
'$�

�

'$

�


��

I N F O R M A T I K


 	

� �

Third-Order Matching in

�! -Curry is Undecidable

Sergei Vorobyov

MPI{I{97{2{006 May 1997

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T

F

�

UR

I N F O R M A T I K

Im Stadtwald 66123 Saarbr�ucken Germany





Author's Address

Max-Planck Institut f�ur Informatik, Im Stadtwald, D-66123, Saarbr�ucken,

Germany

Publication Notes

May 28, 1997

Acknowledgements

Harald Ganzinger suggested important improvements to the statement of the

problem, motivations, and presentation. Roger Hindley suggested the simple

theories of type assignment, explained their classi�cation and interrelation.



Abstract

Given closed untyped �-terms �x

1

: : : x

k

:s and t, which can be assigned some

types �

1

! : : : ! �

k

! � and � respectively in the Curry-style systems

of type assignment (essentially due to R. Hindley) �! -Curry [Bar92], �

!

t

[Mit96], TA

�

[Hin97], it is undecidable whether there exist closed terms

s

1

; : : : ; s

k

of types �

1

; : : : ; �

k

such that s[s

1

=x

1

; � � � ; s

k

=x

k

] =

��

t, even if the

orders of �

i

's do not exceed 3.

This undecidability result should be contrasted to the decidability of the

third-order matching in the Church-style simply typed lambda calculus with

a single constant base type [Dow94].

The proof is by reduction from the recursively inseparable sets of unsat-

is�able and �nitely satis�able sentences of the �rst-order theory of binary

relation [Tra53, Vau60].

Keywords

Typed lambda calculus, Higher-order matching problem, Decidability, Recur-

sive inseparability, First-order theory of binary relation, Full type hierarchy



Contents

1 Introduction 2

2 Simple Theory of Type Assignment 4

3 Recursive Inseparability 6

4 Transformation Sequence 7

5 Language L

1

. Relativization: Translation of L

0

into L

1

7

6 Reduction to 9

�

8

�

-Sentences, Language L

2

9

7 Transformation to the Pure Prenex 9

�

8

�

-Form 11

8 Getting Rid of Boolean Connectives and Predicates 11

9 Transformation to a Higher-Order Matching Problem 12

10 Faithfulness of the Reduction 13

1



1 Introduction

Uni�cation, i.e., solving equations e(x)

?

= e

0

(x) in di�erent calculi is at the

heart of the theorem-proving procedures. Matching (or half-uni�cation) is

a particular case of uni�cation e(x)

?

= c, where only the left-hand side e(x)

contains instantiable variables. Matching is important for parameter passing,

rewriting, and, more generally, everywhere where a transformation applica-

bility is expressed by a pattern.

In the �rst-order languages both uni�cation and matching are easily de-

cidable [PW78]. Uni�cation in the third-order languages was proved unde-

cidable by G. Huet [Hue73]. Later W. Goldfarb proved undecidability of

uni�cation in the second-order languages [Gol81, Far91]. But Goldfarb's re-

sult, unlike Huet's, applies to second-order languages with constants, which

turn out to be third-order after the canonical transformation to the constant-

free form [Sta81] (pp. 330{331). Huet and Lang [HL78] proved decidability

of the second-order pattern matching (with constants), which should be con-

trasted to Goldfarb's undecidability result. Today decidability of matching is

known for languages (with constants) of orders up to 4 [Dow94, Pad95] and

unknown beyond. All the results above hold for the languages with explicit

typing, which corresponds to the Church-style simply typed lambda calculus

with a single constant type o and no variable types.

The higher-order matching problem in the simply typed lambda calculus

� due to G. Huet [Hue76] is formally stated as follows: given an equation

s(x

1

; : : : ; x

n

)

?

=

��

t, where s, t are �-terms of �xed simple types, and t does

not contain free variables, do there exist simply typed terms s

1

; : : : ; s

n

of

appropriate types such that s[s

1

=x

1

; : : : ; s

n

=x

n

] = t modulo ��-equality?

Here the simply typed lambda calculus � refers to the Church-style system,

where terms are annotated with types generated from a single constant type

o by a single type constructor !

1

.

Despite all e�orts it still remains open whether the above problem is de-

cidable or not. Several approximation results are as follows. Third-order

[Dow94] and fourth-order matchings [Pad95] are decidable. Higher-order

matching in extensions of � with dependent types and type constructors is

undecidable [Dow91]. It is also undecidable in the polymorphic second-order

system �2 and in G�odel's system T [Dow93]. On the other hand, third-order

matching may be decidable or undecidable in � extended with type construc-

tors [Spr95]. R. Statman showed [Sta82] that the decidability of the Plotkin-

1

This should be contrasted to the simply typed lambda calculus as de�ned, e.g., in

[Bar92] (Sections 5.1, 3.2) or in [TS96] (Section 1.2), which do have variable types. All

systems in Barendregt's �-cube have variable types.

2



Statman's de�nability conjecture would have implied the decidability of the

higher-order matching, but R. Loader has proved [Loa93] the undecidability

of the lambda de�nability. D. Wolfram [Wol93] has suggested a higher-order

matching algorithm and conjectured its �nite termination. The lower com-

plexity bound for the higher-order matching problem in � is the tower 2

2

�

�

�

2

of height c � n= log(n), where n is the length of equation and c > 0 [Vor97].

