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[1] We present the application of the gradient-based total least squares (TLS) method to
the local estimation of parameters for flow and transport in porous media. The concept is
based on the evaluation of partial derivatives of spatially and temporally resolved data
using TLS as a maximum likelihood estimator. While ordinary inverse modeling
approaches are often complicated by the spatially varying properties of porous media, the
present approach can directly localize the estimation to an arbitrary range in space and
time. The estimation of the local parameters can be achieved without requiring any explicit
solution of the respective transport equation. First the basic ideas and the formalism of
TLS are introduced with a simple example of a straight line fit. Then the ideas of the
gradient-based approach and its application to the parameter estimation for a large class
of dynamic processes are presented. We further discuss relevant computational issues such
as the calculation of the derivatives, choice of the local neighborhood and the
determination of a measure of confidence. The performance of the method is then
exemplified by the estimation of local velocities and dispersion coefficients from
numerical solutions of the convection-dispersion equation.

Citation: Stöhr, M., and K. Roth (2005), Gradient-based estimation of local parameters for flow and transport in heterogeneous

porous media, Water Resour. Res., 41, W08401, doi:10.1029/2004WR003768.

1. Introduction

[2] The estimation of model parameters like velocity or
dispersion coefficient from experimental data is one of the
crucial steps on the way toward a successful model of flow
and transport in a porous medium. Field tracer experiments
are performed in order to infer an adequate transport model
for an aquifer, and to determine the respective model
parameters (for a recent overview, see Ptak et al. [2004]).
In addition, laboratory tracer experiments are employed to
study small-scale processes in porous media and their
relation to effective macroscopic parameters.
[3] The most commonly used transport model is the

convection-dispersion equation (CDE)

@c

@t
þ v � rc�r Drcð Þ ¼ 0; ð1Þ

where the velocity v and the dispersion tensor D are
regarded as macroscopic, so-called effective parameters
which therefore are constant in space and time. Since this
model is based on the central limit theorem, the CDE (1) is
only valid if the system is ergodic and has reached
equilibrium. To fulfil the latter constraint the tracer must
have covered a sufficiently long travel distance. Only then
its dynamics can be described by the effective CDE (1).
Numerous theoretical studies [e.g., Dagan, 1990; Dentz et

al., 2000a, 2000b] focus on the approach to the asymptotic
state for various idealized media and initial conditions.
Numerical simulations indicate that for the highly localized
initial distributions that are preferred for tracer experiments,
this distance is of the order of 102 correlation lengths of the
underlying hydraulic structure.
[4] A major hurdle in applying such results for prediction

but also for the analysis of experimental data is the fact that
the presumed idealized media are hardly ever encountered
in nature. In the majority of field experiments the asymp-
totic state is often not reached even at the end of the distance
traveled due to the multiscale heterogeneity of soils and
aquifers. This may be deduced from the observation that
apparent dispersivities increase with scale [Gelhar et al.,
1992]. Consequently, the CDE (1) does not provide a valid
description of the dynamics. Such a situation is illustrated
by the 1D synthetic data set shown in Figure 1a, where the
heterogeneity of v and D prevents the concentration distri-
bution from retaining its initially gaussian shape. For
stationary flow, a valid description of the temporal evolution
of c(x, t) in such a situation is given by the CDE

@c

@t
þ v xð Þ � rc�r D xð Þrcð Þ ¼ 0; ð2Þ

with the local velocity v(x) and dispersion tensor D(x). As a
consequence, an adequate model for flow and transport in
such a medium requires reliable information about the local
values v(x) and D(x) instead of one single macroscopic
value for v and D. This implies that the concentrations are
measured with a sufficiently high spatial and temporal
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resolution. A growing number of techniques for the
laboratory, like, e.g., light transmission with Hele-Shaw
cells [Berest et al., 1999; Detwiler and Rajaram, 2000], 3D
planar laser-induced fluorescence [Stöhr et al., 2003],
positron emission projection imaging [Loggia et al., 2004]
and X-ray computed tomography [Keller et al., 1999] are
available to provide such data. Although the task is much
more challenging on the field scale, high-resolution
measurements of tracer migration have been obtained
recently using 3D electrical resistivity tomography [Kemna
et al., 2002; Singha et al., 2003].
[5] The commonly used approach for the estimation of

the set of model parameters, denoted by p, like, for example,
p = (v, D)T, is the method known as inverse modeling
(see, e.g., [Abbaspour et al., 1997] and [Zimmerman et al.,
1998]). Here a numerical solution cmod(x, t; p) of the model,
as, e.g., the CDE (1) or (2), is calculated for properly chosen
initial and boundary conditions and an initial guess of the
sought parameters p. Then the value of p is estimated by an
iterative minimization of the objective function

c2 ¼
XN
i¼1

1

s2i
c xi; tið Þ � cmod xi; ti; pð Þð Þ2 ð3Þ

with respect to p. This so-called least squares approach
assumes that the differences between the data c(xi, ti) and
the model cmod(xi, ti; p) are independent and normally
distributed with variance si

