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The intracellular calcium concentration ([Ca2+]) has important roles in the triggering of neurotransmitter
release and the regulation of short-term plasticity (STP). Transmitter release is initiated by quite high concen-
trations within microdomains, while short-term facilitation is strongly influenced by the global buildup of
‘‘residual calcium.’’ A global rise in [Ca2+] also accelerates the recruitment of release-ready vesicles, thereby
controlling the degree of short-term depression (STD) during sustained activity, as well as the recovery of the
vesicle pool in periods of rest. We survey data that lead us to propose two distinct roles of [Ca2+] in vesicle
recruitment: one accelerating ‘‘molecular priming’’ (vesicle docking and the buildup of a release machinery),
the other promoting the tight coupling between releasable vesicles and Ca2+ channels. Such coupling is
essential for rendering vesicles sensitive to short [Ca2+] transients, generated during action potentials.
The intracellular [Ca2+] signal has a bewildering multitude of reg-

ulatory functions, and one may ask how a single species of sec-

ond messengers can be involved in so many different roles. In

the nerve terminal, it is well established that the most prominent

one—Ca2+-triggering of neurotransmitter release—achieves its

unique properties by activating a relatively low-affinity Ca2+ sen-

sor. Therefore, high Ca2+ concentrations are required, which

persist for only very short episodes (during action potentials)

and are spatially constrained to the vicinity of open Ca2+ chan-

nels. In contrast, other functions are mediated by slow variations

of [Ca2+] of much smaller amplitude, which build up throughout

the nerve terminal during episodes of high synaptic activity and

decay during periods of rest. Such slow increases in [Ca2+]

accelerate the recruitment of vesicles (Dittman and Regehr,

1998; Stevens and Wesseling, 1998; Wang and Kaczmarek,

1998), influence the release probability during action potentials,

and may trigger asynchronous release. Detailed kinetic charac-

terization of these processes is required to understand the inter-

actions between them. We will review the current status of such

studies, with the calyx of Held synapse taking a central role. This

preparation provides quantitative dose-response curves for the

action of calcium, as well as accurate kinetic information, since

it allows for simultaneous pre- and postsynaptic voltage clamp,

combined with fluorimetric Ca2+ measurement and caged-Ca2+

stimulation. We will argue that changes in synaptic properties,

which go along with molecular perturbations, rarely can be inter-

preted as a one-to-one relationship between the given molecule

and an observed functional change. In this context, we will con-

sider the debate about multiple Ca2+ sensors (e.g., for synchro-

nous and asynchronous release or else for facilitation). We will

also focus on the question of what are the rate-limiting steps

for sustained release and what molecules control these. We

will compile evidence that the enhancement of vesicle priming

by elevated [Ca2+] may, indeed, reflect two mechanistically

distinct steps.
Action-Potential-Induced Neurotransmitter
Release Is Triggered by Microdomain
[Ca2+] and Is Relatively Robust
An action potential triggers a short burst of neurotransmitter

release—the so-called synchronous release—followed by a de-

caying tail of ‘‘asynchronous release,’’ which is about two orders

of magnitude smaller in terms of vesicle release rates. Asynchro-

nous release can build up during trains of action potentials, par-

ticularly so in some types of inhibitory neurons (Lu and Trussell,

2000; Hefft and Jonas, 2006). During prolonged pauses of activ-

ity, release rates decay back to the level of so-called spontane-

ous release, which gives rise to miniature postsynaptic currents.

Synchronous release can be readily explained by short-lived,

so-called micro- or nanodomains of elevated [Ca2+], which build

up and decay rapidly around voltage-dependent Ca2+ channels,

while these open and close during action potentials (Adler et al.,

1991; Llinas et al., 1992; Stanley, 1993; Neher, 1998; Bucurenciu

et al., 2008). Detailed biophysical modeling studies have ex-

plored the properties of such nanodomains in terms of a reac-

tion-diffusion mechanism by which Ca2+ ions move away from

Ca2+ channel mouths and interact with both mobile and fixed

Ca2+ buffers (Zucker, 1996; Neher, 1998). We will use the term

nanodomain for the immediate vicinity of a few Ca2+ channels,

where Ca2+ is not in equilibrium with fast buffers. This is typically

in the range 10–100 nm (Naraghi and Neher, 1997). Microdo-

mains, in our terminology, include nanodomains as well as

subcellular regions of elevated [Ca2+] (e.g., in the vicinity of active

zones, typically 100 nm to 1 mm across).

The dimensions of nanodomains are well below the diffraction

limit of light microscopy, such that their properties cannot be

directly recorded by optical Ca2+-imaging techniques. However,

quantitative experimental data on amplitude and time course of

nanodomain Ca2+ signals have been obtained by a three-step

‘‘bioassay’’ approach. These studies first establish an experi-

mental ‘‘dose-response curve,’’ which is a relationship between
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Table 1. Ca2+ Dependence of the Rate of Exocytosis in Various Secretory Cells

Cell Types Max. Rate K10%
a Delay at K10% Ca Cooperativity References

Pituitary melanotrophs 25 s�1 20 mM ND 3 1

Pancreatic b cells 70 s�1 1–10 mM ND 2–5 2, 3

Chromaffin cells 1500 s�1 40 mM 3 ms 3 4

Rod photoreceptors 300 s�1 (?) 10 mM (?) ND 3 5

Bipolar cells 3000 s�1 80 mM 1 ms 4 6

Inner hair cells 1700 s�1 20 mM 1.5 ms 5 7

Calyx of Held 6000 s�1 30 mM 0.3–1 ms 5 8, 9

Inhibitory basket

cell (cerebellum)

5000 s�1 20 mM 1 ms 5 10

References: 1, Thomas et al. (1993); 2, Barg et al. (2001); 3, Wan et al. (2004); 4, Voets (2000); 5, Thoreson et al. (2004); 6, Heidelberger et al. (1994); 7,

Beutner et al. (2001); 8, Bollmann et al. (2000); 9, Schneggenburger and Neher (2000); 10, Sakaba (2008).
a K10%: Ca concentration at which the rate constant is 10% of the maximal rate.
release rate and intracellular [Ca2+]. To make these measure-

ments, flash photolysis of Ca2+ is used to produce spatially uni-

form [Ca2+] elevations while measuring [Ca2+] fluorimetrically

and measuring release rates on the basis of the postsynaptic re-

sponse. In a second step, a kinetic model of the release process

is formulated, which accurately describes the caged-Ca2+ data

within the relevant range of [Ca2+]. In a third step, the time course

of release during an AP is measured, and it is asked which [Ca2+]

waveform and magnitude have to be postulated, such that the

kinetic model would reproduce the AP-induced release.

