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Abstract

Evidence for experience-dependent structural brain change in adult humans is accumulating. However, its time course is not
well understood, as intervention studies typically consist of only 2 imaging sessions (before vs. after training). We acquired up to
18 structural magnetic resonance images over a 7-week period while 15 right-handed participants practiced left-hand writing
and drawing. After 4 weeks, we observed increases in gray matter of both left and right primary motor cortices relative to a
control group; 3 weeks later, these differences were no longer reliable. Time-series analyses revealed that gray matter in the
primary motor cortices expanded during the first 4 weeks and then partially renormalized, in particular in the right hemisphere,
despite continued practice and increasing task proficiency. Similar patterns of expansion followed by partial renormalization
are also found in synaptogenesis, cortical map plasticity, and maturation, and may qualify as a general principle of structural
plasticity. Research on human brain plasticity needs to encompass more than 2 measurement occasions to capture expansion
and potential renormalization processes over time.
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that cannot be accommodated by flexibility. Plastic changes thus
require but are not synonymous with plasticity itself, that is, the
potential for plastic change.

There is accumulating evidence for such experience-depend-

Introduction

Following Lovdén et al. (2010, 2013), we define plasticity as the in-
herent ability of the brain to undergo macroscopic structural

change in response to altered environmental demands. In con-
trast, we define flexibility as the adaptive reconfiguration of the
existing behavioral repertoire in the absence of macroscopic
structural change. Plastic changes are triggered in the presence
of a prolonged mismatch between the functional supply of
brain structure and the experiential demands of the environment

ent plastic changes in the structure of the adult brain (for review,
see Hiibener and Bonhoeffer 2014), including macrostructural
changes in the brains of adult humans (e.g., Draganski et al.
2004; Woollett and Maguire 2011). Using structural, T;-weighted
magnetic resonance (MR) imaging, gray matter alterations have
been observed following extensive behavioral interventions,
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such as several months of juggling training (Draganski et al.
2004), intensive studies for medical exams (Draganski et al.
2006), foreign language studies (Martensson et al. 2012), spatial
navigation training (L6vdén et al. 2012; Wenger et al. 2012), and
video game playing (Kithn et al. 2014). Other studies have re-
ported gray matter changes after 2 weeks of mirror reading (Ilg
et al. 2008), 7 days of juggling training (Driemeyer et al. 2008), a
few days of signature writing (Hamzei et al. 2012), and even
after only 2 sessions of practice in a complex whole-body balan-
cing task (Taubert et al. 2010) or hours of training on color subcat-
egories (Kwok et al. 2011). This suggests that changes in gray
matter volume may emerge quite rapidly.

Several questions related to experience-dependent changes
in human gray matter structure remain unanswered. For ex-
ample, the associations between neural and behavioral
changes remain unclear. It is tempting to think that changes
in brain volume are direct manifestations of task proficiency
and thus can be regarded as neural correlates of skill acquisi-
tion and knowledge accumulation. However, volume changes
may also be induced by regional alterations in neural activity
thatindex time on task or effort invested regardless of learning
success (Lovdén et al. 2013; Bellander et al. 2016). Also, plastic
changes in human brain structure have typically been observed
with pretest-posttest designs incorporating only 2 measure-
ment time points with structural imaging data. These studies
implicitly assume, by virtue of their design, that learning is ac-
companied by a monotonic increase of gray matter structure,
such as continuous linear or asymptotic increase throughout
the time of training. In contrast, results from some animal stud-
ies would suggest an inverse quadratic shape, that is, an initial
expansion followed by (partial) renormalization. For example,
in vivo microscopic imaging of dendritic spines in mice re-
vealed new spines after a few hours of motor training (Xu
et al. 2009). These rapid changes were followed by selective sta-
bilization of new spines while older spines were partly eli-
minated, which partially renormalized overall spine density
(see Fu and Zuo 2011 for review). Learning-related cortical
map expansion has also been shown to occur quite rapidly
(i.e., within a few days) and then renormalize during further
training despite stable performance (Molina-Luna et al. 2008;
Reed et al. 2011). It has been proposed that an initial “over-
shoot” may increase the pool of neural resources from which
the most efficient wiring can then be selected (Reed et al.
2011). Quallo et al. (2009) analyzed structural data of 3 adult
macaque monkeys, collected on multiple occasions before, dur-
ing, and after learning to use a rake for retrieving food. They
found learning-related increases in task-relevant brain regions,
which also mapped onto the learning curves. Crucially, despite
continued training, the observed increased gray matter struc-
ture decreased again after the monkey’s performance reached
asymptote. After training, the volume was still enlarged com-
pared with before training, but much smaller in magnitude
than the peak effect observed before asymptotic performance
was reached.

Taken together, these results from animal literature and the
reports in humans of structural alterations following very differ-
ent training periods (e.g., Draganski et al. 2004; Ilg et al. 2008;
Kwok et al. 2011; Woollett and Maguire 2011) call for a closer in-
vestigation of the temporal dynamics of gray matter changes.
While a few studies have started to address the question of
time scale of experience-dependent structural changes in hu-
mans (Driemeyer et al. 2008; Taubert et al. 2010; Hamzei et al.
2012), conclusive studies on the shape of gray matter changes
over time are still needed (May 2011; Lovdén et al. 2013).

Numerous studies showing neuroplasticity investigated dif-
ferent types of motor skills, such as typing, juggling, or playing
an instrument, to name a few. Motor skill learning refers to the
process by which movements are executed more quickly and ac-
curately with practice (Willingham 1998). Hikosaka et al. (2002)
suggested a model of staged motor learning that distinguishes
between 2 types of information being processed separately and
most likely consecutively: a spatial processing stream that en-
codes the visuospatial coordinates of the newly learnt movement
(involving the basal ganglia, prefrontal and parietal cortices, and
cerebellum) and a movement processing stream that encodes the
motor program that initiates the corresponding muscle activity
(involving again basal ganglia, motor cortex, and cerebellum,;
Hikosaka et al. 2002). The focus on motor skills has several bene-
fits: It serves as a bridge to animal research, comes with clear ex-
pectations about relevant brain regions, and provides reliable and
valid assessments of progress in the target of training. Hence,
motor skill learning has become a preferred vehicle for investi-
gating human neuroplasticity.