2. The so estimated p is then
the maximum likelihood estimate.
[6] However, this prevalent approach has a number of

limitations and shortcomings.
[7] 1. Estimation of local parameters with the inverse

modeling approach, like v(x) and D(x) in the CDE (2) as
illustrated in Figure 1a, is virtually impossible for all but the
most simple heterogeneities. The reason is that the number

of estimated parameters will strongly increase and the
objective function (3) will possess local minima.
[8] 2. The accurate knowledge of initial and boundary

conditions is mandatory for a reliable estimation. This
situation is illustrated in the 1D synthetic data shown in
Figure 1b. Even though the system is in equilibrium, the
tracer distribution has not yet reached a gaussian shape due
to the heterogeneity of the initial distribution c(x, 0). If the
actual initial distribution is not correctly taken into account
for the numerical solution cmod(x, t; p), and e.g. the solution
for a pulse-like injection (i.e. the evolution of a single
gaussian) is used instead, the estimated parameters will be
biased.
[9] 3. An informed guess about the initial values of p is

required for the iterative minimization of (3) in order to
avoid running into local minima.
[10] 4. The iterative minimization of (3) is computation-

ally expensive due to the repeated computation of c(x, t; p).
[11] 5. If the problem is underdetermined or ill-posed, e.g.

due to dependencies between parameters, its solution will
diverge. The identification and treatment of such a problem
requires an additional analysis and, if necessary, a repetition
of the estimation.
[12] In the present paper, a method will be presented

which allows to overcome the above mentioned limitations
for any dynamic process, provided that its differential
equation is linear in the estimated parameters. For the 1D
examples shown in Figure 1, it allows e.g. the estimation of
the local velocity v(x) and dispersion tensor D(x) for
arbitrarily shaped initial concentration distributions.
[13] The basis of the method is the so-called total least

squares (TLS) technique, which is introduced and opposed
to the commonly used ordinary least squares (OLS)
approach in section 2. Section 3 will then describe the
application of the TLS technique to the gradient-based, local
parameter estimation for linear dynamic processes, like e.g.

Figure 1. 1D particle tracking simulation of the CDE (2) (a) with a low-velocity/dispersion zone at
40 < x < 60 (b) with constant v and D where the initial distribution c(x, 0) is a superposition of two
Gaussians at x = 7.5 and x = 22.5. The concentration distributions c(x, t) are plotted for t = 0, 20,
40, 60 and 80. The TLS estimation of velocities and dispersion coefficients from this data is shown
in Figures 6 and 7.
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a convection-dispersion. Several computational issues,
which are essential for the practical application of the
method, are addressed in section 4. In section 5 the
performance of the method will be demonstrated and dis-
cussed with the analysis of the synthetic 1D data sets shown
in Figure 1, and a numerical solution of a 2D convection-
dispersion in a heterogeneous medium. Finally, section 6
will give a summary and conclusions.

2. Total Least Squares (TLS) Estimator

[14] Generally, a major challenge for the estimation of
model parameters from a set of measured data is the
separation of the relevant information from superimposed
noise. A widely-used approach is the framework of least
squares methods. The parameter estimation technique pre-
sented in this paper relies on the total least squares method,
which itself belongs to the class of subspace methods. These
methods, which have found several applications in digital
signal processing and computer vision over the last decade
[see, e.g., Van Huffel and Lemmerling, 2002; Mühlich and
Mester, 1999; Haußecker et al., 1999], achieve this separa-
tion through dividing the vector space of an overdetermined
set of equations into a data space and an error space. In
the following the ideas and the formalism of the TLS
method will be introduced and opposed to the commonly
used ordinary least squares (OLS) technique by the
example of a straight line fit. For a more comprehensive
treatment, see Björck [1996] and Van Huffel and Vandewalle
[1991].

2.1. Ordinary Least Squares (OLS)

[15] One of the simplest parameter estimation problems is
the fitting of a straight line

y ¼ axþ b ð4Þ

to a set of noisy measurements

yi ¼ yi0 þ ei; heii ¼ 0 he2i i ¼ s2i i ¼ 1::n ð5Þ

at the positions xi, where the yi are assumed to be a
superposition of undisturbed values yi0 and independent and
normally distributed noise ei with zero mean and variance
si
2. For n > 2 this results in the overdetermined set of

equations

yi ¼ axi þ b i ¼ 1::n: ð6Þ

If the si are equal, the maximum likelihood solution for the
sought parameters a and b is given by those values that
yield the minimum sum of squared differences

Xn
i¼1

axi þ b� yið Þ2¼! min : ð7Þ

With

A ¼

x1 1

x2 1

..

. ..
.

xn 1

0
BBB@

1
CCCA p ¼ a

b

� 	
b ¼

y1
y2

..

.

yn

0
BBB@

1
CCCA ð8Þ

the minimization constraint (7) can be written as

k Ap� b k2¼! min ð9Þ

and the minimum can be found by setting the partial
derivatives to zero:

@

@a
k Ap� b k2¼ 0

@

@b
k Ap� b k2¼ 0 ð10Þ

AT Ap� bð Þ ¼ 0 ð11Þ

p ¼ ATA

 ��1

ATb ð12Þ

(AT A)�1 AT is the so-called pseudoinverse. If the si are not
equal, the solution is

p ¼ ATWTWA

 ��1

ATWTWb ð13Þ

with W ¼
1=s1 � � � 0

..

. . .
. ..

.

0 � � � 1=sn

0
B@

1
CA: ð14Þ

This solution for p is optimal in the sense of minimal
quadratic error and maximum likelihood.

2.2. Total Least Squares (TLS)

[16] The OLS estimator is based on the assumption that
the xi are error-free and only the yi contain noise. In contrast,
the TLS estimator accepts both, xi and yi, to be noisy:

xi ¼ xi0 þ hi hhii ¼ 0 hh2i i ¼ s2x ð15Þ

yi ¼ yi0 þ ei heii ¼ 0 he2i i ¼ s2y ð16Þ

Again, the approach to the maximum likelihood estimate is
the minimization of the sum of squared errors ([Van Huffel
and Vandewalle, 1991]):

Xn
i¼1

axi þ b� yið Þ2¼! min: ð17Þ

With

A ¼

�y1 x1 1

�y2 x2 1

..

