1710.10756v1 [cs.LO] 30 Oct 2017

arxXiv

Fair Termination for Parameterized Probabilistic
Concurrent Systems (Technical Report)

Ondiej Lengél', Anthony W. Lin%, Rupak Majumdar®, and Philipp Riimmer*

L FIT, Brno University of Technology, Czech Republic
2 Department of Computer Science, University of Oxford, UK
3 MPI-SWS Kaiserslautern, Germany
4 Uppsala University, Sweden

Abstract. We consider the problem of automatically verifying that a parameter-
ized family of probabilistic concurrent systems terminates with probability one
for all instances against adversarial schedulers. A parameterized family defines
an infinite-state system: for each number n, the family consists of an instance
with n finite-state processes. In contrast to safety, the parameterized verification
of liveness is currently still considered extremely challenging especially in the
presence of probabilities in the model. One major challenge is to provide a suffi-
ciently powerful symbolic framework. One well-known symbolic framework for
the parameterized verification of non-probabilistic concurrent systems is regular
model checking. Although the framework was recently extended to probabilistic
systems, incorporating fairness in the framework — often crucial for verifying
termination — has been especially difficult due to the presence of an infinite
number of fairness constraints (one for each process). Our main contribution is
a systematic, regularity-preserving, encoding of finitary fairness (a realistic no-
tion of fairness proposed by Alur & Henzinger) in the framework of regular model
checking for probabilistic parameterized systems. Our encoding reduces termina-
tion with finitary fairness to verifying parameterized termination without fairness
over probabilistic systems in regular model checking (for which a verification
framework already exists). We show that our algorithm could verify termination
for many interesting examples from distributed algorithms (Herman’s protocol)
and evolutionary biology (Moran process, cell cycle switch), which do not hold
under the standard notion of fairness. To the best of our knowledge, our algorithm
is the first fully-automatic method that can prove termination for these examples.

1 Introduction

In parameterized probabilistic concurrent systems, a population of agents, each typi-
cally modeled as a finite-state probabilistic program, run concurrently in discrete time
and update their states based on probabilistic transition rules. The interaction is gov-
erned by an underlying fopology, which determines which agents can interact in one
step, and a scheduler, which picks the specific agents involved in the interaction. Con-
current probabilistic systems arise as models of distributed algorithms [[1)2/3[4)5]], where
each agent is a processor, the interaction between processors is determined by a commu-
nication topology, and the processor can update its internal state based on the communi-
cation as well as randomization. In each step, the scheduler adversarially chooses a pro-
cessor to run. Concurrent probabilistic populations also arise in agent-based population



models in biology [6]], wherein an agent can represent an allele, a cell, or a species,
and the interaction between agents describes how these entities evolve over time. For
a population of a fixed size, there is a rich theory of probabilistic verification [7I8I9/10]]
based on finite-state Markov decision processes (MDPs). Verification questions for pop-
ulation models, however, ask if a property holds for populations of all sizes: even if
each agent is finite-state, the family of all processes (for each population size) is an
infinite-state MDP. Indeed, for many simple population models, one can show that the
verification question is undecidable, even for reachability or safety properties in the
non-probabilistic setting [11112J13]]. Consequently, the verification question for popu-
lations requires techniques beyond finite-state probabilistic verification, and requires
symbolic techniques to represent potentially infinite sets of states.

One well-known symbolic framework for verifying parameterized non-probabilistic
concurrent systems is regular model checking [14/15016417U1819]], where states of a
population are modeled using words over a suitable alphabet, sets of states are repre-
sented as regular languages, and the transition relation is defined as a regular transducer.
From parameterized verification of non-probabilistic processes, it is known that regu-
lar languages provide a robust symbolic representation of infinite sets, and automata-
theoretic algorithms provide the basis of checking safety or termination properties.

In this paper, we consider the problem of verifying that a given parameterized fam-
ily of probabilistic concurrent systems almost surely terminates, i.e., reaches certain
final states with probability 1 from each initial state regardless of the behaviour of the
schedulers. Termination is a fundamental property when verifying parameterized prob-
abilistic systems. Since termination typically, however, fails without imposing certain
fairness conditions on the scheduler, it is crucial to be able to incorporate fairness as-
sumptions into a termination analysis. Therefore, although the framework of regular
model checking has recently been extended for proving termination (without fairness)
over parameterized probabilistic concurrent systems [20]], it still cannot be used to prove
termination for many interesting parameterized probabilistic concurrent systems.

What notion of fairness should we consider for proving termination for parame-
terized probabilistic concurrent systems? To answer this question, one would naturally
start by looking at standard notions of fairness in probabilistic model checking [8]],
which asserts that every process must be chosen infinitely often. However, this notion
seems to be too weak to prove termination for many of our examples, notably Her-
man’s self-stabilizing protocol [2] in an asynchronous setting, and population models
from biology (e.g. Moran’s process [6]]). The standard notion of fairness gives rise to
a rather unintuitive and unrealistic strategy for the scheduler, which could delay an en-
abled process for as long as it desires while still being fair (see [21, Example 8] and
the Herman’s protocol example in Section [3). For this reason, we propose to consider
Alur & Henzinger’s [22]] finitary fairness — a stronger notion of fairness that allows the
scheduler to delaying executing an enabled process in an infinite run for at most k steps,
for some unknown but fixed bound k¥ € N. Alur & Henzinger argued that this fairness
notion is more realistic in practice, but it is not as restrictive as the notion of k-fairness,
which fixes the bound k a priori. In addition, it should be noted that finitary fairness is
strictly weaker than probabilistic fairness (scheduler chooses processes randomly) for
almost-sure termination over finite MDPs and parameterized probabilistic systems (an



infinite family of finite MDPs). We will show in this paper that there are many interest-
ing examples of parameterized probabilistic concurrent systems for which termination
is satisfied under finitary fairness, but not under the most general notion of fairness.

Contributions. Our main contribution is a systematic, regularity-preserving, encoding
of finitary fairness in the framework of regular model checking for parameterized prob-
abilistic concurrent systems. More precisely, our encoding reduces the problem of veri-
fying almost sure termination under finitary fairness to almost sure termination without
fairness in regular model checking, for which a verification framework exists [20].

In general, the difficulty with finding an encoding of fairness is how to deal with
an infinite number of fairness requirements (one for each process) in a systematic and
regularity-preserving manner. There are known encodings of general notions of fairness
in regular model checking, e.g., by using a token that is passed to the next process (with
respect to some ordering of the processes) when the current process is executed, and
ensuring that the first process holds the token and passes it to the right infinitely many
times (e.g. see [[L6115]). However, these encodings do not work in in our case for several
reasons. Firstly, they do not take into account the unknown upper bound (from finitary
fairness) within which time a process has to be executed. Adapting these encodings to
finitary fairness would require the use of unbounded counters, which do not preserve
regularity. Secondly, such encodings would yield the problem of verifying an almost-
sure Rabin property (of the form OO AAO B in LTL notation, where A and B are regular
sets). Although we could reduce this to an almost-sure termination property by means
of product automata construction (i.e. by first converting the formula to deterministic
Rabin automaton), the target set B in the resulting termination property < B (consisting
of configurations in strongly connected components satisfying some properties) is not
necessarily regular.