To test the shape of gray matter changes over time and the
divergent predictions of net growth versus initial expansion
followed by renormalization, we trained 15 right-handed men
(aged 25-36) to write and draw with their nondominant (i.e., left)
hand on a tablet computer for 30-45 min per day for a period of 7
weeks. During this 7-week period, we acquired functional and
structural magnetic resonance images at up to 18 occasions. Six-
teen right-handed, age-matched participants were measured as
a control group before the experimental group’s training period
(i.e., pretest), one time in the middle, (i.e., in Week 4), and after
the training period (i.e., posttest). We chose this specific motor
paradigm based on previous studies reporting changes in gray
matter structure following the acquisition of fine motor skills in
humans (Granert et al. 2011; Gryga et al. 2012; Hamzei et al. 2012)
and considering that brain regions underlying motor learning are
relatively well researched (see above, e.g., Doyon and Benali 2005;
Luft and Buitrago 2005). We mainly expected effects in the areas
of primary motor cortices (i.e., the precentral gyri) that are in-
volved in hand motor action, given their important role in acquir-
ing fine motor skills (Sanes and Donoghue 2000; Ungerleider et al.
2002). Effects in the postcentral gyri, basal ganglia, and cerebel-
lum may also be expected (Katanoda et al. 2001; Harrington
et al. 2007; Doyon et al. 2009).

Materials and Methods

Participants

Thirty-one male adults between 25 and 36 years (Mage = 28.48,
SD =2.45) were recruited through flyers, word-of-mouth recom-
mendation, or following their participation in previous studies. All
of them were strongly right-handed (value of >0.80 in the Edinburgh
Handedness Inventory; Oldfield 1971), had normal or corrected-
to-normal vision, had no history of psychological or neurological
diseases, and did not have any contraindication to participate in
an MR study, like metallic implants, tattoos, tinnitus, or claustro-
phobia. None of the participants were professional musicians or
practiced or had practiced a musical instrument on a daily basis.
None reported any injuries of their hands or arms in the past 3
years. After pretest, participants were randomly assigned to
either experimental (n = 15, Mage = 28.53, SD = 2.39, MEdinburgh score =
0.89, SD =0.09) or control group (n=16, Mage =28.44, SD=2.58,
MEdinburgh score = 0.88, SD = 0.09). The groups did not differ with re-
spect to age (tpo) < 1, P=0.92) or degree of handedness (tq) <1,
P=0.60).
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Participants in the experimental group were paid up to 1000€,
and participants in the control group were paid up to 580€ for
completion of the whole study. The ethical board of the DGPs
(Ethikkommission der Deutschen Gesellschaft fiir Psychologie)
approved the study, and written informed consent of all partici-
pants was obtained prior to the investigation.

General Study Design

All participants underwent MR measurement and extensive be-
havioral testing at pretest. After this, participants of the experi-
mental group started the training routine of the left hand,
consisting of writing and drawing on a touch-sensitive tablet
PC for 30 to 45 min per day for 7 weeks (see below for details).
In addition, they were invited to our MR lab 3 times per week in
the first 2 weeks of training and twice per week in the remaining
5 weeks of training, to undergo both structural and functional
scanning. Participants of the control group followed their normal
daily routines without any intervention and were scanned once
in Week 4 of the experimental group’s training period. After the
training period, both the experimental and control group were in-
vited again to complete another behavioral assessment and MR
measurement for posttest, involving the same tasks assessed at
pretest. This study design resulted in a total number of 18 MR
measurements per person in the experimental group and 3 MR
measurements per person in the control group.

Pretest and Posttest Measurements

In a behavioral session, participants were asked to complete a
short demographic questionnaire and the Edinburgh Handed-
ness Inventory (Oldfield 1971). In a scanner simulator session,
participants were trained to feel comfortable with the MRI
environment and familiarized with the functional MRI (fMRI)
tasks that were later administered during the first imaging ses-
sion. The MR measurement protocol for pre- and posttest was
measured on 2 consecutive days and included a T;-weighted
structural scan, fMRI, and DTI (see MR Image acquisition for
sequence parameters). To exclude potential short-term, activity-
related effects on brain structure, participants were instructed
not to perform their daily training session before coming to the
MR laboratory, but only afterwards.

To identify regions functionally relevant for the execution of
the trained left-hand writing and drawing task, we administered
a “writing task” inside the scanner (first fMRI task). Participants
had a pillow on their lap, on top of which they had an A5-sized
notebook and a pencil. The head coil was equipped with 2 mirrors
such that participants could see their own hands with the book
and pencil. Red, green, or yellow light was projected into the
scanner tunnel: whenever green was presented, participants
were asked to write the letter sequence “lalala,” whereas they
were to relax their hand when there was red light (“rest” condi-
tion). During the first block of the task, participants wrote with
their right hand. During the second block, indicated by yellow
light, they wrote with their left hand. Without any behavioral
endpoint measures, this task mainly served as a localizer task
for the regions functionally involved in left- and right-hand writ-
ing movements (Katanoda et al. 2001; Harrington et al. 2007; Tam
et al. 2011). The second fMRI task (“tapping task”) required parti-
cipants to tap their thumb and index finger against one another
at a rate of about 1 Hz. They did this with their right hand when
they saw the letter R on the screen and with their left hand when
they saw the letter L on the screen. This task served as a localizer
for the cortical map representation of the respective hand (Gelnar
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et al. 1999). Finally, we performed diffusion-tensor imaging
(DTI) to get mean diffusivity (MD) and fractional anisotropy (FA)
values for gray matter regions showing structural change. The
MD values were later used as a proxy for tissue density in gray
matter.

Training Paradigm

The behavioral training was designed to improve participants’
fine motor skills of their nondominant (i.e., left) hand, with re-
spect to writing and tracing. Daily training sessions (at home)
were performed on a touch-sensitive tablet PC with a pen
(12.1in. Lenovo ThinkPad X61t, with 1024 x 768 pixels, sampling
rate of 133 Hz, running under Microsoft Windows 7 Enterprise).
The training program consisted of a fixed number of tasks that
had to be fulfilled and were presented in random order, with 5
tasks being identical in every training session and 11 other
tasks alternating to keep the training interesting. Tasks were
either manually created curved paths that had to be traced as
fast but also as accurately as possible, or words that had to be
rewritten cursively 3 times, as fluently as possible (see Fig. 1 for
examples). Both tracing of prescribed curves and writing of
nonspecific words aimed at increasing the left hand’s fine
motor skills to control the pen and thereby presumably activating
and challenging the associated cortical representational areas.
Depending on each individual’s speed in completing these
tasks, the training lasted between 30 and 45 min per day.

A bonus system ensured continued compliance of partici-
pants. Participants received an extra amount of money of up to
360€ depending on how many daily training sessions (and MR
measurements) they had actually completed. In the first 2
weeks of training, participants were scanned 3 times per week,
as we assumed that the task would be most challengingin the be-
ginning of training, which potentially could make plastic changes
evolve more quickly, while in the following 5 weeks of training
they were scanned twice a week. Scanning was scheduled at ap-
proximately the same time of day for every scanning point, to
keep possibly occurring patterns of within-day variations of
brain structure due to daytime, water consumption, or tempera-
ture as constant as possible. Further, participants were asked to
not consume caffeine-containing drinks 1 h before their appoint-
ment to limit potential immediate effects of caffeine on blood
flow and brain activation (Koppelstaetter et al. 2010). Once per
week, participants delivered their training data (log files) on a
USB drive for inspection. This was done to ensure compliance
to the training regime at home.