Caged-Ca2+ studies of release kinetics have been performed

on a number of preparations, ranging from neuroendocrine cells

to ribbon synapses and synapses of the central nervous system

(see Table 1). Usually, peak release rates following step-like in-

creases in [Ca2+] were evaluated, as well as a parameter describ-

ing the delays of responses. With few exceptions, it was found

that peak vesicle release rates rise within a narrow [Ca2+] range

to values in the range 102 to 104 (vesicle 3 s)�1, which means

that the mean survival time of a release-ready vesicle (before

exocytosing), if exposed to high [Ca2+], is between 10 ms and

a fraction of a millisecond (see Table 1). Relationships between

release rates and [Ca2+] were approximated by power laws

with exponents between 3 and 6. In two studies at the calyx of

Held, the relationship was extended to very low [Ca2+] (Lou

et al., 2005; Sun et al., 2007). Both studies found that for release

rates lower than 1 mM the power law no longer provided an accu-

rate description. Rather, it was found that an allosteric model can

be applied, in which Ca2+ binding to five subunits of a release

machine increased release rates in a cooperative fashion. The

dynamic range of this Ca2+-dependent action was about seven

orders of magnitude, increasing the spontaneous release rate

of 0.45 vesicles/s to maximum values around 2 3 106 vesicles/s

(Lou et al., 2005). The other study assigned the deviations from

the simple power law to the contribution of a second high-affinity

Ca2+ sensor (Sun et al., 2007).

Amplitudes of [Ca2+] microdomains and their temporal half-

widths (Bollmann et al., 2000; Schneggenburger and Neher,

2000) as derived by step three of the ‘‘bioassay approach’’ are

well compatible with the expectations of a diffusional model, if

it is assumed that mean distances between vesicles and nearby

channels are 30–60 nm (Meinrenken et al., 2002). The presumed
862 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
short lifetime of [Ca2+] microdomains was corroborated by an el-

egant study in which [Ca2+] transients (rather than step-like

[Ca2+] elevations) were produced by photolysis of caged Ca2+

(Bollmann and Sakmann, 2005). It turned out that only [Ca2+]

waveforms as short as those predicted were able to reproduce

typical EPSC waveforms. Any transients longer than that would

result in excessively long rise times of EPSCs. The microdomain

properties were also explored by confocal spot measurements.

In this technique, light from a laser-illuminated source pinhole

was projected through the epi-illumination port of the micro-

scope and focused to a submicrometer ‘‘spot’’ on the specimen

(DiGregorio et al., 1999). [Ca2+] hotspots of micrometer dimen-

sion were detected, which most likely represent the convolution

of even smaller microdomains with the point spread function of

the microscope objective.

Given the fact that the release machinery is made up of a large

number of synaptic proteins (i.e., the SNAREs, SM-proteins,

complexin, synaptotagmins), many of which may be modulated

by phosphorylation and other influences, one would expect that

the release process itself should be subject to multiple modula-

tion and quite sensitive to experimental perturbations. However,

only a few ‘‘modulators’’ have been found, so far, which would

clearly change the properties of the intracellular dose-response

curve, such as its Ca2+ sensitivity, steepness, maximum rate,

etc. One such modulator is phorbol ester, which activates

Munc13 and PKC (Betz et al., 1998; Wierda et al., 2007). A careful

study at the calyx of Held showed that phorbol esters raise the

low end of the dose-response curve, together with increasing

spontaneous release (Lou et al., 2005). Remarkably, in the

framework of an allosteric model of release, the dose-response

curve of the control case could also describe the phorbol ester

data after the increase of only a single parameter, which is the

spontaneous release rate in the Ca2+-unbound (or relaxed) state.

In endocrine secretion, phorbol esters were shown to shift the

dose-response curve (Wan et al., 2004) or else to bring forward

a component of release, which is ultrasensitive toward [Ca2+]

(Yang and Gillis, 2004).

Another group of ‘‘modulators’’ are the clostridial neurotoxins,

which have long been known to target the core of the release

machinery—the SNARE proteins (Blasi et al., 1993; Chen and

Scheller, 2001; Schiavo et al., 2000). In a caged-Ca2+ study at
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the calyx of Held (Sakaba et al., 2005), it was found that two

toxins, which cleave syntaxin (BoNTxC) and synaptobrevin

(TetTx), progressively reduce release while leaving the kinetics

of the remaining vesicles unchanged. In contrast, a toxin that re-

moves a small peptide from SNAP25 (BoNTxA) strongly altered

the dose-response curve and the kinetics of release. These re-

sults were readily explained by the assumption that a single hit

by BoNTC and TetTx renders the release machinery with its cor-

responding vesicle nonfunctional, while the slight modification of

SNAP25 by BoNTxA has less drastic effects, altering energetics

and kinetics of the response, but not eliminating it completely.

Likewise, in adreneal chromaffin cells, mutations in SNARE pro-

teins, which would interfere with the zippering of the SNARE

complex (Sorensen et al., 2006) or else with the linkage between

the SNARE complex and the vesicle membrane (Kesavan et al.,

2007), led to drastic changes in release kinetics. Many other mu-

tations on SNARE proteins influenced vesicle pool sizes rather

than the speed and Ca2+ sensitivity of the triggering reaction (re-

viewed by Neher, 2006).

At the calyx of Held, a massive change in the dose-response

curve was induced by molecular genetics (Sun et al., 2007).

Here, the gene for synaptotagmin 2—the dominant isoform of

this protein at this synapse—was ablated. As a consequence,

it was found that the steep rise in release rate at higher [Ca2+]

was lacking, while the lower end of the dose-response

curve was almost unchanged, except for a higher basal value.

This was interpreted in terms of the lack of the Ca2+ sensor for

fast, synchronous release (synaptotagmin 2) and the remaining

release being triggered by an independent second Ca2+ sensor

for slow release. This is, indeed, to date the most direct evidence

for such a separate sensor. However, inspection of the data of

Sun et al. (2007) suggests that release in the absence of synap-

totagmin 2 can also be described by an allosteric model with re-

duced dynamic range. It might well be that synaptotagmin 2 is

specialized (like synatotagmin 1) in forming release machines

of high dynamic range, while other isoforms (which would com-

pensate for synaptotagmin 2 in its absence) would elicit more

spontaneous release and enhance release rates upon binding

of Ca2+ only to a smaller extent. Additionally, it should be pointed

out that the biophysical properties of the [Ca2+] signal alone are

complex enough to produce synchronous and asynchronous re-

lease with just a single sensor (Xu-Friedman and Regehr, 1999).