Instead, we revisit the well-known abstract program transformation in the setting
of non-probabilistic concurrent systems [23|] encoding fairness into the program by as-
sociating to each process an unbounded counter that acts as an “alarm clock”, which
will “set off” if an enabled process has not been chosen by the scheduler for “too long.”
This abstract program transformation has been adapted by Alur & Henzinger [22]] in
the case of finitary fairness by additionally incorporating an extra counter n that stores
the unknown upper bound and resetting the value of a counter belonging to a chosen
process to the “default value” n. Our contributions are as follows:

1. We show how Alur & Henzinger’s program transformation could be adapted to the
setting of probabilistic parameterized concurrent systems (infinite family of finite
MDPs). This involves constructing a new parameterization of the system (using
the idea of weakly finite systems) and a proof that the transformation preserves
reachability probabilities.

2. We show how the resulting abstract program transformation could be made concrete
in the setting of regular model checking without using automata models beyond
finite automata.

3. We have implemented this transformation in FAIRYTAIL. Combined with the ex-
isting algorithm [20] for verifying almost sure termination (without fairness) in
regular model checking, we have successfully verified a number of models ob-
tained from distributed algorithms and biological systems including Herman’s pro-



tocol [2], Moran processes in a linear array [24.6]], and the cell cycle switch model [25]]
on ring and line topologies. To the best of our knowledge, our algorithm is the first
fully-automatic method that can prove termination for these examples.

Related work. There are few techniques for automatic verification of liveness proper-
ties of parameterized probabilistic programs. Almost sure verification of probabilistic
finite-state programs goes back to Pnueli and co-workers [26/27]]. Esparza et al. [28]]
generalize the reasoning to weakly finite programs, and describe a heuristic to guess
a terminating pattern by constructing a nondeterministic program from a given proba-
bilistic program and a terminating pattern candidate. This allows them to exploit model
checkers and termination provers for nondeterministic programs. More recently, Lin
and Riimmer [20] consider unconditional termination for parameterized probabilistic
programs. While our work builds on these techniques, our main contribution is the in-
corporation of fairness in regular model checking of probabilistic programs, which was
not considered before.

Fairness for concurrent probabilistic systems was considered by Vardi [10] and by
Hart, Sharir, and Pnueli [26], and generalized later [27/29/30]]. The focus was, however,
on a fixed number of processes. The notion of fairness through explicit scheduling was
developed by Olderog and Apt [31]]. More recently, notions of fairness for infinitary
control (i.e., where an infinite number of processes can be created) was considered by
Hoenicke, Olderog, and Podelski [32/33]].

Martingale techniques have been used to prove termination of sequential, infinite-
state, probabilistic programs [34435/3637/38]]. These results are not comparable to our
results, as they do not consider unbounded families of fairness constraints nor commu-
nication topologies.

2 Preliminaries

General notations: For any two given real numbers ¢ < j, we use a standard notation
(with an extra subscript) to denote real intervals, e.g., [i, jlr = {k € R: i < k < j} and
(i,7]r = {k € R: i < k < j}. We will denote intervals over integers by removing the
subscript, i.e., [¢, j] = [¢, j]r N Z. Given a set S, we use S* to denote the set of all finite
sequences of elements from S. The set S* always includes the empty sequence, which
we denote by e. We use S to denote the set S*\ {e}. Given two sets of words Sy, S2, we
use S - Sy to denote the set {v-w : v € S1,w € Sy} of words formed by concatenating
words from S; with words from S,. Given two relations Ry, Ro C S x S, we define
their composition as Ry o Ry = {(s1, s3) : 3s2((s1, 52) € R1 A (82,53) € Ra)}.

Transition systems: We fix the (countably infinite) set AP of atomic propositions. Let
ACT be a finite set of action symbols. A transition system over ACT is a tuple & =
(S; {—=a}acnacT, £), where S is a set of configurations, —, C S x S is a binary relation
over S, and ¢ : AP — 2° maps atomic propositions to sets of configurations (we omit £
if it is not important). We use — to denote the relation (Ua cACT %a) . The notation —™
(resp. —*) is used to denote the transitive (resp. transitive-reflexive) closure of —. We
say that a sequence s; — --- — s, is a path (or run) in S (or in —). Given two paths
m 81— 8o and my @ So —* s3 in —, we may concatenate them to obtain m; © 7o
(by gluing together s5). We call 7y a prefix of m; ® mo. For each S’ C S, we use the



notations pre_, (S') and post_, (S’) to denote the pre/post image of S’ under —. That is,
pre_(S")={pe S:3qe S (p—q)}and post_,(S")={qe S:TIpeS(p—q}
Words and automata: We assume basic familiarity with finite word automata. Fix a fi-
nite alphabet . For each finite word w = wy ... w, € X*, we write w[i, j], where 1 <
i < j < n, to denote the segment w; . .. w;. Given an automaton A = (X, Q, 6, qo, F'),
arun of A on w is a function p : {0,...,n} — Q with p(0) = go that obeys the
transition relation 6. We may also denote the run p by the word p(0) - - - p(n) over the
alphabet Q. The run p is said to be accepting if p(n) € F, in which case we say that w
is accepted by A. The language L(A) of A is the set of words in X* accepted by .A.

Reachability games: We recall some basic concepts on 2-player reachability games
(see e.g. [39, Chapter 2] on games with 1-accepting conditions). An arena is a transition
system & = (S = V; U Va; —1, —9), where S (i.e. the set of “game configurations”)
is partitioned into two disjoint sets V7 and V5 such that pre_,,(S) C V; for each i €
{1,2}. The transition relation —; denotes the actions of Player 7. Similarly, for each
i € {1,2}, the configurations V; are controlled by Player 7. In the following, Player 1
will also be called “Scheduler,” and Player 2 “Process”. Given a set I C S of initial
configurations and a set F* C S of final (a.k.a. target) configurations, the goal of Player 2
is to reach F' from I, while the goal of Player 1 is to avoid it. More formally, a strategy
for Player i is a partial function f : S*V; — S such that, for each v € S* and p € V,
if vp is a path in & and p is not a dead end (i.e., p —; ¢ for some ¢), then f(vp) is
defined in such a way that p —; f(vp). Given a strategy f; for Player i € {1,2} and
an initial configuration sy € .S, we can define a unique (finite or infinite) path in &
such that 7 : sg —;, 51 —j, --- where s;, ., = fi(s0s1...5s5,) fori € {1,2} is the
(unique) configuration s.t. s;, € V;. Player 2 wins iff some configuration in I’ appears
in 7, or if the path is finite and the last configuration belongs to Player 1. Player 1 wins
iff Player 2 does not win; we say Player 2 loses. A strategy f for Player i is winning
from I if for each strategy ¢ of Player 3 — ¢, the unique path in & from each sy € I
witnesses a win for Player ¢. Such games (a.k.a. reachability games) are determined
(see e.g. [39] Proposition 2.21]): either Player 1 has a winning strategy or Player 2 has
a winning strategy.

Convention. For notational simplicity, w.l.o.g., we make the following assumptions on
our reachability games. They suffice for the purpose of proving liveness for parame-
terised systems.

(A0) Arenas are strictly alternating, i.e., a move made by a player does not take the
game back to her configuration (post_, (S) N V; =0, for eachi € {1,2}).

(A1) Initial and final configurations belong to Player 1, i.e., Iy, F C V;

(A2) Non-final configurations are not dead ends: VYo € S\ F, 3y : x =1 yV & —2 y.

