

An optimal algorithm for the on-line

dosest pair problem

Christian Schwarz Michiel Smid J ack Snoeyink

MPI-I-91-123 November 1991

"Das diesem Bericht zugrunde liegende Vorhaben wurde mit Mitteln des Bundesministers
für Forschung und Technologie (Betreuungskennzeichen ITS 9103) gefördert. Die Verantwor­
tung für den Inhalt dieser Veröffentlichung liegt beim Autor."

In the otf-line version of the problem, the complete set of points is known at the
start of the algorithm. This version of the problem has been solved optimally for a
long time. In 1975, Shamos and Hoey [9] gave an O(n log n) algorithlll for the planar
case. Dne year later, Bentley and Shamos [1] gave an O(nlogn) algorithm for the k­
dimensional case. See also Vaidya [14], who solved the all-nearest-neighbors problem
within thesame time bound. All these algorithms can be implemented in the algebraic
decision tree model, for which an n(n log n) lower bound holds. See Preparata and
Shamos [6].

In this paper, we consider the on-line closest pair problem. Here, the points attive
one after another. After a point arrives, we have to update the current closest pair.
This version of the problem has only been studied recently.

In Smid [11], an algorithm is given that computes the closest pair on-line, in
O(n(log n)1e-l) time. This algorithm only uses algebraic functions. Therefore, it is
optimal for the planar case.

Smid [11] and Schwarz and Smid [8] give algorithms that run in O(n(log n)2 / log log n)
and in O(nlog nloglog n) time, respectively, for any fixed dimension k. These algo­
rithms, however, use the non-algebraic :Boor function. If additionally the functions
EXP and LOG are available at unit-cost, the running time of the algorithm in [8] can
be improved to O(nlogn).

In this paper, we give an O(n log n) algorithm for any fixed dimension k that uses
only algebraic functions. Hence, the algorithm is optimal. More precisely, we give a
data structure that maintains the closest pair in O(log n) amortized time per insertion.
Dur structure can also solve the problem of computing on-line the closest pair that
existedover the history of a fully dynamic point set in O(log n) amortized time per
insertion or deletion.

Note that recently there has been much interest in the dynamic closest pair prob­
lem. For the case, where only deletions are allowed, see Supowit [13]. For the fully
dynamic case, see Smid [10, 12], Salowe [7] and Dickerson and Drysdale [3].

The algorithm in this paper is based on the algorithm of Smid [11]. To update
the closest pair when a point is inserted, that algorithm makes some queries into a
data structure for the k-dimensional rectangular point location problem. In this data
structure, one query takes O((log n)1e-l) time, which causes the entire algorithm to
have an amortizedinsertion time of O((log n)1e-l).

In this paper, we also use a data structure for the rectangular point location prob­
lem. The sub divisions of k-space that anse, however, are regular enough to allow point
location queries to be solved in loganthmic time. The data structure for these queries
is implemented using centroids and tree decompositions. Chazelle [2] introduced such
decompositions to computational geometry with his polygon cutting theorem. Guibas
et al. [4] gave a procedure to compute them in linear time ..

In Section 2, we give the basic algorithm for maintaining the closest pair under
insertions. We define the sub division that is used during this algorithm, and give an
initial data structure that implements the insertion operation using point location.

In Section 3, we use centroids for the implementation of point location. In this
way, the time for one query is improved to O(log n). (In Section 2, this time could
be linear.) In order to maintain this improved data structure, we use the partial

2

rebuilding technique. (See e.g. Overmars [5].)
In Section 4, we apply our solution to computing the closest pair in history and

give some concluding remarks.

2 The basic algorithm

In this section, we give a data structure that maintains the closest pair in a point set
under insertions of points. The basic idea is the same as in Smld [11]. We give all
details, however, to keep the paper self-contained.

The algorithm maintains a sub division of k-space into axes-parallel hyperrectan­
gles, called k-boxes for short. Formally, a k-box has the form

where ai E m. U {-oo}, bi E m. U {oo} and ai < bi for i = 1, ... ,k.
We say that a point P = (Pl' P2, ... ,Pk) is contained in the above k-box, if ai ~

Pi < bi for all i. In this way, even if a point lies on the boundary of many k-boxes, the
notion of containment is uniquely defined.

The data structure: The essential component of the closest-pair data structure
is a hierarchical sub division of space into k-boxes. Let V be the current set of points,
and let n be its cardinality. The data structure stores the following information:

• A pair of points (P, Q) that are a closest pair in V and a variable 8 whose value
is the distance d(P, Q).

