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SUMMARY

The human cytosolic thymidine kinase (TK) and
structurally related TKs in prokaryotes play
a crucial role in the synthesis and regulation of
the cellular thymidine triphosphate pool. We
report the crystal structures of the TK homote-
tramer from Thermotoga maritima in four differ-
ent states: its apo-form, a binary complex with
thymidine, as well as the ternary structures
with the two substrates (thymidine/AppNHp)
and the reaction products (TMP/ADP). In com-
bination with fluorescence spectroscopy and
mutagenesis experiments, our results demon-
strate that ATP binding is linked to a substantial
reorganization of the enzyme quaternary struc-
ture, leading to a transition from a closed, inac-
tive conformation to an open, catalytic state.
We hypothesize that these structural changes
are relevant to enzyme function in situ as part
of the catalytic cycle and serve an important
role in regulating enzyme activity by amplifying
the effects of feedback inhibitor binding.

INTRODUCTION

Thymidine kinases (TKs) catalyze the first phosphorylation

step in the salvage pathway of thymidine triphosphate

(TTP) synthesis by transferring the g-phosphate group

from an ATP molecule to the 50-hydroxyl group of thymi-

dine. Mammals contain two structurally distinct TKs,

referred to as TK1 and TK2. The latter is localized to the

mitochondria and is constitutively expressed. In contrast,

TK1, the focus of this report, is expressed in the cyto-

plasm, and is subject to strict cell cycle regulation. TK1

is only transcribed during the S-phase of the cell cycle

(Coppock and Pardee, 1987), and carries regulatory

motifs that promote its degradation in the proteasome

after mitosis exit (Ke and Chang, 2004). The strict control

of TK1 activity highlights the enzyme’s importance in reg-

ulating the intracellular TTP levels. This has been con-
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firmed by experiments in which disruption of human TK

1 (hTK) proteolysis leads to a dramatic increase in the in-

tracellular TTP levels, resulting in growth retardation and

increased gene mutation rate (Ke et al., 2005). Conversely,

TK1-knockout mice exhibit a dramatic shortening of life-

span, kidney failure, and compromised immune system,

suggesting an indispensable role of the salvage pathway

in vivo (Dobrovolsky et al., 2003). The phosphoryl donor

ATP has also been shown to affect TK1 activity (Munch-

Petersen et al., 1993). Here, we report how ATP modulates

the TK1 quaternary conformation from a closed to an open

state, and provide experimental evidence for the essential

nature of the open state for enzymatic activity.

Recently, the crystal structures of hTK1 and several

TK1-like enzymes were solved, and revealed a topology

distinct from previously reported deoxynucleoside ki-

nases (Birringer et al., 2005; Welin et al., 2004). Members

of the TK1 family assemble into homotetramers with D2-

symmetry, indicating a dimer-of-dimers with two distinct

protein-protein interfaces. The first boundary, referred to

as the strong dimer interface, is distal from the active

site, and is formed by aligning the b sheets of the two

flanking subunits in antiparallel fashion. The contact area

is made up of side chains from strand b6 and helix a4 in

both subunits. In contrast, the second boundary, called

the weak dimer interface, is proximal to the ATP binding

site, and involves mostly interactions between the helix

a1 of both subunits (Segura-Pena et al., 2007).

The individual subunits consist of a large aminoterminal

domain with a RecA fold (Welin et al., 2004) and a relatively

small carboxy-terminal region. The latter contains a zinc

binding site and an extended loop structure, called the

‘‘lasso’’ region. Thymidine binding is facilitated through

specific hydrogen-bonding interactions between its py-

rimidine moiety and the lasso region. At the other end of

the active site, ATP binding is assisted by the enzyme’s

P loop region and a magnesium ion. Consistent with

reports of broad phosphoryl donor specificity for TK1-

like enzymes (Lutz et al., 2007; Segura-Pena et al.,

2007), few specific interactions with the nucleosidyl por-

tion of ATP were observed in the crystal structures. The

structural analysis placed ATP’s adenosyl moiety at the

weak dimer interface of the tetramer. In fact, earlier data
6, December 2007 ª2007 Elsevier Ltd All rights reserved 1555
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for hTK1 and Thermotoga maritima TK (TmTK), cocrystal-

lized with the bisubstrate inhibitor, P1-(50-adenosyl)P4-

(50-(20-deoxy-thymidyl)) tetraphosphate (TP4A), suggest

that ATP binding induced a conformational change on

the quaternary structure level, consequently expanding the

tetrameric complex along the weak dimer interface. The

expanded conformation is critical for proper orientation

of ATP, and is stabilized by a hydrogen-bonding network

involving protein side chains, the ribose portion of ATP,

and numerous water molecules (Segura-Pena et al.,

2007). Separate kinetic and spectroscopic experiments

support the proposed quaternary structure change in

TK1 and its relevance to enzyme function (Lutz et al.,

2007).

From these data, a functional model for TK1-like en-

zymes has emerged. In the absence of a substrate in the

phosphoryl donor binding site, the homotetramer prefer-

entially exists in a closed, inactive state, as observed in

the structures of hTK1 (Birringer et al., 2005; Segura-

Pena et al., 2007; Welin et al., 2004), Ureaplasma urealyti-

cum TK (Welin et al., 2004), as well as Bacillus cereus TK

(Kosinska et al., 2007). Upon nucleotide binding at the do-

nor site, the enzyme complex undergoes conformational

changes that lead to an open, catalytically competent

conformation, as seen for the TmTK (Segura-Pena et al.,

2007), as well as for the TKs from Clostridium acetobuty-

licum (CaTK) (Kuzin et al., 2004) and Bacillus anthracis

(BaTK) (Kosinska et al., 2007). These conformational

changes concentrate on the weak dimer interface, and

might involve neighboring loops and domains of the indi-

vidual subunits.