Note that the higher-order rewriting community, without waiting until the

ultimate solution for the higher-order matching problem in �, switched to

the so-called higher-order patterns [Mil91, Nip91, Nip93] of very restricted

linear form. The abovementioned lower bound justi�es such a decision.

In this paper we address the higher-order matching problem in the simple

theories of type assignment (essentially due to R. Hindley), the so-called

systems �! -Curry [Bar92], �

!

t

[Mit96], TA

�

[Hin97], closely related to the

simply typed lambda calculus � and typing the same set of terms (modulo

type erasure). The importance of the problem stems from the fact that the

simple theories of type assignment form a core of the ML type inference

system �

!;�;let

[Mit96] (Section 11.3), which extends �

!

t

by adding type

abstraction, type application, and polymorphic let declaration. The main

result of our paper implies that given two simple ML terms (without type

abstractions, applications, and polymorphic let's), it is undecidable whether

one is an instance of the other obtained by substituting some terms for its free

variables. Our undecidability result has direct consequences on the ML-style

pattern matching, or more generally, on all higher-order pattern matching

languages based on implict typing. It should be noted, however, that for

practical reasons and to avoid complications the designers of ML de�ned ML-

patterns to be linear, i.e., with each variable occurring at most once. Now

this wise but somehow arbitrary solution gets a theoretical justi�cation.

As a technical tool we use the reduction from the recursive inseparability

of the sets of unsatis�able and �nitely satis�able sentences in the �rst-order

language of a binary relation (Trakhtenbrot-Vaught). This makes the proof

especially easy, because a sentence satis�ed in a �nite binary relation can be

realized (witnessed) by a third-order �-de�nable functionals of order three

over projection functions (which is not the case for in�nitely satis�able sen-

tences). Usually undecidability proofs for higher-order matching are based

on Goldfarb's result, or on direct reduction from Hilbert's tenth problem

[Dow91, Dow93].

We start by de�ning the calculi and stating the problem. Then we brie
y

explain the recursive inseparability techniques and proceed to the reduction

from sentences of binary relation to instances of the higher-order matching

problem.

3



2 Simple Theory of Type Assignment

The simple theory of type assignment

2

refers to a class of Curry-style systems

of type assignment to untyped �-terms, including the systems �! -Curry

[Bar92] (pp. 148{150), �

!

t

with implicit typing [Mit96] (p. 782), TA

�

[Hin97].

The main characteristic features of these systems are: the presence of type

variables and the absence of built-in types in terms

3

.

De�nition 1 (Types) Simple types are generated by T

o

� o j (T

o

! T

o

),

where o is a single type constant and! is a single functional type constructor.

Types are generated by T = o j � j (T ! T), where � is a single variable.

Types are denoted by �, � . The order of a simple type is de�ned by ord(o) = 1

and ord(� ! �) = maxf1 + ord(�); ord(�)g.

Remark 2 Our de�nition and results extend to �nitely or in�nitely many

type constants and/or variables. We con�ne ourselves to the simplest simple

theory of type assignment. H. Barendregt [Bar92] does not use type constants

in �! -Curry. We also do not need the type constant o if the orders of types

are irrelevant. 2

Example 3 Let O

0

= o and O

n+1

= (o ! O

n

). Every second-order simple

type equals O

n

for some n � 1.

Convention 4 We adopt the usual conventions on omitting parentheses in

writing types with ! associating to the right. For k 2 !, �

k

! � abbreviates

� ! : : :! �

| {z }

k

! � .

De�nition 5 (Terms) Let V = x; y; z; u; v; w; : : : (probably, with indices)

be an in�nite set of variables. Untyped �-terms are generated by

T = V j T T j �x:T

De�ne the set of free variables in a term by FV (x) = fxg, FV (MN) =

FV (M)[FV (N), FV (�x:M) = FV (M)nfxg. A term t is closed if FV (t) =

;.

Remark 6 We do not introduce, although we could, term constants. 2

2

The term suggested by J. Roger Hindley, private communication, May 6, 1997.

3

It is worth noting that all systems in �-cube [Bar92] do have variable types.

4



De�nition 7 (Type Assignment Systems �!-Curry, �

!

t

, TA

�

) Let �

denote a basis or a context, a �nite set of type assumptions x

i

: �

i

for dif-

ferent variables x

i

. The type assignment rules are as follows [Bar92]:

� ` x : � (if x : � 2 �) (axiom)

�; x : � ` M : �

� ` �x:M : � ! �

(!-introduction)

� ` M : � ! � � ` N : �

� ` (MN) : �

(!-elimination)

A term t has (or can be assigned) type � in context � i� � ` t : � . A term

t is typable in a context � i� there exists a type � such that � ` t : � . A

term t is typable i� it is typable in the empty context. We write `

�!-Curry

whenever we need to stress typability in �! -Curry. 2

This type assignment system is a core of the ML type inference system

�

!;�;let

[Mit96] (Section 11.3), which extends �

!

t

by adding type abstrac-

tion, type application, and polymorphic let declaration.

