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Abstract: We address the problem of steering the output of a nonlinear system along a given
parametrized reference path, taking input and state constraints into account. Such problems
are known as output path-following problems, which typically arise in vehicle and robot control
and also in process control.
We propose an efficient, continuous time, sampled-data state feedback, predictive control scheme
which guarantees convergence to an output path in the presence of state and input constraints.
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1. INTRODUCTION

Classical controller design either aims at setpoint stabiliza-
tion or tracking of reference signals. In general, tracking
of output or state trajectories involves a timing constraint
when to be where on the reference trajectory. In difference
to tracking, path-following aims at driving the system
towards and along a geometric curve or manifold as good
as possible, which in general does not require any apriorily
known timing information. Therefore the path-following
controller can influence both: The system inputs as well
as the reference timing when to be where on the reference
path. Path-following provides a suitable framework for
different applications, esspecially if following the reference
precisely is more important than speed. Typical applica-
tions are: Ship or flight course control, the control of robots
and CNC-machines, as well as problems arising in chemical
process industries such as batch crystallization following a
receipe.

Backstepping based approaches to path-following prob-
lems have been proposed inter alia in Aguiar et al. (2005,
2008); Skjetne et al. (2004). A limitation of these works
is that neither input nor state constraints can be consid-
ered explicitly during the controller design. In order to
overcome these limitations optimization based predictive
control approaches to path-following problems have been
proposed in Faulwasser and Findeisen (2009); Faulwasser
et al. (2009). These works allow to consider constraints di-
rectly in a suitable, stabilizing nonlinear model predictive
control (NMPC) framework but are limited to state space
paths. State space paths denote reference paths which are
defined in terms of the complete state variable x ∈ R

n

while output path-following requires that only the system
output should follow the reference.

From a predictive control point of view following state
space paths can be considered as easier in terms of re-
lying on available stability results than following paths
defined in an output space. For state space path-following
a stabilizing NMPC scheme can be derived by defining
an adequate cost function (which penalizes mainly path
deviation and inputs and is a strictly positive definite
function of the state) and a subsequent reformulation in
suitable coordinates, cf Faulwasser and Findeisen (2009);
Faulwasser et al. (2009). In the case of output paths it is
likewise desireable to penalize mainly path deviation and
inputs in the cost function. However, since output maps
y = h(x) are in general not bijective one has to deal with
semi-definite cost functions. Establishing a cost decrease
or Barbalats Lemma like convergence condition for the
complete state is difficult for such cost functions. To handle
this issue one may rely on detectability conditions as in
Grimm et al. (2005). Here, we follow a different approach:
Instead of searching for sufficient stability conditions we
pursue a set stabilization rather then a setpoint stabi-
lization approach. Subsequently we extend previous re-
sults on predictive path-following to output path-following
problems, cf Faulwasser and Findeisen (2009); Faulwasser
et al. (2009). We propose a sampled-data, state feedback,
quasi-infinite horizon NMPC scheme and derive sufficient
conditions that guarantee output path convergence.

In Section 2 we briefly introduce the constrained output
path-following problem and discuss conditions for exact
path-following. Our main result is given in Section 3: An
NMPC scheme that guarantees output path convergence
in the presence of input and state constraints. In Section
4 we consider an autopilot for a ship as an application
example.
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Notation

For any vector y ∈ R
k, ‖y‖ denotes the 2-norm and

the weighted norm is given by ‖y‖Q = yT Qy, where
Q ∈ R

k×k is a positive semi-definite matrix. The image
I of a compact set S ⊆ R

n under a map m : R
n 7→ R

k

is defined as I = m(S) := {∀s ∈ S s 7→ i = m(s)}.
The preimage P ⊆ R

n of a set I ⊆ R
k is denoted as

P = m−1 (I) := {∀p ∈ R
n : m(p) ∈ I}. A solution to an

ODE ẋ = f(x, u) starting at x0, driven by the input u(t)
is denoted as x(t|x0, u). If no ambiguity about the starting
point can arise we may concisely write x(t|u).