In the above model, ambiguity arises from the fact that

the comparison of the closed and open tetrameric states

was carried out with enzymes from different sources.

One could not discount the possibility that the former en-

zymes maintain their closed state upon ATP binding, or

that the latter remain in the open state in the absence of

nucleotide at the donor site. To address this question,

we have elucidated the crystal structures of the same TK

ortholog in different substrate-bound states. TmTK

formed diffraction quality crystals in the nucleotide-free

(apo) form, with thymidine (binary complex), and with

thymidine and the nonhydrolyzable ATP analog, AppNHp

(ternary complex). Comparison of these structures en-

abled us to evaluate the effect of substrate binding on

the tertiary and quaternary structure of TmTK. In parallel,

we probed the functional importance of conformational

changes at the protein-protein interface in solution by

site-directed mutagenesis and fluorescence spectros-

copy. In the absence of tryptophan residues in the wild-

type TmTK, we introduced single tryptophan mutations

in various locations throughout the protein structure to

allow detection of conformational change as a function

of substrate binding. Separately, we designed a double

mutant carrying two cysteines at the critical weak dimer

interface. Under oxidizing conditions, disulfide bond for-

mation across this interface locks the tetramer in the

closed, inactive state. The process is reversible upon

addition of a strong reducing agent, yielding subunits
1556 Structure 15, 1555–1566, December 2007 ª2007 Elsevier
that can oscillate between the closed and open state,

and thus regain TK activity.

RESULTS

Structural Analysis of TmTK in Three
Complexation States
The three TmTK structures presented here were obtained

from crystals that diffract to high resolution: 1.95 Å for the

apo form and the complex with thymidine, and to 1.5 Å for

the structure of the ternary complex (Table 1). The struc-

tures were solved by the molecular replacement method

by using the TmTK structure in complex with the bisub-

strate inhibitor, TP4A (PDB code: 2ORW [Segura-Pena

et al., 2007]) as the search model. Notably, to our knowl-

edge this is the first time that an apo state and a ternary

complex state are reported for a TK1-like enzyme. Crys-

tals of apo TmTK had a complete tetramer as the asym-

metric unit. A sulfate ion was observed bound to the phos-

phate binding loop (P loop) of each subunit. This is

analogous to the reported structure of the nucleotide-

free form of uridylate (Segura-Pena et al., 2004) and

adenylate kinase (Dreusicke et al., 1988), in which a sulfate

group was located at the P loop. The sulfate anion mimics

the b phosphate group of the nucleotide triphosphate, but

is not able to elicit the conformational changes that occur

upon ATP binding. Therefore, despite the presence of the

sulfate group, we interpret the TmTK-sulfate complex as

representing the apo form of the enzyme.

For the binary and ternary complexes, a dimer was pres-

ent in the asymmetric unit and a two-fold crystallographic

symmetry operator recreated the biological tetramer. Sur-

prisingly, in the ternary complex that was crystallized in the

presence of thymidine and AppNHp, we observe different

nucleotides in the two monomers. While the electron den-

sity in the substrate binding sites of one monomer fits the

expected thymidine and AppNHp, the second monomer

shows electron density that corresponds to the presence

of the reaction products TMP and ADP (Figure S1, see

the Supplemental Data available with this article online).

This observation suggests that the enzyme catalyzed

phosphoryl transfer despite the more stable NH group

that bridges the b and g phosphates in AppNHp. This

also implies that the enzyme was active in the conditions

used for crystallization.

The overall fold for the three crystal structures is very

similar (Figure 1A). Overlay of the apo protein with the ter-

nary complex produced an rmsd of 0.4 Å for 144 Ca atoms

(out of 185 residues). Similarly, the overlay of the binary

and ternary complexes gave an rmsd of 0.4 Å over 162

Ca atoms. The analysis suggests that the three-dimen-

sional structure of TmTK remains largely unaltered over

the course of the phosphoryl transfer reaction. However,

there are two regions in TmTK that change conformation

in response to substrate binding. The first region is the

lasso loop, sensitive to the presence of substrate in

the phosphoryl acceptor-binding site (Figure 1B, red). The

second region includes residues 40–58, a flexible loop

that only assumes an ordered hairpin-like structure upon
Ltd All rights reserved
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Table 1. Data Collection and Refinement Statistics

TmTK Apo TmTK Thy TmTK Thy+AppNhp

Wavelength (Å)/beam 1.54/In-house 1.0/SERCAT 1.0/SERCAT

Space group P21 C2 C2

Unit cell (Å, degrees) a = 52.6, b = 113.5,

c = 54.8

a = 111.6, b = 52.8,

c = 59.31

a = 102.2, b = 59.3,

c = 61.3

a = 90, b = 109.2, g = 90 a = 90, b = 107.9, g = 90 a = 90, b = 103.2, g = 90

Content of asymmetric unit tetramer dimer dimer

Resolution (Å) 1.95 1.95 1.5

Rsym (%)a,b 6.5 (22.5) 7.6 (33.4) 5.8 (25.8)

I/sIa 13.8 (4.4) 13.1 (5.8) 12.7 (4.5)

Completeness (%)a 98.0 (75.2) 98.5 (95.5) 95.3 (87.5)

