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Abstract: Amyloid fibrils are the pathological hallmark of a large variety of neurodegenerative
disorders. The structural characterization of amyloid fibrils, however, is challenging due to their
non-crystalline, heterogeneous, and often dynamic nature. Thus, the structure of amyloid fibrils of
many proteins is still unknown. We here show that the structure calculation program CS-Rosetta
can be used to obtain insight into the core structure of amyloid fibrils. Driven by experimental
solid-state NMR chemical shifts and taking into account the polymeric nature of fibrils CS-Rosetta
allows modeling of the core of amyloid fibrils. Application to the Y145X stop mutant of the human
prion protein reveals a left-handed b-helix.
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Introduction
Protein aggregates are the pathological hallmark of

a large variety of neurodegenerative disorders.1

Increasing evidence suggests that a variety of aggre-

gation intermediates are the primary toxic species,

while amyloid fibrils might have protective func-

tions.2 At the same time, different fibril morpholo-

gies can result in different degrees of toxicity3 and

fibril fragmentation can enhance amyloid cytotoxic-

ity.4 Thus, detailed knowledge about the structure of

amyloid fibrils is required to obtain insight into the

toxicity of protein aggregates.

X-ray crystallography has provided unique

insights into the structural properties of amyloid

fibrils formed by short peptides.5 The structural

characterization of protein aggregates, however, is

challenging due to their non-crystalline, heterogene-

ous, and often dynamic nature. This made NMR

spectroscopy a key method for the study of protein

aggregation.6–8 H/D exchange coupled to solution-

state NMR spectroscopy has provided residue-spe-

cific insight into the backbone hydrogen-bonding of a

variety of protein aggregates (e.g. see Refs. 9–13).

Solid-state NMR spectroscopy resolved the sequence

specific assignment of backbone resonances of

several proteins in their amyloid state (for a review

see Refs. 6–8). In addition, for some amyloid fibrils

intra- and intermolecular contacts were detected by

solid-state NMR. So far the structurally best charac-

terized system is the prion protein (PrP) HET-s(218–

289), for which a well-defined structure of amyloid

fibrils was determined on the basis of a large

number of intra- and intermolecular distance

restraints.14 However, in many cases the detection

and interpretation of intra- and intermolecular con-

tacts is complicated by internal dynamics and the

heterogeneous nature of amyloid fibrils. In addition,
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the polymeric nature of amyloid fibrils complicates

the interpretation of intermolecular and interfila-

ment contacts.

Because of the difficulty to obtain a sufficiently

large number of intra- and intermolecular contacts

by solid-state NMR spectroscopy, the structure of

amyloid fibrils of many proteins is still not known

despite the availability of backbone chemical shifts

(e.g. see Refs. 15 and 16). Here, we demonstrate

that the CS-Rosetta methodology17–20 can be used to

obtain insight into the core structure of amyloid

fibrils. Our study shows that CS-Rosetta—driven by

experimental solid-state NMR chemical shifts and

taking into account the polymeric nature of fibrils—

allows modeling of the core of amyloid fibrils.

Results and Discussion

Calculations were performed using the CS-Rosetta

chemical shift-based structure calculation pro-

gram.17 To reflect the polymeric nature of amyloid

fibrils, the CS-Rosetta protocol was modified in the

following way: (i) Calculations are performed on

multiple (five in the calculations reported below)

identical segments that are connected by glycine-

serine linkers. (ii) Distance restraints enforce inter-

strand distances between different layers orthogonal

to the fibril axis to 4.8 Å consistent with X-ray dif-

fraction patterns of amyloid fibrils. (iii) Hydrogen-

bond distance restraints for parallel in-register

alignment are used. (iv) The location of b-strands as

identified by solid-state NMR chemical shifts is

enforced using Ha(i)AHN(iþ1) distance restraints.

The amyloid-specific CS-Rosetta protocol was

tested on the PrP HET-s(218–289). Using a large

number of experimental intra- and intermolecular

distance restraints, the 3D structure of HET-s(218–

289) amyloid fibrils was determined.14 The 3D struc-

ture revealed a left-handed b-solenoid with each

molecule forming two helical windings (Fig. 1). The

two helical windings are formed by residues G225-

L250 and its pseudo-repeat T260-F286, respectively.