• A binary tree T representing the current sub division of k-space. The nodes of
T store k-boxes, where the k-boxes stored in the leaves form a sub division of
k-space.

For each non-Ieaf node v, the k-box stored in it is equal to the union of the two
k-boxes that are stored in the two children of v.

• With each leaf of T, we store a list of all points in V that are contained in the
k-box stored in this leaf. (These points are stored in an arbitrary order.)

The k-boxes stored at the leaves of this data structure have some additional con­
straints that we enforce.

(1) each leaf k-box has sides of length at least 8, where 8 is the distance of the closest
pair in V.

(2) each k-box contains at least one and at most (2k + 2)k points of V.

(3) all k-boxes are non .. overlapping and together they partition the entire k-space.

Initializing the structure: Suppose that we start with a set V of size two. Then
the initial sub division of k-space consists of one k-box, namely the entire space. The
binary tree T consists of one leaf node, whose k-box is the only box in the subdivision.

3

With this leaf, we store a list containing the two points. The pair (P, Q) stores the
two points, and the value of 8 is equal to its distance.

Clearly, after the initialization, the sub division and the data structure satisfy the
above constraints.

Our algorithm to insert a new point will use point loeation as a subroutine. Thus,
before giving the algorithm we describe a simple-minded method to use the binary
tree T to ans wer point location queries in linear time. In Section 3 we improve point
location to logarithmic time.

Point location: Let p be a point in k-sp~ce. In a point location query, we have
to locate the k-box in the current sub division that contains p. This query is answered
as follows.

Starting in the root of the tree T, we visit the no des of T on the path to the leaf
whose k-box contains p. We maintain as an invariant that pis contained in the k-box
that is stored in the current node. Suppose we have reached the non-leaf node v. Point
p is contained in exactly one of the k-boxes that are stored in the two children of v.
The search proceeds in the child storing this k-box.

The procedure ends if we reach a leaf. By the invariant, the k-box stored in this
leaf contains the query point p.

The insertion algorithm: Let p = (Pt, .-.. ,p,,) be the point to be inserted. The
algorithm makes two steps. The first step updates the closest pair; the second updates
the rest of the data structure.

1. Update the closest pair: Observe that only boxes intersecting the 8-ball
around the new point p can contain points q such that d(p, q) < 8. Therefore, we
first identify these boxes. For this purpose, we perform 3" point location queries, with
query points

(P1 + E1,··· ,p" + E,,), for E1, .. . , E" E {-8, 0, 8}.

Then, for each k-box that is located, we will through its list of points. For each point
q that is in one of these lists, if d(p, q) < 8, we set (P, Q) := (p, q) and 8 := d(p, q).

2. Update the rest of the data structure: In the previous step, we have
located the leaf v of the binary tree T whose k-box contains point p. We insert p into
the list that is stored with v.

If afterwards this list contains at most (2k + 2)" points, the algorithm is finished.
That is, the sub division is not changed.

Otherwise, if it contains 1 + (2k + 2)" points, we perform a split operation on the
k-box stored in v. This split operation is defined as follows.

Suppose we want to split the k-box B = [al: b1] x .. . x [a" : b,,] of the current
subdivision. Let V' be the set of points that are stored in the list of B.

For i = 1, ... , k, we compute the values mi and Mi, which are, respectively, the
minimal and maximal i-th coordinate of any point of V'. Let i be an index such
that Mi - mi > 28. (In Lemma 2, we show that there is such an index.) Let Ci :=

mi + (Mi - mi)/2.

4

Then we split the k-box B into two k-boxes

and

In the tree T, the leaf v corresponding to B gets two children, one child for the
k-box B, and one for the k-box B,.. The list that is stored with v is removed, and it
is split in two lists for the new leaves.

This concludes the insertion algorithm. First, we prove a sparseness result that is
needed in the proof of Lemma 2.

Lemma 1 Let V be a set 0/ points in k-dimensional space, and let 8 denote the min­
imal distance in V. Then any k-dimensional cu be having sides 0/ length 28 contains
at most (2k + 2)1c points 0/ V.

Proof: Partition the cube into (2k+2)1c subcubes with sides oflength 8/(k+ 1). Now
assume that the cube contains at least (2k + 2)1c + 1 points of V. Then one of the
subcubes contains at least two points of V. These two points have a distance that is
at most equal to the Lt-diameter of this subcube. This diameter, however, is at most
k· 8/(k + 1) < 8. This contradicts the fact that theminimal distance of V is 8. •

In the next lemma, we show that the index i that is used in the split operation indeed
exists.