No. of observed reflections 162886 85927 199812

Redundancy 3.8 3.6 3.7

Rcryst (%)c 20.0 23.5 17.1

Rfree (%)c 25.8 28.5 21.6

Rmsd bond length (Å)d 0.015 0.017 0.014

Rmsd bond angle (degrees)d 1.6 1.6 1.7

No. of atoms 4928 2589 3142

Protein 4730 2504 2659

Nucleotide 0 4 (34 atoms) 8 (96 atoms)

SO4 4 (20 atoms) 0 0

Water 174 49 383

Zinc 4 2 2

Mean B-factors (Å2)

Protein Atoms 23.5 27.6 19.2

Nucleotides 24.7 18.2

Sulfate 26.0

Water molecules 28.0 30.4 41.9

Zinc atoms 23.2 28.4 19.8

Ramachandran plot (%)

Most allowed 95.5 91.5 95.9

Additional allowed 4.5 7.0 4.1

Generously allowed 0 1.4 0

Disallowed 0 0 0

a Data for the highest resolution shell are given in parenthesis.
b Rsym = SjIi � < Ii >j / S < Ii >.
c Rcryst = SjjFobsj � jFcalcjj/SjFobsj. Rfree is for 10% of the reflections excluded from the refinement.
d Rmsd from ideal values calculated with REFMAC.
binding of a nucleotide in the phosphoryl donor-binding

site (Figure 1B, blue).

The lasso region forms part of the C-terminal domain of

TmTK and interacts with enzyme-bound thymidine via

several main-chain atoms. In the apo protein (Figure 1B,

cyan), the lasso region is devoid of interpretable electron

density, but becomes mostly organized upon thymidine

binding, as seen in the binary complex (Figure 1B, yellow).
Structure 15, 1555–156
In the binary complex, only two residues in the lasso

region were lacking electron density in the first monomer

of the asymmetric unit, while five amino acids in the

same location of the second monomer could not be

assigned. The reason for this partial disorganization of

the lasso is not clear, since previous structures with an

occupied phosphoryl acceptor-binding site had electron

density for the entire region (Birringer et al., 2005;
6, December 2007 ª2007 Elsevier Ltd All rights reserved 1557
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Figure 1. The TmTK Three-Dimensional

Structure Remains Largely Unchanged

upon Substrate Binding

(A) Stereo view of an overlay of three TmTK

backbones in different complexation states.

Apo-form in cyan, in complex with thymidine

in yellow and the ternary complex in magenta.

Purple spheres represent the Mg ion in the ac-

tive site.

(B) Ribbon representation of the three individ-

ual TmTK structures, using the same color

code as in (A). Yellow spheres mark the posi-

tion of the structural zinc atom. The two regions

of the protein that undergo a conformational

change upon substrate binding are the lasso

loop (red lines) and the b-hairpin loop (blue

lines). The dashed lines represent parts of the

flexible loops that could not be modeled due

to lack of electron density. Most of the lasso

loop, which is involved in thymidine binding,

was disorganized in the apo-form, yet became

almost fully defined in the complex with thymi-

dine, and could be completely modeled in the

ground-state complex (thymidine + AppNHp).

The b-hairpin loop composed of bc1/b3 is sen-

sitive to the presence of phosphoryl donor.

Only in the presence of AppNHp was the elec-

tron density for bc1 present.
Kosinska et al., 2005; Welin et al., 2004). Only upon ATP

binding in our ternary complex (Figure 1B, magenta) did

the lasso region become completely organized, as re-

flected in a clear, continuous electron density and lower

B-factor values for the entire sequence. The difference in

apparent rigidity of the lasso region between the binary

and the ternary complex cannot be attributed to

differences in the crystallization conditions, since both

structures were crystallized under the same conditions.

Moreover, inspection of the crystal packing of the

TmTK-thymidine complex suggests ample space to

accommodate the loop. Instead, our findings are consis-

tent with ATP functioning as a modulator of the lasso

loop flexibility and consequently the binding affinity for

thymidine, an effect that was observed experimentally in

hTK1 (Munch-Petersen et al., 1993).

The second region in TmTK that undergoes significant

structural reorganization upon substrate binding is the

flexible loop made up of residues 40–58. In the apo struc-

ture and binary complex, the region cannot be traced

(Figure 1B, blue dotted lines), but becomes partially

ordered in the presence of a nucleotide at the ATP binding

site. In the ternary TmTK complex (Figure 1B, magenta),

we note that the previously disordered residues now

form a b-hairpin structure, consisting of a short b strand

that we designate bc1 and b3. A similar conformation
1558 Structure 15, 1555–1566, December 2007 ª2007 Elsevie
has been observed in the binary complexes of CaTK

with ADP and BaTK with TTP bound at the ATP binding

site. Thus, the reorganization of this second region is inde-

pendent of the substrate in the phosphoryl acceptor site

but responds to phosphoryl donor binding. Our earlier

work (Segura-Pena et al., 2007) revealed that the highly

conserved histidine in position 53 (TmTK numbering),

located at the tip of the b hairpin, could form hydrogen

bonds to the phosphates of AppNHp, suggesting a possi-

ble role for the hairpin in catalysis (Figure S1). To test this

hypothesis, we introduced an H53A mutation, but found

that neither the enzymatic turnover nor the affinity for

ATP and thymidine were affected (Table 2). Alternatively,

the loop could function as a sensor for NTP binding, trig-

gering more extensive conformational changes at the

quaternary structure level of the homotetramer (see sub-

sequent text). Evidence linking the conformational change

in the b-hairpin region to ATP binding was obtained by

fluorescence spectroscopy.

