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List of abbreviations 

CD circular dichroism 

CE 2-cyanoethyl 

CW continuous-wave 

DMAP 4-dimethylaminopyridine 

DME 1,2-dimethoxyethane 

DMSO dimethylsulfoxide 

DMTCl 4,4′-dimethoxytrityl chloride  

EPR  electron paramagnetic resonance  

ESI-MS electrospray ionization mass spectrometry 

HPLC high performance liquid chromatography 

HR-ESI-MS high resolution electrospray ionization mass spectrometry 

NBS N-Bromosuccinimide 

NMR nuclear magnetic resonance  

TBAF tetrabutylammonium fluoride  

tBuOOH tert-butylhydroperoxide 

TOM (triisopropylsilyloxy)methyl 

UV ultraviolet–visible 

 

 

Table S1. ESI-MS characterization of RNA oligonucleotides.  

Name 5'-Sequence-3' spin label mol.wt. expected mol.wt. found 
8 GACCUCGCAUCGUG - 4421.7 4421.1 
8Cm GACCUCGCmAUCGUG - 4435.7 4435.4 
8Çm GACCUCGÇmAUCGUG Çm[8] 4637.9 4638.6 
9 CACGAUGCGAGGUC - 4484.8 4484.8 
10 GACGUCGGAAGACGUCAGUA - 6469.0 6469.5 
10aCm GACGUCmGGAAGACGUCAGUA - 6483.0 6483.7 
10aÇm GACGUÇmGGAAGACGUCAGUA Çm[6] 6685.0 6685.8 
10bCm GACGUCmGGAAGACGUCmAGUA - 6497.0 6498.3 
10bÇm GACGUÇmGGAAGACGUÇmAGUA Çm[6,16] 6901.5 6902.5 
11 UACUGACGUCUUCCGACGUC - 6279.8 6280.6 
11aCm UACUGACmGUCUUCCGACGUC - 6295.8 6295.1 
11aÇm UACUGAÇmGUCUUCCGACGUC Çm[7'] 6496.0 6497.1 
12 GAUGCGCAAGCAUCUACU - 5715.5 5715.4 
13 AGUAGAUCCGAAAGGAUC - 5802.6 5802.7 
14 GACGUC - 1874.2 1873.6 
15 GACGUCGGA - 2893.8 2893.4 
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Figure S1. Anion exchange HPLC traces of crude and purified C[6,16]-modified RNAs 10bCm and 

10bÇm. 

 

 

 

Figure S2. a) UV-melting curves of duplexes 8+9 monitored at 250 nm, 8 µM strand concentration, 

150 mM NaCl, 10 mM sodium phosphate buffer, pH 7.0. b) Van't Hoff plot (ln(c) versus 1/Tm ) for 14-

bp duplexes 8+9. Linear fit parameters and H and S determined from slope and intercept of the 

linear fit are in Table S2. 

 

 

Table S2. Thermodynamic data for 14-bp duplexes 8+9 (van't Hoff plot ln(c) versus 1/Tm in Figure S2) 

Modification slope 
(R
 

intercept 
(S-Rln
 

R² H 
[kcal/mol] 

S 
[cal/mol.K] 

G298 
[kcal/mol] 

G298|a 

[kcal/mol] 

C(unmodified) -0.0171 2.666 0.991 -114 -302 -24.4  
Cm[8] -0.0147 2.664 0.981 -141 -378 -28.2 3.8 
Çm[8] -0.0219 2.629 0.992 -90.5 -235 -20.4 4.0 
                   a difference to unmodified RNA 
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Figure S3. top: CD spectra of model duplex 8+9, 10 µM duplex in 10 mM potassium phosphate 

buffer, pH 7.0, 150 mM NaCl, at 25°C. bottom row: CD spectra of Cm and Çm modified 20bp-duplex 

RNAs, 40 µM duplex in 10 mM potassium phosphate buffer, pH 7.0, 150 mM NaCl, at 25°C. 
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Figure S4. UV melting curve analysis of hairpin RNAs. 
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Figure S5. UV melting curve analysis of 20bp-duplex RNAs. 
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Figure S6. CW-EPR spectra of A) single-strand 8Çm and B) duplex 8Çm+9; 25 µM Çm-labeled RNA, 

150 mM NaCl, 10 mM sodium phosphate buffer, pH 7.0, 23°C. For comparison, CW-EPR spectra of 

analogous Ç-labeled DNA samples are shown. D) single-strand GACCTCGÇATCGTG, D) duplex 

(GACCTCGÇATCGTG).(CACGATGCGAGGTC). Spectra in A) and B) are same as in Figure 2b; 

spectra in C) and D) are reproduced from Barhate  et al., Angew. Chem. Int. Ed. 2007, 46, 2655. 

 

 

 

 

 
Figure S7. Additional CW-EPR spectra of Çm-labeled hairpin, duplex and dumbell RNAs. Spectra 

were recorded at X-band (9 GHz) over 160 G at 23°C with RNA conc. of 10-25 µM in 10 mM sodium 

phosphate buffer, pH 7.0 containing 150 mM NaCl. For convenience, Figure 3 of the manuscript is 

reproduced to the right, showing RNA sequences and secondary structure contexts. 
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Table S3. Hyperfine values and central line widths of CW-EPR spectra depicted in Figure 4, S7, S10. 
 
