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Abstract
Densely populated coastal urban areas are often exposed to multiple hazards, in particular floods and storms. Flood
defenses and other engineering measures contribute to the mitigation of flood hazards, but a holistic approach to flood
risk management should consider other interventions from the human side, including warning information, adaptive
behavior, people/property evacuation, and the multilateral relief in local communities. There are few simulation ap-
proaches to consider these factors, and these typically focus on collective human actions. This paper presents an agent-
based model that simulates flood response preferences and actions taken within individual households to reduce flood
losses. The model implements a human response framework in which agents assess different flood scenarios according
to warning information and decide whether and how much they invest in response measures to reduce potential inun-
dation damages. A case study has been carried out in the Ng Tung River basin, an urbanized watershed in northern Hong
Kong. Adopting a digital elevation model (DEM) as the modeling environment and a building map of household
locations in the case area, the model considers the characteristics of households and the flood response behavior of
their occupants. We found that property value, warning information, and storm conditions all influence household losses,
with downstream and high density areas being particularly vulnerable. Results further indicate (i) that a flood warning
system, which provides timely, accurate, and broad coverage rainstorm warning, can reduce flood losses by 30–40%;
and (ii) to reduce losses, it is more effective and cheaper to invest early in response measures than late actions. This
dynamic agent-based modeling approach is an innovative attempt to quantify and model the role of human responses in
flood loss assessments. The model is demonstrated being useful for analyzing household scale flood losses and re-
sponses and it has the potential to contribute to flood emergency planning resource allocation in pluvial flood incidents.
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1 Introduction

Globally, exposure to and potential damage from both river and
coastal flooding are increasingly significant [1, 2]. As urban areas
expand, more people and assets are exposed to flood risks [3].
Moreover, climate change is increasing the frequency of extreme
weather events, and cities are among the most vulnerable regions
to the impacts around the world [4–7]. Stakeholders in their bid
to find solutions to cope with emerging floods need to better
understand the process of a flood and its damages, and how to
adapt or respond adequately to the disaster [8]. Therefore, grow-
ing concern has brought further urgency to implement flood loss
assessment and promote flood adaptation for effective flood
management [9]. In the following, we develop an integrated
model approach that combines a physical model of rainfall sce-
narios and water flows in a geographical landscape with a multi-
agent-based model of disaster response based on flood impacts
and costs in a populated region of China.

1.1 Flood Loss Assessment and Adaptation

The purpose of a flood loss assessment is to evaluate the
(potential) economic losses from a flood event to inform flood
risk management [10]. The methodologies used in flood loss
assessment are typically classified into three groups: integrated
hydrological models, indicator systems, and post-flood surveys.
Integrated hydrological models are driven by physical equations,
while stage-damage relationships can be used to assess impacts
[10]. Indicator systems usually combine a number of factors that
influence the consequence of flooding, such as the depth of in-
undation, flow velocity, and duration of inundation, which are
useful for comparing the flood risks or losses of several areas on
a consistent basis [11], but has limited or no representation of the
flood mechanism. Post-flood surveys can be implemented for
loss evaluation and the results may be further used to verify
mechanism models [12].

There is not a standard or recognized method for flood loss
estimation. Merz et al. [13] reviewed this issue and indicated
that economic evaluations of flood damages/losses are
purpose-related and therefore context-dependent. There are,
however, major issues that constrain the accuracy in flood loss
assessment, resulting from limited available data, knowledge
on damage mechanisms, and human response measures [13].
Thus, approaches typically simplify representation of the
flooding process. Furthermore, they rarely consider human
efforts during the flood to reduce any losses.

Flood adaptation is defined as the adjustment of a natural or
human system to reduce vulnerability and enhance the response
capacity to flood threats [14]. To date, flood adaptation has been
analyzed and quantified in many ways, which has led to in-
creased precision in cost-benefit analysis and more rational ap-
proaches to decision-making [15]. Effective adaptation requires
understanding of the nature and magnitude of flood impacts.

However, in our view, much attention has recently been given
to the flood consequence assessment, whereas the process of
proactive and reactive human responses is reduced to a couple
of parameters or scenarios within a comprehensive analysis.
Moreover, flood impacts are not spatially homogeneous; they
are sensitive to rainstorm conditions, failure of flood protection
infrastructure, warning times, evacuation strategies, and individ-
ual activities [16]. This uncertainty poses significant challenges
to the implementation of a successful flood management plan.

1.2 Considering Human Responses in Flood Loss
Assessment

People play a key role inmitigating flood impacts before, during,
and after a flood. The US National Research Council summa-
rized the various roles of human actions in countering flood
disaster losses, including the local, state, and federal government,
individuals, and also private sectors [17]. In fact, flood-related
property damages and loss of human life could be reduced
through decision-making, strategic planning, public awareness
and communication, emergency responses, and mutual reliefs
[18, 19]. In addition, an affected community could recover faster
and more efficiently if it is well organized [20]. In order to cope
with the projected increase in flood effects, adaptation strategies
need to consider the potential of human responses (soft mea-
sures) and flood defense infrastructure (hard measures) [21].

The costs of human responses have been generally included
in flood loss assessment. Dutta et al. [10] estimated flood losses
in three groups—urban, rural, and infrastructure—and consid-
ered both damages and costs (emergency and cleanup). Merz
et al. [13] also classified the types of flood damages (tangible/
intangible, direct/indirect), while stating that flood loss should
include the costs of emergency services. A report of the World
Meteorological Organization [22] illustrated the categorizations
of flood losses which cover various damages, costs, service/yield
reductions, injury, deterioration, stresses, etc. Though existing
approaches for flood loss assessment have already considered
variables that describe human actions, the relationship between
human responses, warning, and flood damage is in these
methods often described in a black box manner and based on
empirical survey data [23]. On the one hand, various flood re-
sponse measures and costs were often presented in synthesized
packages using a few static variables and physical-mathematical
approaches that greatly simplify the response measures [10, 25].
However, this approach did not represent the implementing pro-
cess of the response measures, the heterogeneity among actors,
nor the complexity of non-linear human behavior. Also due to its
black box properties, the modeling process is difficult to be val-
idated and verified [24]. On the other hand, empirical statistical
data or survey data were used to estimate savings of human
response measures. For this purpose, data about household flood
preparedness and damages are often collected and analyzed [23,
26, 27]. The method actually offered a post-flood revisit to the
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role of responsemeasures by various households [28]. But still, it
neglected the implementation process of the response measures
and looked only at the consequences.

Only a few studies have investigated the interactive process
between flood threats and human behavior in more effective
response measures to mitigate flood risk [13, 15], but not using
flood loss estimates. The process of involving human activities is
inherently complicated and requires real-time flood information
and a wide range of flood mitigation activities, including struc-
tural and non-structural measures such as flood warning [29].
However, limited attention has been paid to the adaptive process
of humans, and how this process can be measured and modeled.
Although this knowledge gap has been widely acknowledged
[30], the role of human responses has up to now not been quan-
tified and modeled in flood loss assessments. Thus, to integrate
human response and mitigation efforts into flood loss assess-
ment, a dynamic simulation approach is needed to couple both
human and natural dimensions.