Tryptophan Fluorescence to Monitor
b-Hairpin Movement
Independent confirmation of the proposed conformational

change in the b-hairpin region of TmTK was sought by

environmentally sensitive intrinsic tryptophan fluores-

cence. In the absence of native tryptophans in TmTK, we
r Ltd All rights reserved
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Table 2. Kinetic Parameters for Thermotoga maritima thymidine kinase at 37�C

Thymidine ATP

Enzyme KM (mM) kcat (s�1) kcat/KM (3105 M�1 s�1) KM (mM) kcat (s�1) kcat/KM (3104 M�1 s�1)

Wild type 0.5 ± 0.2 0.3 ± 0.08 6.0 40 ± 12 0.4 ± 0.04 1.0

H53A 1.2 ± 0.2 0.51 ± 0.01 4.3 86 ± 7 0.52 ± .01 0.6

V34W 0.9 ± 0.2 0.59 ± 0.02 6.3 23 ± 4 0.35 ± 0.01 1.5

V51W 0.7 ± 0.1 0.25 ± 0.01 3.4 35 ± 5 0.20 ± 0.005 0.6

G55W 0.8 ± 0.1 0.62 ± 0.01 7.7 112 ± 10 0.45 ± 0.005 0.4

V58W 0.5 ± 0.1 0.47 ± 0.01 9.6 29 ± 3 0.38 ± 0.008 1.3

L129W 3.0 ± 0.3 1.91 ± 0.05 6.4 46 ± 5 1.49 ± 0.02 3.2
introduced five single mutations: three in the bc1/b3 region

itself (V51W, G55W, V58W), one (V34W) proximal to the

hairpin that provides an indirect probe for monitoring con-

formational changes, and one (L129W) that is located at

the distant strong dimer interface and serves as a control

(Figure 2). Following overexpression and purification, the

kinetic characterization of these mutants showed very few

changes in the catalytic properties compared to wild-type

enzyme (Table 2). Noticeably, a 6-fold increase in KM for

thymidine in L129W can be rationalized by its relative prox-

imity to the thymidine binding site. In G55W, the�3-fold rise

in the apparent ATP binding constant can be explained by

its proximity to the phosphoryl donor binding site.

The five tryptophan mutants were used to detect con-

formational changes upon ATP binding. The proteins’
Structure 15, 1555–156
intrinsic tryptophan fluorescence was monitored upon ti-

tration with nonhydrolyzable gS-ATP in the absence of

thymidine or after preincubation with thymidine. The pres-

ence of thymidine did not affect our fluorescence mea-

surements (data not shown), consistent with the earlier

observation that binding of the phosphoryl acceptor

does not induce significant conformational changes in

the bc1/b3 region of our binary complex. Possible unspe-

cific changes in the fluorescence signal upon gS-ATP

addition were accounted for in control experiments with

free tryptophan in the same buffer.

All five mutants show distinct tryptophan emission

spectra, with lmax ranging from 346 to 354 nm (Figure 2).

The blue shift compared to free tryptophan at 361 nm is

indicative of a more hydrophobic environment of the
Figure 2. Conformational Changes in the b Hairpin Loop of TmTK upon ATP Binding

(A) Changes in the emission wavelength of single tryptophan residues during titration with gS-ATP were monitored via intrinsic tryptophan fluores-

cence. Tryptophans were introduced by site-directed mutagenesis to probe for conformational changes in the b-hairpin loop region, either directly

(V51W, G55W, V58W) or indirectly (V34W). The L129W mutant and tryptophan in solution served as controls. The enzyme concentration was kept

constant at 8 mM and is marked with a vertical dashed line.

(B). Ribbon diagram of a TmTK monomer in the ternary complex, indicating the position of the single tryptophan mutations with colored spheres.
6, December 2007 ª2007 Elsevier Ltd All rights reserved 1559
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indole moieties in the proteins. Upon titration with the ATP

analog, the V34W and V51W variants show clear red shifts

in their emission spectra, ranging from 2 to 4 nm, respec-

tively. Furthermore, the titration curves reached saturation

at equimolar concentrations of TmTK and the ATP ana-

log. The data suggest a significant change in the resi-

dues’ local environment, consistent with a conformational

change in TmTK’s bc1/b3 region upon ATP binding. For

the V34W protein, substrate binding causes the upward

movement of the bc1/b3 loop, thereby exposing the

underlying position 34 to a more hydrophilic environment.

In the case of V51W, the loop relocation could cause

a lmax shift as it induces a rotation of the amino acid

side chain from a shielded interior position to the protein

surface. The absence of a similar wavelength shift in

G55W and V58W, which are also located in the bc1/b3

region, can be rationalized with little change in the resi-

dues’ local environments upon organization of the hairpin

structure. Consistent with this interpretation, the high lem

for those two residues suggests that they are surface ex-

posed, making them less susceptible to conformational

changes in the protein. In both cases, the slight changes

in lmax are comparable to the shifts observed for our con-

trol L129W. In summary, our fluorescence data corrobo-

rate our hypothesis of ATP-dependent conformational

changes for the bc1/b3 region.

