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Evidence of a cancer type-specific distribution for consecutive somatic
mutation distances
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A B S T R A C T

Specific molecular mechanisms may affect the pattern of mutation in particular regions, and therefore
leaving a footprint or signature in the DNA of their activity. The common approach to identify these
signatures is studying the frequency of substitutions. However, such an analysis ignores the important
spatial information, which is important with regards to the mutation occurrence statistics. In this work,
we propose that the study of the distribution of distances between consecutive mutations along the DNA
molecule can provide information about the types of somatic mutational processes. In particular, we have
found that specific cancer types show a power-law in interoccurrence distances, instead of the expected
exponential distribution dictated with the Poisson assumption commonly made in the literature. Cancer
genomes exhibiting power-law interoccurrence distances were enriched in cancer types where the main
mutational process is described to be the activity of the APOBEC protein family, which produces a
particular pattern of mutations called Kataegis. Therefore, the observation of a power-law in
interoccurence distances could be used to identify cancer genomes with Kataegis.

ã 2014 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Computational Biology and Chemistry

journal home page : www.elsevier .com/ loca te /compbiolchem
1. Introduction

DNA mutations are one of the main generators of variability and
complexity at the DNA sequence level in the genome. Several
molecular mechanisms can induce mutations, and interestingly,
some of them produce specific patterns in the DNA sequence that
can be recognized by computational analysis. For example, the
pattern produced by the APOBEC protein-family (Roberts et al.,
2013) is characterized by the substitution of cytosines (C) by
thymines (T), often associated to the motif tC, i.e., the capitalized
mutated C flanked by a T on its 3’ side. This mutagenic activity is
also affected by the methylation status of the cytosine: methylated
cytosines having a higher rate of mutability (see for example
(Wijesinghe and Bhagwat, 2012)). Therefore, the characterization
and identification of these signatures can help to understand the
complexity of the genome at the DNA sequence level, and even
how this complexity has been generated.

The characterization and identification of these mutational
signatures has been recently facilitated by the release of the
sequenced genomes of a large number of patients with different
types of cancer, since: (1) in contrast to genomes of healthy donors
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which contain only few somatic mutations, the genomes of cancer
patients often show large number of mutations (see for example
(Alexandrov et al., 2013)), (2) most of the cancer types studied can
be described by the influence of two main mutational processes
(Alexandrov et al., 2013), and (3) there is a large number of cancer
genomes sequenced and publically available. In fact, (Alexandrov
et al., 2013) has already characterized more than 20 mutational
signatures in terms of nucleotide substitution frequencies among
more than 7000 cancers. However, it is possible that the mutagenic
mechanisms influence not only the frequency of substitutions, but
also other properties of the distribution of mutations, as in for
example the distribution of the distances among consecutive
mutations. Nevertheless, we are not aware of any previous work
addressing this.

Assuming that mutations happen randomly in the genome
following a Poisson dynamics which is the most common model
for arrival or counting processes, it is expected that the distribution
of distances between consecutive somatic mutations will follow a
discrete exponential distribution independently of the overall
frequency of mutations in the genome/region of interest. However,
recently, a particular pattern of localized somatic mutations in
cancer genomes has been observed. This pattern has been termed
Kataegis (Nik-Zainal et al., 2012) and its defining feature are
mutations spaced one to several hundred nucleotides apart that
are clustered over kilobase-sized regions. In particular, the “rule of
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thumb” used to define these regions is as having six or more
consecutive mutations with an average distance of less than or
equal to 1 kb (e.g., (Taylor et al., 2013)). This pattern has been linked
to the activity of particular proteins of the APOBEC family, often
acting in the specific motif tCw (where w is adenine or thymine),
and associated with the activity of APOBEC near rearrangement
break points (Taylor et al., 2013). Clusters of mutations may
produce an excess of short distances among consecutive mutations
than expected by the exponential distribution, and therefore it will
be an excellent starting point to study how mutational processes
may affect this distribution. In this manuscript, we describe for the
first time that the distribution of distances among consecutive
mutations in some cancer types departs from the exponential
distribution in the range of short distances (less than 5 kb) and, in
fact, it follows a power-law. Among the cancer genomes showing
this phenomenon, we see an enrichment on cancer types
associated with the mutational process of APOBEC activity.

2. Material and methods

Genomic locations of somatic mutations for 507 cancer individ-
uals comprising 10 cancer types were obtained from (Alexandrov
et al., 2013).We consideredonly wholegenome sequencingdata, and
only single nucleotide substitutions located in autosomal chromo-
somes (1–22). In the following, the distances between mutations
were calculated as distances between consecutive mutations per
chromosome. To plot the distribution of absolute frequencies we
Fig. 1. Histogram of distances (log 10 bp) among consecutive mutations in autosomal ch
(D) is shown. Vertical dash line indicates the distance 5 kb that we have used to separ
distances (5 kb–1 Mb). A log–log plot of the frequency distribution of the subpopulation 

linear plot of the frequency distribution of the subpopulation with long distances (5 kb
used the R function hist, with parameter breaks = 100; this means
that 100 bins of equal size were obtained, and for each bin the
number of counts was calculated. Later, if needed, the distribution
was plotted in the log–log scale.