2. THE OUTPUT PATH-FOLLOWING PROBLEM

Throughout this work we consider nonlinear systems

ẋ = f(x, u), x(t0) = x0, (1a)

y = h(x), (1b)

where are f : R
n × R

m 7→ R
n and h : R

n 7→ R
k.

Furthermore, the system is subject to constraints on states
x ∈ X ⊂ R

n and inputs u ∈ U ⊂ R
m, where both

constraint sets are compact and contain the origin. The
initial condition belongs to a set consistent with the state
constraints x0 ∈ X0 ⊆ X . We assume, that the vector
fields f and h from (1) are sufficiently often continuously
differentiable. Besides this f has an unique continuous
solution for all inital conditions in the region of interest
and all inputs u ∈ U .

Often one either aims at stabilizing the output y =
h(x) around a constant setpoint against disturbances or
wants to track a time-varying output reference signal. In
contrast to these problems path-following aims at driving
the system along a geometric reference. This reference is
denoted as path P and given as a parametrized, geometric
curve in the output space R

k

P = {θ ∈ [θ̂, 0] ⊂ R 7→ p(θ) ∈ R
k}. (2)

The scalar variable θ is the path parameter. The path is the

image of [θ̂, 0] under the locally bijective map p : R 7→ R
k.

For sake of convenience, we assume that the initial path

point θ(t0) = θ0 ∈ [θ̂, 0) is known. The map p is sufficiently
often continuously differentiable. Hence, the path P is
a part of a differentiable 1d manifold in R

k. In order
to consider state constraints the following consistency is
required

h(X ) = {∀x ∈ X 7→ y = h(x)} ⊃ P. (3)

This consistency basically ensures that for each point on
the path P at least one x ∈ X exists s.t. h(x) ∈ P. In
general, the path parameter θ(t) is time dependent but
its time evolution is not known apriori. The conceptual
idea of path-following problems is to obtain the system
inputs u(t) as well as the reference timing θ(t) in the
controller, e.g. Aguiar et al. (2005, 2008); Skjetne et al.
(2004); Faulwasser and Findeisen (2009). Usually, the path
parameter is regarded as a virtual state, whose evolution is
determined through a timing law θ̇ = g(θ, v). Please note,
the time evolution of θ can be influenced by the virtual
input v ∈ V ⊂ R. In this note we consider first order ODEs
as timing laws but the consideration of higher order timing
law ODEs is also possible. We restrict the choices for the
timing law g s.t. equivalent properties as assumed for f

from (1a) hold. Additionally, we suppose that the set of
admissible path parameter inputs V ⊂ R is compact and
contains the origin. The timing law is an additional degree
of freedom during the controller design.

Constrained output path-following refers to the task of
steering the output of the system (1) as close as possible
to the path manifold P from (2), and subsequently move
along P in the direction of increasing values of θ.

Definition 1 (Constrained Output Path-Following).
Given the system (1) and the reference path P from (2)
design a controller that achieves the following:

P1 Path Convergence: The system output y = h(x)
converges to the set P s.t:

lim
t→∞

‖h(x(t|x0, u)) − p(θ(t|θ0, v))‖ = 0.

P2 Forward Motion: The system moves along P in
the direction of increasing values of θ s.t. for all

θ ∈ [θ̂, 0) : θ̇(t) > 0.
P3 Constraint Satisfaction: The constraints on states

x ∈ X and inputs u ∈ U are satisfied for all times.

It is reasonable to ask for sufficient conditions ensuring
that a given path P is exactly followable by a known sys-
tem (1). To this end we define path followability rigorously
as follows.

Definition 2 (Exact Path Followability).
A path P is called exactly followable by system (1), if the
system admits at least one continuous solution trajectory
x(t), s.t. the error variable e(t) = h(x(t)) − p(θ(t)) is
zero for all t ≥ 0 while the path parameter θ(t) evolves

continuously with time t and θ̇ > 0 holds for all θ ∈ [θ̂, 0).

The consistency requirement from (3) is a intuitive but
merely necessary condition for exact path followability.
The following theorem answers the question for sufficient
conditions if the path evolution is described via a timing
law ODE θ̇ = g(θ, v) and the system (1) is subject to input
and/or state constraints.