ATP Binding Induces a Conformational Change
in the Quaternary Structure
In addition to the conformational changes in the tertiary

structure of TmTK, significant changes in the homote-

tramer’s quaternary structure can be observed upon

ATP binding. Among the tetrameric forms of our three

TK structures, the apo protein and the TmTK-thymidine

complex show nearly identical dimensions across the

weak and strong dimer interfaces (Figure 3A) and overlay

very well in all four subunits (Figure 3B). In contrast, the

tetramer undergoes significant conformational changes

upon ATP binding, as seen in the ternary complex. While

the dimensions and orientation of the two subunits con-

nected by the strong dimer interface are unchanged, the

distance across the weak dimer interface increases by

almost 10%, from �51 Å in the apo and thymidine-bound

structure to �56 Å in the complex with thymidine and

AppNHp (Figure 3A). Consistent with this observation,

the superposition of the binary and ternary complexes

shows that only two of the four subunits overlay well

(Figure 3C). The overlay further indicates that the distance

change is accompanied by an �11� rotation between the

subunits across the weak dimer interface.

As a result of the quaternary structure expansion and

rotation, there are substantial differences in the nature of

the subunit contacts at the weak interface between the

collapsed (closed) and the expanded (open) state of the

tetramer (Figure 4). In the closed state, interactions be-

tween monomers that form the weak dimer involve mostly

side chains of residues in helix a1. There are 19 Van der

Waals (VDW) contacts (%3.8 Å), 3 salt bridges (%3.0 Å),

and 3 polar interactions (%3.0 Å). In the open conforma-
1560 Structure 15, 1555–1566, December 2007 ª2007 Elsevier
tion, the same distance criterion identifies 31 VDW con-

tacts, 2 salt bridges, and 6 polar interactions. The critical

role of ATP as a bridging element between subunits

across the weak dimer interface is apparent from the

fact that 20 out of the 31 VDW interactions involve the

phosphoryl donor, and all the polar interactions are estab-

lished with the NTP. An analysis of the buried surface area

due to monomer-monomer interactions helps to further

illustrate the changes that take place during the transition

from a closed to an open state. In the closed state, the oc-

cluded surface area between subunits at the weak dimer

interface is �900 Å2 in the apo structure and 1030 Å2 for

the thymidine complex. On the other hand, the ternary

complex, representing the open state, has only 370 Å2

of protein-protein surface contact area. When taking into

consideration the additional interactions contributed by

ATP, the occluded surface area increases by an additional

260 Å2, to 630 Å2. Significantly, the same calculations at

the strong dimer interface show no significant change

among the three structures: 1070 Å2 (apo), 1130 Å2 (binary

complex), and 1050 Å2 (ternary complex).

The conclusion from this analysis is that, in the absence

of ATP, the closed conformation is more stable. In addition

to having more protein-protein interactions in the closed

state, the adoption of the closed tetrameric state might

be favored by the increase of entropy generated by the

exclusion of the water network that otherwise forms be-

tween the subunits in the open state. Consistent with this

idea, a significant decrease in entropy due to gS-ATP

binding (and hence, closed-to-open transition) to TmTK

has been detected by isothermal titration calorimetry

(Figure S2).

While the closed tetramer seems to be more stable

(especially in the absence of ATP), our previous structures

of hTK1 with TP4A indicated that this state is unable to

accommodate the phosphoryl donor in a catalytically pro-

ductive orientation (Segura-Pena et al., 2007). To experi-

mentally validate that the enzyme adopts the closed

tetrameric state in solution, and that this closed state is

not (or only weakly) enzymatically active, in contrast to

the active open state, we created a double-cysteine

mutant to reversibly lock the homotetramer in its closed

conformation via disulfide bridges.

Trapping the Closed Conformation
by Disulfide Linkage
The TmTK crystal structures in the closed state suggest that

thiol side chains of cysteines in position 18 and 22 of helix a1

would be in close proximity to the corresponding residues of

the neighboring subunit across the weak dimer interface

(Figure 5). Under oxidizing conditions, we predicted that

these thiols could form two disulfide bridges, covalently

linking the two subunits, thus locking them in the closed

conformation. While the homotetramer in such a locked

conformation is expected to have lower affinity for ATP

and significantly lower catalytic efficiency, addition of a re-

ducing agent should reestablishphosphoryl transfer activity.

These predictions were tested with the double-cysteine

TmTK mutant, T18C/S22C. Wild-type enzyme and
Ltd All rights reserved
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Figure 3. ATP Induces a Quaternary Structural Rearrangement in TmTK

(A) Sphere representation of TmTK homotetramer in the three substrate-binding states. Individual monomers are shown in different colors. Note that,

upon ATP binding, the tetramer expands due to an increase in the separation between the monomers that make the interface to which the adenosine

moiety of ATP is bound (weak dimer interface, horizontal brackets). In contrast the second type of monomer-monomer interface remains unchanged

(vertical brackets). ATP and thymidine are shown in yellow and green, respectively.

(B) Stereo view overlay of the TmTK apo-tetramer (cyan) with the tetramer in complex with thymidine (yellow). The overlay was done on the monomer A

(Ma). There is an excellent superposition of the two tetrameric structures, indicating the same subunit organization for the two tetrameric structures.

(C) Analogous stereoview overlay between the TmTK binary complex (with thymidine) and the ternary complex (magenta color). Subunits across the

strong dimer interface show an excellent overlay (Ma and Mb). In constrast, the relative orientation of the remaining two monomers is changed. Note

the change of orientation between monomers across the weak interface (Md with respect to Ma and Mc with respect to Mb). Black lines mark the

positions of helix a1 in each tetramer. In the closed state of the tetramer (binary complex in yellow), helix a1 would clash with the adenosine moiety

of ATP.
Structure 15, 1555–1566, December 2007 ª2007 Elsevier Ltd All rights reserved 1561
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Figure 4. Frontal View of the Two Types of Monomer-Monomer Interfaces Present in TmTK Tetramer, Colored in Red, Cyan, Pur-

ple, and Marine

(A) Top view of the tetrameric TmTK in complex with thymidine (closed conformation).