Markov chains: A (discrete-time) Markov chain (ak.a. DTMC) is a structure of the
form & = (5;0,¢) where S is a set of configurations, J is a function that associates
a configuration s € S with a probability distribution over a sample space D C S (i.e.
the probability of going to a certain configuration from s), and ¢ : AP — 2° maps
atomic propositions to subsets of S. In what follows, we will assume that each 0(s) is
a discrete probability distribution with a finite sample space. This assumption allows us



to simplify our notation: a DTMC (S; §, £) can be seen as a transition system (S; —,
£) with a transition probability function § mapping a transition ¢ = (s,s’) € - to a
value 6(t) € (0,1] such that 37, c (s 0((s,8")) = 1. That is, transitions with zero

probabilities are removed from —. We will write s L5 ¢ to denote s — &' and that
0((s,s")) = p. The underlying transition graph of a DTMC (S, £) is the transition
system (S;—, ) with § omitted. Given a finite path 7 = s9 — --- — s, from the
initial configuration sy € S, let Run, be the set of all finite/infinite paths with 7 as
a prefix, i.e., of the form m ©® 7’ for some finite/infinite path 7’. Given a set F' C S
of target configurations, the probability Probg(sg = OF) (the subscript & may be
omitted when understood) of reaching F' from sq in & can be defined using a standard
cylinder construction (see e.g [40]) as follows. For each finite path m = sg = --- — s,
in G from sg, we set Run to be a basic cylinder, to which we associate the probability
Prob(Run,) = H?:_Ol 0((si, si+1))- This gives rise to a unique probability measure for
the o-algebra over the set of all runs from sq. The probability Prob(sy = OF) is then
the probability of the event F' containing all paths in & with some “accepting” finite
path as a prefix, i.e., a finite path from sy ending in some configuration in F'. In general,
given an LTL formula ¢ over AP, the event containing all paths from sq in & satisfying
 is measurable [[10] and its probability value Prob(sq = ¢) is well-defined.

Notation: Whenever understood, we will omit mention of ¢ from (S; §, £).

3 Abstract Models of Probabilistic Concurrent Programs

In this section, we recall the notion of Markov Decision Processes (MDPs) and fair
MDPs [8]]. These serve as our abstract models of probabilistic concurrent programs. We
then define the notion of finitary fairness [22] and discuss its basic properties in the
setting of MDPs.

3.1 Markov Decision Processes

A Markov decision process (MDP) is a strictly alternating arena & = (S = V; U
Va; —1, —>2) such that (S; —2) is a DTMGC, i.e., — is associated with some transition
probability function, and that the atomic propositions are not important. Intuitively,
the transition relation —; is nondeterministic (controlled by a “demonic” scheduler),
whereas the transition relation —5 is probabilistic. By definition of arenas, the config-
urations of the MDPs are partitioned into the set V) of nondeterministic states (con-
trolled by Scheduler) and the set V, of probabilistic states. Formally, pre_, (S) N
pre_,(S) = (. Each Scheduler’s strategyE] f:8*Vi — S gives rise to an infinite-
state DTMC with the underlying transition system & = (S’; —3, £) and the transition
probability function ¢’ defined as follows. Here, S’ is the set of all finite/infinite paths 7
from sg. For each state s’ € S and each path 7 from sg ending in some state s € S, we
define m —3 ws’ iff: (1) if s € V; is a nondeterministic state, then f(7) = §’, and (2) if
s € V4 is a probabilistic state, then s —» s’. Intuitively, & ¢ is an unfolding of the game
arena G (i.e. a disjoint union of trees) where branching only occurs on probabilistic
states. Transitions m —5 s’ satisfying Case (1) have the probability ¢’ ((w, ws’)) = 1;

3 Also called “scheduler” or “adversary” for short.



otherwise, its probability is ¢’ ((mw, ws")) = §((s,s’)). We let £ be a function mapping
each subset X C S (used as an atomic proposition) to the set of all finite paths in &
from s¢ to X. Since & is a DTMC, given an LTL formula ¢ over subsets of S as
atomic propositions, the probability Probe , (so |= ) of satisfying ¢ in & from s un-
der the scheduler f is well-defined. In particular, Probg  (so = ©F) is the probability
of reaching F from s¢ in & under the scheduler f. The probability Probe ¢ (so = ¢)
of satisfying ¢ from sg in the MDP & under a class C of schedulers is defined to be the
infimum of the set of all probabilities Probs, (so [= ¢) over all f € C. We will omit
mention of C when it denotes the class of all schedulers.

An MDP is weakly-finite [28] if from each configuration, the set of all configurations
that are reachable from it (in the underlying transition system of the MDP) is finite.
Note that the state space of weakly-finite MDPs can be infinite. The restriction of weak
finiteness is another way of defining the notion of parameterized systems, which are
an infinite family of finite-state systems. Weakly-finite MDPs capture many interesting
probabilistic concurrent systems in which each process is finite-state; this is the case for
many probabilistic distributed protocols.

3.2 Fair Markov Decision Processes

A fair Markov decision process (FMDP) is a structure of the form & = (S = V; U
Va; =1, —=2,€,3), where (S = Vi U Va; —1,—2) is an MDP, J is a weak fairness
(a.k.a. justice) requirement, and € is a strong fairness (a.k.a. compassion) requirement.
More precisely, a weak fairness requirement is a set (at most countably infinite) of
atomic weak fairness requirements of the form COA = OOB, for some A, B C S.
Here, the O and & modalities are the standard “always” and “eventually” LTL operators.
The set A (resp. B) will be called the premise (resp. consequence). Intuitively, if A is
interpreted as ‘“Process 1 is waiting to move” and B as “Process 1 is chosen”, then this
fairness requirement may be read as: at no point can Process 1 be continuously waiting
to move without being chosen. In addition, a strong fairness requirement is a set (again,
at most countably infinite) of aromic strong fairness requirements of the form OO A =
doB, for some A, B C S. Using the above example, a strong fairness requirement
reads: if Process 1 is waiting to move infinitely often, then it is chosen infinitely often.
As before, the set A (resp. B) will be called the premise (resp. consequence). In the
following, when it is clear whether a fairness requirement is a justice or a compassion,
we will denote it by the pair (A, B) of premise and consequence.

Given an FMDP & = (S = V] U V; —1, —2, €, J), a configuration so € S, and
a scheduler f, since each atomic fairness requirement is an LTL formula and there are
at most countably many atomic fairness requirements, the set of paths from s¢ in the
DTMC & induced by f satisfying € and  is measurable. We say that a scheduler f
is &-fair if Probg , (so = € A J) = 1 for every initial configuration so. The fairness
conditions (€, J) are realizable in G if there exists at least one G-fair scheduler.

A natural fairness notion we consider in this paper is process fairness, which asserts
that each process is chosen infinitely often. For this notion of fairness, we can assume
that the consequence B of each atomic fairness requirement asserts that a particular pro-
cess is chosen. We make one simplifying assumption: each process is always enabled
(i.e., can always be chosen by the scheduler). This assumption is reasonable since we



can always introduce an idle transition for each process. Under this assumption, we
have that from each vi € Vi, there exists a transition vi —1 vy for some vo € B.
This implies that our fairness conditions are always realizable and that the probability
Probg ¢ (E) of event E over the set of all G-fair schedulers is well-defined.

3.3 Finitary Fairness

Given an FMDP & = (S = V; U Va; —1, —2, €, J), a configuration so € S, and
a number k£ € N, we say that a scheduler f is &-k-fair (or k-fair whenever G is
understood) if for each atomic fairness requirement (A, B):

1. if (A, B) is justice, then (the underlying graph of) & ; contains no path 7 of length
k satisfying the LTL formula O(A A —B).