Theorem 1
Given the system (1) subject to input and state constraints
u ∈ U , x ∈ X and the path P defined by (2).

Suppose, the path P is consistent with the state con-
straints h(X ) ⊆ P, and the timing law θ̇ = g(θ, v) is chosen

s.t. for all θ ∈ [θ̂, 0) and all admissible inputs v ∈ V: θ̇ > 0.

Then P is exactly followable starting from θ0 = θ(t0), if

(i) the system state x(t0) = x0 ∈ X is s.t. h(x0) = p(θ0)
(ii) and admissible input signals u ∈ U , v ∈ V exist s.t.

for all t ≥ t0 the trajectories x(t|x0, u) ∈ X and

θ(t|θ0, v) ∈ [θ̂, 0] satisfy

∂h

∂x
· f(x, u)

∣

∣

∣

x(t|x0,u)
=

∂p

∂θ
· g(θ, v)

∣

∣

∣

θ(t|θ0,v)
. (4)

Proof. The proof is based on the observation that, if the
systems starts at a point on the path the error variable
e(t) = h(x(t)) − p(θ(t)) has to be stabilized at the origin

while θ̇ > 0 holds. Note, by assumption the system ODE
(1) as well as the timing law g are such that for all
admissible inputs u ∈ U and v ∈ V exist unique and
continuous solutions x(t) and θ(t).
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From part (i) of the theorem we know that at time t0 we
start at the point on P given by θ0. Hence e(t0) = h(x0)−
p(θ0) = 0. The time derivative of e(t) is given by

ė(t) =
∂h

∂x
· ẋ −

∂p

∂θ
· θ̇.

For all t ≥ t0 condition (ii) guarantees ė(t) = 0. Since
e(t0) = 0 it follows that e(t) = 0 for all t ≥ t0. 2

At the first glance these conditions seem to be rather
hard to check. However, besides the real system input u
the virtual path parameter input v and the timing law
θ̇ = g(θ, v) appear as additional degrees of freedom on the
right hand side of (4).

3. PROPOSED CONTROL SCHEME

We propose to solve the output path-following problem
by means of NMPC. To avoid the difficulties of real
output-feedback NMPC, we assume that sampled-data
state information is available to the controller. In order to
distinguish between the predicted controller variables and
the real system variables we denote the predicted inputs,
states and outputs with x̄, ū etc.

At each sampling instant tk = kδ, δ > 0, k ∈ N

the following optimal control problem is solved in the
controller

minimize
ū(·), v̄(·)

J
(

tk, ē, θ̄
)

, (5a)

the cost functional is defined as

J (·) =

∫ tk+T

tk

F (ē, θ̄, ū, v̄)dτ + E
(

ē, θ̄
) ∣

∣

tk+T
, (5b)

where F (·) : R
k ×R×U ×V 7→ R≥0. The term E(·) : R

k ×
R 7→ R≥0 is referred to as terminal cost. The positive
constant T is called prediction horizon. This optimal
control problem is subject to the system model and further
constraints

˙̄x = f(x̄, ū), x̄(tk) = x(tk), (5c)

˙̄θ = g(θ̄, v̄), θ̄(tk) = θ̄(tk | θ̄(tk−1)), (5d)

ē = h(x̄) − p(θ̄), (5e)

∀τ ∈ [tk, tk + T ] : x̄(τ) ∈ X , ū(τ) ∈ U , (5f)

∀θ̄(τ) ∈ [θ̂, 0) : ˙̄θ(τ) > 0, v̄(τ) ∈ V, (5g)

x̄(tk + T ) ∈ E . (5h)

Equation (5h) requires that at the end of each prediction
the predicted state x̄(tk + T ) has to be inside a terminal
region E . Equation (5d) states that the path parameter
θ is regarded as a virtual state of the NMPC scheme. Its
dynamics are described through the timing law g and can
be influenced by the virtual input v, where v is a decision
variable of the minimization. Please note, while at each
sampling instance the measured state information x(tk)
serves as initial condition for (5c) the initial conditions
for the timing law (5d) are taken from the evaluation of
the last predicted trajectory θ̄(t|θ̄(tk−1)) at tk. Equation
(5e) specifies the path-following error. We point out that
not the complete state but only the predicted error ē(t) is
penalized in the cost function F and the terminal cost E.
The optimal solution of problem (5) is denoted as J⋆(·)
and leads to optimal input trajectories ū⋆(t|x(tk)) and
v̄⋆(t|x(tk)). Finally ū⋆(·) is applied to the system such that
for all t ∈ (tk, tk + δ]: u(t) = ū⋆(t|x(tk)).