. ..
. ..

.

�yn xn 1

0
BBB@

1
CCCA p ¼

1

a

b

0
@

1
A ð18Þ

the set of equations (6) can be written as

Ap ¼ 0 ð19Þ

and the least sum of squared differences (17) is defined as

k Ap k2¼! min: ð20Þ
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In order to avoid the trivial solution p = 0, the norm of p is
required to be an arbitrary constant c, say c = 1, by the
additional constraint

k p k2¼ 1: ð21Þ

Here, the difference between this so-called total least
squares (TLS) approach and the ordinary least squares
(OLS) estimation described above becomes apparent: In
OLS the minimum is found in the 2D vector space of the 2D
vector p, while in TLS p is a 3D vector and the minimum is
lying on the unit sphere of the according 3D vector space.
The TLS minimization (20) with the constraint (21) is then
carried out with the method of Lagrange multipliers:

k Ap k2 þ l 1� k p k2

 �

¼! min ð22Þ

or with J = AT A

pTJpþ l 1� pTp

 �

¼! min: ð23Þ

The minimum is found by setting the partial derivatives
with respect to the elements of p to zero, which leads to the
eigenvalue equation

Jp ¼ lp: ð24Þ

From the properties of J, (1) symmetric ! real eigenvalues;
(2) non-negative definite ! non-negative eigenvalues, it
follows that the minimum is given by the eigenvector to the
smallest eigenvalue lmin of J:

Jpmin ¼ lminpmin: ð25Þ

The values for a and b are then obtained by scaling pmin to
satisfy p1 = 1 in (18):

a ¼ pmin2

pmin1

b ¼ pmin3

pmin1

: ð26Þ

2.3. Equilibration

[17] It can be shown [Van Huffel and Vandewalle, 1991]
that pmin given by (25) is the maximum likelihood estimator
if the errors of the elements of A are independent random
variables with zero mean and equal standard deviation sA:

A ¼ A0 þ DA hDAiji ¼ 0 hDA2
iji ¼ s2A ð27Þ

A typical situation is that each column of A has a different
error variance:

A ¼

�y1 x1 1

�y2 x2 1

..

. ..
. ..

.

�yn xn 1

0
BBB@

1
CCCA

" " "
s2y s2x s21

ð28Þ

[18] In the example shown in Figure 2 for instance these
values are sx

2 = 1, sy
2 = 2 and s1

2 = 0. Therefore the

requirement (27) is violated, which explains the erroneous
result of the TLS estimation in Figure 2b.
[19] To fulfil the requirement (27) the columns of A have

to be scaled with a weight matrix W:

AWW�1p ¼ 0 ð29Þ

W ¼
1=sy 0 0

0 1=sx 0

0 0 1=s1

0
@

1
A ð30Þ

Aeqpeq ¼ 0 Aeq ¼ AW peq ¼ W�1p ð31Þ

with Aeq fulfilling the condition (27). This transformation
toward a matrix Aeq with equal standard deviations of the
elements is called equilibration.
[20] For the final optimal solution pmin the eigenvector

peqmin to the smallest eigenvalue leqmin of Jeq = Aeq
T Aeq has

then to be rescaled:

pmin ¼ Wpeqmin a ¼ pmin2

pmin1

b ¼ pmin3

pmin1

: ð32Þ

As expected the result for the equilibrated TLS shown in
Figure 2d proves to be better than OLS and non-equilibrated
TLS.
[21] If one column of A is assumed to be error-free, like in

the present example s1 = 0, the corresponding element in W
becomes infinite and therefore Aeq is undefined. This
problem can be circumvented by approximating s1 by the
smallest possible value with respect to the machine preci-
sion or by using the mixed OLS-TLS method given by Van
Huffel and Vandewalle [1991].

2.4. Concluding Remarks

[22] In the previous paragraphs it has been shown that
TLS is a generalization of OLS in the sense that it allows
errors in all variables. This feature, which qualifies it for the
local parameter estimation of dynamic processes described
in the next section, involves some essential differences in
the estimation procedure. Compared to OLS, the TLS
parameter vector p has one additional element and is subject
to the auxiliary constraint (21). Instead of the pseudoinverse
(12) for OLS, the maximum likelihood estimator for TLS
is given by the solution of the eigenvalue problem (25).
The eigenvectors corresponding to the set of eigenvalues
l1 > l2 > l3 represent the separation of the data matrix A
into the data space spanned by e1 and e2 and the error
space spanned by e3. An intuitive geometric interpretation
of the difference between OLS and TLS for the straight
line fit is shown in Figure 2: Whereas OLS minimizes the
vertical distances, TLS minimizes the euclidean distances
to the straight line.

3. Estimation of Parameters for Linear
Dynamic Processes

[23] We consider a solute distribution as an object whose
movement and change of shape shall be estimated. In a first
step, we assume that the shape and brightness (i.e. concen-
tration) of the object are invariant and its velocity is
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constant. We then extend the description to the realistic case
of an object that changes its shape and brightness, as e.g.
according to the dispersion equation.