De�nition 8 (Higher-Order Matching Problem in �!-Curry)

Given two �-terms s and t with FV (s) = fx

1

; : : : ; x

k

g and FV (t) = ;, such

that �x

1

: : : x

k

:s and t can be assigned some types �

1

! : : :! �

k

! � and �

respectively, do there exist closed terms s

1

; : : : ; s

k

with types �

i

(i = 1; : : : ; n)

such that

s[s

1

=x

1

; � � � ; s

k

=x

k

] =

��

t ?

In the positive case the problem is solvable.

The problem is said to be of order n if max

k

i=1

(�

k

) � n. 2

The main result of this paper is the following

Theorem 9 The higher-order matching in simple type assignment systems

�! -Curry, �

!

t

, TA

�

is undecidable, even if terms sought for are of types of

order � 3. 2

Remark 10 We prove, in fact, a stronger result: the problem is undecid-

able even if a variable-free term t on the right-hand side is always of the

form �x

1

: : : x

p

:(�uv:u) | it simply ignores its arguments and uncondition-

ally yields true. 2

5



3 Recursive Inseparability

A useful method of proving undecidability is by reduction from a pair of

recursively inseparable sets. Two disjoint sets A, B are called recursively

inseparable i� there are no recursive sets C containing A and disjoint with

B, i.e., A � C, B \ C = ;. Obviously, each of the recursively inseparable

sets A, B is non-recursive.

Proposition 11 Let A, B be recursively inseparable and f be a total recur-

sive function. Then f(A), f(B) are also recursively inseparable.

Proof. Suppose f(A), f(B) are separable by a recursive set C. Then A,

B are separable by the recursive set f

�1

(C), the co-image of C. Indeed,

f

�1

(C) is recursive: to test whether x 2 f

�1

(C), compute f(x) and check if

f(x) 2 C.

Moreover, f

�1

(C) separates A and B. In fact, f(A) � C implies A �

f

�1

(f(A)) � f

�1

(C). If we suppose that f

�1

(C)\B 6= ; then C\f(B) 6= ;,

and we get a contradiction. 2

We will apply the above method as follows. Let M be the set of all

solvable higher-order matching problems (i.e., problems that have solutions).

We will take a pair of well-known recursively inseparable sets U and FS and

describe a total recursive function f such that f(U) � M and f(FS) � M .

By Proposition 11, M cannot be recursive; otherwise f(U) and f(FS) would

be recursively separable.

The well-known pair of recursively inseparable sets U and FS is due to

B. Trakhtenbrot and R. Vaught. Consider the �rst-order language L

0

without

equality containing just one binary predicate symbol P. Any model for L

0

is

called a binary relation. A binary relation is �nite i� its extension (domain)

is �nite. Let U be the set of all sentences of L

0

false (Unsatis�able) in all

binary relations, and FS be the set of all sentences of L

0

satis�ed by some

�nite binary relation (Finitely Satis�able).

Theorem 12 (Trakhtenbrot-Vaught) The sets U and FS are recursively

inseparable. 2

Trakhtenbrot proved it for several unary and binary predicate symbols

[Tra53], Vaught reduced it to just one binary predicate symbol, [Vau60],

Section 4.

6



4 Transformation Sequence

Given a prenex sentence �

0

of the language L

0

(containing just one binary

predicate symbol P and no equality) we will describe a recursive function f

yielding an instance of the higher-order matching problem f(�

0

) with the

properties:

�

0

2 U ) f(�

0

) 62 M (1)

�

0

2 FS ) f(�

0

) 2 M ; (2)

where U is the set of sentences of L

0

false in all binary relations (unsatis-

�able), FS is the set of sentences of L

0

true in some �nite binary relation

(�nitely satis�able), and M is the set of all higher-order matching problems

that have solutions.

By Theorem 12 and Proposition 11, the existence of such a recursive func-

tion f implies that the set M is non-recursive, i.e., the higher-order matching

problem is undecidable. It is conceptually easier to divide the description of f

in the sequence of transformation steps, including: 1) translation to a higher-

order language and relativization, 2) transformation to the relativized and

then pure 9

�

8

�

-form (skolemization), 3) elimination of predicates and boolean

connectives for the boolean functions, 4) transformation to the pure existen-

tial form, and 5) to a higher-order matching problem. All the transformation

steps will be done e�ectively, as described in the following sections.

The central idea behind our proof is that every sentence about a bi-

nary relation satis�ed by a �nite n-element model of binary relation has a

�-de�nable realization by means of third-order functionals over projection

functions �x

1

: : : x

n

:x

i

(i = 1; : : : ; n), whereas an unsatis�able sentence does

not have any such realization. A higher-order matching problem we get by

transformation is solvable i� such a realization exists.