Due to the polymeric nature of amyloid fibrils the

core structure of the backbone of the two layers is

highly similar.

CS-Rosetta calculations were performed for a

molecule containing three segments of G225-L250

interleaved by two segments of T260-F286. G225-

L250 and T260-F286 are connected by a linker that

remains—according to solid-state NMR and hydro-

gen/deuterium-exchange coupled to solution NMR—

disordered and flexible in the amyloid structure.

This HET-s specific linker was replaced by a 12-resi-

due glycine-serine linker. The connection of T260-

F286 to G225-L250 of the next molecule was also

made by a 12-residue glycine-serine linker. As solid-

state NMR and hydrogen/deuterium-exchange data

demonstrated that residues 247AATL250 and
283GKGF286 are also unstructured,12,14 the total

Figure 1. Determination of amyloid core structure using chemical shifts. A: Backbone conformation of 9 of the 19 lowest

energy CS-Rosetta structures of the fibrillar core of HET-s(218–289). The view is along the fibril axis. B: Lowest energy

conformer of the fibrillar core of HET-s(218–289) obtained by CS-Rosetta. Side chains of selected residues are shown

(hydrophobic: yellow; positive: blue; negative: red). C: Side view of an 8-mer based on the b-helix motif shown in (B). D, E:

Fibril core and side view of the solid-state NMR structure of amyloid fibrils of the PrP HET-s(218–289) (PDB code: 2KJ3). F:

Lowest energy CS-Rosetta conformer of residues 111–141 of the Y145X stop mutant of the human PrP. Selected residues

are highlighted. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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length of the linkers between different layers along

the fibril axis was 16 residues. CS-Rosetta fragment

selection was performed using the previously

reported experimental solid-state NMR chemical

shifts.14,21 To minimize the contribution of the flexi-

ble linkers to structure calculation, the conformation

of the glycine and serine residues in the linker was

driven toward the disordered state by providing ran-

dom coil chemical shifts for these residues during

CS-Rosetta fragment selection.

Fold assembly was driven by a total of 733 dis-

tance restraints enforcing the cross-b structure of

HET-s(218–289) fibrils and the location of b-strands

indicated by chemical shifts (Table I). Hydrogen

bond restraints enforced intermolecular, parallel, in-

register b-sheets (Table I).14 Distance restraints

were supplied eight times to CS-Rosetta. Supplying

the distance restraints only six times, that is,

increasing the weight effectively sixfold, resulted in

similar folds for HET-s(218–289) fibrils. Supplying

the distance restraints only once, that is, not

increasing their weight, did not result in a polymeric

arrangement. Changing the distance restraints for

interstrand H-bonds to OAHN 2.1 Å/OAN 3.5 Å and

for interstrand polymer to 5.0 Å/10.0 Å/20.0 Å

resulted in similar lowest energy CS-Rosetta struc-

tures for HET-s(218–289).

Out of the 100 lowest energy CS-Rosetta struc-

tures only those structural models were retained for

which the root-mean-square difference in the U/W
backbone torsion angles between the angles

observed in the model and those predicted by the

program TALOSþ22 on the basis of the experimental

NMR chemical shifts was less than 80�. For the

TALOSþ selection only those residues were consid-

ered for which the TALOSþ prediction were labeled

as good. This final step ensures that the selected

models are in agreement with dihedral angles pre-

dicted on the basis of the experimental chemical

shifts.

