II); however, here we
are concerned with the influence that the magnetic field geometry
has on the deformation, which is independent of the particular EOS
adopted.

In Table 1, we report the results for some representative solutions,
with the first two lines referring to configurations obtained with pre-
scription (2), corresponding to the purely poloidal model and to one
with maximal toroidal energy (first two columns in Fig. 1). These
models are representative of the order-of-magnitude deformations

Table 1. Summary of the properties of models built with prescription
(2) (first two lines) and with the new prescription (3), for Bp = 1015 G.

k̄ Etor/E
int
m ε

Q
ε

Q
/E int

m [km−1] Bmax
tor /Bp

− 0.0 per cent +9.8 × 10−6 +4.43 0
− 5.5 per cent +5.1 × 10−6 +3.59 2

0.03 63 per cent −2.7 × 10−5 −1.54 20
0.06 50 per cent −5.5 × 10−3 −0.47 549
0.06 67 per cent −3.6 × 10−5 −1.90 20
0.15 50 per cent −1.5 × 10−4 −0.55 64
0.15 76 per cent −5.6 × 10−5 −2.75 22
0.25 40 per cent +1.0 × 10−4 +0.06 142
0.25 50 per cent −1.0 × 10−4 −0.65 45
0.25 60 per cent −1.0 × 10−4 −1.37 32
0.25 70 per cent −1.1 × 10−4 −2.14 29
0.25 80 per cent −1.4 × 10−4 −2.99 30
0.25 84 per cent −1.2 × 10−4 −3.40 30
0.35 50 per cent −1.0 × 10−4 −0.70 43
0.35 89 per cent −1.9 × 10−4 −3.74 38
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obtained with the poloidal-field-dominated solutions proposed so
far in the literature. The other lines refer to our new configurations
with different values of k̄ and toroidal magnetic energies. In addi-
tion to ε

Q
for Bp = 1015 G, we also show its value normalized to

the internal magnetic energy E int
m (expressed in km). This quantity

is independent of the magnetic field strength and only depends on
the geometrical distribution.

As mentioned above, the sign of ε
Q

results from the bal-
ance between poloidal (positive) and toroidal (negative) field de-
formations and the separation occurs around equipartition, i.e.
Etor/E

int
m ∼ 50 per cent, indicating that such balance is essentially

controlled by the amount of energy in the two components. The
same can be deduced by looking at the normalized ellipticities
ε

Q
/E int

m . These are smaller when Etor/E
int
m � 40–50 per cent, where

the two kind of deformations are well balanced, and they grow when
moving away from equipartition. In particular, similar (and oppo-
site) values are found in the poloidal-field-dominated and in the
toroidal-field-dominated case. Note that different values of k̄ with
the same toroidal energy content give only slightly different ε

Q
/E int

m .
Most importantly, the majority of the new configurations consid-
ered has |ε

Q
| ∼ 10−4 × (Bp/1015G)2, which is at least one order of

magnitude larger than the values given by poloidal-field-dominated
geometries. This is due to the much higher internal magnetic en-
ergies obtained for geometries with higher Etor/E

int
m . In summary,

twisted-torus configurations with higher toroidal energy content,
say, Etor/E

int
m ≥ 40 per cent, can easily produce GW amplitudes

that are one order of magnitude larger than what predicted so far,
either in newly born magnetars or in pulsars with large buried fields,
with an obvious enhancement of their detectability. Moreover, in
magnetized NSs with negative ellipticities, a spin-flip mechanism
driven by viscosity may occur, leading to an increase in the angle
between the spin and magnetic axes, which tend to become nearly
orthogonal (Jones 1975; Cutler 2002). In this case, the GW emission
would be further enhanced, with optimistic prospects of detection
(Stella et al. 2005).

5 C O N C L U D I N G R E M A R K S

We have discussed a novel procedure for obtaining twisted-torus
equilibrium configurations of nonrotating magnetized NSs where
the magnetic field energy in the toroidal component can be as high
as the poloidal one, or even higher. In previous twisted-torus mod-
els based on a simpler prescription for the electric currents, in
fact, the toroidal magnetic energy was at most ∼10 per cent of the
total. However, with a suitable choice of the azimuthal currents
it is possible to build new equilibria with toroidal fields contain-
ing up to ∼90 per cent of the total internal magnetic energy and
toroidal magnetic fields that are on average about three times larger
than the poloidal ones. When compared with the poloidal-field-
dominated geometries proposed in the past, our configurations rep-
resent equally valid candidates for NS interiors and possibly more
realistic ones.

An important implication of our findings is that for a fixed exterior
field strength, stars with larger energy in toroidal-fields have to have
a much larger magnetic energy stored in the interior. As a result, if
NSs have internal magnetic fields close to a twisted-torus geome-
try with a high toroidal content, say, Etor/E

int
m � 10 per cent, then

the internal magnetic energy would be higher than commonly as-
sumed, with a potentially strong impact on the emission properties.

As an example, for the new solutions with Etor/E
int
m � 40 per cent,

the GW emission associated with the magnetically induced
stellar deformations is about one order of magnitude larger than
for poloidal-field-dominated configurations.

Finally, the new toroidal-field-dominated configurations could
be stable over several Alfvén time-scales, in contrast with what
known for poloidal-field-dominated stars. Should this be confirmed
by non-linear simulations, it would provide strong support to the
idea that these configurations are realistic representations of the
stellar interior. This will be considered in our future work.
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