5 Language L

1

. Relativization: Translation

of L

0

into L

1

Let L

1

be the language without equality containing variables of type �, the

usual boolean connectives, quanti�ers, and two distinguished predicate sym-

bols, unary R and binary P , both taking arguments of type �. De�ne the

translation

@

of formulas of the language L

0

into formulas of the language

L

1

as follows:

7



(P(x; y))

@

�

df

P (x

�

; y

�

);

(� ^	)

@

�

df

�

@

^ 	

@

;

(similarly for the other boolean connectives),

(8x:�)

@

�

df

8x

�

:[R(x

�

)) �

@

];

(9x:�)

@

�

df

9x

�

:[R(x

�

) ^ �

@

]:

Remark 13 This translation is the usual relativization with respect to the

unary predicate R, plus labeling every variable occurrence with type �. Keep-

ing variables explicitly typed will give us additional information on the orders

and structure of types for which the problem is undecidable. 2

Convention 14 In the sequel it will be convenient to abbreviate 8x

�

:[R(x

�

))

�] by 8

R

x:� and 9x

�

:[R(x

�

) ^ �] by 9

R

x:�.

De�nition 15 (Interpretation of L

1

) The language L

1

is interpreted in

the full type hierarchy over the base domain ! of natural numbers. De�ne

T

!

�

df

[

�2T

o

H

�

;

where H

o

= ! and H

�!�

= f the set of all functions from H

�

to H

�

g.

Let � be an arbitrary type from T

o

. Fix interpretations of the predicate

symbols R, P as arbitrary subsets R � H

�

and P � H

�

�H

�

. The validity

relation hT

!

; R; Pi j= � for a sentence � of L

1

is de�ned in the usual

manner.

We will now relate validity of sentences of L

0

and L

1

.

Lemma 16 Let �

0

be a sentence of L

0

and �

1

in L

1

be its

@

-translation.

1. If for some type � 2 T

o

and some interpretations R � H

�

, P �

H

�

�H

�

of predicate symbols R, P one has hT

!

; R; Pi j= �

1

, then

�

0

is true in some model of binary relation, or, equivalently, �

0

62 U .

2. If the sentence �

0

is true in some �nite model hfa

1

; : : : ; a

n

g; Bi (where

B � fa

1

; : : : ; a

n

g

2

) of binary relation, then hT

!

; R; Pi j= �

1

for the

type � � o

n

! o and for the �nite interpretations R � H

�

, P �

H

�

� H

�

of predicate symbols R, P de�ned by R = fg

1

; : : : ; g

n

g

(where g

i

� �x

o

1

: : : �x

o

n

:x

i

of type � � o

n

! o for i = 1; : : : ; n) and

P = fhg

i

; g

j

i j ha

i

; a

j

i 2 Bg.

Proof. 1) A model hT

!

; R; Pi j= �

1

can be straightforwardly transformed

into a model of binary relation satisfying �

0

. 2) Obvious. 2

8



6 Reduction to 9

�

8

�

-Sentences, Language L

2

Consider the sentences of L

1

resulting from the

@

-translation of the prenex

sentences of L

0

. Let us call these sentences quasi-prenex, since according to

our convention they have form Q

R

x

�

1

: : : Q

R

x

�

n

�, where Q

i

2 f8; 9g and �

is quanti�er-free.

The language L

2

is like L

1

, but allows variables of types of the form

�

k

! �, and quanti�cation over these variables. In this section we show

that every such quasi-prenex sentence is equivalent to an 9

�

8

�

-quasi-prenex

sentence of the language L

2

of the form 9w

�

1

1

: : :9w

�

m

m

8

R

u

�

1

: : : 8

R

u

�

p

�, where

	 is a quanti�er-free formula of L

2

and the types �

i

are of the form �

k

! �.

The transformation we use is the usual \skolemization". Notice that the full

type hierarchy T

!

contains all skolem functions.

Lemma 17 Every quasi-prenex sentence of L

1

�

1

� Q

R

x

�

1

: : : Q

R

x

�

n

�; (3)

where Q

i

2 f8; 9g and � quanti�er-free, can be transformed into an 9

�

8

�

-

quasi-prenex sentence of L

2

of the form

�

2

� 9w

�

1

1

: : :9w

�

p

p

8

R

y

�

1

: : :8

R

y

�

q

	; (4)

such that 	 is a quanti�er-free formula of L

2

, the types �

i

� �

r

i

! � (for

1 � i � p and r

i

2 !), and the following properties hold:

1. If for some type � 2 T

o

and some interpretations R � H

�

for R

and P � H

�

� H

�

for P one has hT

!

;R;Pi j= �

2

, then for these

interpretations one also has hT

!

;R;Pi j= �

1

.

2. Let hT

!

; R; Pi j= �

1

for some type � of the form o

n

! o (n 2 !)

and �nite interpretations R � H

�

, P � R � R of predicate symbols

R, P such that (cf., Lemma 16.2) R = fp

1

; : : : ; p

n

g (where p

i

=

�x

o

1

: : : �x

o

n

:x

i

, i = 1; : : : ; n) and P � R�R.

Then hT

!

; R; Pi j= �

2

, and, moreover, the witness functions for the

existentially quanti�ed variables w

�

1

1

: : : w

�

p

p

in (4) may be chosen from

the �nite sets of functions (P

n

)

k

! P

n

, where P

n

= f�x

o

1

: : : �x

o

n

:x

i

j

i = 1; : : : ; ng.