In two crucial aspects the proposed scheme differs from
standard NMPC approaches. First, the path-following spe-
cific constraints capture an additional degree of freedom
of the controller design, since the timing law (5d) is not
given apriori but rather can be chosen. Second, the cost
F (ē, θ̄, ū, v̄) is in general a positive semi-definite function
of the predicted system state x̄ since ē = h(x̄) − p(θ̄).
Actually, the second aspect turns out to be a major issue.
As previously investigated inter alia by Grimm et al.
(2005) it is possible to guarantee stability of predictive
control schemes subject to semi-definite cost functions if
certain detectability assumptions hold for F (·). But the
constrained output path-following defined above does not
require to guarantee stability of the state. Rather we need
to ensure that the output y = h(x) converges to P and

follows it along while the constraints u ∈ U and θ̇ > 0 are
respected. Furthermore, we want to ensure that the state
remains bounded in x ∈ X .

In order to derive an output convergence result for the
proposed control scheme we require that the cost function
F (e, ·) is lower bounded by a class K function α(e) and
that F (0, 0, 0, 0) = 0.

Definition 3 (Path Consistent State Set).
Given the system (1) subject to input and state constraints
and the path P from (2). Consider a subset Γ of the
preimage h−1(P) ⊂ R

n, where h : X 7→ R
k is the output

map y = h(x) from (1b). For all x ∈ Γ the following
conditions have to hold:

(i) For all θ ∈ [θ̂, 0] exist x ∈ Γ, s.t. h(x) = p(θ).
(ii) There exist admissible inputs uΓ ∈ U and vΓ ∈ V s.t.

condition (ii) of Theorem 1 holds: The system follows
P exactly along in forward direction.

Basically, the path consistent state set Γ is the set of all
states x, where the output y = h(x) is on the path and the
admissible inputs can move the output exactly along the
path. Although the output map h from (1b) is continuous,
there is in general no guarantee that either the preimage
of the path h−1(P) is compact nor that it can be rendered
positively invariant by admissible inputs. Hence, we make
the following standing assumption.

Assumption 1
The set of consistent states Γ is nonempty, simply con-
nected and compact.

The existence of a nonempty, simply connected and com-
pact set Γ ensures that path can be followed exactly by
admissible inputs, since for all x ∈ Γ Theorem 1 has to
hold. While the existence of Γ ensures path followability,
its connected- and compactness are assumed for technical
reasons. Figure 1 illustrates the main idea behind the set
Γ from Definition 3 and Assumption 1. The right hand
side depicts the consistency requirement between the sets
h(X ) and P as previously stated in (3). The left hand side
illustrates the relations between the preimage h−1(P), the
state constraint set X and Γ. Assumption 1 states that the
conjunction X ∩ h−1(P) is nonempty and that a compact
set Γ ⊆

{

X ∩ h−1(P)
}

exists. Furthermore, Assumption
1 can be used to deduce the existence of a suitable end
penalty E(·) which will be later used to bound the cost-to-
go of the proposed control scheme and hence to guarantee
path convergence.
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h
−1(P)

X

Γ h : R
n 7→ R

k

h(X )

h(Γ) = P

Fig. 1. Relations between the constraint set X , the path
consistent set Γ and the preimage h−1(P).

Lemma 1
Given the system (1), a path P (2), the set Γ from
Definition 3 and provided that Assumption 1 holds.

Suppose

(i) that the admissible input signals uΓ ∈ U and vΓ ∈ V
exist,

(ii) and for an ǫ > 0 and all θ ∈ [ǫ, 0] it holds that
g(θ, vΓ) ≥ F (0, θ, uΓ, vΓ) ≥ 0.