Analysis of Behavioral Training Data

The kinematic writing and tracing data were first checked for out-
liers, which were excluded when exceeding 3 standard devia-
tions, defined separately for each subject, task, and parameter.
This resulted in the exclusion of 1.2% of all data points. The
data were then analyzed by means of custom-written routines
in Matlab R2012a (The MathWorks, Sherborn, MA, USA). The out-
come variables were defined as follows:

Tracing data was quantified in terms of 1) duration (total
drawing time, in seconds), 2) deviation (average distance of the
drawn trace from the prescribed figure, in pixels), 3) a combined
measure of speed and accuracy (arithmetic product of duration
and deviation), and 4) smoothness (normalized jerk; Romero
et al. 2003). Writing data was quantified in terms of 1) normalized
jerk and 2) the mean number of inversions of accelerations (NIA)
per stroke, where stroke segmentation was based on vertical
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Figure 1. Behavioral training tasks. The behavioral training paradigm aimed at increasing participants’ fine motor skills of the nondominant (i.e., left) hand with respect to
writing and tracing. The daily training sessions (3045 min) were performed on a touch-sensitive tablet PC with a pen and consisted of a fixed number of tasks. Tasks
included curved paths that had to be traced as fast and accurately as possible, or words that had to be copied 3 times as fluently as possibly in cursive handwriting.

extrema (Marquardt et al. 1999; Hamzei et al. 2012). Both of the
latter 2 measures quantify the smoothness of the writing data.
For the smoothness measures, the data were first bidirectionally
low-pass filtered using a finite-impulse response filter with cutoff
frequency 16 Hz and order 34. We are missing writing data of 1
control participant at pretest, resulting in 30 data points for writ-
ing at pretest, compared with 31 data points for writing at post-
test and 31 for tracing at pre- and posttest.

For statistical comparisons, we first normalized the behavior-
al data. For each task and variable, we computed a z-score across
subjects, groups, and sessions of the log-transformed value and
then averaged across tasks. We then ran mixed ANOVAs with the
factors Time (pretest vs. posttest) and Group (experimental vs.
control).

MR Image Acquisition

Structural images were collected on a Siemens Tim Trio 3T MR
scanner (Erlangen, Germany) with a standard 12-channel head
coil. We used a 3-dimensional T;-weighted magnetization pre-
pared gradient-echo sequence (MPRAGE) of 9.20 min with the
following parameters: TR =2500 ms, TE =4.77 ms, TI=1100 ms,
flip angle =7°, bandwidth = 140 Hz/pixel, acquisition matrix =
256 x 256 x 192, isometric voxel size =1 mm?>. We used the pre-
scan normalize option and a 3D distortion correction for non-
linear gradients.

Whole-brain functional images were collected using a
T,*-weighted EPI sequence sensitive to BOLD contrast (TR = 2000 ms,
TE =30 ms, FOV = 216 x 216 x 129 mm?, flip angle = 80°, slice thick-
ness 3.0 mm, distance factor = 20%, voxel size =3 mm?, 36 axial
slices, using GRAPPA acceleration factor 2). Slices were acquired
in aninterleaved fashion, aligned to genu-splenium of the corpus
callosum.

For DTI, diffusion-weighted data were collected with a
32-channel head coil on the same scanner. An EPI-based diffu-
sion-weighted pulse sequence (full acquisition time of 25 min)
was applied sequentially in 60 different directions (b = 1000 s/mm?),
with 7 nondiffusion-weighted images distributed equidistantly
throughout. We applied the following parameters: TR =11 000 ms,

TE =98 ms, FOV = 218 x 218 mm?, 2 averages, in plane resolution
1.7 x 1.7 mm, 73 slices with a thickness of 1.7 mm using GRAPPA,
acceleration factor 2, no partial k-space, and no gap.

MRI Data Processing and Analysis

Structural T;-weighted Images
We applied voxel-based morphometry (VBM; Ashburner and
Friston 2000) to the structural T;-weighted images to quantify
gray matter volume in a voxel-wise fashion. VBM is one among
several available methods for quantifying structure in human
MR imaging. VBM tends to be reliable (Eggert et al. 2012), and
most previous studies conducted in the field of human neuro-
plasticity have reported VBM-based analyses (see reviews on
structural plasticity, Lovdén et al. 2013; Thomas and Baker
2013). Hence, we opted for using VBM in the present study. The
data preprocessing was performed using the VBMS8 toolbox
(Christian Gaser, University of Jena, Department of Psychiatry),
implemented with SPM8 running under Matlab R2012a (The
MathWorks, Sherborn, MA, USA). All structural images were visu-
ally checked for artifacts and severe motion artifacts, whereby
none were detected. Using default parameters, preprocessing of
the data involved bias correction, tissue classification, affine
registration, DARTEL template creation, and nonlinear only
modulation of gray matter segments. The resulting gray matter
images were smoothed with a standard Gaussian kernel of
8 mm full-width at half maximum (FWHM). To check in how far
possible results would be resistant to changes in smoothing ker-
nel size, we also smoothed the images with a kernel of 12 mm
FWHM, as large smoothing kernels reduce the rate of false posi-
tives to an acceptable level (Silver et al. 2011). This did not change
our results. We refrained from any special longitudinal prepro-
cessing of the images, such as coregistration of the images across
time points, because the appropriate procedure for this has not
yet been optimized for more than 2 time points (Ashburner and
Ridgway 2013).

For statistical analysis of the VBM-processed images, we first
restricted our analyses to only 2 time points, to simulate a typic-
ally available data set and used a flexible-factorial design with 3
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factors, Subject, Time (pretest and posttest), and Group (experi-
mental vs. control group), to test for the critical Time by Group
interaction that detects differential changes for the 2 groups.
Then, we applied the same model to pretest and the measure-
ment time point in Week 4, to test again for a Time by Group
interaction.

We then performed time-series analyses and used the re-
gression framework to enter all time points of one individual into
one model. We tested for linear increase of gray matter throughout
the training. Alternatively, training may lead to a pronounced in-
crease in the beginning followed by a stabilization of the structure
as training continues (denoted here as inverse-quadratic-asymptot-
ic function). Finally, we tested for a pronounced increase of structure
after training onset followed by renormalization. We will refer to this
shape of time course as inverse-quadratic function. In Figure 2, we
illustrate the 3 potential shapes of time courses of structural altera-
tions in the brain.

To detect regions in the brain that follow either of these 3 pos-
sible time courses, we created a separate linear regression model
in SPMS8 for each participant, in which we entered all VBM-
preprocessed structural brain images of one participant as the
dependent variable, with the respective data from the 3 different
functions as a covariate. This resulted in 3 models for each
participant: one model for the linear increase, one model for
the inverse-quadratic-asymptotic increase, and one for an in-
verse-quadratic shape of change (see Fig. 2).

