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Abstract

The ideal Penning trap consists of a uniform magnetic field and an electrostatic quadrupole potential. Cylindrically-symmetric
deviations thereof are parametrized by the coefficients Bη and Cη, respectively. Relativistic mass-increase aside, the three characteristic
eigenfrequencies of a charged particle stored in an ideal Penning trap are independent of the three motional amplitudes. This threefold
harmonicity is a highly-coveted virtue for precision experiments that rely on the measurement of at least one eigenfrequency in
order to determine fundamental properties of the stored particle, such as its mass. However, higher-order contributions to the ideal
fields result in amplitude-dependent frequency-shifts. In turn, these frequency-shifts need to be understood for estimating systematic
experimental errors, and eventually for correcting them by means of calibrating the imperfections. The problem of calculating the
frequency-shifts caused by small imperfections of a near-ideal trap yields nicely to perturbation theory, producing analytic formulas
that are easy to evaluate for the relevant parameters of an experiment. In particular, the frequency-shifts can be understood on
physical rather than purely mathematical grounds by considering which terms actually drive them. Based on identifying these terms,
we derive general formulas for the first-order frequency-shifts caused by any perturbation parameter Bη or Cη.

Keywords: Penning trap, mass spectrometry, perturbation theory, electrostatics, magnetostatics

1. Introduction

Much more than a device for storing charged particles [1],
the Penning trap excels at relating fundamental properties of
the stored particle, such as its mass or magnetic moment, to
a measurable frequency [2]. In order to make full use of the
precision the Penning trap has to offer, the relationship between
the measured frequency and the sought-for quantity has to be
understood in detail despite the complications that come with a
real-world experiment. Deviations from the ideal Penning trap
may be unavoidable in general, but they can also serve a purpose
as a part of the detection system [3, 4].

In this paper, we employ a perturbative method to deal with
one particularly important subset of imperfections—cylindrically-
symmetric ones—and we focus on the frequency-shifts they
cause. Although these are not the only consequence of imper-
fections, the frequency-shifts are often the most significant one,
considering that frequencies constitute the main observables in
a typical experiment.

Although the frequency-shifts for the experimentally most
relevant lowest-order cylindrically-symmetric imperfections have
previously been given numerous times [5–9], and the prescrip-
tions for calculating all the first-order shifts caused by this subset
of imperfections have been outlined in general [10–13], the spe-
cific formulas lack the common ground a general expression
would provide. In this paper, we derive such readily-evaluated
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general expressions for all the first-order frequency-shifts caused
by cylindrically-symmetric imperfections. As a little known
fact, a general treatment of the problem has been attempted
before [14] with Hamiltonian perturbation theory and classical
canonical action-variables, but since we disagree with the result
given for magnetic imperfections, a complete and correct check
is certainly welcome. Moreover, we try to be more explicit about
our calculation, thereby allowing the reader to verify its validity.

In Section 2, we review the most important properties of the
ideal Penning trap as the zeroth-order input for the perturbative
treatment of imperfections. Section 3 then deals with how to
parametrize cylindrically-symmetric electric and magnetic im-
perfections. The mathematical groundwork for the calculation is
laid in Section 4 with particular emphasis on the implementation
of perturbation theory. With this method outlined in Subsec-
tion 4.2, the actual first-order frequency-shifts are subsequently
calculated in Section 5 and Section 6 for electric and magnetic
imperfections, respectively.

2. The ideal Penning trap

The ideal Penning trap consists of a homogeneous magnetic
field ~B0 = B0~ez pointing along the z-axis and an electrostatic
quadrupole potential

Φ2(ρ, z) =
V0C2

2d2

(
z2 −

ρ2

2

)
, where ρ =

√
x2 + y2 (1)

is the distance from the z-axis. In the context of the experiment,
V0 is understood as an applied voltage. The characteristic trap
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dimension d is typically defined such that the dimensionless
parameter C2 is close to unity for traps with hyperboloidal elec-
trodes [15], but any value may be used to describe the quadrupole
contribution in other trap geometries, such as cylindrical traps
with flat-plate [16] or open endcaps [17].