Then there exists a continuously differentiable, positive

semi-definite function E(θ) : [θ̂, 0] 7→ R≥0 where E(0) = 0
s.t. for all x ∈ Γ

∂E(θ)

∂θ
· θ̇ + F (0, θ, uΓ, vΓ) ≤ 0. (6)

Proof. The proof is built on the idea that the path-
parameter θ can be considered as a suitable alternative
time variable. Due to Assumption 1 the set Γ is compact
and nonempty. From Assumption 1 we know that the input
signals uΓ(t), vΓ(t) render Γ positively invariant and e = 0
holds for all x ∈ Γ.

Due to the properties required for g the input vΓ ensures
that the map t 7→ θ(t) is unique and continuous. Since

θ̇ > 0 holds for all θ ∈ [θ̂, 0) the map t 7→ θ(t) is uniquely

invertible to θ 7→ t(θ) for all θ ∈ [θ̂, 0). Due to its continuity

it is also uniquely invertible on [θ̂, 0]. Hence the time
parametrization of the inputs along the path P may be
expressed in terms of the path parameter θ and is written
as t(θ).

Since the constraint sets U , V and [θ̂, 0] are compact and
F (·) is continuous in all arguments it follows that

∀t ≥ 0, ∀x ∈ Γ : F (0, θ(t), uΓ(t), vΓ(t)) < ∞.

Relying on the time parametrization t(θ) this can be
rewritten as

∀θ ∈ [θ̂, 0], ∀x ∈ Γ : F (0, θ, uΓ(θ), vΓ(θ)) < ∞.

Consider the following integral along the path

0 ≤

∫ 0

θ̂

F (0, η, uΓ(η), vΓ(η))

θ̇(η)
dη,

and split it into the parts

0 ≤

∫ ǫ

θ̂

F (·)

θ̇(η)
dη +

∫ 0

ǫ

F (·)

θ̇(η)
dη.

The existence and boundedness of the first integral can
be established without any difficulty, since θ̇ > 0 and
F (·) is bounded. Due to part (ii) of the lemma F (·)

converges faster to zero than θ̇ = g(θ, vΓ) and hence the

second integral exists and is bounded. It follows that for

all θ ∈ [θ̂, 0]

E(θ) = −β

∫ 0

θ

F (0, η, uΓ(η), vΓ(η))

θ̇(η)
dη, β ∈ [1,∞)

is a suitable terminal cost E(θ) which fulfills condition (6)
for all x ∈ Γ. 2

The lemma offers some insights into suitable terminal
penalites and terminal regions. Γ is a reasonable choice
for the terminal region E from (5h). Mainly, Lemma 1
provides a suitable way to calculate an end penalty E(·)
if E = Γ . Please note, the conditions required are not as
strict as they may seem, since the timing law g(·) is chosen
during the controller design. However, Γ is a minimal or
conservative choice for E , since the pair end penalty E and
terminal region Γ can be regarded as a zero terminal path
constraint, which was initially developed for the case of
state space paths in Faulwasser et al. (2009).

Since we want to consider cases, where the system does
not start on the path P (or more precisely inside Γ), it is
also necessary to assume that the path can be reached in
finite time by admissible inputs.

Assumption 2
For all initial conditions x0 ∈ X0 exist admissible input
signals u0 ∈ U , v0 ∈ V and a positive time T̃ < ∞, s.t. the
solution x(t|x0, u0) is contained in Γ ⊂ X for all t ≥ T̃ .

With respect to Assumption 2 the system can be driven
by means of admissible inputs in finite time from any
point in X0 to Γ. Obviously, the prediction horizon of
the optimal control problem (5) has to be chosen s.t.

T ≥ T̃ . Assumptions 1 and 2 are not as restrictive it
seems. Basically, they ensure that the considered output
path-following problem is reasonably structured: The path
is exactly followable under the given input and state
constraints (Ass. 1) and the optimal control problem (5)
is initially feasible for all x0 ∈ X0 (Ass. 2). The existence
of an (in general non-unique) optimal solution to the
optimal control problem (5) can be ensured, if convexity
assumptions are made for the velocity sets of the system
dynamics (1a) and the timing law (5d), cf Fontes (2001).
For sake of a concise presentation we assume that the
optimal control problem has an optimal solution which
is actually attained.