The linear increase model has a simple linear increase func-
tion as a covariate, based on the numbered scanning days for
each individual participant (e.g., Day 1, 3,5, 7,. . .). For the in-
verse-quadratic function, we used an inverse-quadratic function
with the maximum at 25.5 and zeros at 1 and 50. Numbers on the
x-axis correspond to days on which participants were scanned.
To represent the inverse-quadratic-asymptotic shape of change,
we used the same numbers as in the inverse quadratic model for
the first 25 days and the constant value of the peak for the last 25
days. Importantly, for each participant, we entered those values
into the model that corresponded to the exact days on which this
participant was scanned, thereby ensuing an accurately specified
model for each individual.

These 3 regression models were run separately for each par-
ticipant, testing for the effect of the covariate. All voxels with a
gray matter value below 0.2 were excluded to prevent border ef-
fects between gray and white matter. The resulting B weight
images were entered in a second-level one-sample t-test, testing
for common significant voxels for the whole group. The resulting
maps were thresholded at P<0.001, with a Family-Wise Error
(FWE) corrected cluster extent threshold of P <0.05, k> 100, and
a correction for nonstationary smoothness. For visualization

Inverse-quadratic Inverse-quadratic- Linear
asymptotic
1 1 1
0 0-1 T 1 07 T 1
0 25 50 O 25 50 0 25 50
Time Time Time
(Days) (Days) (Days)

Figure 2. Three hypothetical shapes of gray matter changes. Numbers on x-axis
correspond to days on which participants were scanned. The 3 functions were
entered as covariates in regression models, including all VBM-preprocessed
gray matter segmentations of a given participant over time as dependent
variable, to test whether changes in brain regions were adequately described by
any of these 3 hypothetical shapes of change in gray matter volume.

purposes, we extracted gray matter probability data from signifi-
cant clusters of structural change to SPSS, using the MarsBar tool
for SPM (http:/marsbar.sourceforge.net/). When plotting the
extracted gray matter probability data, we made use of within-
subject error bars. The problem of calculating error bars in with-
in-subject designs has received much attention in recent years
(Loftus and Masson 1994; Morey 2008; Cousineau and O’Brien
2014). In within-subject designs, hypotheses generally refer to
change over time and not to stable differences between par-
ticipants or groups of participants. In such a situation, it is gener-
ally misleading to plot between-subject error bars. Following
Cousineau and O’Brien (2014), computing error bars for within-
subject designs involves 2 steps: first, centering the data to re-
move between-subject differences, and, second, integrating a
correction factor to de-bias the standard errors obtained from
the normalized data set (see Supplementary Material for the
exact formulae).

To check for a potential association between individual differ-
ences in structural brain changes and individual differences in
training-related behavioral changes, we also entered individual
training data as covariates into the analysis. Additionally, we
inspected the correlations of individual differences in perform-
ance improvements with individual differences in gray matter
changes within significant clusters 1) from pretest to Week 4; 2)
from pretest to individual gray matter peaks; 3) from Week 4 to
posttest; and 4) from individual gray matter peaks to posttest.

EPI Images

The fMRI data were analyzed using the SPM8 software (Wellcome
Department of Cognitive Neurology, London, UK). Data process-
ing started with slice time correction and realignment of the
EPI dataset. A mean image for all EPI volumes was created, to
which individual volumes were spatially realigned by means of
rigid body transformations. The high-resolution structural
image was co-registered to the mean image of the EPI series.
Then the structural image was normalized to the Montreal
Neurological Institute (MNI) template, and the normalization
parameters were applied to the EPI images. A commonly applied
filter of 8 mm FWHM was used. Low-frequency drifts in the time
domain were removed by applying a high-pass filter cutoff of
128 s. In the single subject-level statistical analyses, we used a
general linear model (GLM) to contrast right-hand writing with
rest (not-writing), left-hand writing with rest, and left-hand
with right-hand writing. The 6 realignment parameters were
additionally entered into the model to correct for head motion.
Contrast (t) images with the corresponding p weight images
were constructed for each individual, which were then entered
into the second-level analysis. Identical contrasts were formed
for the fMRI finger-tapping task. Based on the second-level ana-
lysis, we constructed a whole-brain mask consisting of the acti-
vation map of the contrast left-hand writing greater than rest at
pretest (P <0.05, FDR-corrected), thus including all regions func-
tionally relevant when performing the task.

We also probed for changes in the functional activation
patterns over the course of training. Using the previously con-
structed B weights for each of the 3 contrasts (left > rest, right >
rest, left > right), we built a linear regression model in which we
entered all  weight images over time for one participant, with ei-
ther a linear function or an inverse-quadratic function as covari-
ate, identical to the time-series analysis of structural images.
This resulted in a regression model testing for linear increase
(or decrease in the inverse contrast) and a model testing for
inverse-quadratic change in functional activation over time.
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Additionally, we entered the p weight images for pretest and
posttest in a simple paired t-test analysis (P < 0.001, uncorrected).

The unsmoothed preprocessed fMRI data were further
analyzed with the toolbox PRoNTo (Schrouff et al. 2013), to com-
plement the mass-univariate fMRI analyses by the use of multi-
variate pattern analyses (MVPA). Using machine learning-based
predictive models, this pattern recognition toolbox is concerned
with the automatic discovery of regularities in data through the
use of computer algorithms to classify data into different cat-
egories (Schrouff et al. 2013). We focused on predicting left-
hand writing versus right-hand writing with the pattern of
brain activation. A Support Vector Machine (SVM) for classifica-
tion was trained and tested on data from pretest, Week 4, and
posttest separately, and on experimental and control groups
within those clusters showing structural changes over time. We
used a leave-one-subject-out cross validation scheme. Permuta-
tion testing with 100 repetitions for each classifier and mask
assessed whether the classifier’s accuracy was significantly dif-
ferent from chance level. A mixed ANOVA with the within-person
factors Time (pretest vs. posttest) and Hemisphere (left vs. right)
and between-person factor Group (experimental vs. control) as-
certained a potential significant difference of change over time
between the 2 groups.

DTI Images

The raw diffusion images were preprocessed using the FSL soft-
ware package (Jenkinson et al. 2012), including corrections for
possible head movement based on the nondiffusion-weighted
images and inspection of image quality for all participants. The
regions of interest created based on results from the VBM ana-
lyses were co-registered to the same space and then used to ex-
tract measures of MD and FA in diffusion-weighted images.
Mean diffusivity values in gray matter can be used as a measure
for tissue density, presumably indicating to which extent water
molecules in extracellular space are able to move freely, thus pro-
viding information about tissue density (Wrigley et al. 2009).