Proof. If the formula (3) is already in the form (4), nothing has to be

done. Otherwise repeatedly select the rightmost maximal 8

�

9

�

-blocks (with

nonempty 8

�

- and 9

�

-parts) and transform them into 9

�

8

�

-blocks as described

9



below. This repeated transformation always terminates, since the number of

such 8

�

9

�

-blocks reduces at each step.

Consider the rightmost maximal 8

�

9

�

block (with nonempty 8 and 9

parts):

: : :9

R

u

�

q

| {z }

(A)

8

R

x

�

1

: : : 8

R

x

�

m

| {z }

(B)

9y

�

1

1

: : : 9y

�

n

n

| {z }

(C)

h

8

R

z

�

1

: : :8

R

z

�

p

�;

i

| {z }

(D)

: (5)

The following invariant properties hold at every transformation step.

They are immediately checked by induction on the number of transforma-

tions.

� Part (A) is either empty or ends with an existential quanti�er.

� Part (D) may contain only universal quanti�ers.

� All quanti�ers in parts (A), (B), (D) are R-relativized, and all quanti-

�ed variables in (A), (B), (D) are of type �.

� All quanti�ed variables in part (C) are of types �

i

of the form �

r

i

! �

for r

i

2 !.

Let w be the vector of all variables universally quanti�ed in parts (A) and

(B) (all these variables are of type �). The transformation step consists in

replacement of the 8

�

9

�

�-quanti�er block (B)(C) in (5) with the quanti�er

block 9

�

8

�

(C

0

)(B

0

), and modifying the part (D) into (D

0

) as shown below:

: : :9

R

u

�

q

| {z }

(A)

9f

�

1

1

: : :9f

�

n

n

| {z }

(C

0

)

8

R

x

�

1

: : :8

R

x

�

m

| {z }

(B

0

)

h

8

R

z

�

1

: : :8

R

z

�

p

�[f

i

(w)=y

i

]

n

i=1

;

i

| {z }

(D

0

)

; (6)

where �

i

= �

p+m

! �

i

for 1 � i � n and some m � 0.

This is an equivalence transformation in the full type hierarchy T

!

, which

contains all possible (skolem) functions: if for every x there exists a y such

that �(x; y), then there exists a function h such that 8x:�(x; h(x)). [In

principle, the equivalence claim here requires the Axiom of Choice. However,

in Lemma 17.1 we do not need equivalence, just a weakening 98 ) 89. For

the claim of Lemma 17.2 the Axiom of Choice is unneeded.]

The claims of the lemma are obtained by induction on the number of

transformations described above. 2

10



7 Transformation to the Pure Prenex 9

�

8

�

-

Form

After the previous transformation the sentence �

2

in (4) may contain the

relativized quanti�ers. Transform it to the pure prenex sentence �

3

, see (7)

below, by applying the usual logical equivalences for Q 2 f9; 8g to push

quanti�ers outwards:

9x(R(x) ^Qy�(x; y)) , 9xQy(R(x) ^ �(x; y));

8x(R(x)) Qy�(x; y)) , 8xQy(R(x)) �(x; y)):

8 Getting Rid of Boolean Connectives and

Predicates

The sentence �

3

, equivalent to �

2

in (4), we obtained so far is of the form

�

3

� 9y

�

8x

�

�; (7)

with � quanti�er-free built of variables of types �

k

! �, boolean connectives,

and predicate symbols R (unary), P (binary) taking arguments of type �.

Transform �

3

into �

4

by getting rid of boolean connectives and predicate

symbols R, P as follows. Let bool be the type o ! o ! o of booleans

with t � �x

o

y

o

:x (true) and f � �x

o

y

o

:y (false), both of type bool. Let

(by slightly abusing notation) R, P be variables of types � ! bool and

�! �! bool respectively, and

�

4

� 9R

�!bool

9P

�!�!bool

9y

�

8x

�

(�

�

= t); (8)

where the

�

transformation is de�ned as follows:

1. R(t)

�

= R(t) and P (s; t)

�

= P (s; t) (with predicate symbols R, P on

the left and function variables R, P of types �! bool, �! �! bool

on the right),

2. (:�)

�

= Cond (�

�

) f t,

3. (� ^	)

�

= Cond (�

�

) (Cond (	

�

) t f) f ,

4. (� _	)

�

= Cond (�

�

) t (Cond (	

�

) t f),

where Cond = �x

bool

�y

bool

�z

bool

:(�a

o

�b

o

:x(yab)(zab))

(one can easily check that Cond t x y = x and Cond f x y = y).

11



Lemma 18 1. If for some type � 2 T

o

one has T

!

j= �

4

, then for some

interpretations R � H

�

and P � H

�

�H

�

for predicate symbols R and

P one has hT

!

;R;Pi j= �

3

.

2. Let hT

!

; R; Pi j= �

3

for some type � of the form o

n

! o (n 2 !) and

�nite interpretations R � H

�

and P � H

�

�H

�

of predicate symbols

R, P such that (cf., Lemmas 16.2 and 17.2) R = fp

1

; : : : ; p

n

g (where

p

i

= �x

o

1

: : : �x

o

n

:x

i

, i = 1; : : : ; n) and P � R�R.