Lemma 2 Let V be a set 0/ points in k-space, and let 8 be the distance 0/ a closest
pair in V. Let B be a k-boz that contains more than (2k + 2)1c points 0/ V. For
i = 1, ... , k, define the minimal, mi, and maximal, Mi, i-th coordinates 0/ any point
in V n B. Then there is an indez i, such that Mi - mi > 28.

Proof: Assume that Mi - mi :::; 28 for all i = 1, ... , k. Then, there is a k-cube B'
having side lengths 28 that contains all points of V n B. By the previous lemma,
however, the cube B' contains at most (2k + 2)1c points of V. This is a contradiction .

•
Lemma 3 Let B be a k-boz in the subdivision 0/ k-space whose list contains 1 + (2k +
2)1c points 0/ V. Let 8 be the minimal distance 0/ V. Suppose, we per/orm a split
operation on B. After this operation, the sides 0/ the two newly created k-bozes have
length at least 8, and each such k-boz contains at least one and at most (2k + 2)1c points
o/V.

Proof: The lemma follows immediately from the split algorithm. •
Lemma 4 The insertion algorithm correctly maintains the closest pair data structure.

5

Proof: Let 8 be the minimal distance just before the insertion of point p. If tbis
minimal distance changes, there must be a point inside the Lt-ball ofradius 8 centered
at p. Tbis ball is contained in the k-box [PI - 8 : PI + 8] x ... X [Pk - 8 : Pk + 8].
Therefore, it suffices to compare P with all points of the current set V that are in tbis
box. Let

W := V n ([PI - 8: 1'1 + 8] x ... X [Pk - 8: Pk + 8])

be the set of these points, and let W' be the set of points that are contained in the
lists corresponding to the k-boxes that result from the 3k point location queries. The
algorithm compares P with all points in W'. Hence, if we show that W ~ W', then it
is dear that the algorithm correctly maintains the dosest pair.

Let q = (ql,"" qk) be a point in W. Assume w.l.o.g. that qi ~ Pi for i = 1, ... , k.
Then Pi :s; qi :s; Pi + 8 for i = 1, ... , k. Let B be the k-box in the current sub division
of k-space whose list contains q. Assume that q<t W'. Then B does not contain any
of the 2k points (PI + al, ... ,Pk + ak), where al, ... , ak E {O,8}. These 2k points are
the corners of the k-box

B' := [PI : PI + 8] x ... X [Pk : Pk + 8],

having si des of length 8. (Note that in general B' is not part of the current sub division
of k-space.) Since q E B', and since B does not contain any of the corner points of B',
it follows that the box B must have at least one side of length strictly less than 8.
This contradicts the definition of our data structure. Hence, q E W' and, therefore,
W ~ W'. Tbis proves that the insertion algorithm correctly maintains the dosest
pau.

It remains to show that the new sub division satisfies the invariants (1)-(3). Con­
sider a k-box of the current sub division that is not split during the insertion. Since
the value of 8can only decrease, the side lengths of tbis box remain at least equal
to 8. Clearly, if the box contains at least one point before the insertion, so it does
afterwards. Also, the box still cQntains at most (2k + 2)k points.

If a k-box is split, then Lemma 3 guarantees that the new k-boxes have sides of
length at least 8, that they contain at least one and at most (2k + 2)k points. Finally,
it is dear that the k-boxes that are not split, together with the two new k-boxes, are
non-overlapping and partition k-space. •

The central operations of the insertion algorithm are point location and splitting
a k-box of the sub division. The following theorem expresses the running time of the
algorithm in terms of the cost of these two operations.

Theorem 1 Let Q(n) be the time for one point location query and S(n) be the time
for one split operation. The given data structure has linear size and maintains the
closest pair of the set V in O(Q(n) + S(n)) time per insertion.

Proof: The binary tree T has at most n leaves, because each leaf corresponds to a
non-empty k-box. Therefore, T has linear size. Since any point is stored in exactly
one list, all these lists together also have linear size. Tbis proves the space bound.

Consider the insertion algorithm. We need O(3k Q(n)) time for all point location
queries. Then, we walk through at most 3k lists, each of wbich has size at most
(2k + 2)k. Tbis takes time O(3k(2k + 2)k).

6

In ease no split operation is neeessary, the data structure needs 0(1) time to update
the rest of the data strueture. Otherwise, we need S(n) time for the split operation.