Thus, one can readily assign the rapid decay of the synchronous

release to the process of diffusional collapse of nanodomains af-

ter closure of ion channels, while the slow and complex decay of

asynchronous release (Scheuss et al., 2007) would reflect further

diffusional collapse of microdomains, Ca2+ binding to slow

buffers (Müller et al., 2007), and Ca2+ reuptake and extrusion

(Kim et al., 2005). These processes operate in different kinetic re-

gimes, since the kinetics of nanodomains are dominated by the

rapid binding of Ca2+ to fast buffers and diffusion on very small

length scales (Naraghi and Neher, 1997), which is orders of mag-

nitude faster than long-range diffusion and Ca2+ sequestration.

Quite a number of additional mechanisms have been postu-

lated to influence the Ca-triggered exocytosis, such as modula-

tion by cAMP (Trudeau et al., 1997), inositolpolyphosphates

(Illies et al., 2007), and bg subunits of G proteins (Blackmer

et al., 2001, 2005; Gerachshenko et al., 2005). It should be noted,
though, that these studies were based on overall assays of re-

lease and not on a direct measurement of the intracellular

[Ca2+] dose-response curve. Such studies very often cannot dis-

tinguish between effects on Ca2+ triggering and those on vesicle

pool sizes. Prominent effects of bg subunits of G proteins were

ascribed to interference with Ca2+ triggering (Blackmer et al.,

2001). However, the same analogs did not produce any change

in the final steps of fusion in the calyx of Held (Takahashi et al.,

2000; Sakaba and Neher, 2003b). Rather, they prevented the

Ca2+ enhancement of vesicle recruitment (to be described be-

low).

In summary, we would like to propose that the core of the re-

lease machinery should be viewed as a relatively robust system.

Quantitative differences in its properties between different se-

cretory systems may reside in the choice of isoforms of partici-

pating proteins (e.g., synaptotagmin 2 versus synaptotagmin 1)

(Nagy et al., 2006; Xu et al., 2007) or else different complexins

(Xue et al., 2008), SNARES (Sorensen et al., 2003; Borisovska

et al., 2005), and Munc13s (Rosenmund et al., 2002). Interfer-

ence with this core by clostridial toxins, mutations, or gene abla-

tion will, of course, change its properties. However, physiologi-

cally acting modulation of the intracellular dose-response

curve has so far only been well-proven for phorbol esters and

signaling pathways, which act through their natural analog, diac-

ylglycerol.

Vesicle Docking and Priming Are Enhanced
by Globally Increased Intraterminal [Ca2+]
In phasic synapses, such as glutamatergic synapses in the hip-

pocampus and in the cortex, a major cause of short-term de-

pression (STD) during sustained activity is the partial exhaustion

of a pool of release-ready vesicles (Zucker and Regehr, 2002).

While other factors (e.g., postsynaptic receptor desensitization)

may contribute to STD (Trussell et al., 1993; Koike-Tani et al.,

2008), the steady release is determined by a balance between

vesicles being consumed during APs and the recruitment of

new ones. It has been shown in a variety of neuronal and neuro-

endocrine preparations that the recruitment process is en-

hanced by elevated [Ca2+] (Von Rüden and Neher 1993; Dittman

and Regehr, 1998; Stevens and Wesseling, 1998; Wang and

Kaczmarek, 1998), and it was recognized that this enhancement

is essential for maintaining adequate release during high-fre-

quency bursts of activity (Dittman et al., 2000).

In other types of synapses, so-called tonic synapses (Atwood

and Karunanithi, 2002; Millar et al., 2005), medium-frequency

bursts of activity do not lead to depression, but rather to a pro-

gressive increase in synaptic strength by up to two orders of

magnitude—a process sometimes called synaptic enhancement

(Mossy fiber synapse; Regehr et al., 1994) or ‘‘frequency facilita-

tion’’ (lobster nmj; Worden et al., 1997). It has been debated

whether this increase reflects an increase in release probability

or else an increase in the availability of vesicles (i.e., an increase

in the size of the release-ready vesicle pool). A recent caged-

Ca2+ study on the crayfish neuromuscular synapse, comparing

‘‘phasic’’ and ‘‘tonic’’ synapses, which coexist in this prepara-

tion, came to the conclusion that differences between the two

types can be well described if one assumes that tonic synapses

have a relatively empty vesicle pool at rest (Millar et al., 2005). In
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 863
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this scheme, synaptic enhancement reflects an increase of the

recruitment rate, outweighing the vesicle consumption and actu-

ally leading to an increase in pool size during a burst of activity. If

this is the case, and if the enhanced recruitment is due to ele-

vated [Ca2+], one would expect a transient overfilling of the

pool at the end of a burst of activity due to enhanced vesicle re-

cruitment, as long as [Ca2+] stays elevated. This signature of

transient overfilling has actually been observed in hippocampal

autapses of transgenic animals, in which the lack of Munc13

was rescued by overexpression of Munc13-2 (Rosenmund

et al., 2002). Wild-type synapses of this kind usually express

mainly Munc13-1 and display net depression when stimulated

with a 10 Hz train. After such trains, EPSC amplitudes recover to-

ward the resting level. In synapses rescued with Munc13-2,

a pronounced rebound effect was observed, with a peak EPSC

up to 3-fold over the resting EPSC shortly after the end of a stim-

ulus train (10 Hz). Similarly, autapses from transgenic mice lack-

ing the CAPS protein showed a very strong rebound effect of this

type (Jockusch et al., 2007).