2. if (A, B) is compassion, then & contains no path 7 satisfying the LTL formula
Y, A O-B, where ¢y := true and ¢; := O(A A ;1) for each ¢ > 0.

In other words, a premise in a justice requirement cannot be satisfied for k consecutive
steps without satisfying a consequence, while a premise in a compassion requirement
cannot be satisfied for k£ (not necessarily consecutive) steps without satisfying a con-
sequence. A scheduler is said to be finitary fair (fin-fair) if it is k-fair for some k. The
fairness conditions (€, J) are said to be finitary-realizable (fin-realizable) in & if there
exists at least one fin-fair scheduler. Under this assumption, the probability Probg ¢(E)
of an event E over the set C of all fin-fair schedulers is well-defined. In what follows,
for an FMDP &, we will simply denote Probg ¢(E) as Probg (E). In this paper, we
propose to study termination of probabilistic concurrent programs under finitary fair-
ness, i.e., to determine whether Probg ¢(so = OF) = 1, where C is the class of all
fin-fair schedulers.
The following proposition states one special property of weakly-finite MDPs.

Proposition 1. Let S and &' be two weakly-finite fair MDPs with identical underlying
transition systems (but possibly different probability values). For each set F' of final
states, and each initial configuration s, it is the case that Probg(sg = OF) = 1 iff
Probg/(sp = OF) = 1.

Proof. This proposition can be proved using basic machineries from probabilistic model
checking [8]]. Consider the finite MDPs &' and &2 that are obtained from & and
&’ by removing configurations in F' and their fairness requirements . It suffices to
prove the following: for all schedulers Probg1 (so |= ¢) = 0 iff for all schedulers o
Probe: (so = ¢) = 0. This follows from standard results from probabilistic model
checking [8, Theorem 10.122] since ¢ is a limit linear-time property. (]

By Proposition[T] when dealing with almost-sure finitary-fair termination of weakly-
finite MDPs, we only care whether a transition has a zero or a non-zero probability, i.e.,
if it is non-zero, then the exact value is irrelevant. Incidentally, the same also holds for
other properties including almost-sure termination without fairness and qualitative tem-
poral specifications [26l27120]. For this reason, we may simply omit these probability
values from our symbolic representation of weakly-finite MDPs, which we will do from
the next section onwards.



3.4 Herman’s Protocol

Herman’s protocol [2] is a distributed self-stabilization algorithm for a population of
processes organized in a ring. The correct configurations are those where exactly one
process holds a token. If, through some error, the ring enters an erroneous configuration
(in which multiple processes hold tokens), Herman’s protocol ensures that the system
will self-stabilize: it will almost surely go back to a configuration with only one token.

Let us discuss how the protocol works in more detail. Fix N > 3 processors orga-
nized in a ring. If a chosen process does not hold a token, then it can perform an idle
transition (i.e. do nothing). If a chosen process holds a token, then it can keep hold-
ing the token with probability % or pass it on to its clockwise neighbor (the process
(i + 1) mod N, for processes numbered 0, ..., N — 1) with probability % If a pro-
cess currently holds a token and receives another token from its (counter-clockwise)
neighbor, then the two tokens are merge(ﬂ into one, leaving the process with one token.

Formally, Hermann’s protocol can be modeled as a weakly-finite Markov decision
process whose states are vectors in { L, T }*. For each N, the state of the protocol is de-
scribed by a vector of N bits, with the ¢-th bit being 1 iff the i-th process holds a token.
From a state v, the scheduler picks a process ¢ € {0, ..., N — 1}. Given a chosen pro-
cess i, the new state remains v if the chosen process 4 did not hold a token (v(i) = L).
If v(i) = T, the new state is v with probability % and v @ e; @ €(j41) mod N With
probability % Here, e; denotes a vector with T in the ¢-th position and L everywhere
else, and & is the XOR operation. We want to ensure that, starting from an arbitrary
initial assignment of tokens, any population self-stabilizes with probability 1.

Process fairness for Herman’s protocol is a set of [V atomic fairness requirements,
each asserting that the process ¢ is executed infinitely often, for each i € {1,..., N}.
Unfortunately, Herman’s protocol does not terminate with probability 1 against some
fair schedulers. To see this, consider the start state so = (T, L, T). Let us call the token
held by Process 0 “the first token”, and the token held by Process 2 “the second token”.
Define a round as the following sequence of moves by the scheduler: keep choosing the
process that holds the first token until it passes the token to the right, and do the same
to the second token. For example, the two configurations obtained after completing the
first and second rounds from s are, respectively, (T, T, L) and (L, T, T). To see that
the scheduler is fair, for each integer ¢ > 0, the probability that the ¢-th round is not
completed is O since the probability that one of the tokens will be kept at the same
process for an infinite amount of time is 0. Therefore, the probability that some round
is not completed is also 0. Completing two rounds ensure that all the processes are
picked. Therefore, every process will be chosen with probability 1. On the other hand,
observe that correct configurations are not seen in the induced DTMC, showing that
self-stabilization holds with probability 0 under this scheduler.

Herman’s protocol can be shown to self-stabilize with probability 1 under all fin-
fair schedulers, which can be proved by our fully-automatic verification algorithm (pre-
sented later in the paper).

® Herman [2]] describes a more general protocol in which tokens can be merged/destroyed with
some probability. We consider this restriction for simplicity of presentation.



4 Regular Model Checking: A Symbolic Framework

In this section, we recall regular model checking (see e.g. [14115/41]]), a symbolic frame-
work for specifying infinite-state systems based on finite automata and regular transduc-
ers and developing automatic verification (semi-)algorithms.

A transition system & = (S = V; U Va; —1, —2) is specified in the framework
as a regular language S (e.g. as a regular expression over some alphabet X), and two
“regular relations” —1, =9 C X* x X*. For simplicity, in the following we will assume
that S = X*. How do we specify regular relations? One standard way is to restrict to
length-preserving relations (i.e. the relation may only contain a pair of words of the
same length) and specify such relations as regular languages over the alphabet ' x 3.
There is, then, a simple one-to-one correspondence between the set of words over X x X/
and the set of all pairs of words over X' of the same length. This can be achieved by
mapping a pair (v, w) of words X with [v| = |w| = n to a word v ® w, defined as
(v1,w1) (v, wa) - - - (vp, wy) whenever v = vy -+ - v, and W = wy « - - Wy,.

Proving that a property ¢ holds over a transition system & is done “in a regular
way,’, by finding a “regular proof” for the property. For example, if ¢ asserts that the
set Bad of bad states can never be reached, then a regular proof amounts to finding an
inductive invariant Inv in the form of a regular language [[14415] that does not intersect
with Bad, i.e., Bad N Inv = (), Sy C Inv (Sp is a regular set of initial states), and
post_,(Inv) C Inv, where - = —1 U —,. Since regular languages are effectively
closed under boolean operations and taking pre/post images w.r.t. regular transducers,
an algorithm for verifying the correctness of a given regular proof can be obtained by
using language inclusion algorithms for regular automata, e.g., [42/43]]. The framework
of regular proofs is incomplete in general since it could happen that there is a proof,
but no regular proof. The pathological cases when only non-regular proofs exist do not,
however, seem to frequently occur in practice, e.g., see [4414518/14119/46/47/15/48]).