1.3 Agent-Based Modeling in Flood Studies

In recent flood disasters, society and decision-makers are increas-
ingly requiring instant flood information from the natural side
and participatory flood control from the human side, as well as
the integration of the two [31, 32]. O’Connell and O’Donnell
[33] have outlined the potential of agent-based model (ABM)
in flood risk management for a coupled modeling of human
and natural systems. InABM, agents are self-contained computer
programs that interact with its environment and with one another
and can be designed and implemented to describe the rule-based
behaviors and modes of interaction of observed social entities
[34–36]. Regarding the field of flood studies, ABM has the ad-
vantage to simulate the response behaviors of agents (individuals,
households, communities) facing flood threats in real time.

In fact, agent-based models have recently increasingly been
adopted in flood research from various perspectives. Georgé
et al. [37] and Scerri et al. [38] developed self-adaptive ABM
systems of devices and robotics (boats), which supported real-
time flood forecasting and offered quick situation awareness and
relief supplies. ABM combined with a virtual geographic envi-
ronment (VGE) has demonstrated the capacity to identify busi-
nesses affected by flooding in theUK [39], though the introduced
model did not involve response activities of the businesses and
thus did not make full use of the advantages of ABM. While
these models took objects as agents, Dawson et al. [15] intro-
duced human action into an ABMof flood incident management
and used it to optimize flood evacuation. Consideration of human
behavior was not a new concept to many existing ABMs.
However, the study first captured the dynamics of both the nat-
ural and human systems over the duration of a flood event and
ensured the flood evacuation scenarios to be more realistic. The
ABM also delivered insights into emergent features such as

evacuation routes prone to congestion, which could not be ex-
tracted from the other methods of flood risk management.

Recently, more ABMs were seen in flood-related studies
and mostly had human agents, which brought new insights on
how ABM can help flood disaster management. For instance,
Haer et al. used ABM to test the effects of flood risk commu-
nication through a social network [40]. Though the modeling
results were not surprising that targeted communication can be
more effective than common communication, it demonstrated
the significance of human behavior in flood risk management.
Similarly, the heterogeneity of human behavior was tested
with ABM in floods of a hypothetical case area which also
showed the necessity to identify individual activities in small-
scale flood management [41]. In addition, the ABM applica-
tion in human decision-making also revealed the role of hu-
man behavior in prospected flood risks [42] and the signifi-
cance of flood insurance in a public-private partnership [43].

ABMs have shown its value to inform flood manage-
ment regarding evacuation, communication, behavioral
heterogeneity, risk perceptions, and flood insurance.
However, we have found no documented ABMs to model
flood loss estimation and instant individual response be-
haviors. This study addresses the identified research gap
in flood loss assessment and individual responses in the
context of emergency management of floods. We present
an agent-based model to increase the understanding of
this dynamic process by considering the effects of house-
hold flood prevention measures when facing various rain-
storm scenarios and different levels of warning informa-
tion. The simulated flood events are pluvial floods gener-
ated from a surface runoff model in an urbanized river
catchment. The ABM was conducted within the
NetLogo modeling environment [44] which offers a
framework to incorporate and simulate driving forces that
affect response strategies of households in case of differ-
ent flood scenarios. The next section introduces the ABM
framework and model components. In Section 3, we pres-
ent model findings from a case study in the New
Territories of Hong Kong before finally concluding with
some key findings and making recommendations for fur-
ther research and development.

2 Model Design and Concept

2.1 Framework of the Agent-Based Model

The purpose of the study is to use anABM to simulate aspects of
human decision-making during a flood event. The focus here is
on the role of individual household loss reduction through flood
response investment and damage control. The model framework
is structured in three steps: model initiation, runs, and outputs.
An overview of the ABM used in this paper is given in Fig. 1.
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The model comprises three core components:

& Rainfall scenarios defined in terms of intensity and
duration

& A hydrodynamic model driven by topography
& Agents, representing households in this model, who re-

spond during a flood event according to a range of behav-
ior rules.

In this framework, rainfall events and topography are the
key inputs to the hydrodynamic model which generates flood
scenarios. Agents with initiated attributes (see Table 1) take
actions to respond to floods according to received rainfall
warnings. Once the model is initialized, a rainfall event begins
and agents start to assess their flood risk according to rain
warning information. Depending on their initial knowledge
as well as the information they receive on flooding, the agents

Fig. 1 Framework of the agent-
based model for flood loss and
response simulation

Table 1 Attributes of household agents in the presented flood ABM

Attribute Definition and implication Function

exposure Household’s location regarding flood impacts To partly define location-specific flood vulnerability
of a specific agent

response-rate Fraction of a household’s investment relative to its
property values

Indicating the investment level

self-prediction Expected rainfall and flood without receiving warnings Distinguishing the different behaviors with and
without warnings

adaptive-capacity Adaptive capacity of the household Limits the upper investment level

building-value Value of the household’s living building Calculating flood loss

property Value of non-building properties Calculating flood loss

property-loss Lost value of properties Calculating flood loss

cost-c Precautionary investment when receiving warning
information

Calculating investment

cost-d Response investments during flood Calculating investment

warn-rainfall Predicted rainfall according to warning Predicting rainfall trend

inundation Inundation depth of flood water Actual depth of flood water

predict-inundation Predicted potential inundation depth Expected flood water depth which the investment
was based on

duration Duration of inundation The period of being flooded

αB Building loss rate Indicating the characteristics of buildings

αP Property loss rate Indicating the characteristics of non-building properties

hhloss Household’s property loss in each step Calculating the flood loss process

total-loss Final total flood loss of a household Calculating total flood losses
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perform certain actions, including investment in their proper-
ty, in response to the expected flood threat. More action by the
agents leads to lower flood damages. The loop of agents’
flood expectations, their response actions, and flood inunda-
tion impacts drives the model to run step by step, so that the
flood and loss process can be analyzed. Finally, the model
produces summary information that can be used to diagnose
model behavior and inform flood management policy.

2.2 Components and Construction of the Agent-Based
Model

2.2.1 Model Environment

The model environment includes topography, the river sys-
tem, household locations, and roads within a river basin. A
digital elevation model (DEM) of the study area was
resampled to a lower resolution of 30 × 30 m to be imported
to the NetLogo modeling platform, where each DEM cell is a
Bpatch^ (ground over which agents can move). Each cell has a
slope, used to define the expected water flow, which is calcu-
lated as the difference between its elevation and the minimum
elevation of its eight neighbor cells.

The elevation data are also used to generate the river basin
and river system of the study area. A building area map was
resampled to the same resolution as the elevation data and
overlapped with the river basin layer in the NetLogo world.

2.2.2 Agent Attributes and Behaviors

The definition of an agent and its attributes and behaviors are
central to an agent-based model. Households are agents in this
model because they are the basic entities that suffer from and
cope with floods. Their rule-based response decisions and inter-
actions determine the feature and magnitude of flood loss.
Household agents do not move in space but they do take mea-
sures to protect themselves from flooding and make predictions
about future flood risk based on rainfall/rain warnings.