Main Result

Under the given assumptions we are now ready to state the
main result of this note providing convergence conditions
for the output path-following problem.

Theorem 2 (Output Path Convergence).
Given the constrained output path-following problem from
Definition 1 for a system of type (1), a path of form (2)
and provided Assumptions 1 & 2 hold.

Suppose, that conditions (i) and (ii) of Lemma 1 are
satisfied. Then there exists a compact (terminal) region
E ⊇ Γ and a semi-definite terminal cost E(ē, θ̄) ∈ C1 s.t.
the application of the predictive path-following scheme
defined by (5) guarantees that the constrained output
path-following problem (P1–P3) are satisfied. All system
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states x remain bounded in X and the system output
converges to the path P s.t.

lim
t→∞

‖h(x(t|x0, u(·))) − p(θ(t|θ0, v(·)))‖ = 0.

Proof. The proof follows along the ideas presented e.g. in
Findeisen (2006); Fontes (2001) and we sketch here only
the three main steps: First, we discuss the feasibility of
the optimal control problem (5). Second, we know from
Lemma 1 that Assumption 1 suffices to guarantee that the
set Γ can always be used as terminal region s.t. the cost
to go can be upper bounded by a terminal cost E(θ). And
finally, we line out how one can apply Barbalats Lemma
to proof convergence.

From Assumption 1 we know that the problem (5) ad-
mits a feasibile solution uΓ, vΓ for all x ∈ Γ. And from
Assumption 2 we know that from all x0 ∈ X0 the set Γ
can be reached by admissible inputs u0, v0 in some finite
time T > 0. Since the nominal case is considered the
concatenation

(u, v) =

{

(u0, v0) for t ≤ T
(uΓ, vΓ) for t > T

yields input signals which guarantee that the constrained
output path-following problem is solved. Following along
the ideas presented in Fontes (2001) it is straight forward
to conclude that Assumptions 1 & 2 guarantee the feasi-
bility of the optimal control problem (5) at every sampling
instant tk.

We point out, that without loss of generality the choice of
timing laws can be restricted to the set of functions g s.t.

for all θ ∈ [θ̂, 0) and all v ∈ V it holds g(θ, v) > 0. Hence
we can assume that the forward movement condition P2
of the output path-following problem is satisfied.

The following lemma establishes that the optimal value
function is decreasing from sampling instance to sampling
instance. Its proof follows directly the ideas presented in
Fontes (2001).

Lemma 2
Given Assumptions 1 & 2 and suppose that the set Γ and
the terminal penalty from Lemma 1 are used in the optimal
control problem (5). Then for k ∈ N it holds

J⋆(tk+1, e
⋆, θ⋆)−J⋆(tk, e⋆, θ⋆) ≤ −

∫ tk+1

tk

α(e⋆(s))ds. (7)

From Assumption 2 it can be deduced that the value
function J⋆(t0, ·) is upper bounded by a finite scalar. It
follows that for all t > t0

J⋆(tk+1, e
⋆, θ⋆)−

∫ tk+1

tk

α(e⋆(s))ds ≤ J⋆(t0, e
⋆(t0), θ

⋆(t0)).

Since the properties of the dynamics f, k and the maps h, p
are s.t. the uniform continuity of e(t) = h(x(t)) − p(θ(t))
is ensured. Using Lemma 2 it follows by Barbalats Lemma
that lim

t→∞
e(t) = 0. 2

Remarks

It should be clearly noted, that the proposed control
scheme aims on convergence of the output y = h(x) to
the path and not on Lyapunov state stability. This means
that Theorem 2 in principle allows cases where the output

converges to the path while the states might move through
X . This mainly stems from the fact that intuitive cost
functions for the output path-following problem penalize
the deviation from the reference path and inputs but not
necessarily the complete state.