3.1. Gradient-Based Motion Estimation

[24] Suppose you want to estimate the velocity of an
object from a time series of 2D images, represented by an
array of intensity values g(x, t) at discrete positions (x, t), as
illustrated in Figure 3a. If the two assumptions
[25] 1. the object is moving with constant velocity
[26] 2. the brightness of the object is constant are ful-

filled, the temporal evolution of g(x, t) can be described by
the brightness constancy constraint equation (BCCE)

dg

dt
¼ @g

@t
þ @g

@x

@x

@t
þ @g

@y

@y

@t
¼ @g

@t
þ urxg ¼ 0 ð33Þ

with u ¼ ux

uy

� 	
¼

@x

@t
@y

@t

0
B@

1
CA;rxg ¼

@g

@x
@g

@y

0
B@

1
CA: ð34Þ

Since the BCCE gives only one constraint for the two
unknown velocities ux and uy for every (x, t)-position,
additional constraint are required. A commonly used
approach is to extend the estimation to a local neighbor-
hood, assuming that u is constant in this neighborhood.
Since g(x, t) virtually always contains noise, the BCCE (33)
will not exactly equal zero, and u may be found by the
minimization of the sum of squared residuals

E ¼
X
x0;t0

w x� x0; t � t0ð Þ � @g

@t

����
x0;t0ð Þ

þ urxgj x0;t0ð Þ

 !2

¼! min: ð35Þ

The window function w, e.g. a box function or a Gaussian,
defines the shape and extent of the local neighborhood at
each point (x, t), for which the velocities are estimated. The
possibility to specify an arbitrary range in space and time
for each estimate is an important feature of gradient-based
techniques. For a given noise level, a larger neighborhood
will lead to a more accurate estimation of ux and uy.
However it should not be chosen too large in order to satisfy

Figure 2. Geometric interpretation of different least squares estimators used for a straight line fit y =
ax + b to data with a = 0.5, b = 4 and errors in x and y (sx

2 = 1 and sy
2 = 2): (a) OLS minimizes the

deviations in y-direction to the estimated line, while (b) TLS minimizes the Euclidean distances. This is
only correct for sx = sy, which is achieved by an equilibration, i.e. scaling of y with a factor 1/

ffiffiffi
2

p
(c).

The so-obtained solution has then to be rescaled for the correct result (d). As indicated by the
estimated values for a and b, equilibrated TLS is the maximum likelihood estimator in this situation
and therefore provides better results than OLS. The results of TLS without equilibration are, however,
typically worse than OLS.
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the requirement of constant u throughout the neighborhood
(see section 4.4).
[27] In principle, the parameters ux and uy could be found

by setting the partial derivatives of E with respect to ux and
uy to zero. This approach would be analogous to the OLS
straight line fit given by (10) – (12) and leads to a
corresponding pseudoinverse solution. However, this OLS
estimation is not optimal since it is based on the assumption

that only @g
@t is noisy. Because in (35) all data, namely @g

@t,
@g
@x

and @g
@y are contaminated with noise, the optimal solution in

the sense of maximum likelihood for ux and uy is instead
given by the TLS minimization of

E ¼
X
x0;t0

w x� x0; t � t0ð Þ rgjTx0;t0ð Þp
� �2

¼! min ð36Þ

with p ¼
px
py
pt

0
@

1
A ¼

ux
uy
1

0
@

1
A rg ¼

@g

@x
@g

@y
@g

@t

0
BBBBB@

1
CCCCCA ð37Þ

and the additional constraint pT p = 1. With

J ¼
X
x0;t0

w x� x0; t � t0ð Þ rgrgT
��
x0;t0ð Þ

� �
ð38Þ

¼

@g

@x

@g

@x

@g

@x

@g

@y

@g

@x

@g

@t
@g

@y

@g

@x

@g

@y

@g

@y

@g

@y

@g

@t
@g

@t

@g

@x

@g

@t

@g

@y

@g

@t

@g

@t

0
BBBBBBB@

1
CCCCCCCA

ð39Þ

the minimum of (36) is given according to (23)–(25) by the
eigenvector pmin to the smallest eigenvalue of J. The
maximum likelihood solution for u is then given by

u ¼ ux
uy

� 	
¼

pminx

pmint
pminy

pmint

0
B@

1
CA: ð40Þ

[28] The 3D x � t representation in Figure 3b gives an
intuitive geometric interpretation of the above described
motion estimation: The motion of the Gaussian at a certain
(x, t)-position is characterized by the direction of minimal
intensity change in the local neighborhood. Since at one
point (x, t) this direction is perpendicular to the vector of
maximal intensity change rgjx,t and therefore rgjx,tT p = 0,
the integration over the local neighborhood directly leads to
(36). Thus it appears that the TLS estimate pmin is equiv-
alent to the direction of minimal intensity change in the 3D
local x � t neighborhood defined by the window function w.

3.2. Extended Models

[29] Until now it was assumed that the temporal change
of intensity @g

@t was caused only by motion. This led to the

BCCE (33) and to the further conclusion that the velocity
corresponds to the direction of minimal intensity changes
defined by (36). However this assumption is often violated
by additional dynamic processes causing intensity changes,
like e.g. diffusion, exponential decay or changes of illumi-
nation. Taking into account such additional processes leads
to an extension of the BCCE (33) and consequently to a
larger number of parameters for estimation. In the following
this extension will be described for the example of 2D
motion with isotropic diffusion shown in Figure 4.
[30] The temporal change of intensity due to 2D isotropic

diffusion is described by the differential equation

@g

@t
¼ D

@2g

@x2
þ @2g

@y2

� 	
ð41Þ

Figure 3. Time series g(x, y, t) (t = 1..64) of 2D intensity images (x = 1..256, y = 1..128) with a
Gaussian distribution moving with u = (4.7, �1.7)T (a) shown for six different times and (b) represented
by a 3D x � t visualization. From the 3D spatiotemporal representation the velocities ux and uy can be
calculated from the direction pmin of minimal intensity change according to (40).
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with D denoting the diffusion coefficient. Together with a
constant movement with velocity u the extended version of
the BCCE (33) is given by

dg

dt
¼ @g

@t
þ @g

@x

@x

@t
þ @g

@y

@y

@t
� D

@2g

@x2
þ @2g

@y2

� 	
¼ 0 ð42Þ

¼ @g

@t
þ urxg � DDg ¼ 0: ð43Þ

In order to estimate the extended set of parameters ux, uy
and D, the minimization constraint (36) is reformulated in
the generalized form