Throughout this paper, we will work with the classical New-
tonian equation of motion

~̈r =
~FL

m
=

q
m

(
~E + ~̇r × ~B

)
(2)

into which we insert the Lorentz force ~FL experienced by a
point-like particle of mass m and charge q in the magnetic field ~B
and the electric field ~E = −~∇Φ, derived by taking the negative
gradient of the electrostatic potential Φ. Since the equation is
linear in both fields, we will simply add imperfections as we go
along.

While early treatment of the ideal Penning trap partly started
out from a quantum-mechanical perspective [18, 19], and an
operator formalism suits the excitation and coupling of modes
well [20, 21], we will content ourselves with a purely classi-
cal model, ignoring both quantum-mechanical and relativistic
effects. Spin and relativistic mass-increase can be treated as
a perturbation of their own [5]. Furthermore, we will restrict
ourselves to the “static” case, meaning that the particle oscillates
with constant motional amplitudes in the absence of external
excitation drives.

The emission of synchrotron radiation by an electron or-
biting in a strong magnet field allows to cool the electron’s
cyclotron motion into its quantum-mechanical ground-state. For
heavier particles, radiative cooling is inefficient [5], and the mo-
tional ground-state remains out of reach unless laser-cooling
is used [22]. Typical other techniques such as buffer-gas cool-
ing [23], resistive cooling of one motion via an LC tank cir-
cuit [24], and cooling via sideband-coupling to a cooled mo-
tion [25] leave the particle with high enough a set of quantum
numbers to warrant a classical treatment. Moreover, some de-
tection methods rely on motional amplitudes well above the
thermal limit. It is only recently that quantum-jumps in the
motion of a single resistively-cooled proton are on the brink of
being resolved in a huge magnetic inhomogeneity, albeit as a
spurious and ill-controlled side-effect where spin-flips are to be
detected [26, 27].

Throughout this paper, we will assume a charged particle
devoid of internal degrees of freedom which could couple to
electric or magnetic fields. Apart from spin, this also excludes
polarizability, which may play the role of an effective mass [28].
For the ideal Penning trap with ~B0 = B0~ez and ~E2 = −~∇Φ2,
the classical equations of motion for a particle of charge q and
mass m are ẍ

ÿ
z̈

 =
qB0

m

 ẏ
−ẋ
0

 +
qV0C2

2md2

 x
y
−2z

 . (3)

Being parallel to and therefore unaffected by the magnetic field,
the axial motion is a one-dimensional harmonic oscillator with

the angular frequency

ωz =

√
qV0C2

md2 . (4)

Trapping requires qV0C2 > 0. If there was no electric field, the
particle would orbit around the magnetic field-lines with the
free-space cyclotron-frequency

ωc =
qB0

m
. (5)

For V0 , 0, the radial motion consists of two circular modes
with frequencies1

ω± =
1
2

(
ωc ±

ωc

|ωc|

√
ω2

c − 2ω2
z

)
. (6)

Because the frequencies have to be real for the motion to stay
bounded, the second condition for trapping is |ωc| >

√
2ωz.

The radial mode with the lower (absolute) frequency is called
magnetron motion; the frequency ω+ is associated with the
modified cyclotron motion and also referred to as the reduced
cyclotron-frequency because its absolute value is lower than the
free-space cyclotron-frequency ωc. In a typical experiment, the
hierarchy is |ωc| & |ω+| � ωz � |ω−|.

The trajectory in the ideal Penning trap is given by

x(t) = ρ̂+ cos(ω+t + ϕ+) + ρ̂− cos(ω−t + ϕ−) , (7)
y(t) = −ρ̂+ sin(ω+t + ϕ+) − ρ̂− sin(ω−t + ϕ−) , (8)
z(t) = ẑ cos(ωzt + ϕz) . (9)

The amplitudes ρ̂± of the two radial modes and the amplitude ẑ
of the axial mode, as well as the corresponding initial phases ϕi

with i = (+,−, z) are determined by the initial conditions. Later
on, we will use

χi = ωit + ϕi (10)

as an abbreviation for the total phase without always stressing
the time-dependent nature of χi.