As shown in Table 1, each agent is characterized by several
attributes, e.g., property, exposure, inundation, and flood
losses, to represent its links to flooding events and losses.
Agent properties are capitalized and composed of two parts,
the construction property (residential building they live in)
and the in-house property (contents they own and put at
home). For every agent, a starting property value has been
allocated, which is subject to loss during model runs. In the
absence of a comprehensive metric for real household vulner-
ability (including its components: exposure, sensitivity, and
adaptive capacity) to flooding, in the following, only exposure
and adaptive capacity are considered for simplification. The
exposure of a household is calculated according to its location
(elevation) and the shortest distance to a river, while the adap-
tive capacity is based on the total properties, both using a min-

max normalization method after Yang et al. [16]. Inundation-
related attributes indicate the flood severity and duration.
Agents will take response measures to prevent flooding ac-
cording to the real-time inundation situation and predicted
inundation. The measures taken by a household prevent po-
tential flood damages. If a real-time inundation is higher than
the level an agent ever experienced or predicted, it suffers
flood damages from the effective inundation.

The household response behaviors from empirical studies [45,
46] are employed to construct the general rules for the agents’
decision-making. In the present model, households perceive po-
tential flood impacts according to warning information. They
take response measures based on warning and their instant flood
situation. Flood response measures are generally recognized as
follows: Bfar-sighted precaution,^ Bclose-to-event measures
based on forecasting and warning,^ Bflood fighting actions,^
and Brecovery actions after an event.^ The measures can be
specific and different but they are all quantified as monetary
investments (response cost) in the model. It was assumed that a
higher-cost flood response measure has better effectiveness in
flood control. Therefore, the model used response costs instead
of specific measures, which facilitated the modeling process as
the value of costs can be easily calculated. At the same time, the
agent invests in flood control according to warnings. The more
serious flood the warning indicated, the more the agent invests
(in range of its capacity of cause), and the higher flood depth it
can prevent, no matter which specific measure it took.

In addition, specific agent behaviors in this model are con-
trolled by several global variables such as rainfall scenarios, lead
time, and interval of rain warning. As the simulation progresses
through time and the flood situation varies, values of some of
these attributes change and thus inform the flood loss process of
agents. An example of a typical agent’s response loss decision-
making process is briefly illustrated in Fig. 2: the agent has a
chance to receive rain warning information and to invest in pre-
vention accordingly; alongwith the raining and flooding process,
the agent estimates flood trends instantly by considering updated
flood situation and warning information; once an increasing risk
is estimated, the agent will increase investments into flood fight-
ing, unless the investment capacity is not reached; it is possible
that the agent estimates flood trends inaccurately so that it may
suffer some inundation damages.

The model in the present paper simulates a single flood
event; thus, the agents do not have a learning experience
regarding flood events but a certain level of initial knowl-
edge so that they can take responses accordingly. The
level of having knowledge was set based on two condi-
tions: first, the agent was trained with a few specific rain-
fall warnings and associated flood intensity before the
model officially runs (last part of Section 2.2.3). This
pre-process was assumed to give the agent simple but
direct experience on floods. Second, the agent increases
knowledge when it receives advance warning. The
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warning was assumed to bring rich and accurate flood
information to the agent.

2.2.3 Scenarios of Rain/Flood Event

Rainfall Scenario A rainfall event is described by its intensity
and duration [47]. Over small river catchments, it is acceptable
to assume that the rainfall is spatially uniform [48]. Initially,
the five rainfall scenarios shown in Fig. 3 have been pre-
defined for the case study in the present paper, although fur-
ther scenarios can be manually defined by the model user.

The Flood Inundation Process In general, a model of the flood
inundation involves many processes such as topographic char-
acter, hydrological dynamic, flow route, surface roughness,
hydraulic facility, and drainage system [49]. However, it is
often hard to consider all of the processes in specific studies
and it is acceptable to focus on those most crucial to the re-
search aim [50].

In the present study, a simplified gravity-driven surface
runoff model is used to simulate pluvial flooding over a digital
elevation model (DEM). Since the study aims to investigate
individual households’ flood responses and their effective-
ness, large-scale flood control measures like hydraulic facili-
ties and sewer networks are not involved in the model. Thus,
once a rainfall scenario is chosen, there is a corresponding
flooding scenario because the land surface is initially set by
the DEM and other factors are not considered. Flow is calcu-
lated using a computationally efficient surface water flow

algorithm, which propagates flow at each time step, from
higher elevation cells to lower ones (Fig. 4). With this surface
runoff model, the slope factor and flow velocity are reflected
indirectly in comparing the elevations of cells. Surface rough-
ness n is assumed approximately related to elevation in the
study area where high places (e.g., natural forests) have great-
er n and low places (e.g., constructed surface) have smaller n.
Thus, the surface roughness is definite when the model envi-
ronment was set at the very beginning. However, a range of
the surface roughness values is artificially generated and test-
ed in analyzing the variable sensitivities in Section 4.

This simplified surface runoff model principally indicated
the physical drainage mechanism and enabled downscaling
from complex social systems to individual households with
limited computing requirements, which well supported the
model goals to explore dynamic individual responses to flood
scenarios, connecting the physical and the human world.

Water in a cell will flow to its eight neighbors according to
the relative difference between water surface elevation (the
sum of water depth and cell elevation) (Eqs. 1 and 2).

WDiþ1 ¼ 1

2
E þWDi þ ETN þWDTN;i
� �

−E ð1Þ

or

WDiþ1 ¼ 0; WDTN;iþ1 ¼ WDTN;i þWDi

when E > ETN þWDTN;i
� �þWDi

ð2Þ

where

WDi+ 1 the water depth sof current cell
E the elevation of the current cell
ETN the elevation of the target neighbor where water

flows
WDTN the water depth of the target neighbor

Due to infiltration, reservoir storage, and evaporation, not
all precipitation becomes flood water which is considered as

Fig. 2 Flow diagram of a typical agent’s decision-making process in a
flood event. Note: Rc refers to Brate of responding cost^ and Ac refers to
Badaptive capacity,^ both defined in Section 2.3.2

Fig. 3 Rainfall scenarios that have been pre-defined in the ABM model
for the present case study
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runoff loss. Following analysis by Ren and Guo [51], an in-
terception and evaporation function reduces water depth in
each cell by 0.4 mm/h. The depth of flood water in cells with
households alters the impact on and the response of the agents.

Rain Warning and Households’ Flood Expectations People’s
reaction to becoming informed about a potential flood
event varies usually according to the warning information
received [15, 52]. In this model, a household’s flood
knowledge is depending on the received warning informa-
tion about the rainfall event as well as its instant flood
situation. In addition, each of the rainfall scenarios and
flood extents described above was preprocessed to pro-
vide a curve of inundation vs time for each cell within
the domain. The recorded curve acts as a knowledge input
which will be used for the agent’s flood prediction. With
the pre-procession and warning information, it is assumed
that all agents have complete knowledge of the relation-
ship between rainfall and flood extents (i.e., people know
where the low-lying land is that likely be flooded).

During the model preprocessing, cell i recorded an inunda-
tion curve at the rainfall scenario 3. The agent j at the cell iwill

use this curve as its flood prediction in case it receives rain
warning at the same rainfall scenario 3 during model running.
This series of preprocessed modeling outputs yields rational
inundation curves for all the cells in all the five rainfall sce-
narios. Figure 5 shows examples of the inundation curves for
10 selected cells with households under a moderate rainfall
scenario.

