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Abstract: This contribution is concerned with population balance modeling of influenza virus
replication in mammalian cell cultures. The cells are heterogeneous with respect to intracellular
compounds like viral proteins. The amount of viral NP protein can be measured directly by
means of flow cytometry. The corresponding degree of fluorescence is introduced as internal
coordinate for a distributed deterministic modeling approach. The resulting model includes
kinetic processes like infection, virus replication and release, apoptosis and cell death. It consists
of three partial differential equations describing the distribution dynamics which are coupled to
two differential equations that characterize the concentration of active and inactive virions in
the medium. Kinetic parameters are determined from experimental data. The parameters are
assumed to depend on the internal coordinate. The emerging infinite dimensional parameter
estimation problem is translated to a finite dimension using a hermite spline representation of
the distributed parameters. Hence the resulting inverse problem can be solved in a weighted
nonlinear least squares framework. Spline approaches of different complexity are discussed and
the estimation results are compared.
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1. INTRODUCTION

In influenza vaccine production the use of permanent
mammalian cell lines becomes more and more important.
Besides sophisticated cell culture technologies and down-
stream processing methods, mathematical modeling plays
a crucial role in improving production efficiency. Most
notably for analysis, experimental design and optimization
of the process, the benefit of combining extensive exper-
iments with mathematical modeling approaches becomes
apparent.

In our previous work, infection of equine influenza A
virus in Madin-Darby-Canine-Kidney (MDCK) cell cul-
tures was investigated in either deterministic (Miiller et al.,
2008) or stochastic modeling frameworks (Sidorenko et al.,
2008a,b). More recently, focus was on population balance
modeling of human influenza replication in MDCK cell
cultures (Miiller et al., 2011). Distribution dynamics are
measured by means of fluorescence intensity, which is pro-
portional to the intracellular amount of viral protein NP.
Interesting new phenomena like transient multimodality
and reversal of propagation direction could be observed.

Our contribution refers to the lab-scale influenza virus
production as described by Schulze-Horsel et al. (2009).
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Adherent MDCK cells are cultivated on microcarriers in
small scale bioreactors as depicted in Figure 1. At the
beginning of the process the cells are inoculated with
human influenza A virus seed. The uninfected cells become
infected and start synthesizing viral components. Com-
pletely assembled virions are released into the medium and
can infect uninfected cells. With progress of infection cells
become apoptotic. Apoptosis is programmed cell death
which can be activated by a large variety of external and
internal stimuli, particularly by viral infection. It invari-
ably leads to cell lysis and has major influence on the
process productivity.

To adapt the model to the data an inverse problem has to
be solved. As the kinetic parameters are not only constants
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Fig. 1. Scheme of the process: Adherent MDCK cells grow-
ing on microcarriers and cells showing fluorescence
due to intracellular accumulation of viral proteins



but depend on the internal characteristics the inverse
problem is set in an infinite dimension. In contrast to least-
squares based parameter estimation in a finite dimension,
which is extensively studied in literature (Walter and
Pronzato, 1997), a relatively low number of publications
deals with estimation techniques for infinite dimensional
problems (Banks et al., 2011; Luzyanina et al., 2009).

2. MODEL FORMULATION

Heterogeneity of the cell population with respect to inter-
nal compounds like viral proteins gives rise to a distributed
modeling approach with population balances. A degree of
fluorescence ¢ € [Ymin, Pmaz], Which is proportional to
the intracellular amount of viral protein NP is introduced
as an internal coordinate. The fluorescence level of each
cell is interpreted as degree of infection and can be mea-
sured by means of flow cytometry. The presented model
comprises a system of three partial differential equations
for description of the distribution dynamics. In addition,
they are coupled to two ordinary differential equations
that characterize virus particles in the medium. It is an
extension of the model given by Miiller et al. (2011).

On contact with active virions the uninfected cells U,
become infected with the rate constant &,;. Due to medium
exchange, limited space on microcarriers and fast progres-
sion of infection, growth and death of the uninfected cells
are neglected.