E ¼
X
x0 ;t0

w x� x0; t � t0ð Þ dTp

 �2¼! min: ð44Þ

For the present example of 2D motion with isotropic

diffusion the data vector d is given by d = (@g@x,
@g
@y,

@2g
@x2 +

@2g
@y2 ,

@g
@t )

T and the parameter vector p is p = (ux, uy, �D, 1)T. The

further procedure of parameter estimation is analogous to
the estimation of velocities in (38)–(40): With the extended
tensor J defined as

J ¼
X
x0;t0

w x� x0; t � t0ð Þ ddT
��
x0;t0ð Þ

� �
ð45Þ

the maximum likelihood estimate pmin is given by the
eigenvector to the smallest eigenvalue of J, and the resulting
parameters ux, uy and D are

ux ¼
pmin1

pmin4

uy ¼
pmin2

pmin4

D ¼ �pmin3

pmin4

: ð46Þ

This general framework, consisting of the minimization
constraint (44) and the eigen analysis of the tensor J,
provides a methodology for the estimation of local
parameters of a large class of dynamic processes. This
way of parameter estimation does not require a solution
of the respective differential equation. The implementation
of a certain model is simply accomplished by an adequate
selection of a data vector d for the computation of J and
a parameter vector p which will result from the eigen
analysis of J. For that purpose the differential equation of
the model to be implemented must be a sum of products
between data and parameters. Each of these products
becomes one element of d and p. Table 1 shows a
compilation of several common models and their differ-
ential equations together with the respective data vector d
and parameter vector p.

3.3. Equilibration

[31] The computation of the elements of d, i.e. the

derivatives @g
@t ,

@g
@x,

@g
@y,

@2g
@x2 etc., from an image sequence like

the example shown in Figure 4 is typically accomplished
through a convolution of g(x, t) with an appropriate filter
mask as discussed in section 4.2. The employment of
different filter masks gives rise to different error variances
for each element of d, which can be calculated by error
propagation from the respective filter mask and the noise
spectrum of g (see section 4.3). These different variances of
each element of d must then be equilibrated as described in
section 2.3,

deq ¼ Wd Jeq ¼ WJW W ¼
1=s1 � � � 0

..

. . .
. ..

.

0 � � � 1=sn

0
B@

1
CA ð47Þ

Figure 4. Time series g(x, y, t) (t = 1..64) of 2D intensity images (x = 1..256, y = 1..128) with a gaussian
distribution moving with u = (4.7, �1.7)T and additional isotropic diffusion (a) shown for six different
times and (b) represented by a 3D x � t visualization. Now the parameters ux, uy and D are not obtained
from the direction of minimal intensity change pmot, but from the eigenvector pext of the extended tensor
(45) according to (46).
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and the maximum likelihood estimate of pmin is given by
the rescaled eigenvector to the smallest eigenvalue lmin eq

of Jeq according to pmin = W pmineq.

3.4. Aperture Problem

[32] In practical applications it often occurs that the data
allows only for the estimation of a subset of the parameters.
Figure 5 illustrates such a situation for the 2D motion
estimation discussed in section 3.1. Since the moving object
has structure only in one direction, its velocity can obvi-
ously be estimated only in the perpendicular direction. The
best possible description of motion in this case of a so-
called aperture problem is given by

u ¼ ux
0

� 	
þ k

0

uy

� 	
; ð48Þ

where the one degree of freedom is represented by the
unknown variable k. For the TLS parameter estimation this
involves a rank reduction of J by one and consequently an
additional second zero eigenvalue. Accordingly the estimate
of p is given by any linear combination of the two
eigenvectors spanning the nullspace of J. Due to the
additional constraint p3 = 1 the estimate of u then has one
degree of freedom and can be described by (48). It is one of
the main features of the TLS method that the eigenvalue
spectrum of J provides an accurate characterization of the
available information. For the example of 2D motion the
different cases can be classified as follows:
[33] 1. l1 = l2 = l3 = 0: constant gray value! no further

analysis.
[34] 2. l1 > 0, l2 = l3 = 0: spatial orientation and

constant motion ! only one velocity component can be
estimated.

[35] 3. l1, l2 > 0, l3 = 0: distributed spatial structure and
constant motion ! both velocity components can be
estimated.
[36] 4. l1, l2, l3 > 0: distributed spatial structure and

non-constant motion ! no further analysis.
[37] If more than one eigenvalue of J is zero and

therefore the estimated parameters have one or more
degrees of freedom, a unique solution can be obtained
through the application of additional regularization con-
straints. A common approach is the so-called minimum
norm solution [Spies, 2001], defined by kpk2 ¼! min. The
corresponding unique solution for the case of an ambigious
2D motion estimate represented by (48) is k = 0 or u = (ux,
0)T. For models of processes with anisotropic diffusion
however, this constraint leads to unphysical results and a
modified criterion based on physical constraints as pre-
sented by [Stöhr, 2003] has to be applied instead.
[38] In practical calculations an eigenvalue will hardly be

exactly zero and therefore the numerical distinction between
l = 0 and l > 0 requires some further considerations which
are given in section 4.5.