To assess the effectiveness of warning, the model incorpo-
rates parameters for the lead time (LT) of warning and the
warning interval (WI). LT represents the period from the time
of warning release to the time of flood starting, and WI de-
notes the time period from one warning release to the next
one. The two parameters LT and WI together indicate the time
and frequency of rain warning release. A proportion of agents
(80% in this study) receive the warning, but the actual agents
that receive it are randomly selected in each simulation.
Various types of warning can result in different flood predic-
tions and responses. For this reason, the more specific the
warning is, the more effective the remedial measure taken will
be. In case there is no rain warning or the household does not
receive any warning, the agent will respond to any nearby
flooding that it observes.

Fig. 4 Schematic representation of flow between neighboring raster cells (adapted from Dawson et al. [15])

Fig. 5 Depth-duration curves for
10 cells that contain households
HH1–HH10 (shown in Fig. 7),
during rainfall scenario 3
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2.2.4 Flood Response Measures

Responses to flood events have the potential to reduce the
impact of flooding and significantly reduce the damages
[15]. Generally, flood responses are classified into four types
according to flood phases [16]: (1) far-sighted precaution, (2)
close-to-event measures based on forecasting and warning, (3)
flood fighting actions, and (4) recovery actions after an event.
Nevertheless, the model in the present paper does not deal
with specific measures but considers only the costs and effec-
tiveness of the measures. Different measures are represented
by different investments required. Generally, a higher invest-
ment offers greater protection but this depends on the type of
measure. Therefore, the model used response costs instead of
specific measures, which facilitated the modeling process as
the value of costs can be easily calculated.

All flood response measures require investment, which is
capitalized and considered in the flood loss. Upon receiving a
warning, an agent estimates the associated possible flood
depth, and invests and establishes an according level of flood
prevention. If the instant flood does not go over this preven-
tion level, the flood is prevented and no damage occurs. If the
instant flood goes over this prevention level, the agent suffers
flood damage. The cost for far-sighted precaution measures is
generally long-term investment for preventing all floods,
which is usually not included in final loss estimates of a spe-
cific flood incident. However, such investment is considered
in this study as damage and is calculated by the damage func-
tion. In addition, the resource an agent invests depends on the
magnitude of potential flood impacts, the level of household
exposure to flood impacts, and the adaptive capacity of a
household as described in the following section.

2.3 Flood Loss Estimation

The total flood loss of a household (Hloss) in a flood event is
composed of the loss from damages (LD) and responding costs
(RC) (Eq. 3). This indicates that the total loss depends upon the
rainfall scenario and flood response. Both the damage loss and
responding cost are the function of flood water depth
(Sections 2.3.1 and 2.3.2), which indicates the interactions
that more responding costs would help preventing damage
losses. The model was designed with adjustable precipitation
scenarios and agents’ response measures can vary, in order to
compare the total loss caused in different situations.

H loss ¼ LD þ RC ð3Þ

2.3.1 Damage and Loss by Inundation

Flood loss is usually estimated in terms of economic losses
[13, 53]. To constrain the boundary of the analysis, this study

only assesses the direct economic losses caused by inundation
damage. In quantitative expression, the damage loss is the
product of a loss rate and the pre-flood value of the property
[10], as expressed in the Eq. 4:

LD ¼ ∑
n

i¼1
αi⋅Vi ð4Þ

where LD is the lost value by inundation damages, αi is the
damage loss rate for the ith property, and Vi is the pre-flood
value of the ith property.

Quantifying αi is a challenging task because it varies de-
pending on the characteristics of the damaged property as well
as the inundation depth and duration. Here we use rules of
generalized depth-damage curves (Fig. 6) derived by Dutta
et al. [10] and Moel and Aerts [54].

Since regions with similar flood and building characteris-
tics could approximately represent each other [55], the model
derived the specific mathematical equations of the depth-
damage curves based on the study of Shi et al. [56]. Their
flood depth-damage curves were drawn from post-flood sur-
veys and interviews of 134 residences in 2008 in Shenzhen
andDongguan. Their data were resampled to derive simplified
fitting equations (Eqs. 5 and 6) which calculate the loss, in
terms of a proportion of overall potential losses, as a function
of the mean inundation in a flood event.

αB ¼ Bc1⋅ln Imean þ 1ð Þ ð5Þ
αP ¼ Pc1⋅ln Imean þ 1ð Þ ð6Þ
where αB is the building loss rate and αP is the loss rate for in-
house properties, Imean is the mean inundation depth during
the flood period, Bc1 defines the type of residential buildings,
while Pc1 represents the contents of buildings (non-construc-
tion properties). These parameter values can be adjusted ac-
cording to the nature of property in the case study domain.

2.3.2 Investments and Costs of Flood Responses

The level of flood risk determines the types and costs of flood
risk management measures that could be taken. Typically,

Fig. 6 Sketch of depth-damage curves for urban damage estimation
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more expensive measures will provide greater flood risk re-
duction benefits. Households invest in prevention measures
according to warning information. Once the flood exceeds
these levels, it is inundated. Once the household receives a
precise and timely warning, it may be able to take further
action to reduce losses if it has the capacity and sufficient time
is available. The amount a household invests in flood man-
agement measures should be related to the potential inunda-
tion depth. Agents are motivated to invest to protect their
properties from being damaged by flooding, but only to a level
they can afford. This threshold is referred to as the household’s
adaptive capacity. A household can increase investment in
flood protection up to the level of its Ac, but not beyond it.

The cost of implementing response measures (Eq. 7) is
related to the overall property of the household, its exposure
level, and the maximum inundation depth (both instant and
predicted):

Rc ¼ a⋅P⋅Ex⋅I ; when Rc≤Ac
Ac; when Rc > Ac

�
ð7Þ

where

Rc rate of household property invested in responding cost
P property of the agent
I maximum inundation depth, both instant and predicted
Ex exposure
Ac adaptive capacity

Ex and Ac were calculated for each agent when initiating
the catchment topography and agent attributes (Section 2.2.2).

The parameter a in the equation is a constant to harmonize the
scales of factor values. Since P, Ex, and Ac are fixed when the
model is initiated, Rc subsequently depends only on the inun-
dation depth I.

3 Case Study: Ng Tung River Basin

3.1 Ng Tung River Basin in Hong Kong

A case study was carried out in the Ng Tung River (NTR)
basin in Hong Kong (Fig. 7). NTR is a branch river of the
Shenzhen River that serves as the boundary between Hong
Kong and Shenzhen. It originates from Safflower Ridge in
the New Territories of Hong Kong and the mainstream is
about 15 km long. The NTR forms a flood plain in the mid-
stream and downstream areas, where the regional downtowns
of Fanling and Sheung Shui are located. The total population
in this area is about 280,000 in 2013, of which around 80%
live in Sheung Shui and Fanling [57].

Due to seasonal rainstorms and the steep topography in the
basin, areas along the river frequently suffer from floods. As
illustrated by the Drainage Services Department (DSD) of
Hong Kong in March 2013, 6 of the 13 flooding blackspots
of Hong Kong were located in the NTR basin. Over the years,
there have been repeated cases of localized rainstorms occur-
ring in the NTR basin and its surrounding areas, which gave
rise to significant flooding there. For example, on 22
July 1994, over 300 mm of rainfall was recorded in the north-
western part of the New Territories. Three hundred hectares of

Fig. 7 Map of the Ng Tung River basin, showing its location, topography, watershed border, river network, building areas, and the selected 10
households
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farmland and 150 ha of fish ponds were inundated. Firemen
had to use dinghies to rescue villagers whose houses were
surrounded by flood water [58].