Number label structure [label position] base-

pairs 
central line width 

H0[mT] 
hyperfine value 

2Azz [mT] 
10a CT hairpin [6] 6 0.29 3.93 
10a+11 CT duplex [6] 20 0.37 4.86 
10a+12 CT dumbbell [6] 15 0.35 3.93 
10a Çm hairpin [6] 6 0.50 5.48 
10a+11 Çm duplex [6] 20 0.50 6.26 
10a+12 Çm dumbbell [6] 15 0.49 6.17 
11a Çm hairpin [7'] 6 0.46 5.16 
10+11a Çm duplex [7'] 20 0.48 6.22 
11a+13 Çm dumbbell [7'] 15 0.47 6.18 
11a+14 Çm tethered duplex [7'] 6/12 0.45 4.98 
11a+15 Çm gapped duplex [7'] 8/17 0.46 6.13 
10a+11a Çm duplex [6,7'] 20 0.46 6.24 

 
Figure S8. Graphic depiction of a) hyperfine values (2Azz) and b) width of the central line (H0) as a 

function of the number of base-pairs in Çm (blue)- and CT (red)-labeled RNA structures. Tri-molecular 

structures are represented using outlined symbols with connecting lines between the number of base-

pairs in the spin-labeled stem (i.e., 6 bp in the tethered duplex 11+14, and 8 bp in the gapped duplex 

11+15) and the total number of base-pairs in each construct. This representation helps to visualize 

that the mobility of the tethered duplex is more closely related to the hairpin structure (which also 

contains a 6-bp stem), while the 2Azz value for the gapped duplex fits better into the region for a 

duplex containing 17 base-pairs. The numerical data are given in Table S3.  
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Figure S9. CW-EPR spectra of CT- (top) and Çm-(bottom) labeled hairpin RNAs 10a (left) and duplex 

10a+11 (right). Spectra are compared at 22°C (black line) and 10°C (red line). CW EPR 

measurements at variable temperatures were carried out at 9 GHz using a Varian E-12 ESR 

spectrometer with nitrogen gas flow temperature regulation. Samples were contained in 1-mm i.d. 

glass capillaries which were immersed in silicone oil to improve thermal stability. The sample 

temperature was measured with a thermocouple placed inside the quartz tube just above the top of 

the ESR cavity.  

The spectrum of the CT-labeled hairpin RNA 10a was not significantly affected by lowering the 

temperature, which suggests a low energy barrier for spin-label rotation. Also in the duplex 10aCT+11, 

only a minor change in line width was observed. In contrast, spectral broadening and significant 

splitting of the low field component was observed for the Çm-labeled hairpin structure 10aÇm. This 

result also supports the finding that the internal local motion of the CT label is much higher than the 

mobility of the Çm label. At a temperature difference of only 12°C, this pronounced effect is not due to 

changes in sample viscosity, and therefore likely reflects decreased local dynamics of the loop-closing 

base-pair in the hairpin, which can only be monitored by the new label Çm.  
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Figure S10. Tri-molecular RNA structures investigated. Secondary structures and CW-EPR spectra of 

gapped duplexes. Spectra were recorded at X-band (9 GHz) over 160 G at 23°C with RNA conc. of 

25 µM in 10 mM sodium phosphate buffer, pH 7.0 containing 150 mM NaCl. 
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Figure S11. Pulsed electron double resonance (PELDOR) experiments for double-labeled RNA. 

Dipolar evolution functions at 9 GHz of a) double-Çm-labeled hairpin 10bÇm and b) double-labeled 

duplex 10aÇm+11aÇm. The inset in a) shows the 9 GHz ESE spectrum, and indicates the difference 

between pump and observe pulses (65 MHz). All experiments were performed using the four-pulse 

PELDOR sequence echo. 

Parameters (9 GHz): T = 50 K, /2 = 16 ns,  = 32 ns, ELDOR = 36 ns, SPP = 20, SRT = 5 ms, 100 

scans; [c] = 50 M. c) and d) Fourier-transformed dipolar spectra at X-band (Pake patterns) of 

experiments shown in a) and b), respectively. The green lines indicate the frequencies ┴, 

corresponding to inter-spin distances of 2.0 nm and 2.5 nm, respectively. e) 94 GHz ESE spectrum of 

double-labeled duplex 10aÇm+11aÇm. The arrows indicate two sets of pump and observe pulses, 

used for detection of PELDOR data shown in f). The parameters for the 94 GHz PELDOR experiment 

were: T = 40 K, /2 = 24 ns, ELDOR = 56 ns, SRT = 15 ms, 30 scans/trace; [c] = 60 M. The Pake 

patterns in c), d), and f) display clear orientation selection, which is currently being analyzed in detail 

using orientation selection PELDOR experiments at high-field with fixed and variable frequency 

separation (G. Sicoli et al, manuscript in preparation).  
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Figure S12. 1H NMR spectrum of 2 
 

 
Figure S13. 13C NMR spectrum of 2 
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Figure S14. 1H NMR spectrum of 3 
 

 
Figure S15. 13C NMR spectrum of 3 
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Figure S16. 1H NMR spectrum of 4 
 

 
Figure S17. 13C NMR spectrum of 4 
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Figure S18. 1H NMR spectrum of 7 
 

 
Figure S19. 13C NMR spectrum of 7 
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Figure S20. 1H NMR spectrum of Çm 
 

 
Figure S21.  13C NMR spectrum of Çm 
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Figure S22. 1H NMR spectrum of tritylated Çm  
 

 
Figure S23. 13C NMR spectrum of tritylated Çm  
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Figure S24.  1H NMR spectrum of Çm phosphoramidite 1 
 

 
Figure S25. 31P NMR spectrum of Çm phosphoramidite 1 

 