4. Computational Issues

[39] The gradient-based technique described in the pre-
vious section estimates parameters from partial derivatives
of a scalar quantity as e.g. concentration or intensity. In the
course of the practical calculation of the final estimates from
the initial data a series of critical computational issues
arises. Appropriate choices for the respective numerical
transformations are mandatory for an adequate interpreta-
tion and optimal accuracy of the resulting parameters. TLS
methods are a large and active topic of research mainly in
the field of computer vision. In the following section the
most important aspects for the implementation of the

Figure 5. (a) 2D image sequence (x = 1..256, y = 1..128, t = 1..64) with a so-called aperture problem:
Because the moving vertical line has structure only in x-direction, its velocity can obviously also be
estimated only in x-direction. (b) In the corresponding 3D representation, this problem is reflected by the
nonuniqueness of the direction of minimal intensity change. A unique solution, which represents the
velocity vector in x-direction, is then given by the minimum norm solution pMNS.
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gradient-based technique are addressed and references for
further details are given. For compactness the discussion is
restricted to a single spatial dimension x. Extensions to
higher dimensions are straightforward.

4.1. Suppression of Noise

[40] The initially available data typically consists of a
spatially and temporally resolved set of the scalar quantity
g(xi, tj) at discrete positions xi and times tj (i = 1..Nx, j =
1..Nt) on a regular grid with size (Nx, Nt). If xi or tj are not
regularly spaced, an appropriate interpolation onto a regular
grid is necessary for the application of the subsequent
calculations.
[41] The accuracy of the finally estimated parameters is

strongly affected by noise in the initial data. As a first step it
is therefore essential to suppress noise as far as possible. In
general, the optimal choice of a method for reducing the
noise without affecting the underlying signal is a challeng-
ing issue. The most common approach is the convolution of
g with a suitable filter mask h(xk, tl):

g0 xi; tj

 �

¼ h * g ¼
XRx

k¼�Rx

XRt

l¼�Rt

h xk ; tlð Þg xi � xk ; tj � tk

 �

ð49Þ

The shape of h is usually a gaussian with an adequately
chosen number of coefficients n and variance s2 for each
dimension, as e.g. (0.05, 0.24, 0.4, 0.24, 0.05) for a 1D filter
with n = 5 and s2 = 1. Several more sophisticated
techniques based on wavelets, splines, anisotropic diffusion,
simulated annealing etc. are available.

4.2. Computation of Partial Derivatives

[42] The partial derivatives of g, which are the basis for
the calculation of J according to (45), are then computed by
the convolution of g with an adequate filter mask h as
defined in (49). The actual choice of h is commonly a
tradeoff between the size of the filter mask and the desired
properties of its transfer function [Jähne et al., 1999]. As a
first order derivative with 5 coefficients, the 1D filter mask
(�1, 6, 0, �6, 1)/8 is optimal relative to deviations from the
ideal transfer function [Jähne et al., 1999]. Higher order
derivatives are then obtained by repeated convolutions of g
with the chosen 1D filter mask directed in the respective
dimensions.

4.3. Calculation of the Equilibration Weight Matrix

[43] As discussed in sections 2.3 and 3.3, the data vector
d must be equilibrated with a weight matrix W in order to
obtain a maximum likelihood estimate for p. The elements
of W are related to the uncertainties of the elements of d,
which are therefore required to be known a priori. Accord-
ing to the discussion above, the respective elements of d are
given by convolutions of g with particular filter masks h. If
the noise in g is independent and identically distributed with
zero mean and variance sg

2, the variance of the noise in h * g
is given by

s2h * g ¼ s2g
XRx

k¼�Rx

XRt

l¼�Rt

h2 xk ; tlð Þ: ð50Þ

According to section 2.3, only the relative values of the
elements of W are required for a maximum likelihood

estimation. The value of sg
2, which is usually not known a

priori, can therefore be set to sg
2 = 1.

[44] As an example, the variance for the first order
derivative filter h = (�1, 6, 0, �6, 1)/8 is sh

2 = 1.16. The
variance for the corresponding second order derivative h2 =
h * h = (1, �12, 36, 12, �74, 12, 36, �12, 1)/64 is sh*h

2 =
2.11. This demonstrates the higher noise sensitivity of the
second order derivative. The respective values of 1/s then
form the elements of W according to (47). For further
details about equilibration, e.g., if the above assumption
for noise does not hold, see Mühlich and Mester [1999].

4.4. Choice of a Local Neighborhood

[45] An crucial point is the proper choice of the spatio-
temporal local neighborhood represented by the window
function w defined in (35), since this decides if the method
can be applied to an experimental data set with a given
heterogeneity and spatiotemporal resolution. In general, the
neighborhood must include a number of linear independent
data vectors d which is equal or higher than the number of
unknowns, i.e. parameters. If the number is lower, a subset
of the parameters may be estimated as explained in
section 3.4. Since the data vectors d are virtually always
contaminated with noise, an increased size of the neighbor-
hood will reduce the uncertainty of the final estimates. If it
is however chosen too large so that the basic requirement
of constant parameters throughout the neighborhood is
violated, the uncertainty will again strongly increase (see
examples in section 5).
[46] There are no general restrictions regarding the

shape of the neighborhood: it may extend exclusively
in the spatial or temporal domain, or in both. If the
parameters can be assumed to be stationary, it is reasonably
extended over the full temporal domain. All elements may
be weighted equally (w = const.) or with individual values
w(x, t).
[47] The above discussion is strongly coupled to the

question how many samples are needed to estimate a set
of parameters. For a single point in the neighborhood, a
number of surrounding samples is needed for the computa-
tion of the partial derivatives at that point. This number is
given by the sizes of the respective filter masks. An
analogous set of additional surrounding samples is required
for the full neighborhood.