Due to the frequent water logging in this area, a BSpecial
Announcement on Flooding in the northern New Territories^
is issued by the Hong Kong Observatory whenever heavy rain
affects the area and flooding is expected to occur or is occur-
ring in the low-lying plains [58]. The announcement is broad-
cast by radio and television to the public and is updated at
appropriate intervals until heavy rain ceases. It is intended to
prompt the public to take precautionary measures against
flooding and to alert local people who are likely to suffer
losses from flooding. The announcement also alerts the rele-
vant government departments and organizations to take appro-
priate actions, such as opening of temporary shelters, search
and rescue operations, closure of individual schools, and relief
work. Like all weather warnings, the special announcement
represents an assessment of the weather based on the latest
information available at the time. In case of ineffective alarms,
there will also be occasions when heavy rain leading to
flooding develops suddenly and affects the area before an
announcement can be issued. So rainstorm/rain warnings
and active flood preventions are extremely important for local
residents to reduce their flood risk, which has made the area
being selected as the case in this study.

3.2 Data Preparation

The basic data for the NTR basin comes from a digital eleva-
tion model with spatial resolution of 30 m and altitude reso-
lution of 1 m. The DEMwas resampled and imported into the
NetLogo world with 412 × 364 cells. The river network
adopted in this model is also extracted from the DEM, using
the hydrology module in ArcGIS. It is thus slightly different
from the real channels that have been significantly regulated.
Since the exact residence distribution data was unavailable for
this study, a map of built-up areas in the case study region is

adopted to approximately represent household locations. The
building map generates 3294 households in the location of the
urbanized areas with the same resolution of the elevation data.
A 2-week field investigation in November 2013 was carried
out in the study area and Google Street View was used there-
after to help further confirm some of the local situations.

In this model, elevation of the NTR basin ranges from 0 to
595 m, and elevation of households from 2 to 212 m. The
distance of a household to the nearest river was calculated
when the model was initialized, which uses a range of 0–
570 m. Exposure is calculated based on the elevation and
the distance to the river, ranging between 0 and 1 using the
min-max normalization method. The extreme values 0 and 1
are not reached because it is unlikely that one household has
the minimum/maximum value in both elevation and distance
to river.

In the absence of detailed census data, the model initially
set building values (building property, Pb) and fixture and
fitting values (non-building property, Pn) of all households
by randomly assigning a uniform distribution. Though the
range of the random building values (Pb) is based on the real
prices of residence apartments in the case area in 2013, which
ranges from 1 to 10 million HK$ (http://www.hkproperty.
com/, retrieved on May 4, 2014). The fixture and fitting
value (Pn) was set between 1 and 10 million HK$ as well,
which reflects a general capital range of households’ assets
in the case area of Hong Kong [59]. A household’s building
value and fixture and fitting values were set separately and
while it is often the case that more expensive properties have
pricier fittings, this is not always the case and the relationship
is complex. The adaptive capacity of a household is the
normalized value of its total properties in relation to the
properties of all the 3294 households. The calculated value
of Ac indicates the relative level of a specific household in
the whole community of households regarding their
properties. For the same reason, the extreme values 0 and 1
were not reached.

Table 2 Characteristics and attributes of the 10 highlighted households in the NTR basin

Label Location
(coordinates x, y)

Elevation (m) Exposure Adaptive capacity Building (HK$) Fixture and
fitting (HK$)

Total property
(HK$)

HH1 42, 227 7 0.767 0.243 3,136,155 3,245,481 6,381,636

HH2 72, 203 7 0.580 0.095 2,600,253 1,106,181 3,706,434

HH3 58, 129 12 0.595 0.463 1,383,948 8,961,083 10,345,031

HH4 107, 266 13 0.460 0.623 7,521,377 5,696,612 13,217,989

HH5 132, 200 9 0.542 0.462 6,999,475 3,313,360 10,312,835

HH6 181, 146 23 0.686 0.334 1,493,278 6,523,497 8,016,775

HH7 183, 199 30 0.625 0.464 4,974,238 5,377,416 10,351,654

HH8 234, 229 4 0.725 0.223 4,445,075 1,576,518 6,021,593

HH9 238, 295 6 0.691 0.286 2,856,933 4,284,147 7,141,080

HH10 301, 215 17 0.523 0.609 6,417,497 6,545,851 12,963,348
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To explore model behavior in detail, 10 households are
randomly selected and labeled with their ID numbers
(Table 2).

Five rainfall scenarios were pre-processed. The Hong Kong
Observatory (HKO) releases rainwarnings in three levels: yellow
warning with hourly rainfall over 30 mm, red warning with
hourly rainfall over 50 mm, and black warning with hourly rain-
fall over 70 mm [60]. Given that a flood-triggered rainstorm is
usually stronger than normal and the highest hourly rainfall in
Hong Kong was recorded as 145 mm on June 7, 2008 [61], the
model assumes five rainfall scenarios with the maximum rain-
falls ranging from 20 to 120 mm/h (Fig. 2).

& Rainfall scenario 1 (RS1) rains for 3 h, with peak rainfall
120 mm/h, with intensity, r, through time, t, defined ac-
cording to r = − 0.83 t(t − 12), {t∈ ℝ | 0 ≤ t ≤ 180}.

& Rainfall scenario 2 (RS2) rains for 6 h, with peak rainfall
80 mm/h, with intensity function r = − 0.14 t(t − 24),
{t∈ ℝ | 0 ≤ t ≤ 360}.

& Rainfall scenario 3 (RS3) rains for 12 h, with peak rainfall
60 mm/h, with intensity function r = − 0.026 t(t − 48),
{t∈ ℝ | 0 ≤ t ≤ 720}.

& Rainfall scenario 4 (RS4) rains for 24 h, with peak rainfall
40 mm/h, with intensity function r = − 0.0043 t(t − 96),
{t∈ ℝ | 0 ≤ t ≤ 1440}.

& Rainfall scenario 5 (RS5) rains for 48 h, with peak rainfall
20 mm/h, with intensity function r = − 0.0005 t(t − 192),
{t∈ ℝ | 0 ≤ t ≤ 2880}.

In the flood damage section, all residence buildings have
the same protection to flood damage. Therefore, the parameter
in the loss rate function (Eq. 5) is set as Bc1 = 0.06. Variant
fixture and fittings of each household are packed as one prop-
erty with the loss rate parameter (Eq. 6) Pc1 = 0.1. In the flood
response section (Eq. 7), parameter a has the value of 1/(5 ×
109), which is adjusted to the goal of making the Rc curve
fitting with those in existing publications [e.g., 10, 62].

Before it actually starts raining, the model executes a pre-
caution function if the rain warning option is checked on.
Eighty percent of all households in the NTR basin receive
the warning information and take precautionary measures that
require investments. In case precautionary measures have
been taken, the adaptive capacity of households will be fully
applied and thus their exposure will be reduced.