These findings are most readily explained if one assumes a dy-

namic equilibrium between a reserve pool of vesicles and

a primed pool, in which the filling state of a certain number of

priming sites is determined by the ratio of priming and ‘‘deprim-

ing’’ rates (see scheme I, Figure 2). In phasic synapses, the prim-

ing rate at rest would be larger than the depriming rate, such that

the priming sites would mostly be occupied; while in tonic synap-

ses, the opposite would be the case. Enhanced priming by ele-

vated [Ca2+] would lead to an increased pool and transient over-

filling in tonic synapses, but not so much in phasic synapses, in

which the pool is already close to its maximum at rest. This

scheme has its roots in similar phenomena observed in neuroen-

docrine cells. The pool of release-ready granules in adrenal chro-

maffin cells (Voets, 2000) and pancreatic cells (Gromada et al.,

1999) shows such a dynamic equilibrium. It is increased sev-

eral-fold concomitantly with an increase in recruitment rate

when elevating basal [Ca2+] by 100–200 nM (Voets, 2000), and

it shows ‘‘depriming’’ within seconds when [Ca2+] is lowered

(see Sorensen, 2004, for review). Dynamic docking and undock-

ing of vesicles is also observed in TIRF measurements on ribbon

synapses (Zenisek et al. 2000). In the calyx of Held, strong Ca2+-

dependent enhancement of vesicle recruitment has been found

(see below). However, changes in recruitment rate were not par-

alleled by changes in resting pool size, which indicates that the

pool is full even under relatively low recruitment rates at resting

[Ca2+]. Obviously, the calyx of Held is a ‘‘phasic’’ synapse in

the sense of the above discussion (see also Neher, 2006). Hippo-

campal excitatory synapses of wild-type animals would also be

‘‘phasic’’ ones. However, the same synapses in the absence of

CAPS or when rescued with Munc13-2 would be tonic, due to

a very unstable primed state, as suggested by Jockusch et al.

(2007).

Facilitation, Synchrony, and Spontaneous Release
So far, our discussion of the effects of global [Ca2+] elevation was

restricted to the [Ca2+] influence on vesicle recruitment and pool

size. However, higher basal [Ca2+] also is expected to have an in-

fluence on evoked release, since it will lead to higher peak [Ca2+]

during action potentials and, consequently, to a higher probabil-

864 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
ity of release (p) during an AP. This mechanism is the basis of the

‘‘residual-calcium’’ hypothesis for ‘‘paired pulse facilitation’’

(PPF), put forward by Katz and Miledi (1968). In this scheme, el-

evated [Ca2+] following a first stimulus would lead to an in-

creased p during a second pulse. The decay of this PPF with in-

creasing time interval between the two pulses would reflect the

decay of residual [Ca2+]. Many objections have been raised

against this view, mostly based on the argument that a small in-

crement in basal [Ca2+] would not really matter a lot if added to

the microdomain peak [Ca2+], which is one to two orders of mag-

nitude higher than residual [Ca2+] (see Zucker and Regehr, 2002,

for a review on this debate). Also, it was found that calcium cur-

rents facilitate and inactivate with time courses similar to those of

facilitation and depression of synaptic transmission (Borst and

Sakmann, 1998; Forsythe et al., 1998; Cuttle et al., 1998; In-

chauspe et al., 2004; Xu and Wu, 2005; Ishikawa et al., 2005; Mo-

chida et al., 2008). However, quantitative comparisons between

dynamic changes in currents and EPSCs came to the conclusion

that changes in release cannot be fully attributed to changes in

Ca2+ current under all recording conditions (Kreitzer and Regehr,

2000; Felmy et al., 2003; but see Xu and Wu, 2005). Also, it must

be considered that an increase in p will be obscured by a con-

comitant decrease in pool size when measuring EPSCs in phasic

synapses (Rozov et al. 2001; Zucker, 1973)—in contrast to the

case of tonic synapses, in which vesicle consumption is com-

pensated by an enhanced recruitment. A quantitative study in

the calyx of Held (Hosoi et al., 2007), in which an attempt was

made to separate changes in pool size from those in p, came

to the conclusion that, during a 100 Hz stimulus train, p increases

during the initial 5–10 APs by a factor of five, while pool size de-

creases by more than a factor of ten, leading to net depression

(see below). A recent study on transgenic mice (Müller et al.,

2007) in which the slow Ca2+-binder parvalbumin was ablated

showed characteristic changes in the decay of [Ca2+] transients

following single APs. These were paralleled by changes in PPF,

strongly suggesting that a large part of PPF is directly linked to

the global [Ca2+] signal in the nerve terminal. Nevertheless, a tight

correlation between Ca2+-current dynamics and PPF has been

shown (Inchauspe et al., 2004; Ishikawa et al., 2005). The argu-

ment that the increment in basal [Ca2+] is too small to explain

PPF can be countered by the possibility of nonlinear summation

of basal and microdomain [Ca2+], which may happen in the pres-

ence of fast saturable [Ca2+] buffers (Neher, 1998). Such a mech-

anism has been found in hippocampal mossy fiber synapse

(Blatow et al., 2003).

These examples and debates about PPF illustrate that EPSCs

represent a complex interplay between mechanisms, which con-

trol vesicle exocytosis and the availability of releasable vesicles.

Under conditions when initial release probability is low, only

a small fraction of the vesicle pool is consumed during a first

stimulus. Thus, an increase in p can manifest itself during a sec-

ond stimulus. If, however, a larger fraction of the pool is con-

sumed during a first AP, the increase in p may be superseded

by the fact that only a reduced pool is left over—leading to net

depression. Kinetic models, which incorporate both facilitation

and consumption of vesicles, can nicely reproduce the behavior

of various type of synapses (Dittman et al. [2000] for climbing

fiber and parallel fiber synapses in the cerebellum as well as
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Schaffer collateral to CA1 synapses of hippocampus cells; Var-

ela et al. [1997] for cortical synapses). However, definite answers

about the interplay between facilitation and depression may be

possible only in synapses, in which these aspects can be teased

apart experimentally, and if postsynaptic contributions are al-

lowed for (Foster et al., 2002). Neglect of postsynaptic effects

can readily lead to incorrect conclusions about pool dynamics

(Weis et al., 1999).

The Calyx of Held
One preparation in which a distinction between changes in ves-

icle pools and intrinsic release properties is possible is the calyx

of Held. This structure is the presynaptic terminal of a synapse in

the auditory pathway located in the medium nucleus of the trap-

ezoid body (MNTB) in the brainstem. Forsythe (1994) showed

that the cup- or calyx-shaped terminal can be voltage clamped

using the tight-seal whole-cell variant of the patch-clamp tech-

nique (Hamill et al., 1981). Borst et al. (1995) showed that, in-

deed, simultaneous dual voltage clamp of the pre- and postsyn-

aptic compartments is possible and that the presynaptic

terminal can be loaded via the patch pipette with Ca2+ chelators

and indicator dyes (Borst and Sakmann, 1996; Helmchen et al.,

1997). Presynaptic [Ca2+] can be measured fluorimetrically

(Helmchen et al., 1997), and release can be triggered by flash

photolysis from caged Ca2+ (Bollmann et al., 2000; Schneggen-

burger and Neher, 2000). Thus, the synapse has many attributes

of the ‘‘perfect’’ synapse for a biophysical dissection of neuro-

transmitter release. However, it does have its caveats. The age

of animals at which such measurements are best performed is

from postnatal day 8 to 10 (in rats), at which time the synaptic

properties are not yet fully matured (Taschenberger and von

Gersdorff, 2000; Iwasaki and Takahashi, 2001). At this age, there

is significant accumulation of ‘‘spillover glutamate’’ in the synap-

tic cleft during strong stimulation, resulting in postsynaptic de-

sensitization. This must be allowed for computationally (by a

special deconvolution technique) and pharmacologically (using

cyclothiazide and kynurenic acid) if one wants to use the post-

synaptic current as an assay of release (Neher and Sakaba,

2001a, 2001b). Alternatively, capacitance measurement (Neher

and Marty, 1982) can be used for monitoring exocytosis (Sun

and Wu, 2001). In addition, the calyx of Held shows another com-

plication, a distinctly heterogeneous vesicle pool.