It follows that the overall insertion time is bounded by

whieh is O(Q(n) + S(n)), beeause k is a eonstant. •
Let h denote the height of the binary tree T. Then, clearly, it "takes O(h) time to

solve one point loeation query. Sinee h ean be linear in n, it follows that Q(n) ean be
9(n). Consider a split operation. First, it takes 0(k(2k+2)1e) time to :find the index i.
Then, the operation ean be eompleted within the same time bound. Henee, sinee k is
a eonstant, S(n) = 0(1). Therefore, an insertion takes O(n) time in the worst-ease.

In the next seetion, we build an additional seareh structure on T that improves
the point loeation time, Q(n), to O(log n). In order to maintain the search strueture,
we inerease the split time, S(n), to O(log n) in the amortized sense. Henee, it follows
from Theorem 1 that the insertion algorithm will need O(1og n) amortized time for
one insertion.

3 Point Ioeation using the tree deeomposition

In the previous seetion, the point loeation algorithm started in the root of the tree
T and followed a path until it reaehed a leaf. We ob serve , however, that it is not
neeessary to start in the root; the algorithm ean start in an arbitrary node.

Suppose we start in node v. Let B", be the k-box that is stored with v. If the query
point p is eontained in B"" the search eontinues in one of the two subtrees rooted
at ehildren of v. Otherwise, if p is not eontained in B.", the seareh eontinues in the
tree that is obtained by removing the subtree rooted at v. These searches proeeed
reeursively, i.e., again they do not neeessarily start in the root of the subtree. If we
ehoose our initial node v such that the two subtrees have roughly equal size and repeat
ehoosing nodes in this way for the reeursive searehes, then we get a logarithmie seareh
time.

In the rest of this seetion we do three things. First, we de:6.ne the ß-decomposition
tree Tß on the nodes of the tree T. A proeedure of Guibas et al. [4] can be used to
eompute ß-deeomposition trees suitable for our purpose. Second, we define our new
data structure that uses the tree deeomposition. Third, with this new data strueture,
we implement the two eentral operations of our on-line closest pair algorithm (cf. the
remark preeeding Theorem 1): we show how to do logarithmie-time point loeation in
the sub division of k-boxes, and we show how to do a split operation on a leaf of the
tree representing the subdivision.

We call an internal node v ETa ß-eentroid if the removal of v results in three
eonneeted eomponents, each eontaining at most ßITI nodes. (Here, ITI denotes the
number of nodes in T.) Notiee that a ß-eentroid is also a ß'-centroid for all ß' > ß.
A ß-deeomposition tree of T, denoted Tß, is de:fined recursively: The ß-deeomposition
tree of a leaf is just the leaf. Otherwise, the root of Tß is a ß-centroid v E T, and the

7

children are ß-decomposition trees for the connected components of T - v. The trees
T and Tß have the same set of leaves and the same set of internal nodes.

Since T is binary, the ß-decomposition tree Tß is ternary. For any node v E Tß
we have three pointers, left(v), right(v), and up(v), that point to the ß-decomposition
trees for the connected components of T - v that contain the left child of v in T, the
right child of v in T, and the parent of v in T, respectively. The no des that are stored
in the subtree of Tß rooted at v form the component ofv, denoted by C(v). From the
decomposition scheme, we have C(v) = C(left(v)) U C(right(v)) .U C(up(v)) U {v}.
Finally, we note that the depth of Tß is O(lOg(l/ß) ITI).

In [4], Guibas et al. give an algorithm that computes a centroid decomposition
of a binary tree T in linear time. In that paper, the tree T is decomposed by re­
moving a centroid edge which decomposes T into two parts, each of size at least
l(ITI + 1)/3 J. A straightforward modification of their algorithm, however, also com­
putes a ß-decomposition tree Tß for T in linear time, with ß = 1/2.

The improved data structure: As in Section 2, the data structure comprises
the closest pair and a tree T storing a sub division of k-space into k-boxes, whose leaves
store the current sub division and satisfy (1)-(3). Each internal node v stores the union
of the k-boxes stored in the leaves of the subtree rooted at v. For each leaf z, there is
a list of the points of V lying in the k-box stored at z.

We also maintain a ternary ß -decomposition tree Tß of T, where ß = 3/4. As
described above, C(v), the component of v, consists of the nodes in the subtree of Tß
rooted at v. With each node v E Tß, we store the size of C(v).

Point location: The ß-decomposition tree Tß guides point location in the tree T
that represents the sub division of k-space into k-boxes.