3.3 Results

3.3.1 Flood Loss Pattern Across the NTR Basin

The model was running under five different rainfall scenarios
and seven groups of warning scenarios to provide information
on the flood loss patterns of the NTR basin (Fig. 8). The
patterns are the model interfaces exported at the time the rain

stops. The overall inundation pattern of the study area is a
collective picture of individual household’s inundation situa-
tions. Generally, individual households could better avoid in-
undation under the condition of receiving more precise warn-
ing information; therefore, the study area as a whole has less
severe inundation patterns and vice versa. Spatially, the mid-
dle and downstream areas, which are highly populated, suffer
more inundation than other areas, regardless of any warning
information received or responding measures taken.

Under nowarning and no flood response (as shown in the first
row of Fig. 8), RS3 and RS4 cause the highest inundation levels
for the households due to their relatively long raining period and
larger rainfall volume, although the peak rainfall is moderate. It
indicates that the extreme rainfall does not necessarily mean a
more severe flood inundation. The duration of the rainfall does
play an important role. Moreover, differences are found between
the locations indicating that local elevation and distance to river
channels have effects on the flood inundation process.

Under different warning information, the inundation pat-
terns are different. Households start preventing potential inun-
dation once they receive warning information. The measures
they take, e.g., placing sandbags, will reduce the inundation
depth in particular under moderate rainfall scenarios, which
allows for more time to respond. Comparing the warning in-
formation, long lead time (LT) and short warning interval
(WI), e.g., LT24-WI02, lead to the highest reduction of inun-
dation levels while LT02-WI24 seems to have only a little
effect on the inundation level. Although under LT02-WI24
warning information is sent, the responding time until the
flood event is short. Generally, the large responding time un-
der LT24-WI02 provides much time for the households to take
responding measures which are applied dynamically.

The simulation also shows an interesting shift of the most
serious inundation among the rainfall scenarios: The most
serious inundation happens in RS4 in case of no warning
released; it changes to RS3 within the warning LT04-WI12
and then to RS2 (LT06-WI08) and RS1 (LT04-WI12 and
LT02-WI24) along with an increasing LT and decreasing
WI. Overall, the results of the inundation patterns indicate that
accurate warning information helps reduce the effective inun-
dation that damages household properties, and benefits greatly
from the flood preventing efforts in moderate and long dura-
tion raining event. Moreover, developing a more accurate and
timely warning system will also help improving human re-
sponse efficiency in short extreme raining event, as implied
by the combined scenario of RS1 and LT02-WI24.

In addition, the inundation patterns further indicate potential
impacts on human safety and economic losses under different
scenarios. For instance, the middle stream area of the river basin
is always themostly submerged area in all themodeled scenarios.
Even with most accurate warning and moderate rainfall, the area
has relatively higher fraction of households who suffer from
inundation.
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Fig. 8 Inundation patterns for the whole NTR basin with different rainfall scenarios and warning information
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3.3.2 Flood Loss Among Households

As illustrated in Fig. 9, HH1, HH2, HH8, and HH9 suffer
most damage among the sample households, as a result of
their relatively lower investment in response measures. The
lower response rates of the four households are mainly due to
their lower property values. Due to their more limited eco-
nomic resources, they have low adaptive capacity, which in
turn limits their capacity to invest in flood protection. This
indicates that the lack of economic resources significantly
contributes to the absolutely larger extent of flood damages.
This demonstrates that disadvantaged communities continue
to be more affected by flood impacts. Conversely, the model
shows that those households with greater financial resource
are better able to reduce their flood losses. Households at
relatively higher locations, such as HH3, HH4, HH6, and
HH7, even respond so effectively that they do not suffer dam-
ages at all because their investments are sufficient to prevent
the minor flood.

3.3.3 Flood Loss Under Different Rain Warnings

Rain warning is the main factor determining the household’s
flood response. The model has run several times under RS3
with different warning lead times and warning intervals, in-
cluding an option of no warning at all. In the situations of no
warning, households suffer flood damages without taking any
response measures and the damages increase along with the
growing of the flood water level until the flood recedes. The
findings in Fig. 10 show that without warning, the flood loss
of households is more likely to reach the highest damage level,
whereas any warning reduces overall losses.

Further results show that, generally, warnings with shorter
lead time contribute to higher flood damage whereas longer
lead time helps reduce damages, and that a longer warning
interval leads to higher damages (Fig. 10). The investigations
focusing on the combined effect of lead time and warning
interval suggest that a longer lead time and shorter interval
can obviously alleviate the overall loss rate. However, this
significant impact is not applied to the case of HH2, largely

due to its features of poverty and very low adaptive capacity.
Therefore, we argue that the effectiveness of warning systems
on alleviating flood loss is strongly correlated with the house-
hold’s economic situation. Rain warning does not help much
if the adaptive capacity of a household is too low.

Analyzing the specific values in Fig. 10 further indicates that
a flood warning system with timely and accurate rain warning,
e.g., from LT02-WI24 to LT24-WI02, can reduce flood losses
by 30–44%, if the household is assured to be able to receive the
warning information and invest in prevention correspondingly.

3.3.4 Flood Loss Under Different Rainfall Scenarios

Following the discussion on warning information and re-
sponse strategies above, the effects of rainfall scenarios were
also tested in the model. As shown in Fig. 11, rainfall scenar-
ios with high hourly rainfall (RS1 and RS2) generally cause
more serious flood losses to all of the households, as they
cause floods very soon and leave less time for responding.
The moderate scenarios (RS3 and RS4) cause relatively mod-
erate losses for all. While in a long period rainfall scenario
with low peak rainfall, damages do not occur for some house-
holds as they can arrange some response measures. For in-
stance, in Fig. 11, most households invest in response mea-
sures in RS5 and they do not suffer damages, except the poor
HH2 due to its limited responding capacity. This finding sug-
gests that it is necessary to pay high attention to extreme
rainfall events when flood management decisions are made,
but moreover, those with limited responding capacity need to
be supported even in a moderate flood.

In addition, the comparison of the flood damages and flood
response costs reveals that damages can be totally avoided
with small investments in responding measures, e.g., HH7
has little flood loss (responding costs) but no damages except
in RS1. This means that an effective response strategy will
play a more significant role in flood control.

4 Uncertainty and Variable Sensitivity
of the Model

Uncertainty analysis is receiving increasing attention by the
flood modeling community and has become an indispensable
part of model simulation for flood risk and loss assessment
[50]. Sensitivity of variables and data input is also considered
as a source of uncertainty and could influence model perfor-
mance in flood studies [63, 64]. To address uncertainty and
sensitivity issues systematically, it is essential not only to as-
sess the probabilities and consequences of failure from the
perspective of individual variables but also to consider the
wider system performance. Therefore, in the following, we
are going to analyze 10 sources of uncertainty and quantify

Fig. 9 Flood damage losses and response costs of the sample households
in RS3 with rain warning of 12 h lead time and 3 h warning interval
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the sensitivity of six key variables in the presented ABM for
flood loss assessment (Table 3).

The rain scenarios are obviously the first significant compo-
nent in the model that influences flood situations and associated
flood losses. It is the key factor in the present study to quantify
the effects of various rain scenarios on flood losses at household
level. Since the modeling results have shown the differences of
the impacts of five rain scenarios in Section 3.3.4, it is unneces-
sary to further test the sensitivity of and the uncertainty from rain
scenarios. This also applies to warning scenarios. The model
results identified the effects of various warning lead times (LT)
and warning intervals (WI) on flood losses in Section 3.3.3,
which indicated the significance of warning scenarios to the
model uncertainty.