Then T

!

j= �

4

, and, moreover, the witness functions for the existen-

tially quanti�ed variables in (8) may be chosen from the �nite sets of

functions (P

n

)

k

! P

n

or (P

n

)

k

! bool, where P

n

= f�x

o

1

: : : �x

o

n

:x

i

j

i = 1; : : : ; ng.

Proof. 1) Let for some type � 2 T

o

one has T

!

j= �

4

. Then for some

functions R 2 H

�!bool

, P 2 H

�!�!bool

one has T

!

j= 9y

�

8x

�

(�

�

= t).

De�ne the interpretations R � H

�

and P � H

�

� H

�

for the predicate

symbols R and P as R = fu j Ru = tg and P = fhu; vi j Puv = tg. Then

induction on the de�nition of the

�

translation shows that for all values of

free parameters of �

�

(except R, P ) one has: � is true i� �

�

= t.

2) Straightforward. 2

9 Transformation to a Higher-Order Match-

ing Problem

Transform the sentence �

4

in (8) we obtained so far into a higher-order

matching problem by: 1) omitting the leading existential quanti�ers, 2)

eliminating the trailing universal quanti�ers by rewriting 8x

�

(�

�

= t) into

�x

�

�

�

= �x

�

t, and 3) erasing all type information from the last equation,

thus getting

�

5

�

df

�x�

�0

= �x(�uv:u); (9)

where �

�0

is obtained from �

�

by erasing all types. We have the following

Lemma 19 Let the matching problem �

5

in (9) be obtained from the sen-

tence �

4

in (8) by the transformation described above.

1. If the matching problem �

5

has a solution, then T

!

j= �

4

for some

type � 2 T

o

.

12



2. Let T

!

j= �

4

for some type � of the form o

n

! o (n 2 !) and,

moreover, the witness functions for the existentially quanti�ed vari-

ables in (8) may be chosen from the �nite sets of functions (cf., Lem-

mas 16.2, 17.2, and 18.2) (P

n

)

k

! P

n

or (P

n

)

k

! bool, where

P

n

= f�x

o

1

: : : �x

o

n

:x

i

j i = 1; : : : ; ng. Then the matching problem

�

5

has a solution of order � 3.

Proof. 1) Obvious, because for all closed terms t one has T

!

j= 	[t=x] )

9x	 for all 	 (logical rule), and T

!

j= �x:s = �x:t is equivalent to T

!

j=

8x(s = t).

2) Every function in the �nite sets of functions (P

n

)

k

! P

n

or (P

n

)

k

!

bool, where P

n

= f�x

o

1

: : : �x

o

n

:x

i

j i = 1; : : : ; ng is �-de�nable by a closed

term. In fact, every �x

o

1

: : : �x

o

n

:x

i

is �-de�nable, and the equality between

two elements of P

n

is �-de�nable ([HKM97], Section 2.4) by

EQ

n

�

df

�p

o

n

!o

q

o

n

!o

�u

o

v

o

:p(qu v : : : v

| {z }

n�1

)(qvu v : : : v

| {z }

n�2

) : : : (q v : : : v

| {z }

n�1

u):

(EQ

n

(�x

1

: : : x

n

:x

i

)(�x

1

: : : x

n

:x

j

) normalizes to t if i = j and to f otherwise.)

Using EQ, every function in the �nite sets of functions (P

n

)

k

! P

n

or

(P

n

)

k

! bool, where P

n

= f�x

o

1

: : : �x

o

n

:x

i

j i = 1; : : : ; ng is easily lambda-

de�nable by a Cond-expression encoding a �nite table. The order of any

term de�ning a function in (P

n

)

k

! P

n

or (P

n

)

k

! bool is � 3. 2

10 Faithfulness of the Reduction

Let f(�

0

) = �

5

, where the sequence of transformations �

0

; �

1

; �

2

;

�

3

; �

4

; �

5

is described in the previous sections. It is obvious from the

description of all transformations that the function f is recursive. We now

turn to the proof that f satis�es the properties (1) and (2).

Case �

0

2 U . Instead of (1) we prove equivalent f(�

0

) 2 M ) �

0

62 U .

Let the higher-order matching problem �

5

= f(�

0

) have a solution.

1. Lemma 19.1 implies that T

!

j= �

4

for some type � 2 T

o

.

2. Lemma 18.1 implies that hT

!

;R;Pi j= �

2;3

(�

2

and �

3

are equivalent)

for this type � 2 T

o

and some interpretations R � H

�

, P � H

�

�H

�

for R, P .

13



3. Lemma 17.1 implies that hT

!

; R; Pi j= �

1

for this type � 2 T

o

and

these interpretations R � H

�

, P � H

�

�H

�

of predicate symbols R

and P .

4. Lemma 16.1 implies that �

0

is true in some model of binary relation,

i.e., �

0

62 U (recall that U is a set of unsatis�able sentences about a

binary relation).