Let p be a point in k-space, and let s be the unique leaf in T whose k-box contains
p. Dur task is to find s. The algorithm consecutively checks nodes v, starting in the
root of the decomposition tree Tß. We maintain the invariant that, if v is the current
node, then s E C(v). At the start of the algorithm, when v is the root of Tß , the
invariant is trivially true, since in this case all nodes are in C(v).

Now let v be the current node. By induction, we assume that the invariant holds
for v, w hich means that sEC (v). If v is a leaf of T, then the invariant implies that
v = s, and we are done. H v is not a leafof T, then v #- s. Since s E C(v) by the
invariant, we have IC(v)1 > 1 in this case. This means that the subtree of v in Tß has
more than one node, which in turn implies that v is not a leaf in Tß. Let z = left(v),
y = right(v), and z = up(v) be the children of v in Tß. We know that at least one of
the nodes z, y, z exists.

We examine v as follows: in constant time, we check whether point pis inside Bv ,

the k-box corresponding to v. If pis inside Bv , then we check which one of the two
k-boxes of children of v in T also contains p. With this knowledge, we can choose the
correct child of v in Tß to continue the search: If p lies in the box stored in the left
child of v in T, then s must be in the left subtree in T. In this case, we choose z to
be the new current node. Since the only part of C(v) which lies in the left subtree of
v in T is C(z), we have s E C(z). The case that p lies in the right subtree of v in T
is symmetrie. It remains to consider the case p f/. Bv • Here, we choose z to be the

8

new current node. Since p f/:. B'Jl we know that s.f/:. C(z) and s f/:. C(y), which implies
s E C(z).

The search proceeds via edges of Tß and ends in a leaf of Tß. From our invariant,
this leaf must be s. Therefore we have the following lemma:

Lemma 5 Let T be a binary tree of size n, storing a eollection of k-bozes in k-spaee as
defined in the previous section, and let p be a query point. Given a ß-deeomposition tree
ofT, point loeation, i.e., identifying the k-boz eontaining p, ean be done in O(log(I/ß) n)
time.

From the definition of the improved data structure, we have ß = 3/4, and it follows
that Q(n) = O(log n). N ext, we discuss how to maintain the tree Tß if split operations
are performed. We shall show that the improved data structure can be correctly
maintained, and that S(n) = O(log n) amortized.

Split operation: Let z be a leaf of T and suppose that we perform a split oper­
ation on the k-box stored in z. Then, z is turned into an internal node and is given
two new children ZI, Z2, in T as well as in Tß.

Updates gradually unbalance the ß-decomposition tree Tß; we must maintain Tß
in amortized logarithmic time. For each node v E Tß , we store the size of C(v), as
prescribed in the definition of the improved data structure. When we add leaves to T,
the no des of Tß whose counts change are those on the search path to the leaves-we
can update these counts in O(log n) time. Then we can determine the highest node in
Tß that is no longer a (3/4)-centroid and rebuild its subtree in Tß• Using the algorithm
of [4], we compute a (1/2)-decomposition for this subtree in time proportional to its
Slze.

If we build the subtree of Tß rooted at v, then v is a (1/2)-centroid. ·In order to
rebuild v's subtree, one must increase the size of the subtree by a quarter. Thus, if
every leaf inserted into the subtree brings along a credit, we can use these credits to
pay for the rebuilding. Since the depth of Tß is O(log n), each additional leaf needs
only O(log n) credits. It follows that the total cost of rebuilding over n insertions is
O(nlog n). We have the following lemma:

Lemma 6 The amortized eost of a split operation is O(log n).

From Lemma 5 and Lemma 6, we have point location cost Q(n) = O(log n) and split
cost S(n) = O(log n) amortized. Combining this with Theorem 1 gives the following
result.

Theorem 2 The improved data structure has linear size and maintains the closest
pair in the point set V in O(log n) amortized time.

CoroUary 1 The closest pair in a set of n points in k-dimensional spaee ean be eom­
puted on-line in O(n log n) time, using O(n) spaee. This is optimal in the algebraie
deeision tree model.

9

4 The "closest pair in history" and open problems

We have given an optimal solution to the problem of maintaining a closest pair as
points are inserted on-line. It is natural to ask about fully dynamic point sets in
w hich points can be inserted and deleted.

While we cannot efficiently maintain the closest pair under on-line insertions and
deletions, we can solve the problem of recording the closest pair in history-recording
the closest pair of points that existed simultaneously during an on-line sequence of
point insertions and deletions. Such arecord could help verify that an appropriate
step size was used in a dynamic system simulation.