Heterogeneity of vesicles with respect to their release proba-

bility has been described in several types of synapses (Walmsley

et al., 1988; Hessler et al., 1993; Rosenmund et al., 1993). In the

calyx of Held this was first shown by Wu and Borst (1999), who

observed strong synaptic depression after a 10 ms depolariza-

tion of the presynaptic terminal and suggested that the remain-

ing release was due to ‘‘rapidly replenished but reluctant’’ vesi-

cles. Sakaba and Neher (2001a) studied this phenomenon in

detail and found that with inclusion of some EGTA (0.5 mM) in

the presynaptic pipette the response to a 50 ms depolarization

can be reproducibly split into a fast component of release with

a time constant of 2–3 ms and a second one about ten times

slower. Since Ca2+ current is approximately constant during

this interval, they argued that this result could best be explained

by two vesicle populations, each harboring about 1500 vesicles,

with mean lifetimes (until exocytosis after the onset of depolar-
ization) of about 3 ms and 30 ms, respectively. Below, we will dis-

cuss the question of why one type of vesicles reacts quickly

while the other one reacts slowly.

Since a calyx terminal has about 500 to 600 active zones (Sät-

zler et al., 2002), a single active zone will harbor on average about

three fast vesicles and three slow ones. With a maximal stimulus

at elevated extracellular [Ca2+], 85% of these vesicles can be re-

leased within 5 ms (Sakaba and Neher, 2001a). Furthermore, it

was found that, after a depleting stimulus, slowly releasing ves-

icles recover very rapidly (Wu and Borst, 1999; Sakaba and

Neher, 2001b), while fast vesicles recover slowly. Also, it turned

out that the slow recovery of fast vesicles is accelerated when

global [Ca2+] rises in the terminal (e.g., during strong stimulation

or after infusing Ca2+-EGTA mixtures). An important role of cal-

modulin could be assigned to this Ca2+-dependent process,

since calmodulin blockers prevented the acceleration of recov-

ery (Sakaba and Neher, 2001b) and it was shown that a sufficient

level of cAMP must prevail for this acceleration to take place (Sa-

kaba and Neher, 2003b). In contrast, recovery of the slow vesicle

population was always fast (<100 ms) and was not influenced by

calmodulin blockers and manipulations regarding cAMP. The

only perturbations that slowed down recovery of the slowly re-

leasing vesicles were depletion of ATP and disruption of the cy-

toskeleton by latrunculin (Sakaba and Neher, 2003a). Alternative

interpretations for slow release components have been offered,

such as adaptation of the release apparatus (Hsu et al., 1996,

Wölfel et al., 2007) or rapid recruitment of vesicles (Kushmerick

et al. 2006). Indeed, the separation between slow release and

rapid recruitment, which is immediately followed by release dur-

ing an ongoing stimulus, is not straightforward. During long de-

polarizations, release rates at the calyx of Held settle to a plateau

of about 10–15 vesicles/ms, which further decays with half-times

of 50–100 ms (Neher and Sakaba, 2001b). This is less than an or-

der of magnitude slower than the slow component and therefore

not readily isolated. However, exposure of calyces with latruncu-

lin and infusion of ATP-g-S retarded recovery of release signifi-

cantly while leaving the time course of release itself (both fast

and slow components) almost unchanged. This would not be ex-

pected if the slow component were due to rapid recruitment.

Slow components of release have been described, next to the

calyx, in mossy fiber boutons (Hallermann et al., 2003) and rib-

bon-type synapses (Mennerick and Matthews, 1996; Moser

and Beutner, 2000) but are not very prominent at inhibitory syn-

apses (Sakaba, 2008). Physiologically more important for AP-in-

duced (synchronous) release are the rapidly releasing vesicles

(Sakaba, 2006), while the slowly releasing ones may contribute

to asynchronous release during and after high-frequency firing.

Therefore, most of the conclusions to be discussed below do

not hinge on an accurate separation of slow release and rapid re-

cruitment. Nevertheless, its kinetic characterization offers impor-

tant insights with regard to molecular mechanisms (see below).

The Ca2+ dependence of recruitment of fast-releasing vesicles

after a depleting stimulus was studied in a quantitative manner

(Hosoi et al., 2007). Various manipulations with global intratermi-

nal [Ca2+] showed that there is a linear relationship between the

recruitment rate of fast-releasing vesicles and [Ca2+] with a basal

value of 0.1 pools/s at zero [Ca2+] (i.e., the pool refills with a time

constant of 10 s). The slope of this relationship has been found to
Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 865
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Figure 1. Comparing Ca2+ Dependence of
Release-Triggering with that of Vesicle
Recruitment
The intracellular dose-response curve for Ca2+ ac-
tion in vesicle release at the calyx of Held (— and
symbols; taken from Lou et al., 2005 [reprinted
by permission from Macmillan Publishers Ltd:
Nature, copyright 2005) is shown together with
the Ca2+ dependence of vesicle recruitment
(yellow line) according to Hosoi et al. (2007).
Ca2+ dependence of vesicle recruitment cannot
be measured accurately at higher [Ca2+] because
of ongoing release of synaptic vesicles, and
therefore, a dotted yellow line was used as a
prediction for a Michaels-Menten type Ca2+

dependence. Colored regions of the graph repre-
sent the ranges of [Ca2+] in which either the recruit-
ment rate is much larger than release (left side) or
the opposite holds true (right side). The slope of
the dose-response curve approaches 4 in its
steepest portion, while that of vesicle recruitment
is %1. Values are given for the calyx of Held. At
inhibitory synapses (Sakaba, 2008), the steepness
parameters are similar (Table 1); however, the
crossover of the two curves occurs already at
1 mM. Resting [Ca2+] level (50 nM), peak global
[Ca2+] increase after action potential (500 nM;
Müller et al., 2007), steady-state [Ca2+] during
a 100 Hz stimulus train (1.5 mM; Hosoi et al.,
2007), as well as peak nanodomain-[Ca2+] are
indicated by arrows.
be about 1/(mMs), meaning that at 1 mM [Ca2+] the refilling rate is