Results

Behavioral Improvements

Mixed ANOVAs run on data from pre- and posttest assessments in
the lab allowed for direct group comparisons between experimental
and control groups. The analyses showed a general pattern of per-
formance increases in the experimental group relative to the control
group. There were significant time x group interactions in all tracing
variables, normalized jerk, F; ,0=12.785, P=0.001, generalized eta-
squared (16?) = 0.063; duration, F; 5o = 14.376, P <0.001, n¢*=0.072;
deviation by duration, F; 59=18.387, P=0.001, n¢?=0.106; except
for deviation, F; 59 =0.361, ns, P=0.553, 16 = 0.003. Writing variables
showed the same general pattern of performance increases in the
experimental group relative to the control group, for normalized
jerk, Fy,8=5.172, P=0.031, nc? = 0.074; a trend for statistical signifi-
cance for mean number of inversions of accelerations, F; 5 =3.361,
P=0.077, ng*>=0.031. Importantly, all statistically reliable interac-
tions were driven by increases in the experimental group, as
shown by follow-up t-tests in the experimental group (tracing: nor-
malized jerk t(14)=5.978, P <0.001; duration t(4) = 6.148, P < 0.001; de-
viation by duration, t(4=6.781, P<0.001; writing: mean NIA,
t(a)=3.927, P =0.002; normalized jerk writing, t(14=4.650, P <0.001).
For illustration purposes, we display the mean behavioral learning
curve of participants (see Fig. 3) as well as an example of single-
subject data (Fig. 4).

There were no changes in right-hand performance selectively
for the experimental group in writing parameters, that is, no
significant time x group effects in right-hand writing para-
meters (Fs; »5 <0.016, ns). However, we observed some significant
time x group effects in right-hand tracing parameters, namely
for normalized jerk, F; 59 =4.824, P = 0.036, n¢” = 0.025, duration,
F129=5.984, P=0.021, n62=0.033, and deviation, F19=5.638,
P =0.024, n5>=0.039. This is consistent with previous reports of
transfer from a skill trained with the nondominant to the domin-
ant hand (Grafton et al. 2002).

Gray Matter Time by Group Interaction Effects

Analyses of the VBM-processed T;-weighted MR images revealed
differential increases in gray matter structure for the experimen-
tal group compared with the control group in the form of a time
by group interaction in left and right primary motor cortices after
4 weeks of training (i.e., pretest to Week 4; peaks at —16 —27 60
and 24 -25 69). The effect maps, using a common threshold of
P <0.001, with an FWE corrected cluster extent threshold of
P <0.05 (k> 100), including correction for nonstationary smooth-
ness, are depicted in Figure 5A. In contrast, after 7 weeks of train-
ing (i.e., pretest to posttest), we found no significant interaction,
even at a more lenient threshold of P<0.01 (uncorrected)
(see Supplementary Fig. 1 for change scores from pretest to
Week 4 and from pretest to posttest for individual participants
of both groups).

Time Course of Gray Matter Changes: Time-Series
Analyses

We then analyzed all time points acquired for each participant in
the experimental group and tested for the 3 different shapes of
gray matter changes during training. For the linear-increase
function, the regression results showed significant effects,
using the same stricter threshold as above, in left putamen, left
temporal lobe, and left and right cerebellum. Fitting an inverse-
quadratic-asymptotic function to the data also revealed effects
in left putamen, left inferior temporal lobe, and left cerebellum,
and additionally showed effects in right putamen and left pri-
mary motor cortex. The inverse-quadratic function again yielded
an effect in left inferior temporal lobe, and additionally a cluster
in right primary motor cortex. That is, right primary motor cortex
showed an increase of gray matter volume followed by renormal-
ization. A trend for this increase-normalization pattern was also
found in left primary motor cortex and right putamen when
thresholding at a P value of 0.001 (uncorrected, without FWE-cor-
rected cluster extent threshold).

Analyses of functional MR images (fMRI) acquired during the
writing task showed higher levels of BOLD signal during writing
than during rest in the regions that showed significant structural
changes in left and right primary motor cortices and in putamen,
suggesting that these regions were indeed involved in writing
(left-hand writing vs. rest, FDR-corrected P <0.05; Fig. 5B i and ii).
Moreover, the regions showing significant structural change in
left (—38 —13 46, BA 4) and right (40 —18 51, BA 4) primary motor
cortices overlapped with the functional activation maps during
finger tapping and were located in close proximity of the anatom-
ical “hand knobs” (Yousry et al. 1997) (see Fig. 6). Given this in-
volvement, and given the greater motor cortex increase in the
experimental group than in the control group, we conducted fol-
low-up analyses targeting the regions in left and right motor cor-
tices and putamen that showed reliably greater activity during
writing than during rest (see Supplementary Table 1 for a sum-
mary of spatial coordinates, model type, and model fit R?).
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Figure 3. Improvements in left-hand performance. On average, participants’ performance improved significantly on tracing tasks (on the left side) and on writing tasks (on
the right side). Tracing data (A) was quantified in terms of a combined measure of speed and accuracy (arithmetic product of duration and deviation), smoothness of the
tracing movement (normalized jerk), duration (total drawing time, in seconds), and deviation (average distance of the drawn trace from the prescribed figure, in pixels).
Writing data (B) was quantified in terms of the mean number of inversions of accelerations (NIA) per stroke, where stroke segmentation was based on vertical extrema, and
normalized jerk. Fitting of exponential curves to individual training data assessed training effects for each of these variables. Fitted training data were normalized with
respect to the first 5 training session. Hence, initial values for all variables are around 1, and decreases from this initial value correspond to performance improvements.
Training effects were quantified by the time constant r of the exponential fit, indicating how fast participants approached the estimated asymptote, as well as the relative
improvement R?, which is the fitted value at the last session. Data shown here are averaged across all participants and are displayed with error bars representing

1 standard error.

For visualization purposes, we extracted gray matter probabil-
ity values of significant clusters in left and right primary motor
cortices and plotted those values averaged per training week
(Fig. 7; see Supplementary Fig. 2 for all data points). We used
those significant clusters resulting from the fitting of the in-
verse-quadratic-asymptotic function in left motor cortex and
the inverse-quadratic function for right motor cortex. As Figure 7
shows, there was a 2.20% volume increase (Week 4) in right pri-
mary motor cortex, a region in which changes were captured
only by the inverse-quadratic function. In line with the fitted
function, this effect almost renormalized to baseline level to-
wards the end of training (+0.64%). The region in left motor cor-
tex, detected with the inverse-quadratic-asymptotic function,
exhibited a later peak in Week 7, with a 2.72% volume increase,
which descended to 1.29% at posttest (see Fig. 7). This later de-
crease may explain why, using a more lenient significance
threshold, a comparable region in left precentral gyrus was also
detected with the inverse-quadratic function.

DTI showed no significant change in mean diffusivity values
(right motor cortex: linear: P=0.796, quadratic: P =0.349; left
motor cortex: linear: P=0.685, quadratic: P =0.740), suggesting

that the structural gray matter alterations did not entail signifi-
cant changes in tissue density (Wrigley et al. 2009; Lovdén et al.
2013). In left motor cortex, there was a decrease in fractional
anisotropy over time (linear: F;g=8.407, P=0.020; quadratic:
F,7=4.048, P=0.068). In right motor cortex, there was only a
trend towards a decrease in fractional anisotropy over time (lin-
ear: F; g=4.766, P=0.061; quadratic: F,;=2.846, P=0.125). Up to
this point, it remains unclear what fractional anisotropy values
in gray matter represent.