The framework of regular proofs has been extended to deal with almost-sure ter-
mination for weakly-finite probabilistic concurrent programs in [20]. We briefly sum-
marise the main idea, since we reduce the fair termination problem to their setting.
By Proposition (1} the actual probability values do not matter in proving almost-sure
termination. For this reason, we may specify a weakly-finitte MDP & = (S = V7 U
Va; —1, —2) as aregular specification in the same way as we specify a non-probabilistic
transition system in our regular specification language. Given an MDP & = (S =
Vi U Va; =1, —2), a set [y C V; of initial configurations, and a set F C V; of fi-
nal configurations, a regular proof for Prob(sg = F') = 1 for each sy € I is a pair
(Inv, <) consisting of a regular inductive invariant Inv C S and a regular relation
< C S x S such that:

1. Iy C Inv and post_, (Inv) C Inv.

2. < is a strict preorder on S, i.e., it is irreflexive (Vs € S : s £ ) and transitive
(Vs,s',s"€S:s<sNs <5 = s=<5").

3. irrespective of the nondeterministic transitions from any configuration in Inv, there
is a probabilistic transition to a configuration in Inv that decreases its rank with
respect to <:

VeeInw\Fye S\F: ((z—1y) = Fzelw: (y—22) x> 2)).
10



An automata-theoretic algorithm can then be devised for checking the above verification
conditions with respect to a given regular proof [20].

Example 1. [Herman’s protocol, continued] We provide a regular encoding of Her-
man’s protocol. The configurations are words over the alphabet {T, L, T, 1}, where T
(resp. L) signifies that a process holds (resp. does not hold) a token, while overlining
the character signifies that the process is chosen by the scheduler. We set ¥ = {T, L}.
The set Sy of initial configurations is X*T X*, i.e., at least one process holds a to-
ken. The set of final configurations is 1 *T _L*, i.e., there is only a single token in the
system. The actions of the scheduler is to choose a process; this can be expressed as
the regular expression I*((T,T) + (L, L))I*, where I denotes the regular language
(T, T)+(L,L). The probabilistic actions can be expressed as a union of the following
three regular expressions:

I*((T, T+ (I, NI (idle)
(T, D)L, ™)+ (T, NI, (L, T)+ (T, THI*(T,L)) (passtoken right)

5 Handling Fairness Requirements

We now describe the main result of the paper: a general method for embedding finitary
fairness into regular model checking for probabilistic concurrent systems.

5.1 Regular Specifications of Fairness

When a complex system or a distributed protocol is being modelled in regular model
checking, it is often necessary to add an infinite number of fairness requirements. This is
because such a system admits a finite but arbitrary number of agents or processes, each
with its own fairness requirement (e.g. that the process should be executed infinitely
often). For this reason, it is not enough to simply express the fairness requirements as
a finite set of pairs of regular languages (one for the premise, and one for the conse-
quence). We describe a regular way of specifying infinitely many fairness constraints.
Our presentation is a generalisation of the regular specification of fairness from [[16/15].

The general idea is to define a “regular function” 7 that maps a configuration
$ = 81--8, € Stoaword w = w;y ---w, such that w; contains: (1) a bit b; in-
dicating whether s is in the premise of the i-th fairness requirement, (2) a bit b} indi-
cating whether s is in the consequence of the ¢-th fairness requirement, and (3) a bit ¢
indicating whether the i-th fairness requirement is justice or compassion. Such a regu-
lar specification of fairness allows an infinite number of fairness constraints since S is
potentially infinite (i.e., containing words of unbounded lengths), though only the first
|s| fairness requirements matter for a word s € S. This is sufficient for weakly-finite
MDPs since the set of reachable configurations from any given configuration s is finite
and so, among the infinite number of fairness constraints, only finitely many are dis-
tinguishable. The regular function can be defined by a letter-to-letter transducer with
input alphabet X and output alphabet I" := {0,1} x {0,1} x {0, 1}. Without loss of
generality, we assume that the i-th letter in the output of every input word of 7 agree
on the third bit (i.e., whether the fairness requirement is justice or compassion is well-
defined): for every s, s’ € Sandi € N, if T(s)[i] = (a,b,c) and T (s')[i] = (o', V', ),

11



then ¢ = ¢’. Observe this condition on 7 can be algorithmically checked by using a
simple automata-theoretic method: find two accepted words in which in some position
their third bits differ.

In this case, 7 gives rise to compassion requirements € and justice requirements J
by associating the i-th position in all output words by a unique fairness constraint. More
precisely, let

- A; ={s:T(s)[i]] = (1,54,t), for some j,t € {0,1}} and
- B;={s:T(s)[i] = (4,1,¢), for some j, ¢ € {0,1}}.

Define:

() J={C04; = 0CB;: T(s)[i] = (4,4,0), forsome s € Sand j € {0,1}},
(i) € ={0CA; = OCB; : T(s)[i] = (4,7,1), forsome s € Sand j € {0,1}}.

Therefore, by Proposition[I] our regular fairness specification allows us to define weakly-
finite fair MDPs (S = V; U Va; —1, —2, €, J). In the following, we shall call such fair
MDPs regular.

Our main theorem is a regularity-preserving reduction from proving almost sure ter-
mination for regular FMDPs (under finitary fairness) to proving almost sure termination
for regular MDPs (without fairness).

Theorem 1. Ler & = (S = V; U Va; —1, =9, €, J) be a regular representation of
an FMDP, Iy C Vi be a regular set of initial configurations, and F' C V; be a regular
set of final configurations. Then one can compute a regular representation of MDP
&' = (8 = V] U Vy;~1,~2) and two regular sets I|,, F' C V{ such that it holds that
if € and J are realizable, then Probg, (I} = OF') = 1 iff Probs (Ip = OF) = 1.

5.2 Abstract Program Transformation

Before proving Theorem |1} let us first recall an abstract program transformation a la
Alur & Henzinger [22], which encodes finitary fairness into a program using integer
counter variables. Intuitively, we reserve one variable for each atomic fairness condition
as an “alarm clock” that will set off if its corresponding process has not been executed
for a long time, and one global variable n that acts as a default value to reset a clock to
as soon as the corresponding process is executed. Although Alur & Henzinger [22] did
not discuss about probabilistic programs, their transformation can be easily adapted to
the setting of MDPs, though correctness still has to be proven.

We now elaborate on the details of the transformation. Given an FMDP & = (S =
V1UVa; —1, —9, €, J) with a probability distribution §, the transformation will produce
an MDP &’ = (S = V] U VJ;~»1,~»3) with a probability distribution ¢’ as follows.
Introduce a set V of “counter” variables that range over natural numbers: x; (for each
J € 3J), ye (for each ¢ € ), and n. Let § be the set of all valuations f mapping each
variable in V' to a natural number such that f(z;), f(y.) < f(n) for each j € J and
c € €. Wedefine V] =V} x Fand Vj = V5 x §. We now define the transition relation
~»; such that (s, f) ~; (¢/, f)if s —; s and

— foreach z € V, f(z) > 0,

12



- f'(n) == f(n),
- z; (for j = (A4, B) € J) and y. (for ¢ = (A, B) € €) change as follows:

f(n) ifse ANB

vy [flzj)—1ifs€ ANB "(ye) = — 1 B
f'(x;) { f(n) ifs€AUB ) f(fy(crz) ' ﬁ:gﬂB

(A denotes the set-complement of A). Finally, we define the probability distribution &’
underlying ~» as &' ((s, f), (s, f')) = 6(s, s’) whenever s € V5.