Inspection of the 19 lowest energy Rosetta

structures of the HET-s amyloid core revealed three

b-strands with b-strands 2 and 3 assuming two sides

of a triangle. b-strand 1 (residues 226NSA228) has a

more variable position including conformers in

which the triangle is closed as well as ones with

more open conformations. In all the 19 lowest

energy Rosetta structures, the core is stabilized by

hydrophobic interactions between I231, V239, and

L241 [Fig. 1(B)]. The CS-Rosetta model with the

lowest chemical shift score is shown in more detail

in Figure 1(B). The triangular core [Fig. 1(B,C)] is

similar to the conformation seen in the solid-state

NMR structure (PDB code: 2KJ3) [Fig. 1(D,E)]. In

both structures the hydrophobic side chains of resi-

dues I231, V239, and L241 point to the interior

while polar side chains are on the surface of the

fibrillar core. Importantly, no distance restraints

except for those reflecting the polymeric nature of

amyloid fibrils were used in the CS-Rosetta calcula-

tions, whereas the solid-state NMR structure was

calculated with a large number of experimental

intra- and intermolecular distance restraints.

The CS-Rosetta structure shown in Figure 1(B)

only represents the fold and not a high-resolution

structure. In applications to globular proteins, CS-

Rosetta was demonstrated to result in backbone

structures that differ by 1–4 Å from a high-resolu-

tion structure depending on the complexity and the

size of the protein. In the case of HET-s(218–289)

amyloid fibrils, the hydrophobic core of the CS-

Rosetta model is less compact when compared to the

solid-state NMR structure. In addition, the compact-

ness of this core varies in the 19 lowest energy CS-

Rosetta conformers [Fig. 1(A)]. The different degree

of compactness is associated with different twists of

the three strands and the b-helix [Fig. 1(A,C)]. In

line with variable twists in the hydrophobic core,

the turn connecting the hydrophobic core to the b-

strand formed by residues N243-T246 is less bent

[Fig. 1(C,E)]. Keeping the twist of the b-helix

small—as suggested by electron microscopy—might

further improve modeling of the amyloid core.

Next we applied the CS-Rosetta protocol to amy-

loid fibrils of the Y145X stop mutant of the human

PrP, for which the structure is not known. Misfold-

ing of the natively a-helical PrP into a b-sheet

rich isoform is related to various human diseases

Table I. Restraints Used in CS-Rosetta Calculations of HET-s(218–289) Fibrils

Restraints Type Upper distance limits No. of restraints

Chemical shifts Experimentala 508
GS-linkerb 168
Total 676

Distance restraints Interstrand H-bonds OAHN 1.8 Å/OAN 2.7 Å 160
Intra b-strand Ha(i)-HN(iþ1) 2.5 Å 80
Interstrand polymer 4.8 Å/9.6 Å/19.2 Åc 493
Total 733

a Taken from Ref. 21.
b Random coil values for N, CA, C of Gly and N, CA, C, CB for Ser.
c Upper distance limits for strands iþ1, iþ2, and iþ3 along the fibril axis enforcing the polymeric nature of the fibrils and
in agreement with their cross b-structure.
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such as Creutzfeldt–Jakob disease.23 Currently, little

is known about the structure of PrPSc.24,25 Instead,

a variety of studies have investigated the structure

of amyloid fibrils produced in vitro from recombinant

PrP.26–35 Hereditary prion diseases include C-termi-

nally truncated variants of the PrP, Y145X, Q160X,

Y226X, and Q227X. Previously, we showed that the

b-sheet content is highly similar in amyloid fibrils of

the Y145X and Q160X stop mutants of human PrP.36

In addition, solid-state NMR spectroscopy demon-

strated that residues 112–140 assume extended

b-sheet conformation in a parallel, in register

alignment in amyloid fibrils of the Y145X stop

mutant.29–31

We subjected the solid-state NMR chemical

shifts reported by Helmus et al.29 for amyloid fibrils

of the Y145X prion stop mutant to the adapted CS-

Rosetta protocol.17 Calculations were performed on

five identical segments that were connected by 16-

residue glycine-serine linkers. Distance restraints

(Table II) enforced interstrand distances between

different layers orthogonal to the fibril axis to 4.8 Å,

in agreement with X-ray diffraction patterns of

mammalian prions37 and amyloid fibrils of PrP(82–

146).38 Hydrogen-bond distance restraints for paral-

lel, in-register alignment—as shown by solid-state

NMR spectroscopy of humPrP(23–144)31—were

used. In addition, the location of b-strands as identi-

fied by solid-state NMR chemical shifts (Supporting

Information Fig. S1) was enforced using Ha(i)A
HN(iþ1) distance restraints.