Exposure is an attribute of the households that absolutely
influences the model performance in flood loss assessment
[1]. It depends on their location, which is unchangeable once
the model is initiated (Table 1; Section 3.2). However, it
would be meaningless to test the sensitivity of exposure in
the case study model because the change of households’ ex-
posures basically means a change of the case area thus the
produced results would not be comparable.

As in many flood inundation models, the evaluation and
calculation of hydrological elements contribute to uncer-
tainties [25, 49, 50]. The flood process in the model relies
on the surface runoff model and associated variables. The
simplified surface runoff model adopted in this study applies
the gravity-driven drainage mechanism based on a DEM. It
reflects the slope and velocity aspects of surface water flow
but makes regular assumptions on other hydrological elements
like roughness, infiltration, and evaporation (runoff loss).
These elements could cause decrease/increase in the velocity
and amount of flows and thus introduce uncertainties to the
model [65].

The functions of depth-damage curves are usually criticized
for its uncertainty related to the collected data and to the simpli-
fied functional structure. It is often suggested to use actual dam-
age data rather than advanced model structures because the ad-
vantages may be largely absorbed by uncertainties [66]. The
present model derived the depth-damage curves from empirical
survey data attained from the neighboring area with similar social
environment conditions, which are of high reliability. Other un-
certainties associated with the curves are the two parameters that
indicate the damage rate of buildings (Bc1) and the loss rate of

Fig. 11 The flood losses of the
sample households for different
rainfall scenarios and the same
warning information (lead time
12 h and interval 3 h), with black
boxes indicating the response
costs

Fig. 10 The difference of flood
loss rate, for the sample
households in RS3 with different
warning information (LT: lead
time; WI: warning interval, both
have unit in hour)
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non-building properties (Pc1). Sensitivities of the two parameters
are quantified below.

Another challenge faced in this study is the uncertainty of
individual behavior and, in particular, of flood response activities.
To address this challenge, the statistical value of warning cover-
age and responding rate was used [60] and set at 80% in the
model. In fact, the warning coverage normally reaches 98% in
Hong Kong but the responding rate could be much lower as it
depends highly on individual behavior decisions and risk percep-
tions. In the sensitivity analysis, a range of 60–100%with normal
distribution is tested.

The value of households’ properties is essential in estimat-
ing flood damage and loss and is one of the sources of the
uncertainty of the estimations [53]. The actual data on house-
hold properties is unfortunately not available in this study.
Alternatively, the model used the data range (1–10 million
HK$) derived from the local real estate market and assigned
the data based on normal distribution. These data are credible
at the macroscale but could cause uncertainties at household
level. To test the uncertainty and sensitivity in this regard, the
variable of household property (Ph) of the sampled 10 house-
holds is quantified in their value ranges (Table 3).

Sensitivities of the six variables are calculated using the
one-at-a-time technique (OAT) that analyzes the effect of
one variable on the model function at a time, keeping the other
variables fixed [67]. For each variable, Microsoft Excel 2016
was used to generate 100 random values in its value range
according to the data distribution. Each of the 100 random
values was taken as a variable input into the model; therefore,

100 simulations were conducted to test the sensitivity of the
variable (600 simulations in total for the six variables). A
BRepeat^ function button was added to the model so that it
could repeat simulations and change only the value of a se-
lected variable. All the testing simulations were run at the
moderate rain scenario RS3 and warning scenario LT06-
WI08. Figure 12 shows the specific results of the sensitivity
analysis regarding the flood losses of both the sampled 10
households and the overall households in the study.

It is basically comparable that sensitivities of the six variables
performed similar for the 10 sampled households and the overall
households. The variable of household property (Ph) has the
largest value range in the sensitivity analysis, indicating its sig-
nificant role in controlling the model uncertainty. The essential
reason might be that household property not only suffers directly
from flood damages but also determines the household’s adap-
tive capacity that links to response costs. We therefore argue that
a precise database, e.g., household surveys and property statistics,
would be very much helpful to streamline the model calculations
and reduce uncertainties in this regard. The variables Rb and Pc1
also introduce quite large uncertainty to themodeled flood losses,
due to the fact that they are the main factors which reflect human
activities in a flood event. However, the damage rate of buildings
(Bc1) is less sensitive to the model performance because it is
relatively harder to be protected in a short informed flood event.
Different human decisions could greatly influence the effects of
these variables, e.g., decisions on investments to the evacuation
of valuable properties often derive fromwarning information and
have effects only on non-building properties. The analysis of

Table 3 Sources of uncertainty and analyzed sensitivity variables in the ABM of flood loss assessment

Variables Value range Distribution Physical meanings

Rainfall scenario* RS1–RS5 Definite Initially set in the model (Section 2.2.3)

Warning lead time (LT)* 0–24 h Uniform The period from the time of warning release to the time of flood starting

Warning interval (WI)* 0–24 h Uniform The time period from one warning release to the next, indicating the
frequency of warnings

Exposure (Ex)# 0–1 Definite The Ex value of a household reflects its location that is unchangeable
once the model is initiated (Table 1; Section 3.2)

Surface roughness (n) 0.01–0.15 Related to DEM High places (e.g., natural forests) have greater n and low places
(e.g., constructed surface) have smaller n

Runoff loss rate (Rl) 0.2–0.6 mm/h Normal The reduction of runoff depth due to the impacts of infiltration and
evaporation

Damage rate of buildings (Bc1) 0.01–0.1 Normal It reflects the type of the residential building and thus defines the
damage/depreciation rate of the building in a certain flood depth

Loss rate of non-construction
property (Pc1)

0.05–0.15 Normal It reflects the properties in the building (fixture and fittings) and thus
defines the loss rate of the non-construction properties in a certain
flood depth

Response behavior (Rb) 60–100% Normal The probability of a household receiving warnings and taking response
activities

Household property (Ph) 2–20 million HK$ Normal The sum value of a household’s building and non-building properties

*The variables are not involved in the sensitivity quantification, as they are the targeted components of the model itself
# The variable never changes in the case modeling and thus is meaningless for sensitivity quantification
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sensitivities from the human variables is consistent with former
research findings that quantitative information on many of the
Bsofter^ elements is sparse (e.g., organizational, behavioral,
health, and decision issues) [15], and that epistemic uncertainties
are therefore difficult to treat formally by probabilistic methods
[28].

The variable of runoff loss (Rl) contributes more to limit
flood losses comparing with the other five variables. This is
not surprising as the runoff loss function introduces infiltration
and evaporation to the flood inundation model. An increase of
the Rl variable deducts parts of the runoff from becoming
floods. It is visible in the left panel of Fig. 12 that several dots
have values less than zero, which is due to the extreme high
Rls tested (runoff loss is even higher than the runoff amount).
It is worthy to notify that the surface roughness factor (n)
demonstrates relatively concentrated patterns in Fig. 12 that
indicate least sensitivity to flood losses. This derives to the
surface runoff model in which the surface roughness factor
was set as a global variable and regularly related to the
DEM. An increase of the surface roughness (n) would influ-
ence little on the final flood losses, but would delay the flood
or reduce the flood peak that was already reflected in rain
scenarios. In one word, the physical factors runoff loss and
surface roughness are less sensitive in the present model com-
paring with the variables at the human aspect.