Theorem 3 The closest pair of points over the history of a sequence of insertions and
deletions can be computed on-line in O(n log n) time, using O(n) space.

Proof: We use the improved data structure with the insertion operation specified
above. To delete a point p, we locate the leaf node v whose k-box Bv contains p. We
delete p from v's point list in constant time. H some points remain in Bu then we are
done-the invariants still hold. (Note that 8 can only decrease, so there is no problem
with the side lengths of the k-boxes.)

Otherwise, we must delete the node v and contract the parent and sibling of v into
one node. As in the splitting algorithm, we update the componentcounts that change
in T/3 in O(1og n) time. Then we can rebuild the subtree of the highest node in T/3 that
is no longer a (3/4)-centroid.

Since rebuilding forms a (1/2)-decomposition, the number of updates between two
rebuildings at anode is still proportional to the size of its subtree. Thus, if each
deletion also comes with O(log n) credits to give to the nodes on the search path in
T/3' these credits can be used to pay for the rebalancing. Thus, deletion costs also
amortize to O(1og n) per deletion. •

Other open problems remain. In some applications, one would like to change the
amortized time bounds for insert ions to worst-case bounds. Algorithms using :8.oors,
randomness, or other models of computation may have o(n log n) running times.

References

[1] J.L. Bentley and M.l. Shamos. Divide-and-conquer in multidimensional space.
Proc. 8th Annual ACM Symp. on Theory of Computing, 1976, pp. 220-230.

[2] B. Chazelle. A theorem on polygon cutting with applications. Proc. 23rd Annual
IEEE Symp. on Foundations of Computer Science, 1982, pp. 339-349.

[3] M.T. Dickerson and R.S. Drysdale. Enumerating k distances for n points in the
plane. Proc. 7th ACM Symp. on Computational Geometry, 1991, pp. 234-238.

[4] L. Guibas, J. Hershberger, D. Leven, M. Sharir and R.E. Tarjan. Linear time algo­
rithms for visibility and shortest path problems inside triangulated simple polygons.
Algorithmica 2 (1987), pp. 209-233.

10

[5] M.H. Overmars. The Design of Dynamie Data Structures. Lecture Notes in Com­
puter Science, Vol. 156, Springer-Verlag, Berlin, 1983.

[6] F.P. Preparata and M.l. Shamos. Computational Geometry, an Introduction.
Springer-Verlag, New York, 1985.

[7] J.S. Salowe. Shallow interdistanee selection and interdistanee enumeration. Proc.
WADS'91, LNCS Vol. 519, Springer-Verlag, Berlin, 1991, pp. 117-128.

[8] C. Schwarz and M. Smid. An O(nlognloglogn) algorithm for the on-line clos­
est pair problem. To appear in: Proceedings 3rd Annual ACM-SIAM Symp. on
Discrete Algorithms, 1992.

[9] M.l. Shamos and D. Hoey. Closest-pair problems. Proc. 16th Annual IEEE Symp.
on Foundations of Computer Science, 1975, pp. 151-162.

[10] M. Smid. Maintaining the minimal distanee of a point set in less than linear time.
Algorithms Review 2 (1991), pp. 33-44.

[11] M. Smid. Dynamie rectangular point loeation, with an applieation to the clos­
est pair problem. Report MPI-I-91-101, Max-Planck-Institut für Informatik,
Saarbrücken, 1991. See also: Proc. 2nd Annual International Symp. on Algo­
rithms, 1991.

[12] M. Smid. Maintaining the minimal distanee of a point set in polylogarithmie
time (revised version). Report MPI-I-91-103, Max-Planck-Institut für Informatik,
Saarbrücken, 1991. See also: Proc. 2nd Annual ACM-SIAM Symp. on Discrete
Algorithms, 1991, pp. 1-6.

[13] K.J. Supowit. New teehniques for so me dynamie closest-point and farthest-point
problems. Proc. 1st Annual ACM-SIAM Symp. on Discrete Algorithms, 1990, pp.
84-90.

[14] P.M. Vaidya. An O(n log n) algorithm for the all-nearest-neighbors problem. Dis­
crete Comput. Geom. 4 (1989), pp. 101-115.

11

	91-1230001
	91-1230002
	91-1230003
	91-1230004
	91-1230005
	91-1230006
	91-1230007
	91-1230008
	91-1230009
	91-1230010
	91-1230011
	91-1230012
	91-1230013
	91-1230014