1.1 pools/s or else the time constant is 900 ms. Applying 100 Hz

stimulation, it was found that intraterminal [Ca2+] rose to�1.5 mM

during such a tetanus, and, consequently, the recruitment of

vesicles was accelerated many-fold relative to the recruitment

at resting [Ca2+]. Therefore, steady-state EPSCs during stimula-

tion were an order of magnitude higher than they would be if

acceleration of recruitment would not take place. In experiments

under the influence of calmodulin blockers, substantial reduction

of steady-state release and deeper short-term depression during

100 Hz stimulus trains could be confirmed.

Figure 1 summarizes two of the [Ca2+] effects discussed so far. It

shows the intracellular dose-response curve for [Ca2+] triggering,

as obtained from caged-[Ca2+] experiments (Bollmann et al.,

2000; Schneggenburger and Neher, 2000; Lou et al., 2005), to-

gether with the [Ca2+] dependence of vesicle recruitment. Here,

a qualification to the above discussion of the latter relationship is

required. The linear dependence of recruitment rate upon global

[Ca2+] was shown for [Ca2+] values between 0 and z1 mM (Hosoi

et al., 2007). It cannot be expected that the acceleration of recruit-

ment will continue indefinitely when raising [Ca2+]. An upper limit

for recruitment of about 10 vesicles/ms can be defined by the

steady-state release, observed during a strong stimulus at some

50–100 ms after its onset (Neher and Sakaba, 2001b). Therefore,

the curve drawn in Figure 1 for vesicle recruitment is a Michae-

lis-Menten relationship (as originally suggested by Dittman and
866 Neuron 59, September 25, 2008 ª2008 Elsevier Inc.
Regehr, 1998) with an initial slope of 1 pool/(mMs), an offset of

0.1 pools/s, and a maximum recruitment rate of 5 vesicles/ms or

3.3 pools/s—assuming that 50% of the vesicles are recruited to

a fast pool of 1500 vesicles. In spite of the uncertainty about re-

cruitment at higher [Ca2+], Figure 1 shows clearly that there is a

regime of [Ca2+] values (from zero to about 500 nM) in which the

recruitment rate is much higher than the release rate. This is the

range within which a large fraction of the pool of releasable vesi-

cles remains available for release and within which release rates

are controlled by the Ca2+-triggering mechanism. In contrast, at

[Ca2+] values above 5 mM, release rates are higher than those for

recruitment. Therefore, the pool of vesicles will be depleted

when [Ca2+] is maintainedat such high values, and the rate-limiting

step for overall release is vesicle recruitment. The two curves inter-

sect because release follows a high-power function of [Ca2+] while

recruitment is linear in [Ca2+] or rather saturating. Dose-response

curves measured during slow variations in [Ca2+] (such as ob-

tained with K+ depolarization or calcimycin) are expected to follow

the ‘‘release triggering’’ curveup to�1–2 mM and tomerge with the

‘‘vesicle recruitment’’ curve for higher [Ca2+]. The ‘‘apparent Ca2+

affinity’’ of such a curve would be�2–3 mM and the dynamic range

at most four orders of magnitude, instead of seven.

Two other features of Ca2+-dependent vesicle recruitment

should be mentioned, which are consequences of parameters

characterizing recruitment and [Ca2+] dynamics at the calyx of

Held.
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Figure 2. Short-Term Depression with
Ca2+-Dependent Recruitment of Vesicles;
Expectations of a Simplified Model
The upper panel shows quantal content of EPSCs
at steady state during high-frequency stimulation,
relative to that at stimulus onset, plotted against
frequency, f. Dotted line (.): expectations for the
scheme of pool depletion (scheme 1) assuming
a strictly linear recruitment rate, which is strictly
linear with [Ca2+] with slope k and a linear depen-
dence of steady-state [Ca2+] on frequency.
Straight line (—): same model; however, assuming
a Michaelis-Menten-type [Ca2+] dependence of
the recruitment rate, with the same initial slope
(1.5 pools/(mMs) and a KM of 2.13 mM. Facilitation
has been neglected in this calculation. The slope
SCa of steady-state [Ca2+] as a function of f was as-
sumed to be 15 nM/Hz. Data points are approxi-
mate values of relative quantal content at the calyx
of Held, kindly provided by Holger Taschenberger.
The steady-state filling of the pool for the high-fre-
quency limit in the ideally linear case (35%) and the
high-frequency limit is calculated from the expres-
sion k 3 sca/(k 3 sca + p), where p is the probability
of a given vesicle to be released during an action
potential, assumed to be 0.043. k was assumed
to be 1.5 pools/(mM 3 s) and sCa was 0.015 mM
3 s. (Lower panel) Recruitment rates for both the
linear (—) and the Michaelis Menten model (—).
Note that the release rate (upper panel) drops
steeply as long as the recruitment rate is close to
its basal value (z0.1). However, for frequencies
beyond 10 Hz, the linear rise dominates, keeping
the release constant.
� [Ca2+]-dependent recruitment is hard to observe after

a train of stimuli. The decay of the global [Ca2+] elevation

is so fast after a short burst of stimuli (time constant at

30–100 ms, Müller et al., 2007) that little recovery of de-

pression is expected before basal [Ca2+] levels are reached

(for a decay from 1.5 mM and 50 ms time constant, the pool

will recover by 7.5%). The majority of recovery will occur at

resting levels. Correspondingly, Wang and Kaczmarek

(1998), who first described Ca2+-dependent recovery at

the calyx of Held, had to resort to the strongest possible

stimulation to demonstrate this effect. Nevertheless, Ca2+

enhancement of recruitment is very powerful during a train

of stimuli.