5 Discussion and conclusion

5.1 Improving Flood Response Strategies

Based on a number of model simulations in the NTR basin in
northern Hong Kong, this study has examined the effects of
households’ flood prevention measures when facing various
rainstorm scenarios and warning information. The results show

that exposed property amounts, rain warning information, and
rainstorm conditions all contribute to households’ flood losses.

When facing a rain-triggered flood, poor households with low
adaptive capacity to flood threats have the potential to suffer
more flood losses than the rich ones. And the individual adaptive
capacity is very important to the actual responses. It implies a
case that poor households may receive warnings and be willing
to respond but may not able to or have no resource to respond.
This suggests stronger flood prevention andmitigation especially
for the poor, for instance lifting up the ground of residence build-
ings, connecting to timely weather forecasts, checking the con-
ditions of the surrounding drainage facilities frequently, etc.

Findings from this study reveal that, in general, warning lead
time affects flood loss significantly, while the effects are not great
if the warning interval is short. Short warning interval means a
high frequency of warning, which gives the households more
opportunities to receive warning and take actions in a long
raining duration. Receiving warnings with a short time interval
can partly compensate the shortcomings of long warning lead
time. Further results indicate that the damages go higher when
the warning interval is longer, and a longer lead time with shorter
interval can lower the loss rate greatly. Therefore, to improve the
warning system with more frequent information release should
be a priority in flood control planning and management. The
findings are consistent with several studies that provided clear
evidences on the substantial benefit of flood warning systems
[29, 68].

The model results suggest that extreme rainfall scenarios gen-
erally cause more serious flood damages to all households, as
they cause floods very soon and leave less time for responding.
Although moderate rainfall scenarios with low peak rainfall may
cause deeper flood water depth in a long raining period, the
damages can be effectively and timely avoided because rain
warnings were released, which ensures successful execution of
certain response measures.

Fig. 12 Box-whisker plots of the six key variables for the sensitivity
analysis. A range of the 100 simulated flood losses is plotted for each
of the variables. The left panel indicates the sensitivity of the six variables

to the sum flood losses of the sampled 10 households, while the right
panel shows the sensitivity of the six variables to the sum flood losses of
all the 3294 households
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5.2 Policy Implications

The results of this study have several potential policy impli-
cations. First, simulation results show that rain warning plays
a significant role in coping with a coming flood event.
Changes in warning information, including lead time and
warning interval, significantly contribute to the changes in
total flood loss. It is therefore extremely important to keep
improving the rain warning system with more accurate pre-
diction, longer lead time, and more frequent information re-
lease. To achieve this, further research on the mechanisms of
rain-triggered floods and appropriate channels for the release
of warning information are highly recommended.

The exploratory analysis has found in particular that ran-
dom response actions with nowarning guidance do not help to
reduce total flood losses, which suggests that some individuals
who are not covered by warning systems are unable to effec-
tively cope with flood impacts. Due to the lack of capacity of
prevention and resilience, their adaptation to flood incidents
relies on past experiences of dealing with similar risks. Thus,
much adaptation is autonomous and facilitated by the social
capital and resources of households. However, individual ex-
periences are very limited and unorganized. This makes it
complicated and difficult to operate a successful flood man-
agement. The current system of treating flooding as a public
problem does not stress the increased individual role in
responding to flooding risks and damages. The resulting mis-
match in policy potentially exacerbates regional vulnerability
in face of rising flood losses. Further analysis indicates that
supportive government policies related to flood resistance can
play a positive role in helping people to implement flood
fighting measures. Improving individual capacity is a way to
help them adopt appropriate measures during floods, and the
government should pay particular attention to the marginal
communities and people within the community who have a
low level of access to public information. Enhancing adaptive
capacity in this context requires a new vision on the popula-
tions and communities of the region as an integrated system,
supported by institutions that facilitate cross-scale and inter-
sectoral planning. Governmental institutions thus need to in-
vest in simulating how floods affect various city sectors and
what the role of individual effort is in response.

Furthermore, the results of this study also have implica-
tions for adaptation plans for floods under climate change
in other regions and countries. Direct provision of early
disaster warning and prevention information to local com-
munities, particularly to marginalized people, is still not
common in many urbanizing regions. Given the rapid de-
velopment of communication technology, the widespread
individual use of cell phones, and the cost-effectiveness of
text messages to individuals, transparency disaster infor-
mation and prevention services should be explored in more
detail.

5.3 Value of the Model Approach and Outlook

This modeling study makes a shift from a simplistic flood loss
assessment to simulating the effects of the interaction of rain-
fall, flood inundation, and human responses using an agent-
based model. The ABM delivers insights into human response
behavior for flood loss assessment and demonstrates the dy-
namic real-time process of flood damage and loss, which
could not be extracted from the other methods reported in
Sections 1.1 and 1.2.

It has to be pointed out that this study does not only aim to
simulate real flood events and household behaviors, but more
importantly to examine the effects of various flood response
options according to rainstorm/rain warnings. It is an experi-
mental model based on the natural environment in the case
area. The data on water flows and household behaviors do not
fully reflect the real world but are rather simplistic represen-
tations. The model reveals some interesting phenomena in the
flooding process and responding strategies, though limitations
exist in the following aspects, among others: (1) human engi-
neering constructions for flood control were not considered;
(2) flood response behavior was set simply based on warning
information; (3) only one agent type (household) was simu-
lated which does not reflect efforts from community, enter-
prises, and government departments; (4) only one flood event
was simulated where flood experience has no chance to play a
role. Any of these can be specified in future model develop-
ments and applications.

While it is desirable to have a model that represents the
reality to a large degree, currently, there is insufficient infor-
mation on the behaviors and responses of individuals and
organizations during flood events to parameterize the agent
behavior rules. In the present case study, the model borrows
the general findings from some empirical studies to support
exploring the process of flood loss along with various house-
hold responses and compares the effectiveness of different
flood response measures. With these limitations, the model
at its current stage is appropriate for modeling rainfall caused
surface floods as the warning system is based on rain scenar-
ios. Fluvial floods, coastal surge floods, dam failure floods,
and others may be modeled in this model only when there are
reliable warning systems for them. Especially, with very large
flood depths (e.g., over 4 m), there is much less that can be
done on the household level to prevent flood damages. In such
cases, enterprise and government agents may be introduced to
manage large-scale flood prevention measures.

Altogether, a lack of reliable behavior data in the specified
case area and limited knowledge on quantitative human be-
havior jointly limit the reflection of the model to real-world
situations and determine it as a pilot simulation. It therefore
represents a first step towards the development of an integra-
tive operational tool for guiding the design of more adequate
flood response strategies and management plans. Combining
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simple individual components into a model framework that is
easy to use, each of them can be expanded to model more
complex dynamic interactions of flood impacts and responses.
It represents a unique tool for scientists and scholars looking
for a practical framework to explore the complex flood control
system by focusing on the bottom-up individual actions and
self-organization mechanisms of a real-world application. For
full dynamic simulations of the process of flood responses, the
model will be extended with realistic environment conditions
and a more advanced flood response behavior module.
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