Intuitively, the variables x;’s and y.’s keep track of how long the scheduler has
delayed choosing an enabled process, while the variable n (unchanged once the initial
configuration of the MDP is fixed) aims to ensure that the scheduler is n-fair. Since n
is a variable (not a constant), the resulting MDP &’ captures precisely the behaviour of
G under fin-fair schedulers.

Lemma 1. If G is a weakly-finite FMDP, then &' is weakly-finite.

Proof. Since G is weakly-finite, once a configuration (s, f) of &' is chosen, there are
only finitely many different valuation s’ € S such that (s, f) (for some [’ € §) is
reachable from (s, f). In the following, we show that there are also only finitely many
different valuations f” € § such that (s', ') (for some s’ € S) is reachable from (s, f).
Let X be the (finite) set X = post_,. (s). Define two equivalence relations ~ 7). and
~(s,f),j ON the set 25 x 25 of pairs of subsets of S as follows:

— (A, B) ~(spye (A, B)iff ) ANX = AN X and BN X = B'N X, and
(b) (A, B) € Ciff (A, B') € €.

— (A, B) ~@py; (A, B)iff @ ANX = AN Xand BNX = B'N X, and
(b) (4, B) € Jiff (A', B') € 3.

Observe that, since X is finite, both equivalence relations are of finite index (i.e. have
only finitely many equivalence classes). This implies that we need not distinguish two
variables in V \ {n} if they are both for the justice or both for the compassion require-
ments, in the same equivalence class in the appropriate relation ~ (5 7). or ~(s 1) 5,
and they both have the same initial f-values. To see this, let ~ = ~»; U ~s5. Ob-
serve that, for each (s', f') € post_«((s,f)) and ¢ = (A,B),d = (A',B’) € ¢,
it is the case that f'(y.) = f'(ye) iff f(y.) = f(ye ). Similarly, for each (s, f') €
post.-((s, f)) and j = (A, B),j' = (A’, B") € J, itis the case that f'(x;) = f'(x;)
iff f(x;) = f(x;). In other words, identical counter values across similar fairness
constraints remain identical under an application of ~». Since all counter values in all
reachable configurations (s', f') € post.~((s, f)) arein {0, ..., f(n)}, it immediately
follows that post..« ((s, f)) is finite. O

We next state a correctness lemma for the transformation. To this end, given a set
So C S of initial configurations in &, we define:

- Sy := So x §=, where F— contains functions f € § such that f(z;) = f(y.) =
f(n)foreachj € Jand c € €.

13



- F' = (F x §>0) U (S x Fo), where §o contains all f € § such that f(x;) = 0 for
some j € Jor f(y.) = 0 for some ¢ € € (i.e. one of the alarms has been triggered),

and F>0 == § \ Fo-
Lemma 2 (Correctness). If S is a weakly-finite FMDP, it is the case that

PVObG (SO ': <>F) = Pl"Obgl (S(l) ': <>F/)

Proof. In this proof, we make use of the following notation. For a sequence 7w of
pairs (z1,y1), (z2,%2), ..., we use the notation proj,(m) (resp. proj,(m)) to denote
the sequence 7 projected to the first (resp. second) arguments, i.e., x1, s, ... (resp.
Y1, Y2, .- .). Moreover, for each & > 0, we define § to be the set of all functions
f € §= such that f(n) = k.

We first prove that Probg (Sp = OF) > Probg: (S, = ©F’), i.e., the transforma-
tion does not increase the probability of reaching final states. For each k£ € N, consider
a k-fair scheduler o for &. It suffices to prove that given any sg € Sp, Probg, (s =
OF) = Probe , ((s0, f) = OF'), where f € §}, and o’(m) := o(proj,(m)) (note that
'k contains exgctly one f compatible with sq). In turn, to prove this, it suffices to prove
that the DTMC &,, restricted to configurations reachable from s is isomorphic to &/,
restricted to configurations reachable from (sg, f). This can be seen from the fact that
configurations of the form (S \ F') x § are not reachable from (s, f); if they were
reachable, since the counter encoding precisely emulates the definition of finitary fair-
ness [22], the witnessing path 7 would give rise to a path proj, (7) that would witness
that o is not k-fair, contradicting our original assumption.

We next prove that Probg (Sg |= OF) < Probg: (S, = ¢F'), i.e., our transforma-
tion does not decrease the probability of reaching final states. Consider any (s, f) € S}
and any scheduler ¢’ on &’. Consider the scheduler o on & that simulates the behaviour
of ¢’, but as soon as one of the alarm clocks has set off the scheduler goes through all
consequence sets (say, X1i,...,X,, for some m &€ N; the sequence is finite since G
and &’ are weakly finite) in some order and chooses actions that satisfy them in a round
robin manner (which can be done since we consider process constraints). More pre-
cisely, for each path 7 in &/, define o(proj,(w)) := o’(w). For each path 7 ending
in a configuration in (S \ F') x §o, the action of the scheduler on any path with 7 as a
prefix is to loop through X7, ..., X,, and pick actions that satisfy them. Therefore, the
scheduler o is K -fair for K := 2m. Furthermore, consider the two tree-shaped DTMCs
G, and G5, where G is obtained from G, by restricting the sets of configurations to
those that are reachable from sg, and G5 is obtained from &, by restricting the sets
of configurations to those that are reachable from (s, f). &; and &5 are isomorphic
except for subtrees Run, where 7 is a path in &4 from (s, f) ending in (S \ F') x Fo
without visiting a configuration in F' X §~. The probability p of visiting a configura-
tion in F” in &4 from (s, f’) on the condition that 7 is taken is 1. Thus, on the condition
that the prefix proj, () is taken, the probability of visiting a configuration in F” in &
cannot exceed p. This shows us that Probe, (so = CF) < Probe-, ((so, f) = OF).
Consequently, since the choice of (sg, f) € S| and ¢’ was arbitrary, we can conclude
that Probg (Sy = OF) < Probg: (S} E OF). O

14



These two lemmas immediately imply Theorem

5.3 Finitary Fairness in Regular Model Checking

We now show how to implement the aforementioned abstract program transformation
in our regular model checking framework. Fix a regular representation of an FMDP
S = (S = V1 UVy;—1,—2,€,J), which includes two automata over the alpha-
bet Y x X representing —; and —5, and an automaton over the alphabet X' x I'
representing the regular specification of the fairness conditions € and J. [Recall that
I' :={0,1} x {0,1} x {0,1}.] We describe the construction of ~»; (the construction
for ~»5 is similar). Let A = (X X X, Q, A, qo, F’) be an automaton representing —1 and
Al = (2 x IQf A7, q(]; , F'¥) be an automaton representing the regular specification
of fairness. The construction of the automaton for ~»; has two stages.

Stage 1: compute an intermediate automaton. The intermediate automaton 5 will have
the alphabet Y’ := (X' x X)) U I" and recognize a subset of ((X' x X)I")*. Intu-
itively, on input (a,b) € X x X, the automaton B simultaneously takes a transition
over (a,b) in A and any transition (a, ¢) in A7, proceeding into an intermediate state
where it remembers the value of ¢, which it outputs in the next step. This process
is repeated until both A and A7 accept. More precisely, the automaton is defined as
B:=(X,Q8,AB ¢B, FP) where:

-QP=QxQf x (T'u{?}),¢f = (qo,qg, ?),and FB = F x F x {?}
— Ap has the following transitions:

o ((p1,q],?),(a,0), (p2,qd,¢))if (p1, (a,b),p2) € Aand (¢], (a,¢),q)) € AT
e ((p,q’,c),c,(p,q,?)) foreachc € I.