� [Ca2+]-dependent recovery is well described by global

[Ca2+], although any ‘‘sensor’’ for this mechanism is ex-

pected to be near the membrane and to ‘‘sense’’ microdo-

main [Ca2+]. Again, this is a consequence of rapid [Ca2+]

dynamics, since a microdomain within Compared to that,

the global elevation of [Ca2+] in the interspike interval

(1.5 mM at 100 Hz) will refill about 1.2% during the remain-

ing 8 ms.which [Ca2+] reaches high levels, but for only 1 or

2 ms, will refill not more than 0.66% of the empty sites (at

the maximum rate of 3.3 pools/s). Thus, the majority of

refilling would not occur in the absence of global [Ca2+]

elevations. These considerations relate to the recording

conditions of Hosoi et al. (2007), where either EGTA and/
or indicator dye was present in the presynaptic terminal.

In unperturbed terminals, diffusion may be slower (Scheuss

et al., 2007; Müller et al., 2007; Gabso et al., 1997), which

will give some more weight to the contributions of local

[Ca2+] elevations.

What would be the physiological consequences of a linearly

rising rate of vesicle recruitment within the framework of a model

of vesicles recruitment and consumption? Figure 2 summarizes

some of the expectations of a simple model that captures a num-

ber of interesting features of short-term depression but, for

simplicity, neglects influences of Ca2+ current dynamics. Quite

remarkably, the prediction is that for calyx of Held parameters

the quantal content of EPSCs during trains of stimuli should be

independent of stimulation frequency (f ) above 10 Hz—if it is as-

sumed that steady-state [Ca2+] rises linearly with f in this same

frequency range. This is because quantal content in this regime

is limited by vesicle recruitment, and the latter rate rises linearly

with f (due to linearly rising [Ca2+]), such that a constant number

of vesicles is recruited during an interstimulus interval, which

varies with 1/f (see Figure 2 for illustration and numbers). Coun-

terintuitively, in such a scenario the level of depression would not

necessarily increase with an increase in release in an experiment

in which release is enhanced by an increase in Ca2+ influx. An

increased recruitment may compensate for increased consump-

tion of vesicles. For example, at phasic synapses of the

Neuron 59, September 25, 2008 ª2008 Elsevier Inc. 867
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Drosophila neuromuscular junction, increased release at higher

[Ca2+] did not change the level of depression, but this finding

was taken as evidence against a vesicle-depletion mechanism

(Wu et al., 2005).

The linear laws assumed in the above paragraph have been

confirmed only over limited ranges of f (Hosoi et al., 2007; Helm-

chen et al., 1997). In reality, they are not expected to prevail at

frequencies as high as hundreds of Hertz. Correspondingly,

one observes a gradual drop in steady-state EPSC amplitudes

at high f instead of a plateau. It is not clear, presently, whether

sublinear vesicle recruitment, sublinear [Ca2+] increase, or other

influences are responsible for the drop. However, in cortical

neurons, Dittman and Regehr (1998) could well describe the

frequency dependence of release by a Michaelis-Menten-type

dependence of recruitment (see also Figure 2).

In summary, we conclude that a rate-limiting step for AP-in-

duced release during stimulation above 10 Hz is the recruitment

of vesicles to the fast-releasing pool. This step is highly modu-

lated by [Ca2+], cAMP, and GTP-binding proteins (Takahashi

et al., 2000) and is a major mechanism of short-term depression.

Contributions of other mechanisms, such as postsynaptic re-

ceptor desensitization (Koike-Tani et al., 2008) and Ca2+ current

inactivation (Forsythe et al., 1998; Xu and Wu, 2005) have been

demonstrated, with some disagreement between laboratories

about the magnitude of such effects. In our hands, and with

the stimulation protocols of Hosoi et al. (2007), Ca2+ current inac-

tivation is minor and overcompensated by Ca2+-dependnet facil-

itation. A quantitative separation of contributions under physio-

logical conditions is most relevant in the calyx of Held, since

auditory nerve fibers display tonic activity in the range 0.15–

110 Hz, even in complete silence (Kopp-Scheinpflug et al.,

2003; Hermann et al., 2007). Mechanistically, one of the most

pressing questions, currently, regards the molecular nature of

the rate-limiting step discussed above.

‘Molecular’ versus ‘Positional Priming’
In principle, one can consider three mechanisms for explaining

why some vesicles release rapidly and others slowly. The sim-

plest reason may be that they differ in their release apparatus—

Figure 3. Part of the ‘Vesicle Cycle’ of Exo-
and Endocytosis
For simplicity, the case of ‘‘kiss and run’’ exo-en-
docytosis is depicted on the right side. However,
the argument about rate limitation of the site-
clearing step 5a would also hold for classical
endocytosis, if it is assumed that the interaction
between an active zone component and some
component of the vesicle or release machinery
has to be reversed before another vesicle can
dock.

some vesicles responding more rapidly

to a given [Ca2+] than others. Indeed, het-

erogeneity in intrinsic Ca2+ sensitivity has

been observed in a caged-Ca2+ study at

the calyx of Held (Wölfel et al., 2007). It

may well contribute to the heterogeneity

observed during depolarizing stimuli.

Second, Ca2+ current inactivation may lead to a decrease in re-

lease probability during trains of stimuli and during long-lasting

depolarizations (see references quoted above). Third, or in addi-

tion, there may be a difference regarding the positioning of ‘‘mo-

lecularly primed’’ vesicles with respect to nearby Ca2+ channels.

In other words, slowly releasing vesicles may be perfectly release

competent with respect to their intrinsic Ca2+ sensitivity, but

located too far away from Ca2+ channels (which are known to

be clustered at active zones; Roberts et al., 1990; Adler et al.,

1991; Llinas et al., 1992; Haydon et al., 1994; Khanna et al.,

2007; Bucurenciu et al., 2008; Kittel et al., 2006). They would

not sense the [Ca2+] of the nanodomain and not get released

during very short episodes of [Ca2+] influx. A recent study tested

this hypothesis by measuring, via caged-Ca2+ stimulation, the in-

trinsic [Ca2+] sensitivity of those vesicles remaining after the rap-

idly releasing pool had been depleted by a 10 ms depolarization

(Wadel et al., 2007). It turned out that these vesicles, which are re-

leased by depolarization several-fold slower than the fast ones,

are almost as sensitive to [Ca2+] as under control conditions.

Their dose-response curve was downshifted by at most a factor

of two. Based on these data, it was concluded that a major reason

why reluctant vesicles are slowed down (up to a factor of ten)

must be a longer distance to the nearest Ca2+ channels, with

intrinsic heterogeneity and Ca2+ current inactivation not playing

major roles under the conditions of this experiment.