4.5. Measure of Confidence

[48] As a final step, we wish to determine the confidence
of the parameter estimates. This depends on the noise in
the data and on the degree to which the chosen model
corresponds to reality.
[49] The determination of suitable measures of confi-

dence for TLS problems is an object of ongoing research
[Nestares et al., 2000]. Because of the nonlinearity of
the involved eigenvalue problem, the errors of the TLS
estimates are, in contrast to OLS, nonlinear functions of
the data and the noise level. Whereas TLS is relatively
insensitive against low noise levels, higher levels can
change the order of the eigenvalues and thereby strongly
affect the solution [Mühlich and Mester, 1999]. Most of the
approaches are based on the analysis of the eigenvalue
spectrum of J [Spies, 2001; Stöhr, 2003]. When the data is
contaminated with noise, the smallest eigenvalue of J is no
longer zero. In the case of additive, independent noise with
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variance s2 in the equilibrated data matrix deq defined in
(47), the eigenvalues li of J are shifted according to

li ! li þ ks2; ð51Þ

where k is determined by the window function w as k =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x;t
w2 x; tð Þ

q
[Spies, 2001]. Consequently, the smallest

eigenvalue provides an estimate of the noise in the data. The
consideration of this shift is mandatory for the classification
of the eigenvalue spectrum as described in section 3.4.
Aside from that, the smallest eigenvalue will also be shifted
if the chosen model cannot describe the dynamic process in
the data.
[50] Another relevant quantity is the trace of J, which

represents the signal strength of the data (Tr(J) =
X

i
Jii). It

has been shown [Stöhr, 2003] that the ratio of the trace and
the smallest eigenvalue of J,

wc ¼
Tr Jð Þ
lmin

; ð52Þ

can be interpreted as a signal-to-noise ratio and serves as a
measure of confidence.

5. Application to Simulated Data

[51] In this section the application of the gradient-based
TLS method are demonstrated by means of the local
parameter estimation from simulated data sets. The reason
for the usage of simulated data is the availability of the true
parameters for comparison with the results of the estima-
tion. For the simulations the spatial distribution of velocities
and dispersion coefficients and an initial concentration
distribution have been a priori chosen and then the concen-
tration distributions for the following times were calculated
using a particle tracking method.

5.1. One-Dimensional Convection-Dispersion

[52] At first we use the method for the estimation of local
velocities and dispersion coefficients from the solutions c(x, t)
of the 1D CDE (2) for the region x2 [1, 100], t2 [1, 100] and
the problems shown in Figure 1. The concentrations are
calculated on a discrete grid with Dx = 1 and Dt = 1.
[53] Since concentrations obtained from particle tracking

simulations include fluctuations owing to the limited num-
ber of particles, the initial step is the reduction of noise.
Therefore the data was smoothed by convolution with a 1D
Gaussian kernel (n = 5, s = 1.4) in both x- and t-direction as
described in section 4.1.
[54] The next step is then the computation of the deriv-

atives @c
@x,

@2c
@x2 and

@c
@t, the elements of d for this model, from

the smoothed data. According to section 4.2, the first and
second order derivatives were computed by convolutions
with the filter masks (�1, 6, 0, �6, 1)/8 and (1, �12, 36, 12,
�74, 12, 36, �12, 1)/64 respectively.
[55] The size of the local neighborhoods (see section 4.4)

in x-direction is Dx = 3, and the parameters were calculated
at the central positions xc = 8, 10, 12, . . ., 92. Under the
assumption of stationary parameters the whole timeframe,
excluding the boundaries, was chosen as the temporal
neighborhood, i.e. t = 7..94. All elements were weighted
equally, so that the corresponding window function w(x �
x0, t) is a box function with w = 1/(3*88) for �1 � x0 � 1 _
7 � t � 94 and else w = 0.
[56] The tensor J was then calculated for every x accord-

ing to (45) and the parameters v(xc) and D(xc) were obtained
from the eigen analysis of the equilibrated tensor Jeq(xc) in
analogy to (46). The results presented in Figures 6 and 7
show a good agreement with the a priori chosen values used
for the simulation in the areas where v(x) and D(x) are
constant. For increasing x the errors of the estimates increase
due to the decreasing signal-to-noise ratio of the data.
Because the susceptibility to noise is higher for the second
than for the first order derivative, the relative errors are
higher for D than for v. At the locations where v(x) and D(x)
are discontinuous (x = 40 and 60 in Figure 1a) large errors
occur because here the basic requirement for the BCCE (33),
i.e. the constancy of the parameters, is violated.
[57] A measure of uncertainty, given by the inverse of

the confidence measure wc defined in (52) is plotted in
Figures 6c and 7c. The comparison with the corresponding
estimates of v(x) and D(x) shows that this measure correlates
well with the incorrect results at the discontinuities and

Figure 6. Results of the TLS parameter estimation from
the numerical solution of a 1D-CDE with a low velocity/
dispersion zone at 40 < x < 60 shown in Figure 1a.
Comparison of local estimates of (a) velocity v(x) and
(b) dispersion coefficient D(x) with the values used for

simulation. (c) Confidence measure
lmin

Tr Jð Þ.
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also with the increasing errors due to the decreasing signal-
to-noise ratio at x > 60.