(B) Top view of the tetramer in complex with AppNhp and thymidine (open conformation).

(C) Frontal view of the monomers that make the weak dimer interface for the binary complex with thymidine (closed conformation) after 90� rotation

around axis 1. In the absence of ATP, the two monomers are in close contact.

(D) Frontal view for the ternary complex. Upon ATP binding, the two subunits that make the weak dimer interface separate from each other by �5 Å.

For the purpose of clarity, the water network formed at the weak interfaces of the open tetramer is not shown.

(E) Frontal view of the monomers that make the strong dimer interface for the enzyme in complex with thymidine (closed conformation) after 90�

rotation around axis 2.

(F) View for the ternary complex. Note that the strong dimer interface remains unchanged upon ATP binding. AppNHp is shown in yellow and thymi-

dine is shown in green.
T18A/S22A, a double-alanine mutant used to account for

possible effects of mutagenesis on activity, served as con-

trols. Following protein overexpression, the three enzymes

were purified by affinity chromatography with Ni-NTA (Lutz

et al., 2007). Unspecific thiol derivatization during purifica-

tion was prevented by addition of 5 mM Tris(2-carboxye-

thyl)phosphine hydrochloride) (TCEP) to all buffer solu-

tions. The reducing agent was subsequently removed via

dialysis, yielding fully active enzyme in the case of wild-

type TmTK and T18A/S22A (Table 3). In contrast, the

double-cysteine mutant protein showed only �3.7% of
1562 Structure 15, 1555–1566, December 2007 ª2007 Elsevier
wild-type activity. Analysis by nonreductive SDS-PAGE

indicated that the majority of T18C/S22C mutant migrates

as a dimer under these conditions (Figure 6). In contrast,

the wild-type enzyme and the T18A/S22A migrate as

monomers in the polyacrylamide gel. To eliminate the pos-

sibility for protein agglomeration of the double-cysteine

mutant, we confirmed its quaternary structure by gel filtra-

tion chromatography. The mutant protein shows an identi-

cal elution profile with wild-type TmTK (data not shown).

The reversibility of the T18C/S22C inactivation was

demonstrated by adding various amounts of TCEP. The
Ltd All rights reserved
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Figure 5. Modeling of the Disulfide Bond Formation

(A) The close proximity of the helix a1 regions in the closed tetrameric conformation properly positions the side chains of cysteines 18 and 22 for

disulfide bond formation across the weak dimer interface.

(B) In the open state, the�6 Å increase in distance between neighboring subunits prevents the covalent linkage. The formation of intrasubunit disulfide

bonds is not possible due to steric constraints. Models were generated in the program ‘‘O’’.
double-cysteine mutant and, for control purposes, wild-

type TmTK were incubated with either 0, 8, or 16 mM

TCEP for 3 days at ambient temperature. Protein samples

were then analyzed by SDS-PAGE and kinase activity

assay. While the wild-type enzyme’s gel mobility remained

unchanged at all conditions, T18C/S22C showed approx-

imately 70% and 90% monomeric bands at 8 mM and

16 mM TCEP, respectively (Figure 6). More importantly,
Structure 15, 1555–156
the reduction of the disulfide bonds in T18C/S22C re-

sulted in an up to 30-fold-higher kinase activity compared

to double mutant incubated without TCEP (Table 3). In fact,

the recovered activity in T18C/S22C (222 nmol mg�1 min�1)

in the presence of 8 mM TCEP was comparable to

similarly treated wild-type TmTK (351 nmol mg�1 min�1),

especially when one considers that only �70% of the

double-cysteine mutant was reduced (Figure 6), allowing
Table 3. Enzymatic Activity of Thermotoga maritima Thymidine Kinase in Open and Closed Conformation

Enzyme Protein Treatment v (nmol mg�1 min�1) Relative Activity (%)

WT TmTK w/TCEP & dialysis 674 ± 33 100

T18A/S22A w/TCEP & dialysis 622 ± 28 92

T18C/S22C w/TCEP & dialysis 25 ± 0.1 3.7

WT TmTK Postdialysis; 0 mM TCEP 668 ± 18 99

Postdialysis; 8 mM TCEP 351 ± 25 52

Postdialysis; 16 mM TCEP 76 ± 0.5 11

T18C/S22C Postdialysis; 0 mM TCEP 7.6 ± 2.3 1.1

Postdialysis; 8 mM TCEP 222 ± 5 33

Postdialysis; 16 mM TCEP 86 ± 2 13
6, December 2007 ª2007 Elsevier Ltd All rights reserved 1563
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Figure 6. SDS-PAGE Analysis of the Oxi-

dized and Reduced Forms of Wild-Type

and Double-Cysteine Mutant TmTK

Incubation of oxidized protein samples at vari-

ous TCEP concentrations leaves the mono-

meric wild-type enzyme unchanged. Similar

conditions result in the TCEP concentration-

dependent reduction of the disulfide linkage

in the mutant TmTK, converting the inactive

enzyme (disulfide-locked in the closed confor-

mation) dimer into its catalytically competent

monomeric form. Higher order bands in the

TmTK (T18C/S22C) sample at 0 mM TCEP

suggest formation of oligomeric structures

due to unspecific disulfide linkage. Incomplete

denaturation of these highly thermostable pro-

teins prior to gel analysis is responsible for the

observed minor bands in some sample lanes.
the enzyme to adopt the catalytically active tetramer upon

ATP binding. Our results also suggest that prolonged

incubation with TCEP does interfere with enzyme activity.