From Equation (6), we derive the three relations

ω+ + ω− = ωc , (11)

2ω+ω− = ω2
z , (12)

ω2
+ + ω2

− + ω2
z = ω2

c . (13)

1In contrast to virtually all other publications, we have included essentially
the sign of ωc as a prefactor of the square root in Equation (6), which allows us
to handle negative cyclotron frequencies consistently. Whereas the sign of the
angular frequency is not an additional degree of freedom for the one-dimensional
axial motion and was consequently taken to be positive by convention, the sign
of the angular frequencies associated with the two-dimensional radial motions
encodes the sense of revolution in a natural manner. We do not have to think
about the sign of the charge q or of the magnetic field B0, which could point
along the negative z-axis. Therefore, we will not work with true frequencies
ν =

|ω|
2π in this paper. This is not meant to imply that the sense of rotation,

defined in a coordinate system with either of two possible choices for the z-axis,
impacts the frequency-shift—it does not, even less so for cylindrically-symmetric
imperfections. However, the sign of the perturbation parameter Bη with respect
to B0 matters, and we do not want to run the risk of losing it while working with
the absolute value of qB0 in the free-space cyclotron-frequency νc. Moreover,
the definition of ω± with the additional factor ωc/|ωc | ensures that |ω+ | ≥ |ω− |,
regardless of the sign of ωc.
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The first and the last identity are particularly important, not only
because they relate the eigenfrequencies in the Penning trap to
the free-space cyclotron-frequency ωc. Given the extraordinary
stability achievable with superconducting magnets [29, 30], the
magnetic field is the gold standard for connecting the eigenfre-
quencies of a particle to its mass.

Note that the ideal Penning trap is inherently harmonic. Rel-
ativistic mass-increase aside, none of the three eigenfrequencies
depends on the amplitudes of any eigenmotion. This is different
for the anharmonic shifts we will deal with in this paper, all
of which have a distinct dependence on the particle’s motional
amplitudes. Apart from these higher-order contributions, the
magnetic field in a Penning trap may be misaligned with respect
to the electrostatic potential, which may also have an elliptic
contribution of the kind (x2 − y2) [31]. These two imperfections
lead to frequency-shifts that do not depend on the particle’s
motional amplitudes. Although Equation (11) for the so-called
sideband cyclotron-frequency is only valid in the ideal Penning
trap, the effects of misalignment and ellipticity are suppressed
to such an extent that anharmonic effects become dominant [32].
Equation (13), the so-called Brown–Gabrielse invariance theo-
rem [33], holds despite misalignment and ellipticity, but it offers
no cure for anharmonic effects either. These have to be corrected
for separately.

3. Parametrizing imperfections

Given the cylindrical symmetry of the ideal Penning trap, it
is only natural to emulate the ideal electrostatic potential with
electrodes of the same symmetry. Holes for injection or ejection,
and split electrodes for excitation or signal pickup may violate
this ideal, but nevertheless a major component of electrostatic
imperfections is expected to be cylindrically-symmetric. The
same holds true for the distortion of the magnetic field caused
by the susceptibility of these trap electrodes, because solenoid
magnets intrinsically possess a great deal of cylindrical symme-
try, too. Moreover, the particle averages over some departures
from cylindrical symmetry as it orbits around the center of the
trap. Given the prevalence of (effective) cylindrical symmetry
in the Penning trap, we present an explicit parametrization of
such electric and magnetic imperfections in the following two
subsections.

3.1. Electric imperfections

In free space, the electrostatic potential Φ has to fulfill the
Laplace equation ∆Φ = 0, where ∆ = ~∇ · ~∇ is the Laplace
operator. As a Dirichlet problem, the electrostatic potential Φ in
the Penning trap is then obtained by solving the Laplace equation
for the boundary conditions imposed by the trap electrodes. Note
that by assuming the volume enclosed by the electrodes to be
charge-free, we have neglected ion–ion interactions for multiple
particles. Even for a single trapped ion, its image charge induced
on the electrodes acts back on that very same particle. This
image-charge shift has been treated perturbatively before [34–
36] and is ignored in this paper.