Vuong closeness test (Vuong, 1989) was used to determine
when the discrete power-law is a closer representation to the data
than the discrete exponential distribution. This is a likelihood ratio
test for model selection using the Kullback–Leibler criteria. The
test statistic, R, is the ratio of the log-likelihoods of the data
between the two competing models. The sign of R, indicates which
model is better. The null hypothesis is that both distributions are
equally far from the true distribution of the data. To apply this test,
we used the R package poweRlaw (Clauset et al., 2009). We used
default parameters except for xmin that was set to 20. This
parameter indicates that data points with a lower value than
20 will not be considered to calculate the likelihood. We set this
parameter to 20, because as it can be observed in Fig. 1A and D,
there is a peak in the distribution for the range 0–10 bp. The
probability function used by powerRlaw for the discrete power-law
distribution was:

p xð Þ ¼ 1
j a; xminð Þ (1)

and for the discrete exponential distribution:

p xð Þ ¼ 1 � e�l
� �

elxmin (2)

where xmin was set to 20 for both cases, as explained above.
romosomes from breast cancer genomes of the individual PD4103a (A) and PD4107a
ate the population in two: one with short distances (0–5 kb) and other with long
with short distances for the individual PD4103a (B) and PD4107a (E) is shown. A log-
–1 Mb) for the individual PD4103a (E) and PD4107a (F) is shown.
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3. Results

3.1. Distribution of mutation distances in two breast cancer genomes
with Kataegis

The phenomenon of Kataegis is illustrated for first time in
(Nik-Zainal et al., 2012) with the analysis of the genome of two
breast cancer patients (ids: PD4103a and PD4107a). Fig. 1A and D
shows their distribution of distances among consecutive muta-
tions (on a log scale). From these distributions, it seems that there
are two clear subpopulations, one comprising distances less than
5 kb and other for distances larger than 5 kb; we will define this
second region as the one comprising distances from 5 kb to 1 Mb
throughout this manuscript to guarantee a good estimation of the
density. Interestingly, when we study their distribution, the first
subpopulation have a linear behavior in the log–log scale (Fig. 1B
and E), meanwhile the second subpopulation shows a linear
behavior in the log-linear scale (Fig. 1C and F). This is an indication
that the distribution of short distances (ranging from 0 to 5 kb) is
well described by a power-law, meanwhile the distribution for the
subpopulation ranging from 5 kb to 1 Mb seems to be visually
better described by an exponential behavior. Indeed, when we used
Vuong’s closeness test to determine if the subpopulation of shorter
distances follows a discrete power-law compared to a discrete
exponential distribution, we obtained that the data is represented
significantly better by the discrete power-law than the discrete
exponential (pv 2 0.0012 for PD4103a and pv 2 9 � 10�19 for
PD4107a), meanwhile the subpopulation ranging from 5 kb to
1 Mb is represented better by a discrete exponential distribution
than the discrete power-law (pv 2 10�60 in both cases). The
maximum likelihood estimation for the exponent of the power-law
distribution was 1.44 for PD4103a and 1.41 for PD4107a.

3.2. Mutation distances distribution as a specific signature of cancer
genomes with Kataegis

The previous section demonstrates the presence of two
subpopulations in the distribution of mutation distances in two
breast cancer patients. Unexpectedly, the subpopulation of short
distances (0–5 kb) follows a power-law, instead of the expected
exponential distribution. Next, we wanted to find out if this pattern
is also present in other cancer types.

We downloaded the location of somatic mutations of 507 cancer
individuals comprising 10 cancer types from (Alexandrov et al.,
2013). We selected only mutations (single nucleotide substitu-
tions) in autosomal chromosomes and calculated the consecutive
distance between mutations. For distances in the range 0–5 kb, we
applied Vuong’s closeness test (Vuong, 1989) to determine which
Table 1
Number of individuals with a power-law by cancer type.

Cancer type Number of individuals
with a power-law

Num
con

Acute lymphocytic leukemia 0 1 

Breast cancer 7 87 

Chronic lymphocytic leukemia 1 14 

Lung adenocarcinoma 1 24 

B-cell lymphoma 5 19 

Pancreas cancer 1 14 

Acute myeloid leukemia 0 0 

Liver cancer 0 84 

Medulloblastoma 1 2 

Pilocytic astrocytoma 0 0 

a Only individuals with more than 50 somatic mutations in the subpopulation with 

b Obtained from (Alexandrov et al., 2013).
distribution, discrete power-law or discrete exponential, can
represent the data better.