Furthermore, the results given above share a difficulty with
various other quasi-infinite horizon NMPC schemes: The
computation of suitable terminal regions and end penalties
is rather hard. Referring to the proposed control scheme
this boils down to the question of pinpointing the path
consistent state set Γ, since Lemma 1 tell us how to
compute a suitable terminal penalty if Γ is known

A straightforward but conservative choice is the off-line
computation of a path consistent trajectory x(t|x0, u) such
that h(x(t|x0, u)) = p(θ|θ0, v). The terminal constraint
(5h) is then replaced by x̄(tk + T |x(tk)) = x(tk + T |x0, u).
This choice will lead to a path convergent NMPC scheme
but the controller will always try to pinpoint the path
evolution to the trajectory determined off-line.

If the considered system (1) is differentially flat, s.t. the
output (1b) is a flat output (see Fliess et al. (1995) for
details), then there exists a map φ(y, ẏ, . . . , y(l)) = x which
allows to reconstruct the state from the output and a finite
number of its time derivatives. In this case and if the path
P is constructed by a map p(θ) ∈ Cm≥l+1 one should use
an l + 1-th order ODE as timing law and determine Γ
by utilizing the map φ. However, the system property of
differential flatness is only sufficient but not necessary for
the existence of such a map φ.

4. EXAMPLE: SHIP AUTOPILOT

We consider an output path-following problem as it ap-
pears in ship control as an example. The dynamics of a
ship are given by







ẋ1

ẋ2

ẋ3

ẋ4






=







w cos x3 − Lwx4 sin x3

w sin x3 + Lwx4 cos x3

x4
1
τ
(−x4 + Ku)






. (8)

The states x1 and x2 describe the position of the ship with
respect to a global coordinate system. x3 is the orientation
of the ship with respect to the x1 direction. x4 ∈ [−0.2, 0.2]
is the rotation rate of the ship. The input u ∈ [−0.6, 0.6]
is the rudder angle, τ = 22.32,K = −0.036, w = 3 and
L = 3.93 are constants, and w is the forward velocity of
the ship. The considered output is given as y = (x1, x2)

T ,
where the components describe to the position in the x1−
x2 plane. The path P to be followed is p(θ) = (θ, ρ(θ))T ,
where ρ(θ) = a1 sin a2θ and a1 = −103, a2 = 1.5 · 10−3.
The path parameter θ starts at θ0 = −4000. Its evolution
is θ̇ = −10−4θ+v, where v ∈ [0, 4]. This choice guarantees

that θ̇ > 0 holds for all v ∈ V.

The path-following error to be stabilized is e(t) = y(t) −
p(θ(t)). We consider the cost function F (e) = ‖e‖Q, Q =
105 diag(1, 1). The prediction horizon is set to T = 500s
and the control horizon is δ = 60s. Since neither θ nor
the inputs are present in the considered cost, it follows
from Lemma 1 that the terminal penalty can be neglected
without loss of path convergence, if the path consistent
state set Γ is known. Actually, one can show that the
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Fig. 2. Simulation results: (a) ship movement in y1 − y2-plane, state evolutions in (b) & (c) and input signals in (d).

considered path P is exactly followable by the constrained
system (8). To avoid the computation of the set Γ we
utilize the exact path-following condition of Theorem 1
and approximate Γ by the terminal constraints ‖ė(tk +
T )‖ ≤ ǫ, ǫ = 0.2. These conditions ensure, that at the
end of each prediction horizon the system is sufficiently
close to the path, while the output velocity vector is nearly
the same as the current reference velocity vector. The
computations were carried out using PROPT-TOMLAB
under MATLAB 7, see Rutquist and Edvall (2009) for
details. The simulation results for the initial condition
x0 = (−4296,−466,−0.75, 0)T are shown in Figure 2. The
ship movement converges rapidly to the path and follows
it along. As depicted in parts (c) and (d) of the figure
the constraints on the system input u ∈ [−0.6, 0.6] and
x4 ∈ [−0.2, 0.2] are satisfied.

5. CONCLUSIONS AND OUTLOOK

In this note we propose a predictive control approach to
output path-following problems in the presence of input
and state constraints. The given results state sufficient
conditions that guarantee the convergence of the system
output to an apriorily known reference path. Further
works should focus on two main aspects: On the one
hand the calculation of suitable terminal regions and the
path consistent set of states needs to be investigated more
closely. On the other hand robustness issues have not been
considered for predictive path-following, yet.
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