The detected structural changes in left and right putamen
(peaks at —34 14 -2; 24 11 -2) were within the areas activated in
the writing task as well. Therefore, we also extracted gray matter
probability values for these regions using significant clusters
from the inverse-quadratic-asymptotic function (Fig. 7C,D).
Right putamen showed a 6.20% increase to Week 4 of training.
Consistent with the extracted values, gray matter structure in
right putamen followed the inverse-quadratic function on a
more lenient significance threshold, indicating a trend towards
partial renormalization for this region as well, with gray matter
probability decreasing to 4.02% at posttest. Similar to the effect
in left primary motor cortex, the effect in left putamen, detected
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Figure 4. Examples of behavioral data. For 1 subject, normalized jerk data as a measure for smoothness of tracing, throughout the training over 7 weeks is displayed (left
panel), and, from the same subject, examples of tracing and writing at the first and last training session.

both by the linear increase and inverse-quadratic-asymptotic
function, peaked late in Week 7 (3.91%) and descended again to
posttest (2.15%).

Correlations Between Structural Changes and Behavioral
Changes

We did not observe any statistically reliable correlations between
individual differences in structural brain changes and individual
differences in training-related performance improvement, nei-
ther at the whole-brain level, nor in relation to the extracted
gray matter probabilities from within significant regions identi-
fied by time-series analyses.

Functional Reorganization Within Left and Right Motor
Cortex

We did not find significant large-scale functional activation
changes in overall writing-related functional activity over time
(P <0.001, uncorrected; neither in time-series analysis nor as ana-
lyzed with paired t-tests from pretest to Week 4 or posttest).
These results are consistent with the assumption that learning
takes place in the absence of macroscopic functional reorganiza-
tion in regions that are more activated during left-hand writing
than rest. This view does not exclude more fine-grained changes
within these regions. To check for functional redistribution of ac-
tivation within the regions showing significant structural change
over time, we performed multi-voxel pattern analyses (Schrouff
et al. 2013) on voxels in regions of structural change in left and
right primary motor cortices as revealed by our time-series ana-
lyses. We classified left-hand writing against right-hand writing
at pretest, in Week 4, and at posttest in separate analyses.

At pretest, the classifier performed above chance level for
subjects in the experimental group, in both left (balanced

accuracy: 56.3%, P =0.01) and right motor cortex (60.0%, P=0.01,
see Fig. 8). In Week 4, when gray matter volume had increased
considerably, classification rates were still significantly above
chance level for right-hand writing (in both left and right motor
cortex at 56.2%). At posttest, however, the classifier remained at
chance level (left motor cortex: 51.0%, P = 0.42; right motor cortex:
48.7%, P =0.76). This decrease in accuracy results from pretest to
posttest (right motor cortex: t(;4)=2.921, P=0.011; left motor cor-
tex: t1q = 1.617, P=0.128, ns) suggests that the pattern of activa-
tion in right motor cortex and to some extent also in left motor
cortex, as detectable by our methods, contained less information
encoding differences between left-hand and right-hand writing
after training. Even when both significant clusters in left and
right motor cortex were combined and used simultaneously to
classify left-hand writing from right-hand writing, the same pat-
tern emerged: left-hand writing was classifiable from right-hand
writing, at pretest (54.8%, P=0.05) and in Week 4 of training
(57.8%, P=0.01), but no longer at posttest (49.3%, ns). This change
in classification accuracies was selective for the experimental
group, as shown by a significant time x group interaction,
F1,29=>5.208, P=0.030, n?=0.0009, both in left and in right motor
cortex. The 3-way interaction (i.e., time x group x hemisphere)
was not significant, F; 5o =0.149, P =0.702, ns. At posttest, classifi-
cation accuracy for the training group did not differ from chance
at posttest (left motor cortex: 51.0%, P =0.42; right motor cortex:
48.7%, P=0.76). Apparently, extensive left-hand training ren-
dered the activation pattern during left-hand writing more simi-
lar to right-hand writing, eliminating classifiable differences
between the 2 activation patterns. The classifier was also admi-
nistered using the masks from the significant clusters in left
and right putamen, respectively. The classification did not ex-
ceed chance level for these regions, neither at pretest nor in
Week 4 or at posttest. Classification accuracies for the control
group were continuously above chance level in left motor cortex
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Figure 5. Gray matter changes accompanying motor skill acquisition. (A) When comparing pretest with Week 4, the Time by Group interaction was statistically reliable,
indicating that increases in gray matter structure were greater in the experimental group than in the control group in both left (blue; peak at —16 —27 60; cluster comprises
173 voxels) and right (red; 24 —25 69; cluster comprises 160 voxels) primary motor cortices. When comparing pretest with posttest (i.e., after 7 weeks of training), no reliable
Time x Group interactions were observed for any brain region. (B) Using time-series analyses, we found regions of significant volume change in (i) left and right primary
motor cortices (depicted in red and blue; —38 —13 46; 40 —18 51) and (ii) left and right putamen (in light blue and violet; —34 14 —2; 24 11 —2). Functional activation during left-
hand writing is depicted in yellow. Results are shown for the fitted inverse-quadratic-asymptotic function in left motor cortex and bilateral putamen and for the fitted

inverse-quadratic function in right motor cortex.

(57.5,53.0, and 58.6% for pretest, Week 4, and posttest, respectively).
However, in right motor cortex, classification accuracies of the
control group were only above chance level at pretest (55.3%)
and failed to be significant in Week 4 and at posttest (52.7 and
53%), even though there was no significant change in classifica-
tion accuracies from pretest to posttest, as assessed with paired
t-tests on the individual accuracies of each subject (left motor
cortex: t(;5=0.83, P=0.42; right motor cortex: t(s55=-0.33,
P =0.75). We report classification accuracies for both experimen-
tal and control groups with 95% bootstrapped confidence inter-
vals in Supplementary Table 2.

Discussion

We report that individuals training fine motor skills of writing
and tracing with their nondominant left hand displayed sig-
nificant expansion of gray matter volume of both left and
right primary motor cortex relative to a control group. These
group-differential increases in volume were significant after 4
weeks, but not after 7 weeks of practicing. In line with this re-
sult, time-series analyses of the structural MR images of parti-
cipants in the experimental group revealed that changes of gray
matter in right primary motor cortex followed an inverse-

quadratic function. That is, an initial expansion was followed
by partial renormalization, despite continued practice and in-
creasing task proficiency.