8UC(CP, t)

o = kui Ueli,t) Vae (1) (1)

Infected cells I, originate from uninfected cells and start
replicating and releasing virions. The first kinetic process
increases and the latter decreases the degree of fluores-
cence. Both are summed up in a net rate coeflicient ky,¢:(¢)
that may depend on the fluorescence level and which is
strictly positive in ¢ € [©min, Pmaz]- A time delay 7 is
considered to summarize intracellular processes that cause
a lag between infection and virus replication and release.
In the course of the infection more and more cells become
apoptotic. This is accounted for by the rate of apoptosis
Eapo () which is also considered to depend nonlinearly on
the degree of fluorescence.
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After the infected cells have become apoptotic their repli-
cation ability is altered significantly. Its fluorescence de-
gree is assumed to be generally decreasing which results
in a negative net rate knet,apo(®) il @ € [Pmin, Pmaz)- In
addition, the apoptotic cells drop out of the process with
lysis rate keq(p).
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Fully assembled virions are released to the medium by
infected as well as apoptotic cells with the release rate

krei. Due to errors in the virus replication processes,
only a small fraction of released virus particles is able to

infect uninfected cells. This fact is accounted for by the
constant parameter P.rr. The so called active virions Vg,
can become inactive with the constant degradation rate
kdeg-
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Inactive virions Vj,4. accumulate in the medium and the
ratio of inactive virions to the overall amount of released
virions is given by (1 — Pesy).
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3. NUMERICAL SOLUTION

For simulation, the model was discretized with a finite
volume method with 128 logarithmically distributed con-
trol volumes with respect to the internal coordinate. The
delay was approximated with a transport system with 50
control volumes. The overall system to be solved consists
of the discretized partial differential equations (1)-(3), the
transport system and the equations (4) and (5). The re-
sulting large scale system of ordinary differential equations
is solved with the MATLAB solver odel5s. Computations
could be speeded up significantly by providing analytical
patterns of the Jacobian with the solver option ”JPat-
tern”.

4. ESTIMATION OF KINETIC PARAMETERS
4.1 Preprocessing of flow cytometric measurements

The flow cytometric data comprises the numbers of cells
with a specific fluorescence intensity on a logarithmic
fluorescence grid with 1024 compartments. As the model
is solved numerically on an logarithmic grid with 128 finite
volumes, the measurement records are transformed to the
same grid by simply averaging the cell concentrations
over eight channels. For comparability, the flow cytometric
measurements have to be converted into number density
functions as described in Miiller et al. (2011). For this
purpose the average number of cells in each compartment
Z;(tx) is normalized with the overall cell number of the
flow cytometric sample. In addition, the number density
function is scaled by the overall concentration of cells in
the reactor C(t)) which can be measured independently:
ate) = 29 o), =1,

> Z,(t1) ,128 (6)

4.2 Translation of the inverse problem to a finite dimension

To adapt the presented model to experimental data an
inverse problem has to be solved. This problem is set in
an infinite dimension as the parameters characterizing the



kinetic processes of apoptosis, cell death, and virus repli-
cation/release depend on the internal coordinate ¢. Two
general solution approaches are described in literature. In
the first one, the functional dependency of the parameter
on the internal coordinate is assumed to be known and can
be described by an analytic funtion with a few parameters,
e.g. a gaussian distribution characterized by mean and
variance (Sherer et al., 2008). If the shape of the function is
not known a priori, it can be parametrized with a suitable
approximation, e.g. piecewise constant, piecewise linear
or spline approximation. The function is represented by
a suitable number of nodes n,. In this contribution, we
follow the approach suggested by Luzyanina et al. (2009)
where the unknown functional dependencies are approxi-
mated by piecewise cubic hermite - splines:
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where ¢; is a piecewise cubic polynomial defined on the
mesh ® = [po, 1, ..., ¢n,]- This approximation yields
a function which is continuous up to its first derivative.
Two types of parametrization may be considered. The
first one assumes the nodes to be equidistantly distributed
and only the values of the nodes are subject to the
optimization. The second one considers node location and
node value as parameters for the estimation procedure.
Due to complexity issues, this contribution only deals with
the first approach.

4.8 Owerall Parameter Estimation Setup

The overall vector of unknown parameters is given by
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In addition to flow cytometric distribution data, the con-
centration of active virions V,. and the total concentration

of virus particles V are recorded yielding the measurement
vector
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The parameters can now be estimated in a generalized
least squares sense
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with
e(ts) = [y(tx) — y(tr, P)] - (11)
The weighting matrix W () is chosen as
W (t) = diag [maxy?] . (12)

The reference values
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with
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are obtained from the simulation of the model equations
as described previously.

The emerging nonlinear least squares problem is solved
with the gradient based optimization routine SNOPT (Gill
et al., 2002) which can be called from MATLAB through
an interface. SNOPT is a commercial software but a free
student version is available. As this method can trap in
local minima for non-convex objective functions, several
runs with different initial guesses were always performed.