Stage 2: regular substitution of letters in I'. Our encoding of counters is unary using
symbols e and o, where e represents a pebble, and o represents empty space. For in-
stance, a number n € N is encoded as " o* (the number of o’s is arbitrary, though the
length of the whole encoding is constant due to our use of length-preserving transduc-
ers). We define the following regular languages for manipulating the counters:

— (Identity) ID := (e, )% (0,0)*,
— (Decrement) DEC := (e, ®)*(e,0)(0,0)*, and
— (Reset) RESET := (e, 0)" (0, 0)*.

Define the regular substitution ¢ mapping letters in I" to regular languages:

- if (z,y,2) is (4,1, ) or (0,4,0) (fori,j € {0,1}), then o((z,y,2)) = RESET.
- if (x,y, z) is of the form (1,0, ¢) (for some i € {0, 1}), then o((x,y, z)) = DEC.
— define ¢((0,0,1)) = 1ID.

We then apply the regular substitution o to the letters I" appearing in our intermediate
automaton . The resulting automaton implements the desired automaton for ~»1.

15



Finishing off the rest of the construction. Computing S{) and F” is easy. Define S|, to be
the set of all words awiasws - - - @y Wy, such thata; - - - a,, € Spandw; € o+ for each

i € {1,...,m}. Similarly, define F’ to be the set of all words ajwyagws - - - AW,
such that

— eithera; -+ - a,, € Fandw; € (¢To*)Uo™ foreachi € {1,...,m}, or

- w; € ot forsome i € {1,...,m}.

Finite automata for these sets could be easily constructed given automata for Sy and F'.

Example 2. [Herman’s protocol] We encode process fairness in the following way.
The counters use the unary encoding, their values represented as the lengths of se-
quences of e’s padded on the right by the symbol o (crucial to keep the transducers
length-preserving). For example, the number 3 is represented by any word of the form
e e 0 0", Define X' = o*0", i.e., the set of all valid counters. The set of initial config-
urations can be expressed using the regular expression (X - X)*(T - X)(X - X)*, i.e.,
counters for all processes are initialized to an arbitrary value. The set of final configu-
rations is now (L - X)*(T - X)(L - X)* U (X - X)*(X - o*)(X - X)*, i.e., either there
is exactly one token in the system, or (at least) one counter has reached 0. Scheduler
now also performs operations on the counters for processes: for a chosen process, the
counter is reset, for other processes, the counter is decremented. This can be expressed
as the language (I - DEC)*(((L, L) + (T, T)) - RESET)(I - DEC)*. Actions of the
protocol are the same as in the original encoding and the values of counters are left
unmodified:

(I-1D)*(((L,L)+ (T, T))-ID)(-ID)* (idle)
(I-1D)*((T,L)-1D)(((L,T)+ (T, T))-ID)(I-ID)" (pass token right;)
(((L, T)+ (T, T))-ID)(I - ID)*((T,L)- ID) (pass token right,)

At this point, we can use existing tools for checking termination (without fairness con-
straints), e.g. [20]. Indeed, we can automatically check that the system after reduction
terminates with probability one, thus proving that Herman’s protocol fairly terminates
with probability one (under finitary process-fair schedulers).

6 Implementation and Experiments

The approach presented in this paper has been implemented in the tool FAIRYTAILE]
For evaluation, we extracted models of a number of probabilistic parameterized sys-
tems. The tool receives a system with fairness conditions and transforms it into a sys-
tem without fairness conditions, where fairness of the original system is encoded using
counters. For solving liveness in the output transformed system, we use SLRP [20] (in
the incremental liveness proofs setting) as the underlying liveness checker for parame-
terized systems.

Table [6] shows the results of our experiments. The times given are the wall clock
times for the individual benchmarks on a PC with 4 Quad-Core AMD Opteron 8389
processors with Java heap memory limited to 64 GiB. The time included translation of
the system into a system without fairness (always less than 1s) and the runtime of SLRP.

"https://github.com/uuverifiers/autosat/tree/master/Fairness

16


https://github.com/uuverifiers/autosat/tree/master/Fairness

Table 1. Times of analyses of probabilistic paremeterised systems. The timeout was set to
10 hours (timeout is denoted as T/O).

Case study “ Time
Herman’s protocol (merge, line) 3.64s
Herman'’s protocol (annih., line) 4.33s
Herman’s protocol (merge, ring) 4.31s

Herman’s protocol (annih., ring) 4.61s
Moran process (2 types, line) 2m48s
Moran process (3 types, line) 56m 14s
Cell cycle switch (1 types, line) 43.94s
Cell cycle switch (2 types, line) || 9h 46 m

Clustering (2 types, line) 10m 30s
Clustering (3 types, line) T/O
Coin game (k = 3, clique) ImOs

Herman’s protocol. We consider two versions of Herman'’s protocol (described in more
detail in Section[3.4) that differ in the way how they handle the situation when a process
already holding a token receives another token—either the two tokens are merged into
one, or they are both annihilated—and two topologies: a line and a ring. In our version
of Herman’s protocol, all processes are always enabled, and in case they do not hold
a token, they can only stay in their state{ﬂ Fig. [1| shows an example of a synthesized
solution for the model of Herman’s protocol on a ring (the annihilating variant).

Moran process. Our second example uses variants of Moran process, amodel of genetic
drift, on a linear array [24], where the order in which individuals move is determined
by the scheduler. Each node of the array is an allele, and there are two types of alleles:
A and B (we can generalise this to any number N > 2 of alleles). At each round,
the scheduler picks an allele. The allele will randomly either copy its type to itself or
“infect” one of the neighbours (copy its type to a random neighbour). We check the fair
termination property that the system eventually reaches a “drift” state, where all alleles
are of the same type, under every process-fair scheduler, with probability one.

Note that the termination property is not true if we do not impose fairness: for
example, when in AABB, an unfair scheduler can simply choose the first A all the
time. Additionally, small variants of the model may not satisfy the property. Consider
the variation where the chosen allele must infect one of its neighbors. For a linear array
of size at least 4, a fair scheduler can play in such a way that guarantees that the system
never terminates in a drift state.

Cell cycle switch. The model of cell cycle switch is a simplification of the model of [25]]
to reach a common decision of all members of a population between two possible out-
comes that approximately matches the initial relative majority. We assume cells are of
three types according to their decision: X, Y, and undecided (in the case of two types,

8 Note that even for the line topology, this model requires fairness to verify that a configuration
with a single token is reachable with probability 1. The model used in [20] did not require the
fairness assumption since it modelled processes without tokens as disabled.

17



a) Inv b) <

Fig. 1. Synthesized advice bits for Herman’s protocol on a ring

we consider X and undecided). A decided cell (X or Y') can change the type of an un-
decided neighbour to its own. In addition, a decided cell can change a neighbour with
an opposite decision to undecided. We verify that from any initial configuration, with
probability 1, the system stabilizes into a configuration where all cells share a common
decision.

Clustering. The clustering example considers a population model of alleles of 2 (resp. 3)
types, say {A, B} (resp. {A, B,C}), on a line. The alleles can change position with
their neighbours of a different type, e.g. AB — BA. We verify that from any config-
uration, the system will reach a state where the alleles form 2 (resp. 3) clusters of the
same type.