Both the mutant and wild-type enzymes show a TCEP-

dependent drop in activity, which we attribute to interfer-

ence of the reducing agent with the native cysteines of

the zinc binding site. In summary, the SDS-PAGE analysis

and kinetic data confirm that the double-cysteine mutant,

T18C/S22C, can be locked in the catalytically incom-

petent, closed conformation under oxidative conditions,

a process that is reversible upon addition of a reducing

agent.

DISCUSSION

Our study presents, to our knowledge, the first collection

of high-resolution structures of a single member of the

TK1-like enzyme family in various stages along the reac-

tion coordinate. The crystal structures of TmTK in the

apo form, binary complex with thymidine, as well as its

ternary complex with thymidine/AppNHp and the product

complex with TMP/ADP, strongly support the hypothesis

that the enzyme’s conformational changes are part of its

catalytic cycle, and are not due to species variation. The

combination of crystallographic data with fluorescence

and mutagenesis experiments further confirms that sub-

strate binding to the homotetramer results in a more

ordered tertiary structure and induces conformational

changes at the quaternary structure level that are critical

for catalytic function. While thymidine binding in the phos-

phoryl acceptor site organizes the lasso region, ATP bind-

ing in the phosphoryl donor site coincides with the folding

of the bc1/b3-loop region into a defined b-hairpin structure

and the elongation of the tetramer’s weak dimer interface

by 4–5 Å. We believe that this elongation step of the

enzyme’s quaternary structure is critical for proper ATP

binding, eliminating steric clashes that prevent phosphoryl

donor binding in the tetramer’s closed state. Consistent

with that observation, our TmTK double-cysteine mutant,

which, under oxidative conditions, locks the tetramer in

its closed conformation via two disulfide bridges, is cata-

lytically inactive.
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These observations raise the question on the order of

events leading from the apo-tetramer in its closed confor-

mation to the ATP-bound enzyme complex in the open

state. In an early model, we hypothesized that the b and

g phosphates of ATP establish initial contacts with the P

loop region as seen in the hTK1 structure with T4PA

(Segura-Pena et al., 2007). Following this prepositioning,

ATP could either take advantage of the enzyme’s sponta-

neous oscillation between the closed and open conforma-

tion to trap the complex in the open state, or, alternatively,

actively facilitate the conformational changes in the b-hair-

pin region and at the dimer interface, forcing the enzyme

into the open conformation. However, the model was

inconsistent with subsequent kinetic experiments with

sodium triphosphate (TP) as donor that showed no phos-

phoryl transfer activity. More importantly, competition ex-

periments with ATP showed that TP had no measurable

inhibitory effect on catalytic performance (S. Lutz, unpub-

lished data). Our second-generation model now assumes

sporatic oscillation of the enzyme between the two con-

formational states, enabling ATP to efficiently bind in the

preorganized phosphoryl donor site of the open form

and trapping the homotetramer in the catalytically relevant

conformation.

Our model of the observed quaternary structure changes

in connection with ATP binding can also explain the re-

ported allosterism. hTK1 and TmTK both show positive co-

operativity for ATP with a Hill coefficient of �2 (Lutz et al.,

2007; Munch-Petersen, 1984; Segura-Pena et al., 2007).

This functional codependency can be rationalized in light

of the two proposed conformational states. The closed

state, equivalent to the tense T state in the Monod, Wyman,

and Changeux (MWC) model (Monod et al., 1965), shows

low substrate affinity due to the lack of space toproperly ac-

commodate the adenosine moiety of ATP. Upon binding of

phosphoryl donor to the first subunit, the entire tetramer is

transformed into the open conformation, representing the

R state in the MWC model. As a consequence, the remain-

ing ATP binding sites will show increased affinity due to

preorganization of the binding pockets.

Beyond our laboratory experiments, we have been

wondering about the functional relevance of our two-state
Ltd All rights reserved
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model under physiological conditions. A critical question

in that regard is the timing of catalysis in the enzyme com-

plex. It is currently unclear whether the four reaction sites

of the enzyme complex operate in a coordinated fashion in

performing the actual phosphoryl transfer step. The tetra-

mer could require all four sites to be charged prior to catal-

ysis, but it is equally possible for the four reaction centers

to perform phosphoryl transfer independent of one

another. The former case of synchronized substrate turn-

over could result in an apo-protein complex, giving the

closed conformation relevance as part of the reaction

cycle. In contrast, random catalysis would significantly

lower the probability for all four sites to simultaneously ex-

ist in the ATP-free state, making the closed state a rare

occurrence. Furthermore, the cell’s ATP concentration in

the millimolar range, and the observed allosterism, raises

the question of whether the enzyme complex ever exists in

its ATP-free, closed conformation in situ.

Aside from playing a possible role in the enzyme’s reac-

tion cycle, the closed conformation could be relevant in

a regulatory function. Evidence in support of this hypoth-

esis comes from earlier crystal structures of TK1-like fam-

ily members. Despite attempts to isolate the apo form of

the enzyme, these experiments consistently found the

known feedback inhibitor, TTP, in the phosphoryl accep-

tor binding site of the tetramer in the closed conformation.