Due to the complexity in the parameter estimation pro-
cedure, in particular the high sensitivity of the delay on
the cost function, a two step procedure was implemented.
At first, 7 was kept fixed and the other parameters were
estimated. In a second step, all parameters exclusive of 7
were set to the estimation results from the first step and
T was estimated.

Initial estimates for the unknown parameters without 7
are based on the ones given in Miiller et al. (2011). An
initial value for the delay of 79 = 4 h is chosen.

5. RESULTS

5.1 Linear Parameter Dependency

Table 1. Initial estimates and estimation re-
sults for constant model parameters

Parameter koyi krel kdeg Peyy T

Unit ml-h1 hT h1 — h

Initial 5.10~8 600 0.1 0.02 4
Linear 23.7616 - 10~  598.63 0.1211 0.0308  3.9952
3-nodes 30.1773-10~%  587.57 0.1124 0.0279  3.9976

In a first step, the functional shape is approximated by
a hermite spline with two nodes located at ¢, and
Vmaz- LThereby, the unknown distributed parameters are
assumed to depend linearly on the degree of fluorescence.
In Figure 2 - 3 it can be seen that the model can be
fitted adequately to the data. The value of the least
squares cost function (10) is 4.5752. The resulting constant
parameters are summarized in Table 1. In Figure 4, the
functional dependencies of the distributed parameters are
depicted. It can be seen that k,.; increases with rising
degree of fluorescence which is contrary to the assumptions
presented in our previous work. The apoptosis rate is also
increasing. One possible interpretation is that cells are
more likely to become apoptotic if their degree of infection
increases. To interpret the estimation results for the net
rate Knet,apo One has to keep in mind that the fluorescence
degree of the apoptotic cells is generally decreasing.
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Fig. 3. Active and inactive virions: measurements (dotted) and model predictions for linear (solid) and nonlinear
approach (dashed)
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Fig. 4. Estimation results for fluorescence dependent pa-
rameters, linear approach (solid), nonlinear approach
(dashed); corresponding spline nodes are displayed by
dots and squares

It can be seen in Figure 4 that the absolut value of kyet,apo
is decreasing into the direction of lower fluorescence levels.
Hence the loss of fluorescence intensity is slowed down the
more the apoptotic cells move to lower fluorescences. The
estimated cell lysis rate k.4 implies that apoptotic cells in
lower fluorescence regions are more probable to lyse. In
combination with the overall negative net rate kpet,apo the
following interpretation comes to mind: the longer a cell is
apoptotic the more probable it is to lyse.

5.2 Nonlinear Parameter Dependency

When the distributed parameters are approximated by
hermite splines with three nodes, a nonlinear functional
dependency is assumed. As a result, the fit in the fluo-
rescence distribution can be improved significantly par-
ticularly for later sample points (see Fig. 2). The fit of
the active virions is improved in later time samples, too.
Comparing the least squares cost function (10) shows that
the value drops to 3.8614. The estimation results for ks
and kqpo, show the same trend as in the case of linear
parameter dependencies though the slopes are larger. The
cell death rate is large for apoptotic cells with a low degree
of fluorescence and decreases with increasing fluorescence
intensities. For ¢ — @4, the rate is increasing which
can be explained in combination with the results for the
net rate of the apoptotic cells. The rate has a parabolic
shape. This means that apoptotic cells with a low or a very
high intracellular amount of NP protein do only move very
slowly into regions of lower ¢. One possible explanation
may be that apoptotic cells within regions of very high
fluorescence intensity tend to die instead of staying apop-
totic and moving to regions of lower fluorescence levels.

For more complex parameter functions with more than
three nodes the parameter estimation problem became ill
posed resulting in multiple local minima.

6. CONCLUSION

A deterministic population balance model for influenza
virus replication in MDCK cell cultures has been pre-
sented. The model comprises a system of hyperbolic par-
tial differential equations using a fluorescence degree as
internal coordinate and ordinary differential equations.
Unknown kinetic parameters were estimated from exper-
imental data. Therefor, hermite spline approximations of
different complexity for the distributed parameters were
considered to translate the inverse problem to a finite
dimension. In a first step, a linear dependency on the
degree of fluorescence was assumed. This allows to repro-
duce the virus dynamics and the distribution dynamics
with a reasonable agreement to the data. The fit could
be improved further using nonlinear functional dependen-
cies of the parameters on the internal coordinate. The
model gives insight into the general mechanisms during
vaccine production. Future efforts will be made to include
structured information of intracellular processes like the
virus replication mechanism or apoptosis induction into
the model formulation.
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