Coin game. In the coin game use case, we consider a population protocol where every
agent has one of two types of coins: gold or silver. In each step, an agent chosen by the
scheduler will either keep its currency, or switch to the currency held by the majority
from k randomly selected neighbours. We verify that we eventually get to a configura-
tion where all agents have the same type of coins.

The experiments show that our encoding of fairness into systems is viable and can
be used for verification of parameterized systems with fairness by their reduction to sys-
tems without fairness. On the other hand, when the size of the regular proof is large, we
observe that the problem for the underlying solver gets significantly more difficult (as
can be seen on the example of clustering for three types of alleles). We conjecture that
the performance can be improved significantly by making the solver take into account
the (not arbitrary) structure of the problem, which we leave for future work.

Future work. We leave the reader with several research challenges. A natural ques-
tion is how to deal with non-finitary fairness for parameterized probabilistic concurrent
systems in general and in the framework of regular model checking. Secondly, since
there are numerous examples of population models over more complex topologies (e.g.
grids), how do you deal with termination and fair termination over such models in the
parameterized setting?

18



Acknowledgement. We thank anonymous reviewers and Dave Parker for their helpful
feedback. This work was supported by the Czech Science Foundation (project 16-
24707Y), the BUT FIT project FIT-S-17-4014, the IT4IXS: IT4Innovations Excellence
in Science project (LQ1602), Yale-NUS Starting Grant, the European Research Council
under ERC Grant Agreement no. 610150, and Swedish Research Council (2014-5484).

References

10.

11.

14.
15.
16.
17.
18.
19.
20.

21.

. Lynch, N.A., Saias, 1., Segala, R.: Proving time bounds for randomized distributed algo-

rithms. In: PODC. (1994) 314-323

. Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2) (1990) 63-67
. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizing

mutual exclusion. In: PODC. (1990) 119-131

. Lehmann, D., Rabin, M.: On the advantage of free choice: A symmetric and fully distributed

solution to the dining philosophers problem (extended abstract). In: POPL. (1981) 133-138

. Fokkink, W.: Distributed Algorithms. MIT Press (2013)
. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature

433(7023) (January 2005) 312-316

. Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time

systems. Formal Methods in System Design 1(4) (1992) 385415

. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-

time systems. In Gopalakrishnan, G., Qadeer, S., eds.: Proc. 23rd International Conference
on Computer Aided Verification (CAV’11). Volume 6806 of LNCS., Springer (2011) 585-
591

Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In:
FOCS. (1985) 327-338

Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent systems.
Inf. Process. Lett. 22(6) (1986) 307-309

. Bertrand, N., Fournier, P.: Parameterized verification of many identical probabilistic timed

processes. In: FSTTCS’13. Volume 24 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2013) 501-513

. Esparza, J.: Parameterized verification of crowds of anonymous processes. Dependable

Software Systems Engineering 45 (2016) 59-71

Abdulla, P.A.: Regular model checking. STTT 14(2) (2012) 109-118

Nilsson, M.: Regular Model Checking. PhD thesis, Uppsala Universitet (2005)

Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: Regular model checking
for LTL(MSO). STTT 14(2) (2012) 223-241

Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large (extended abstract). In:
CAV. (2003) 223-235

Neider, D., Jansen, N.: Regular model checking using solver technologies and automata
learning. In: NFM. (2013) 16-31

To, A.W., Libkin, L.: Algorithmic metatheorems for decidable LTL model checking over
infinite systems. In: FoSSaCS. (2010) 221-236

Lin, A.W., Riimmer, P.: Liveness of randomised parameterised systems under arbitrary
schedulers. In: CAV’16 (2). Volume 9779 of LNCS., Springer (2016) 112-133

Bonnet, R., Kiefer, S., Lin, A.W.: Analysis of probabilistic basic parallel processes. In:
FOSSACS. (2014) 43-57

19



22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang. Syst. 20(6) (1998)
1171-1194

Francez, N.: Fairness. Springer-Verlag New York, Inc., New York, NY, USA (1986)
Moran, P.A.: Random processes in genetics. Mathematical Proceedings of the Cambridge
Philosophical Society 54(1) (Jan 1958) 60-71

Cardelli, L., Csikdsz-Nagy, A.: The cell cycle switch computes approximate majority. Sci-
entific Reports 2(656) (2012)

Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program. ACM
Trans. Program. Lang. Syst. 5(3) (1983) 356-380

Pnueli, A., Zuck, L.D.: Verification of multiprocess probabilistic protocols. Distributed
Computing 1(1) (1986) 53-72

Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs using pat-
terns. In: CAV. (2012) 123-138

de Alfaro, L.: Temporal logics for the specification of performance and reliability. In: STACS
97, Symposium on Theoretical Aspects of Computer Science. Volume 1200 of Lecture Notes
in Computer Science., Springer (1997) 165-176

Baier, C., Kwiatkowska, M.Z.: On the verification of qualitative properties of probabilistic
processes under fairness constraints. Inf. Process. Lett. 66(2) (1998) 71-79

Olderog, E., Apt, K.R.: Fairness in parallel programs: The transformational approach. ACM
Trans. Program. Lang. Syst. 10(3) (1988) 420455

Olderog, E., Podelski, A.: Explicit fair scheduling for dynamic control. In: Concurrency,
Compositionality, and Correctness, Essays in Honor of Willem-Paul de Roever. Volume 5930
of Lecture Notes in Computer Science., Springer (2010) 96-117

Hoenicke, J., Olderog, E., Podelski, A.: Fairness for dynamic control. In: TACAS’10. Vol-
ume 6015 of LNCS., Springer (2010) 251-265

Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martingales. In:
CAV. (2013) 511-526

Monniaux, D.: An abstract analysis of the probabilistic termination of programs. In: SAS.
Springer (2001) 111-126

Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: Soundness, completeness, and com-
positionality. In: POPL’15, ACM (2015) 489-501

Chakarov, A., Voronin, Y., Sankaranarayanan, S.: Deductive proofs of almost sure persis-
tence and recurrence properties. In: TACAS. (2016) 260-279

Kaminski, B.L., Katoen, J., Matheja, C., Olmedo, F.: Weakest precondition reasoning for ex-
pected run-times of probabilistic programs. In: ESOP’16. Volume 9632 of LNCS., Springer
(2016) 364-389

Gridel, E., Thomas, W., Wilke, T., eds.: Automata, Logics, and Infinite Games: A Guide to
Current Research [outcome of a Dagstuhl seminar, February 2001]. Volume 2500 of Lecture
Notes in Computer Science., Springer (2002)

Kwiatkowska, M.Z.: Model checking for probability and time: from theory to practice. In:
LICS. (2003) 351

To, A.W.: Model Checking Infinite-State Systems: Generic and Specific Approaches. PhD
thesis, LFCS, School of Informatics, University of Edinburgh (2010)

Bonchi, F, Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In:
POPL’13, ACM (2013) 457468

Abdulla, P.A., Chen, Y.F.,, Holik, L., Mayr, R., Vojnar, T.: When simulation meets antichains.
In: TACAS. (2010) 158-174

Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: CAV. (2006) 438451
Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular (tree) model
checking. STTT 14(2) (2012) 167-191

20



46.

47.

48.

Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to practice.
STTT 10(5) (2008) 401424

Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic model
checking. In: ATVA. (2005) 474-488

Lin, A.W.: Accelerating tree-automatic relations. In: FSTTCS. (2012) 313-324

21



	Fair Termination for Parameterized Probabilistic Concurrent Systems (Technical Report)