Table 1 shows in the second column the number of cancer
genomes/individuals where the distribution of short distances
(0–5 kb) can be represented significantly more closely (pv < 0.05)
by a discrete power-law compared to the discrete exponential
distribution. Breast cancer and B-cell lymphoma are among the
cancer types with relatively more individuals with a significant
power-law distribution. It has been proposed that there is a link
between Kataegis and APOBEC activity (e.g., (Alexandrov et al.,
2013; Nik-Zainal et al., 2012; Taylor et al., 2013)). Among cancer
genomes/individuals with a power-law distribution, we detected a
significant enrichment (hypergeometric test; pv < 7 � 10�4) of
cancer genomes associated with the APOBEC mutational signal. We
extracted the information about the association of the mutational
pattern of APOBEC with different cancer types from (Alexandrov
et al., 2013).

3.3. Numerical simulation of clustered mutations recapitulated the
observed power law distribution in some cancer genomes

In order to be able to understand the distribution observed in
the distances of mutations, we have run simulations. We
hypothesize that the nucleotide substitutions with short distances
(0–5 kb) is mainly due to a mutational process that generates
mutations in a localized region (e.g., by the APOBEC activity), and
that the mutations in the distribution of the long distances
(5 kb–1 Mb) can be explained by distances of mutations belonging
to two clusters of mutations generated by APOBEC activity. In this
simulation, we assume that number of mutations generated by the
APOBEC activity is much larger than those generated by other
processes and, therefore, we ignore the second ones. We try to
model a scenario where we have APOBEC binding to c different
genomic positions (pi, where i = 1, . . . ,c). Next, m mutations are
generated in each genomic region bound by APOBEC. We assume
that these mutations will occur with higher probability near the
APOBEC binding position (pi) and this probability will decay as we
move away from the APOBEC binding site. For illustrative reasons,
we assumed a genome of only one chromosome of length 10 Mb.
We further assumed c = 1500 APOBEC binding regions, but similar
results are obtained for other values. The position of the i-th
APOBEC binding (pi) is drawn from a uniform distribution between
0 and 10 Mb to simulate the random creation of these clusters in
the genome. The position of each mutation is drawn from a normal
distribution with mean pi, and standard deviation 100 (after taking
the integer part). We choose the value of 100 for the standard
deviation arbitrarily, and other values for this parameter gives
similar results provided that is large enough compared with the
ber of individuals
sidereda

Total number
individuals

APOBEC mutational
signatureb

1 Yes
119 Yes
28 Yes
24 Yes
24 Yes
15 Yes
7 No

88 No
100 No
101 No

distances 0–5 kb were considered.



Fig. 2. Distribution of distances among consecutive mutations simulated as described in the text. We used several values for the parameter m (number of mutations per
cluster): 2 (A), 5 (B), 25 (C), 50 (D).
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number of mutations (m) to guarantee that the region considered
is not completely saturated with mutations. Mutations located in
the same position are only considered once. Other distributions
than normal give us similar results (data not shown). Fig. 2 shows
distributions of distances between consecutive mutations for
different values of m = 2, 5, 25, and 50. We observed clearly two
subpopulations of distances and with increasing m we observed
that the distribution of short distances seems to follow a power-
law.

4. Discussion

The specific mutational signatures originated by particular
molecular process can help us to understand better the complexity
and variation of pattern of nucleotides in genomes, and also to
understand how they originated since we could identify the
mutational processes that generated them. This is of particular
importance in cancer, since mutations are one of the main drivers
of development of cancer. To identify particular molecular
processes that cause the pattern of mutations observed in specific
cancer types is important in order to elaborate potential treat-
ments that target these mutagenic processes and therefore to
affect cancer development. Until now, most of the work to identify
mutational signatures is based in discovering patterns of
frequencies of nucleotide substitutions.

In this work, we have investigated the distribution of distances
among consecutive mutations in cancer genomes, and to our
surprise we have found that different cancer types show different
distributions. This opens the door to use this information in the
future, potentially together with frequencies of substitutions, to
find mutational signatures on the DNA.

In particular, a power-law distribution has been associated in
this work with the cluster of mutations (Kataegis) observed in
some cancers genomes. In fact, there is not yet a quantitative
definition for Kataegis, but a “rule of thumb” is used to define these
regions as having six or more consecutive mutations with an
average distance of less than or equal to 1 kb (e.g., (Taylor et al.,
2013)). The aim of these conditions is to control the number of
regions identified as Kataegis under the null hypothesis that the
mutations are scattered randomly in the genome. Since the
probability to find one mutation followed by five other mutations
within a distance of X bp is given by p = P(Pois(X n/G) � 5), where G
is the length of the genome and n the number of mutations
considered which may vary from about 0.001 per megabase (Mb)
to more than 400 per Mb, the error of this procedure can be
controlled. However, the assumption that the mutations are
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scattered randomly in the genome may not hold always, since
different genomic regions may present very different frequency of
mutations independent of any cancer process (e.g., (Arnheim and
Calabrese, 2009)). An alternative method to define Kataegis
independently of the overall frequency of mutation is to use the
property identified in this work and to test statistically if the
distances of mutations follow a power-law distribution
(cancer with Kataegis) versus an exponential distribution. Future
studies are needed to reveal the real biological importance of this
discovery to identify Kataegis in cancer genomes, and whether
other properties of this distribution may help to identify new
mutational signatures.
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