Thus, (1) is proved. 2

Remark 20 This part of the proof corresponds to the correctness of trans-

formation (the �rst clauses of Lemmas 16 { 19): if the resulting higher-order

matching problem �

5

has a solution, then the initial sentence �

0

is satis�ed

by some binary relation. 2

Case �

0

2 FS. Let a sentence �

0

of L

0

be true in a �nite model of binary

relation hfa

1

; : : : ; a

n

g; Bi (where B � fa

1

; : : : ; a

n

g

2

) of cardinality n 2 !.

1. Lemma 16.2 implies that hT

!

; R; Pi j= �

1

for the type � � o

n

! o

and for the �nite interpretations R � H

�

, P � H

�

�H

�

of predicate

symbols R, P de�ned by R

�

= fg

1

; : : : ; g

n

g (where g

i

= �x

o

1

: : : �x

o

n

:x

i

for i = 1; : : : ; n), P

�

= fhg

i

; g

j

i j ha

i

; a

j

i 2 Bg.

2. Lemma 17.2 implies that hT

!

; R; Pi j= �

2;3

, and, moreover, the

witness functions for the existentially quanti�ed variables w

�

1

1

: : : w

�

p

p

in (4) may be chosen from the �nite sets of functions (P

n

)

k

! P

n

,

where P

n

= f�x

o

1

: : : �x

o

n

:x

i

j i = 1; : : : ; ng.

3. Lemma 18.2 implies that T

!

j= �

4

, and, moreover, the witness func-

tions for the existentially quanti�ed variables in (8) may be chosen

from the �nite sets of functions (P

n

)

k

! P

n

or (P

n

)

k

! bool, where

P

n

= f�x

o

1

: : : �x

o

n

:x

i

j i = 1; : : : ; ng.

4. Lemma 19.2 implies that the matching problem �

5

has a solution of

order � 3.

Thus, (2) and the main claim of this paper are proved. 2

Remark 21 This part of the proof corresponds to the �nite completeness of

the transformation (the second clauses of Lemmas 16 { 19): if a sentence �

0

is

satis�ed by a �nite binary relation, then the resulting higher-order matching

problem �

5

has a closed �-de�nable solution in the form of functionals (of

order 3) over projection functions P

n

.

14



Summarizing, the whole proof works smoothly thanks to the helpful di-

chotomy in Trakhtenbrot-Vaught's Theorem 12 \unsatis�able vs. �nitely

satis�able" plus the recursive inseparability. This is because we need not

care about the case when a sentence �

0

is satis�ed by an in�nite model

of binary relation, when we may be unable to �nd a closed solution to the

resulting higher-order matching problem �

5

. 2

References

[Bar92] H.P. Barendregt. Lambda calculi with types. In S. Abramsky,

D.M. Gabbay, and T.S.E Maibaum, editors, Handbook of Logic in

Computer Science, volume 2, pages 118{308, Oxford, 1992. Claren-

don Press.

[Dow91] G. Dowek. L'ind�ecidabilit�e du �ltrage du troisi�eme ordre dans les

calculs avec types d�ependants ou constructeurs de types. Comptes

Rendus �a l'Acad�emie des Sciences, Paris, vol. 312 (S�erie I):951{

956, 1991. (ou (or) should read et (and), cf., Erratum, ibid., vol.

318: 873, 1994).

[Dow93] G. Dowek. The undecidability of pattern matching in calculi where

primitive recursive functions are representable. Theor. Comput.

Sci., 107:349{356, 1993.

[Dow94] G. Dowek. Third order matching is decidable. Annals Pure Appl.

Logic, 69:135{155, 1994. Preliminary version in LICS'92.

[Far91] W. Farmer. Simple second-order languages for which uni�cation

is undecidable. Theor. Comput. Sci., 87:25{41, 1991.

[Gol81] W. D. Goldfarb. The undecidability of the second-order uni�cation

problem. Theor. Comput. Sci., 13:225{230, 1981.

[Hin97] J. R. Hindley. Basic Lambda Calculus. Cambridge Tracts in The-

oretical Computer Science Series. Cambridge Univ. Press, 1997.

[HKM97] G. D. Hillebrand, P. C. Kanellakis, and H. G. Mairson. Database

query languages embedded in the typed lambda calculus. Infor-

mation and Computation, 1997. To appear. Preliminary version in

LICS'93, pp. 332{343.

15



[HL78] G. Huet and B. Lang. Proving and applying program transfor-

mations expressed with second-order patterns. Acta Informatica,

11:31{55, 1978.

[Hue73] G. Huet. The undecidability of uni�cation in third-order logic.

Information and Computation, 22:257{267, 1973.

[Hue76] G. Huet. R�esolution d'

�

Equations dans les Langages d'Ordre 1, 2,

. . . , !. Th�ese de Doctorat d'

�

Etat, Universit�e de Paris VII, 1976.

[Loa93] R. Loader. The undecidability of �-de�nability. \Types" electronic

forum, 1993.

[Mil91] D. Miller. A logic programming language with lambda-abstraction,

function variables, and simple uni�cation. In P. Schroeder-Heister,

editor, Extensions of Logic Programming, volume 475 of Lect.

Notes Comput. Sci., pages 253{281. Springer-Verlag, 1991.

[Mit96] J. C. Mitchell. Foundations for Programming Languages. Founda-

tions of Computing Series. MIT Press, 1996.