Analogous patterns of change have been observed in animals,
in related manifestations of plasticity. For example, new dendrit-
ic spines formed rapidly in mice training a reaching task (Xu et al.
2009). This rapid increase was followed by a slower process of
elimination of spines that had existed before training, returning
the overall number of spines to almost pretraining levels, while
performance remained high. Similarly, monkeys and rats learn-
ing to retrieve food exhibited training-related gray matter volume
or cortical map expansion that partially renormalized while be-
havioral performance remained stable (Molina-Luna et al. 2008;
Quallo et al. 2009). Effects of exercise on progenitor cell prolifer-
ation have also been shown to follow an inverted u-shape (Kro-
nenberg et al. 2006; Overall et al. 2013). On a different time
scale, the pruning model of brain maturation is another example
of the same pattern of plastic changes: increase in the number of
synapses followed by experience-dependent selective stabiliza-
tion of important connections and the elimination of others
(Edelman 1987; Changeux and Dehaene 1989). Thus, expansion
followed by partial renormalization may be a common principle
that unites different manifestations of plasticity.
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Figure 6. Functional activation maps for finger tapping and anatomical hand knobs. There is high spatial congruence between anatomical hand knobs (marked with white
circles) and structural change (displayed in blue and red for left and right motor cortices). The functional activation maps during (A) right-hand finger tapping and (B) left-

hand finger tapping are depicted in green.

The observed growth of primary motor cortices is consistent
with the important role of these regions in the acquisition of
fine motor skills (Sanes and Donoghue 2000; Ungerleider et al.
2002). The fact that structural changes were found in both hemi-
spheres is in line with our functional imaging results during
left-hand writing, which showed activation in both left and
right primary motor cortex, and with the established relevance
of both the contralateral and ipsilateral hemisphere for perform-
ing motor tasks with the nondominant hand (Kim et al. 1993;
Li et al. 1996). We note, however, that growth of left primary
motor cortex did only show a trend for renormalization using a
more lenient significance threshold during the measured period
of training. It is possible that different regions follow the same
overall shape of practice-related change but at different paces,
so that we might have seen a more pronounced partial renormal-
ization phase in left motor cortex as well if the training and scan-
ning regime had been continued. A closer look at the extracted
time course in left motor cortex shows that volume changes
are actually in line with this trend for partial renormalization. Ab-
sence of training-related changes after 7 weeks of training in our
pretest—posttest comparison also points in the direction of renor-
malizing structure as training continues.

In general, an expansion-renormalization process is presum-
ably a more efficient way for the brain to reorganize and adjust
than a constant growth process. Otherwise people would be un-
able to learn new skills while maintaining earlier skills, as there
would be constant competition between adjacent brain regions.
Future studies need to follow up on this finding to eventually re-
solve whether practice-related expansion followed by partial re-
normalization is a general phenomenon across regions. More
studies on structural plasticity with at least 3 measurement
time points are needed to investigate if this pattern also occurs
following training of other tasks than writing and drawing with
the nondominant hand.

Among the regions functionally active during our fMRI left-
hand writing task, left and right putamen also showed significant
growth according to time-series analysis in practicing indivi-
duals. This finding is expected given that the basal ganglia have
been repeatedly associated with motor learning (Hikosaka et al.
2002; Doyon et al. 2009). The finding of growth in putamen should
however be considered preliminary, because—in contrast to clus-
ters in left and right motor cortex—changes in putamen did not
reliably differ from changes in the control group in the whole-
brain interaction analysis. For the same reason, and given that
they did not show signs of functional involvement during writ-
ing, the structural changes observed in cerebellum and left tem-
poral lobe of the experimental group also need to be interpreted
with caution. Nevertheless, it is worth noting that cerebellar
movement-related functions are solidly established (Hikosaka
etal. 2002). The cerebellum plays an important role in motor con-
trol, is known to contribute to coordination, precision, and accur-
ate timing, and is necessary for several types of motor learning
(Ungerleider et al. 2002; Penhune and Doyon 2005; Mottolese
et al. 2013). In several other—though cross-sectional—studies,
associations between structural alterations in cerebellar gray
matter volume and various kinds of motor skills have been ob-
served (Gaser and Schlaug 2003; Bermudez and Zatorre 2005;
Cannonieri et al. 2007; Han et al. 2009; Park et al. 2009).

In the present study, we also observed training-induced
changes in left temporal lobe (fusiform gyrus, inferior/superior
temporal gyrus, parahippocampal gyrus). These changes may
be related to language processing (Binder et al. 1997), as our
left-hand writing task required participants to write actual
words with their left hand, something that they were used to
do automatically for years with their right, dominant hand. Alter-
natively, it has been argued that regions in temporal cortex are
associated with memory processes that provide a representation
of the learnt skill that is less closely tied to an action system,
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Figure 7. Extracted gray matter volumes as a function of training week. Volumes represent weekly averages. Error bars represent standard error (SE) at each time point after
removing between-person variability (Cousineau and O’Brien 2014).
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Figure 8. Functional reorganization within motor cortex. Balanced accuracies of a support-vector machine (SVM) classifying left-hand writing versus right-hand writing
within the regions of structural change. After 7 weeks of training, left-hand writing was no longer reliably separable from right-hand writing in either left or right motor
cortices. Classifier accuracies for the control group did not vary across sessions. Error bars represent 1 standard error.
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especially when the learning is explicit (Grafton et al. 2002). In
line with this hypothesis, inferior temporal regions have been
found to show a learning-related increase in regional cerebral
blood flow (Grafton et al. 1995; Hazeltine et al. 1997). Future re-
search is needed to test and disambiguate these interpretations.

The observed structural changes in the primary motor corti-
ces are particularly interesting in light of the functional reorgan-
ization of these regions as revealed by MVPA. Specifically, the
MVPA results indicate that patterns of activation in left and
right motor cortex, as discernible by the present resolution of
MR images, discriminate less well between left-hand and right-
hand writing after training than before training. Most of the
functional remodeling underlying this loss in discriminability
presumably took place between Week 4 and posttest, which is
the period during which declines in volume were observed. The
observed coincidence between functional reorganization and
structural renormalization is consistent with the view that selec-
tion plays a key role during later stages of experience-dependent
cortical change.

In contrast to these functional changes within the regions of
primary motor cortices displaying structural change, we ob-
served no overall, large-scale changes of functional activity eli-
cited by left-hand training. This lack of large-scale changes
theoretically speaks against the possibility that the time course
of structural gray matter changes is influenced by large-scale
functional reorganization. Obviously, it is impossible to exclude
this option entirely, though, since null effects are difficult to in-
terpret. Additionally, the MR scanner provides an environment
to perform a writing task that differs markedly from the regular
writing environment outside the scanner. Even though activa-
tion of the core regions involved in the execution of the task
will be detected (Harrington et al. 2007), it remains unclear
whether changes in the overall network that are due to a more
skilled or automatized execution of the task as trained outside
the scanner can even be picked up by this task inside the scanner.
Future analyses of both univariate and multivariate nature focus-
ing on changes in the overall functional connectivity within the
motor network including motor cortices, basal ganglia, and cere-
bellum may yield results that expand and qualify the structural
and functional findings reported in this manuscript.