The lowest energy CS-Rosetta amyloid structure

of the amyloid core of the Y145X stop mutant

is shown in Figure 1(F). It revealed a left-handed

b-helix comprising three b-strands that are formed

by residues 111HMAGA115, 120AVVG123, and
128YMLGSAMSR136. At P137 the third b-strand

twists such that residues 138IIHF141 extend the b-he-

lix. The palindromic sequence 113AGAAAAGA120

encompasses a loop that connects two b-strands. The

fibrillar core is formed by the most hydrophobic part

of the human prion sequence from H111 to S135.

The b-strand conformation of residues 128YMLG-

SAMSRPIIHF141 shown in Figure 1(F) is highly

similar to the structure of amyloid fibrils of

humPrP(127–147) as determined by solid-state NMR

spectroscopy.39 In addition, electron microscopy of

2D crystals of the 27–30 kDa infectious fragment,

PrP27–30, suggested that PrP amyloid fibrils might

consist of left-handed b-helices with the core formed

by residues 89–140.24,40

In summary, we show that the CS-Rosetta meth-

odology allows modeling of the core of amyloid

fibrils. In line with the application of CS-Rosetta to

globular proteins, the calculated conformations are

not high-resolution structures. At the same time, the

backbone folds can be useful for designing additional

experiments and to obtain insights into the mecha-

nism of protein aggregation. Additional experimental

information such as spatial proximity between

side chains based on mutations and experimental

distance restraints obtained from solid-state NMR

spectroscopy can be readily included into the calcu-

lations. The combination of CS-Rosetta modeling

with intra- and intermolecular medium- and long-

range distance restraints is expected to improve the

accuracy of the structure of amyloid fibrils.

Materials and Methods

CS-Rosetta calculations were performed according to

the authors’ manual.17 Note, that chemical shifts

and distance restraints (hydrogen bonds, distances)

are used in distinct stages of the CS-Rosetta proto-

col. Chemical shifts are only used during fragment

selection and rescoring of CS-Rosetta models, while

distance restraints (hydrogen bonds, distances) are

only used during the fragment assembly stage of

CS-Rosetta (see http://spin.niddk.nih.gov/bax/soft-

ware/CSROSETTA/). Hydrogen bonds are enforced

as distance restraints (Tables I and II) and have the

same weight as all other distance restraints during

CS-Rosetta fragment assembly. To ensure that the

Table II. Restraints Used in CS-Rosetta Calculations for Residues 111–141 of Amyloid Fibrils of the Y145X Stop
Mutant of the Human Prion Protein

Restraints Type Upper distance limits No. of restraints

Chemical shifts Experimentala 510
GS-linkerb 224
Total 734

Distance restraints Interstrand H-bondsc OAHN 1.8 Å/OAN 2.7 Å 176
Intra b-strand Ha(i)AHN(iþ1)d 2.5 Å 85
Interstrand polymer 4.8 Å/9.6 Å/19.2 Åe 714
Total 975

a Taken from Ref. 29.
b Random coil values for N, CA, C of Gly and N, CA, C, CB for Ser.
c H-bond restraints enforce a parallel, in register alignment in agreement with solid-state NMR data for fibrils of the
Y145X stop mutant of the human prion protein.31

d Residues 112MAGA115, 120AVVG123, 128YMLGSAMSR136, 138IIHF141 are in a b-strand conformation according to fragments
selected by CS-Rosetta (Supporting Information Fig. S1).
e Upper distance limits for strands iþ1, iþ2, and iþ3 along the fibril axis enforcing the cross-b structure of the fibrils.
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distance restraints are the major driving force dur-

ing CS-Rosetta fold assembly, they were supplied

eight times to CS-Rosetta (see Supporting Informa-

tion). Thus, the weight of the distance restraints

was effectively increased eightfold compared to the

intrinsic CS-Rosetta energy terms. Alternatively, the

CS-Rosetta distance restraint force constant might

be increased by a factor of eight. About 2500 struc-

tures were calculated. For further details please see

the main text.
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