In addition to blocking the thymidine binding site, the

inhibitor also occupies part of the active site that holds

the b and g phosphates from the phosphoryl donor. Sep-

arately, kinetic data have shown that TTP inhibits ATP

competitively, with a Ki value of 0.6 mM (Lee and Cheng,

1976). As the TTP concentration reaches up to 20 mM at

the end of the S-phase (Hu and Chang, 2007; Spyrou

and Reichard, 1988), the KM value for ATP of the TK1-

like enzyme increases by 100- to 1000-times. The magni-

tude of the response to feedback inhibitor binding is rather

surprising, as TTP and ATP occupy distinct binding sites

that overlap by only two phosphate groups. Beyond

simple competitive binding, the dramatic effect of TTP

on downregulating thymidine phosphorylation could be

explained by a TTP-induced conformational change into

the closed state of the tetramer. Such a hypothesis raises

the interesting possibility of a cellular mechanism to rap-

idly turn off TK1 activity prior to enzyme degradation by

the proteasome during mitosis. Upon TTP binding, the in-

hibitor not only occupies parts of the active site, but forces

the enzyme complex into the inactive, closed tetrameric

conformation, which dismantles the ATP binding site

and further reduces the enzyme’s affinity for phosphoryl

donor and, consequently, catalysis.

In summary, we have presented conclusive evidence for

the existence of two distinct quaternary structures in

TmTK: an open and a closed tetrameric state. The closed

state is inactive, and the open state is catalytically active.

The transition between the two conformations is physio-

logically relevant, as both conformations might be part

of the enzyme’s reaction cycle, but, more likely, the tran-

sition is involved in regulating enzyme activity. Taking

into consideration the high degree of structural conserva-
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tion between TmTK and its orthologs (Birringer et al.,

2005; Segura-Pena et al., 2007; Welin et al., 2004), the

conclusions derived from the results presented here can

be generalized to the hTK1 and the rest of the TK1-like

enzyme members.

EXPERIMENTAL PROCEDURES

Crystallization

Purified TmTK (Lutz et al., 2007), at a concentration of 5 mg/ml, was

used for crystallization. Crystals were grown at 22�C in hanging drops

by mixing 1 ml of purified TmTK with 1 ml of the precipitant. The TmTK in

the apo form was crystallized with 20% PEG3350 + 200 mM NaSO4.

Before flash freezing in liquid nitrogen, the TmTK apo crystals were

transferred to a cryoprotectant solution containing 20% PEG3350 +

0.2 M NaSO4 + 20% PEG400. The crystals of TmTK binary and ternary

complexes were obtained with 60%–65% 2-methyl-2,4-pentanediol

and 0.1 M Na OAc (pH 5.0). The above precipitant solution also acted

as a cryoprotectant.

Structure Determination

The X-ray diffraction data were reduced with the program XDS

(Kabsch, 1993). The structures were solved by the molecular replace-

ment method with the CaTK (Kuzin et al., 2004) or the previously

reported structure of TmTK in complex with the substrate inhibitor,

TP4A (Segura-Pena et al., 2007), as search models. The programs

molrep (Vagin and Teplyakov, 2000) and phaser (McCoy et al., 2005)

were used to obtain the initial phases. Model building was done with

the program ‘‘O’’ (Jones et al., 1991), and the models were refined

with CNS and REFMAC (Brunger et al., 1998; Murshudov et al.,

1997). The structure figures were generated with the programs Mol-

script (Kraulis, 1991) and Bobscript (Esnouf, 1997), and rendered

with Raster3D (Merritt and Murphy, 1994).

Site-Directed Mutagenesis

All mutants of TmTK were prepared via primer overlap extension PCR

with wild-type tmtk as template. Following restriction endonuclease

digestion, the PCR products were ligated into pET14b and trans-

formed into bacterial host cells. All clones were confirmed by DNA

sequencing. Protein overexpression in Escherichia coli BL21(DE3)

and isolation via metal affinity chromatography was performed as pre-

viously described (Lutz et al., 2007). Where indicated, the cell lysis

buffer (50 mM Tris-HCl, [pH 8], 0.5 M NaCl, 2.5 mM MgCl2) was supple-

mented with 5 mM TCEP.

Disulfide Experiment

For disulfide bond formation, TCEP was removed from double-cyste-

ine mutant after protein purification via dialysis. Sample (�2 mg/ml)

was loaded into Slide-A-Lyzers (MWCO: 10 kDa; Pierce, Rockford,

IL) and dialyzed against 3 l of cell lysis buffer at 4�C for 2 days. Buffer

was exchanged once after 24 hr. To reduce the disulfide linker, TCEP

was added back to protein solution and sample was incubated at

ambient temperature for 3 days.

Enzyme Kinetics

The kinetic constants for all enzymes were determined by the spectro-

photometric coupled enzyme assay at 37�C (Schelling et al., 2001).

Experiments were performed in triplicate, and data were fit to the

Michaelis-Menten equation with Origin software (OriginLab, North-

hampton, MA).

Fluorescence Spectroscopy

Tryptophan mutants (�8 mM) in assay buffer (50 mM Tris-HCl, [pH 8],

2.5 mM MgCl2) were excited at 295 nm in a 1 cm path-length cuvette.

Emission data were collected at 10�C from 310–390 nm in 0.2 nm

increments. Each spectrum represents the mean of three scans. For

titration experiments with g-thio ATP stock solution (45 mM in assay
6, December 2007 ª2007 Elsevier Ltd All rights reserved 1565
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buffer); samples were mixed and incubated for 2 min prior to spectrum

acquisition. All measurements were performed in triplicate, and data

were analyzed with Origin software.

Supplemental Data

Supplemental Data include two figures and are available online at

http://www.structure.org/cgi/content/full/15/12/1555/DC1/.
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