We did not observe any statistically reliable correlations be-
tween individual differences in structural brain changes and in-
dividual differences in behavioral changes. Recent reviews on
structural plasticity have emphasized that structural plastic
change ought to be relevant for behavior to be considered mean-
ingful (Thomas & Baker 2013). Such evidence for behavioral rele-
vance is often equated with correlations between structural
increases and performance increases based on between-subject
variation within the training group. In our view, this focus on be-
tween-person variation may not always be warranted. It assumes
that a given amount of increase in gray matter has comparable
behavioral “consequences” across participants, despite the fact
that participants start the intervention at different “levels” of
gray matter volume and behavioral performance. This assump-
tion of a linear interval metric that applies to all participants
may not correspond to reality, exactly because individuals differ
widely in their cerebral and behavioral starting points.

Structural changes in gray matter as discernible with MRI
and quantifiable with VBM are generally not the result of a single
process operating in isolation. Instead, such changes are likely to
result from a more or less coordinated number of alterations that
involve different cell types and represent a conglomerate of sy-
naptogenesis, changes in neuronal morphology, axon sprouting,
dendritic branching, glial changes, and angiogenesis (for a

summary, see also Zatorre, Fields, and Johansen-Berg 2012).
The time course of glial growth and retraction in response to be-
havioral manipulations is not well understood and may obfus-
cate the neural contributions to changes in regional volume
(Anderson et al. 1994), thereby further complicating associations
between gray matter changes and behavioral changes.

The nonlinear time course of gray matter increases accom-
panying motor skill acquisition, as identified in the present
study, complicates rather than simplifies the search for plasti-
city-related brain-behavior associations further. Given the curvi-
linear shape of change, it is likely that the specific time points
chosen for analysis influence the association between gray mat-
ter changes and behavioral changes. Differences in learning may
be related to individual differences in the rate of initial gray mat-
terincrease, in the rate of later decrease, or with a combination of
both. In addition, correlations between behavior and structure
may well be time-lagged, such that structural changes precede
changes in behavior, or vice versa. More specific hypotheses
and more fine-grained physiological and behavioral methods
are needed to examine these options in greater details (Bernal-
Rusiel et al. 2012, 2013).

A limitation of this study is the passive control group, which
received fewer scans than the experimental group. It is conceiv-
able that one could have scanned the control group exactly as
often as the experimental group, and that one could have asked
them to perform some random activity on a tablet computer for a
matched amount of time, thereby turning them into an active
control group rather than a passive one. While the regional spe-
cificity of results makes us confident to rule out expectancy ef-
fects or social interaction effects in the experimental group,
future studies may investigate “normal” daily fluctuations in
MR images over a comparable amount of time to better character-
ize variability and reliability of common MR methods.

Our decision to train participants for a period of 7 weeks was
based on previous studies in the domain of motor skill acquisi-
tion, including our own behavioral pilot data, which suggested
that participants’ learning curve would converge towards an
asymptote after about 4-5 weeks of training. As we were inter-
ested in delineating structural changes during skill acquisition
up to asymptotic performance, we opted for a 7-week training
period. In retrospect, it would have been interesting to continue
training beyond this time period to find out whether left motor
cortex, similar to right motor cortex, would also show a pattern
of increase followed by renormalization, albeit in a more pro-
tracted manner.

Another limitation of the reported study concerns the con-
founding factors that influence a volume measure derived from
MR], in general, and from VBM, in particular. It is possible that
the positioning of participants within the head coil and scanner
influences gray matter volume as captured by MR images, influ-
encing how the automatic software packages label them. As
positioning inside the head coil influences the intensity homo-
geneity of the images, it can have a negative impact on the seg-
mentation results if the head was not positioned in the very
center of the coil. 3D distortion correction for nonlinear gradients
is crucial for reliable volume measures, and volume measure-
ments are believed to be more accurate if the region-of-interest
is not farther than 10 cm from the isocenter of the magnet. An-
other confounding factor might be water or caffeine consump-
tion of participants before image acquisition (Duning et al.
2005; Vidyasagar et al. 2013). Therefore, in this study, partici-
pants’ consumption of caffeine-containing drinks was assessed
on the day of scanning, and participants were asked to not con-
sume any caffeine within the last hour before scanning to avoid
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any possible immediate effects on measurement. In any case it
appears unlikely that changed blood flow would have contribu-
ted or confounded the results reported here in any major way,
as the effects we found were region specific (close to the anatom-
ical hand knob and in the basal ganglia). It is hard to imagine rea-
sons why changes in blood flow would be restricted to these
motor-related areas and would show a consistent temporal pat-
tern over 18 scanning sessions. At a more general level, hormonal
influences on gray matter structure are another potential con-
found. It has been shown previously that estrogen levels are as-
sociated with hippocampal and parahippocampal volumes
(Pletzer et al. 2010; Lisofsky et al. 2015). To exclude hormonal ef-
fects related to women’s normal menstrual cycle, only men were
included in this study.

Training outcomes and effects on the brain might be highly
dependent on the motivation of a given participant, the personal
relevance of the to-be-learned skill, and the effort invested in
training. Small sample size is a further limitation, though the
high number of scans per person yielded a more reliable and
valid picture of training-related changes in brain structures
than previous studies in this field.

An additional point to consider is the training length and inten-
sity, as well as the initial proficiency level of participants in the be-
ginning of training. It remains to be investigated which time course
gray matter alterations follow when training is continued beyond
7 weeks of training. A replication and closer look at “turning points”
in structural change, that is, points at which initial increases start
to renormalize, and their associations to learning rate, attained
proficiency, and invested effort will provide further insight into
the etiology and temporal dynamics of gray matter changes.

In summary, we investigated the time course of changes in
human gray matter volume in response to motor training, as
measured with MRI, in much greater detail than ever before.
The data support a nonlinear view on human neuroplasticity,
suggesting that an initial expansion of structure may be followed
by partial renormalization, despite continued practice and per-
formance gains. These findings may explain why previous stud-
ies with shorter practice periods sometimes have revealed larger
structural changes than longer and more extensive training re-
gimes. If we had only collected measurements before and after
the 7-week practice period, we would have failed to detect any
structural MR changes. Our results are crucial for future studies
on other unknown aspects of experience-dependent structural
changes observed with MR imaging in humans, such as the bio-
logical mechanisms behind changes in the MR signal (Zatorre
et al. 2012) and their behavioral correlates (Lovdén et al. 2013;
Sampaio-Baptista et al. 2014). Only more complex study designs
with at least 3 or ideally even more measurement time points
over the course of training may be able to appropriately capture
the process of training-induced plastic changes in brain structure.
Future studies should investigate the generality of the expan-
sion-partial-renormalization-pattern across functional domains,
training duration, brain regions, and age groups.
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Supplementary material can be found at: http:/www.cercor.
oxfordjournals.org/.
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