[Nip91] T. Nipkow. Higher-order critical pairs. In 6th Annual IEEE Symp.

on Logic in Computer Science (LICS'91), pages 342{349. IEEE,

1991.

[Nip93] T. Nipkow. Functional uni�cation for higher-order patterns. In

8th Annual IEEE Symp. on Logic in Computer Science (LICS'93),

pages 64{74. IEEE, 1993.

[Pad95] V. Padovani. On equivalence classes of interpolation equations.

In Typed Lambda Calculi and Applications, TLCA'95, Edinburgh,

The Netherlands, volume 902 of Lect. Notes Comput. Sci., pages

335{349. Springer-Verlag, 1995.

[PW78] M.S. Paterson and M.N. Wegman. Linear uni�cation. J. Comput.

Syst. Sci., 16:158{167, 1978.

[Spr95] J. Springintveld. Third-order matching in the presence of type con-

structors. In Typed Lambda Calculi and Applications, TLCA'95,

Edinburgh, The Netherlands, volume 902 of Lect. Notes Comput.

Sci., pages 428{442. Springer-Verlag, 1995.

[Sta81] R. Statman. On the existence of closed terms in the typed �-

calculus II: transformations of uni�cation problems. Theor. Com-

put. Sci., 15:329{338, 1981.

16



[Sta82] R. Statman. Completeness, invariance, and �-de�nability.

J. Symb. Logic, 47(1):17{26, 1982.

[Tra53] B. A. Trakhtenbrot. On recursive separability. Soviet Math. Dok-

lady, 88:953{956, 1953. In Russian.

[TS96] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, vol-

ume 43 of Cambridge Tracts in Theoretical Computer Science.

Cambridge Univ. Press, 1996.

[Vau60] R. L. Vaught. Sentences true in all constructive models. J. Symb.

Logic, 25(1):39{53, 1960.

[Vor97] S. Vorobyov. The \hardest" natural decidable theory. In

G. Winskel, editor, 12th Annual IEEE Symp. on Logic in Com-

puter Science (LICS'97). IEEE, June 1997. To appear, available

at http://www.mpi-sb.mpg.de/�sv.

[Wol93] D. A. Wolfram. The Clausal Theory of Types, volume 21 of Cam-

bridge Tracts in Theoretical Computer Science Series. Cambridge

Univ. Press, 1993.

17



���

�

��

k

I N F O R M A T I K

Below you �nd a list of the most recent technical reports of the research group Logic of Programming

at the Max-Planck-Institut f�ur Informatik. They are available by anonymous ftp from our ftp server

ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most of the reports are also accessible via

WWW using the URL http://www.mpi-sb.mpg.de. If you have any questions concerning ftp or WWW

access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)

can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut f�ur Informatik

Library

attn. Birgit Hofmann

Im Stadtwald

D-66123 Saarbr�ucken

GERMANY

e-mail: library@mpi-sb.mpg.de

MPI-I-97-2-005 L. Bachmair, H. Ganzinger A Theory of Resolution

MPI-I-97-2-003 U. Hustadt, R.A. Schmidt On evaluating decision procedures for modal logic

MPI-I-97-2-002 R.A. Schmidt Resolution is a decision procedure for many

propositional modal logics

MPI-I-97-2-001 D.A. Basin, S. Matthews, L. Vigan�o Labelled modal logics: quanti�ers

MPI-I-96-2-010 A. Nonnengart Strong Skolemization

MPI-I-96-2-009 D.A. Basin, N. Klarlund Beyond the Finite in Automatic Hardware

Veri�cation

MPI-I-96-2-008 S. Vorobyov On the decision complexity of the bounded theories

of trees

MPI-I-96-2-007 A. Herzig SCAN and Systems of Conditional Logic

MPI-I-96-2-006 D.A. Basin, S. Matthews, L. Vigan�o Natural Deduction for Non-Classical Logics

MPI-I-96-2-005 A. Nonnengart Auxiliary Modal Operators and the

Characterization of Modal Frames

MPI-I-96-2-004 G. Struth Non-Symmetric Rewriting

MPI-I-96-2-003 H. Baumeister Using Algebraic Speci�cation Languages for

Model-Oriented Speci�cations

MPI-I-96-2-002 D.A. Basin, S. Matthews, L. Vigan�o Labelled Propositional Modal Logics: Theory and

Practice

MPI-I-96-2-001 H. Ganzinger, U. Waldmann Theorem Proving in Cancellative Abelian Monoids

MPI-I-95-2-011 P. Barth, A. Bockmayr Modelling Mixed-Integer Optimisation Problems in

Constraint Logic Programming

MPI-I-95-2-010 D.A. Plaisted Special Cases and Substitutes for Rigid

E-Uni�cation

MPI-I-95-2-009 L. Bachmair, H. Ganzinger Ordered Chaining Calculi for First-Order Theories

of Binary Relations

MPI-I-95-2-008 H.J. Ohlbach, R.A. Schmidt,

U. Hustadt

Translating Graded Modalities into Predicate Logic

MPI-I-95-2-007 A. Nonnengart, A. Szalas A Fixpoint Approach to Second-Order Quanti�er

Elimination with Applications to Correspondence

Theory