This leaves one important question to answer: what is the

sequence of events that leads to a situation in which about half

of the vesicles are slow and the other half are fast? Figure 3

shows two scenarios that may be considered. On the left side

of the cartoon, we postulate that a step of molecular priming

(the buildup of the release machinery, step 4) is followed by a lat-

eral ‘‘mooring’’ at the active zone (step 4a). We call this step ‘‘po-

sitional priming.’’ This step will convert a slowly releasing vesicle

into a rapidly releasing one. We have to postulate that this step is

rate limiting, since we know that step 4, the recruitment of slowly

releasing vesicles, is fast. Also, we have to postulate that this

step is strongly modulated by Ca2+. Molecular mechanisms me-

diating positional priming may include interactions of the release

machinery, via Munc13, with active zone components, like Rim
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(Weimer et al., 2006; Dulubova et al., 2005; Andrews-Zwilling

et al., 2006) or Cast (Kittel et al., 2006). Direct interactions with

Ca2+ channels are unlikely on biophysical grounds, since the dis-

tance to nearest Ca2+ channels is estimated to be 30–60 nm

(Meinrenken et al., 2002), although it may become smaller during

development (Fedchyshyn and Wang, 2005). As in the case of

molecular priming, Ca2+ sensitivity may be conferred to this

step by the calmodulin interaction of Munc13 (Junge et al., 2004).

However, once it is accepted that there is a limited number of

special mooring or binding sites on the active zone, there is an

alternative explanation for the slowness of recruitment of vesi-

cles to such sites. This explanation starts with the question about

the fate of such sites after a fusion event. Obviously, they must

have interacted with components of the vesicle or the release

machinery, and this interaction must dissociate before another

vesicle can dock. It is easily conceivable that this reaction is

the rate-limiting step for recruitment of fast-releasing vesicles,

as is implied in the models of Dittman and Regehr (1998). If so,

it would probably be a step in between neurotransmitter release

and the endocytosis of vesicular components, as shown dia-

grammatically in Figure 3 (step 5a: ‘‘site-clearing’’).

There is some evidence for such a step in the literature, such

as the transfer of vesicular/exocytosis components from sites

of release to special zones of endocytosis (Roos and Kelly,

1999; Teng and Wilkinson, 2000; Wienisch and Klingauf, 2006).

Rate-limitation of vesicle recruitment may, therefore, be a conse-

quence of a delay in reprocessing of release sites or else a ‘‘traffic

jam’’ in endocytosis. The expected phenotype for interference

with this step is characterized by a normal amplitude of stand-

alone EPSCs and an enhanced depression. Usually, such en-

hanced depression is attributed to decreased availability of

vesicles for docking (step 3 in Figure 3) due to reduced recycling

of vesicles. However, such depression sets in within a few stimuli

(i.e., within 10 s of milliseconds), which is orders of magnitude

too fast for reuse or ‘‘repriming’’ of vesicles (Betz and Wu,

1995; Nicholson-Tomishima and Ryan, 2004; Li et al., 2005). Fol-

lowing Kawasaki et al. (2000), we may propose that instead site

clearance and repriming of sites is the rate-limiting step. Site

clearance would have to happen at basal [Ca2+] within 5–10 s,

and it would be accelerated many-fold by elevated [Ca2+] during

trains of stimuli. Rapid forms of endocytosis, such as ‘‘kiss and

run’’ endocytosis (Verstreken et al., 2002; Klyachko and Jackson

2002; He et al., 2006; Harata et al., 2006; Kavalali, 2007), have

received much attention lately. They may be conceived as site-

clearing steps in the sense of our discussion. However, we would

like to point out that block of endocytosis leads to a large reduc-

tion in the amplitude of stand-alone EPSCs (Dickman et al., 2005;

Ferguson et al., 2007), which quite likely reflects a reduction in

the reserve pool of synaptic vesicles. It will be an interesting

task to differentiate between endocytosis itself and any steps

between exo- and endocytosis.

Molecular Outlook
The conclusions drawn here are based mainly on a biophysical

analysis of phenomena that are well-known in synaptic physiol-

ogy. Putting them into quantitative terms, which is possible for

the calyx of Held, we arrive at interpretations of molecular pertur-

bations that are quite different from the usual ones. We postulate
a robust release machinery, interacting with a Ca2+ sensor,

which increases release rate 107-fold when fully saturated with

[Ca2+]. In other words, Ca2+ binding can reduce the energy of

activation by about 16 kT. Basic release is increased 5-fold by

phorbol ester, or else activation of a phorbol ester site (either

through Munc13 or through PKC) can contribute 1.6 kT to this

energy. Quantitative analysis further suggests that one should

make a distinction between molecular priming (involving the

SNARE proteins, Munc18, Munc13, complexin,.) and posi-

tional priming (allowing primed vesicles to be near Ca2+ chan-

nels). Both are Ca2+ dependent. However, Ca2+ dependence of

molecular priming may be physiologically rate limiting only in

‘‘tonic synapses’’ and in neuroendocrine cells, but not in ‘‘phasic

synapses.’’ We point out that positional priming can be a major

rate limitation during high-frequency activity in phasic synapses.

If so, spatial relationships and dynamic reorganizations of

ultrastructural components turn out to be more important than

generally assumed. In this sense, research on presynaptic as-

pects can be expected to recapitulate mechanisms of dynamic

ultrastructual reorganization, which have captivated postsynap-

tic research over the last 10–20 years.
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J., and Brose, N. (1998). Munc13–1 is a presynaptic phorbol ester receptor that
enhances neurotransmitter release. Neuron 21, 123–136.

Beutner, D., Voets, T., Neher, E., and Moser, T. (2001). Calcium dependence of
exocytosis and endocytosis at the cochlear inner hair cell afferent synapse.
Neuron 29, 681–690.

Blackmer, T., Larsen, E.C., Takahashi, M., Martin, T.F.J., Alford, S., and
Hamm, H.E. (2001). G Protein beta gamma subunit-mediated presynaptic in-
hibition: regulation of exocytotic fusion downstream of Ca2+ Entry. Science
292, 293–297.

Blackmer, T., Larsen, E.C., Bartleson, C., Kowalchyk, J.A., Yoon, E.J., Prei-
ninger, A.M., Alford, S., Hamm, H.E., and Martin, T.F.J. (2005). G protein
beta gamma directly regulates SNARE protein fusion machinery for secretory
granule exocytosis. Nat. Neurosci. 8, 421–425.

Blasi, J., Chapman, E.R., Lin, E., Bin, Z., Yamasaki, T., De, S., Camilli, P., Süd-
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Sätzler, K., Söhl, L.F., Bollmann, J.H., Borst, J.G., Frotscher, M., Sakmann, B.,
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