5.2. Two-Dimensional Convection-Diffusion

[58] In the following the method is demonstrated for the
model of 2D motion with isotropic diffusion, which has
been discussed in section 3.2.
[59] An array of local velocities v(x) (x = 1..500, y =

1..500) has been obtained from a numerical solution of the
Darcy equation for a heterogeneous medium with a zone in
the center where the permeability is half the value of the
outer region. Then a solution c(x, t) (t = 1..200) of the CDE
(42)–(43) with homogeneous D was computed using a
particle tracking simulation. From this solution, which is
shown in Figure 8, the local velocities and diffusion
coefficients have been estimated with the present method.
[60] Analogously to the previous 1D example the data

was first smoothed and then the derivatives @c
@t,

@c
@x,

@c
@y,

@2c
@x2,

@2c
@y2,

@2c
@x@y, which are the elements of the data vector for the

corresponding model (see Table 1), were calculated. The
tensors Jeq(xc) were computed at the central positions xc =
yc = 26, 32, 38,..,470 with a box-shaped local neighborhood
of Dx = Dy = 6. Assuming stationary parameters, the
neighborhood extends over the whole timeframe except
the boundaries (Dt = 180). The resulting TLS estimates of
v(xc) and D(xc) are shown in Figure 9. As expected, the
velocities in the central low permeability zone are lower
than those in the outer region, whereas the diffusion
coefficients are consistent in both regions. The results are
not shown for those locations where the inverse confidence
measure wc

�1 is higher than an empiric threshold t = 0.62 �
10�5, which indicates that the estimation has failed. As
expected this happens in two different situations: First,
at the boundary between high and low permeability, where
the basic requirement that v(x) and D(x) are constant in
the local neighborhood (see section 3.1) is violated and
consequently no meaningful result can be obtained. As a
consequence of the applied convolutions, the effect of the
boundary propagates over a certain distance and leads to
the observable distortions of the velocity vectors along the
boundary. Second, at the outer locations, where only small

Figure 7. Results of the TLS parameter estimation from
the numerical solution of a 1D-CDE with constant v(x) and
D(x) and a heterogeneous initial distribution shown in
Figure 1b. Comparison of local estimates of (a) velocity
v(x) and (b) dispersion coefficient D(x) with the values

used for simulation. (c) Confidence measure
lmin

Tr Jð Þ.

Figure 8. Numerical solution c(x, t) (x = 1..500, y = 1..500, t = 1..200) of the CDE (2) for a medium
with a low permeability zone in the center.
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or no concentration is present, the available information is
not sufficient to infer any parameters.
[61] In Figure 10, the values of the inverse confidence

measure wc
�1 are compared to the relative error jpest � ptruej/

jptruej of the estimated parameters. Obviously wc
�1 reflects

both types of failed estimates: High values of wc
�1 occur both

at the boundary between the permeability zones and in the
regions of low concentration. Figure 10b shows that the
relative errors of the estimates plotted in Figure 9 are mostly
below 10�2 and correlate well with the distribution of wc

�1.

Figure 9. (a) Local velocities v(x) and (b) diffusion coefficients D(x) (represented by the radii of the
circles) estimated from the simulated time series c(x, t) shown in Figure 8. The gray values represent the

cumulated concentrations
X200

t¼1
c(x, t) as a proxy for the local information content. Estimates are only

shown for wc
�1 < 0.85 � 10�5 (see Figure 10).

Figure 10. (a) Inverse measure of confidence wc
�1 =

lmin

Tr Jð Þ and (b) relative error of the estimates shown
in Figure 9.
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6. Summary and Conclusions

[62] Because commonly used approaches for the estima-
tion of model parameters from experimental data, like,
e.g., inverse modeling, require ergodicity and rely on the
knowledge of initial and boundary conditions, they often
cannot be employed since experimental conditions like
heterogeneity in the porous medium do not meet these
requirements. As an alternative approach aimed to over-
come these difficulties a gradient-based method, which
is already used in different fields of computer vision, has
been introduced. The method is based on the formalism of
TLS as a maximum likelihood estimator for the model
parameters, which has therefore been described and distin-
guished from the common OLS. The issues of equilibration,
measures of confidence and the identification and treatment
of aperture problems have been addressed and the essential
computational aspects of an implementation of the method
have been explicated.
[63] On this basis, the employment of TLS to the gradient-

based parameter estimation for dynamic processes provides
several beneficial features.
[64] 1. The dynamic process which is to be estimated can

be directly integrated into the estimation procedure in the
form of a differential equation. A solution to this equation is
not necessary.
[65] 2. The formalism allows for a direct specification of

the location and size of the estimate in space and time. Any
assumption about heterogeneities, as defined e.g. by a REV,
can be included in the estimation.
[66] 3. The method yields a direct non-iterative maximum

likelihood estimate with no need of any initial values.
[67] 4. The cause of a failure of the estimation, like e.g. a

low signal-to-noise ratio or an aperture problem, can be
readily detected from an eigenvalue spectrum and poten-
tially be corrected by adapted additional constraints.
[68] 5. The essential algorithms are limited to a series of

convolutions and eigenvalue calculations, which can be
easily implemented and have a reasonable computational
demand.
[69] The requirement of high-resolution data, which is

inherent to any approach to local parameter estimation, is
fulfilled by a growing number of experimental techniques
for the laboratory and few promising results from field
measurements.
[70] The method has been applied to numerical solutions

of the CDE with spatially varying parameters v(x) and
D(x) and heterogeneous initial conditions. Whereas the
evaluation of v(x) and D(x) in such situations would hardly
be feasible with commonly used methods, it has been
demonstrated that the present method yields direct and
accurate local estimates.
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M. Stöhr, Max Planck Institute for Marine Microbiology, Celsiusstrasse

1, D-28359 Bremen, Germany. (mstoehr@mpi-bremen.de)

14 of 14
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