Cylindrically-symmetric solutions of the Laplace equation
which do not diverge at the origin can be written in the form

Φη(r, θ) = Cη
V0

2dη
rηPη

(
cos(θ)

)
(14)

in spherical coordinates, where η is a non-negative integer and
Pη a Legendre polynomial. The prefactor is in line with our
definition of the quadrupole potential (η = 2) in Equation (1).
The full potential Φ is then given by a sum over the fundamental
solutions Φη. These solutions possess cylindrical symmetry
because the azimuth angle φ, which is the same for spherical and
cylindrical coordinates, is absent. Despite being ill-suited for
the treatment of cylindrically-symmetric imperfections, we have
shown the solution in spherical coordinates because it stands
as the standard parametrization in the literature. Therefore, we
wanted to define our coefficients Cη accordingly.2

Nevertheless, cylindrical imperfections are treated best in
cylindrical coordinates ρ = r sin(θ) and z = r cos(θ). To this end,
we have to determine the coefficient aη(k) in3

rηPη
(

cos(θ)
)
≡

bη/2c∑
k=0

aη(k) zη−2k ρ2k . (15)

The upper limit of the sum is given by the floor function4

⌊
η

2

⌋
=

 η
2 if η is even,
η−1

2 if η is odd.
(16)

When applying the Laplace operator to Equation (15), the left-
hand side vanishes by design. Applying the Laplace operator

∆ =
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂2

∂φ2 +
∂2

∂z2 (17)

in cylindrical coordinates to the right-hand side then yields the
recursive relationship

aη(k + 1) = −
(η − 2k) (η − 2k − 1)

22 (k + 1)2 aη(k) . (18)

It is satisfied by the explicit expression

aη(k) =
(−1)k

22k

η!
(η − 2k)! (k!)2 . (19)

The recursive relationship (18) does not fix the absolute value
of aη(k); Equation (15) does because Pη(1) = 1, and therefore
aη(0) = 1.

2Note that there is some disaccord about whether to normalize coefficients
with η odd to the characteristic trap dimension d or to the distance from the
center of the trap to the endcap electrode [16, 17, 37]. Moreover, odd coefficients
are usually combined with an asymmetrically applied voltage since the ideal
Penning trap has perfect reflection symmetry about the xy-plane. However, the
exact form of odd coefficients is irrelevant here because we will find that the
imperfections associated with them do not result in a first-order frequency-shift.

3The solution in cylindrical coordinates must be an even function of ρ,
because neither r =

√
ρ2 + z2 nor cos(θ) = z/

√
ρ2 + z2 depend on the sign

of ρ. Conversely, the solution is symmetric with respect to z for η even, and
antisymmetric for η odd.

4This definition of the floor function is only fine for integer arguments, which
suffices for our purpose. Generally speaking, taking the floor function of a real
number x yields the largest integer not greater than x.

3



3.2. Magnetic imperfections
For constant electric fields, the Maxwell equation near the

center of the trap, where there are no field-coils carrying currents,
reads ~∇ × ~B = 0. Since the curl of the gradient of a scalar
function vanishes, the magnetic field can be derived from a scalar
potential Ψ via ~B = −~∇Ψ. Because the magnetic field naturally
has no sources (~∇ · ~B = 0), the scalar potential has to fulfill
the Laplace equation ∆Ψ = 0. In analogy to the electrostatic
potential Φ, we write the fundamental solutions which do not
diverge at the origin as

Ψη(r, θ) = −
Bη
η + 1

rη+1Pη+1
(

cos(θ)
)
. (20)

Here Bη defines the strength of the contribution. Unlike Cη,
the parameter Bη is not dimensionless; it has the dimension of
magnetic field strength times (length)−η. The total magnetic
field is given by a sum over the individual contributions ~Bη.

By taking the negative gradient

~Bη(ρ, z) = −
∂Ψη(ρ, z)

∂z
~ez −

∂Ψη(ρ, z)
∂ρ

~eρ (21)

= B(z)
η (ρ, z)~ez + B(ρ)

η (ρ, z)~eρ , (22)

we relate the scalar potential Ψn to the axial and radial compo-
nents of the additional magnetic field. Note the slight lapse in
notation: ~Bη describes a magnetic field, whereas Bη is a coeffi-
cient that is not equal to the magnitude of that field (unless for
η = 0). The axial component

B(z)
η (ρ, z) = Bη

bη/2c∑
k=0

aη(k) zη−2k ρ2k (23)

has the same spatial dependence as the electric potential associ-
ated with Cη. The radial component is

B(ρ)
η (ρ, z) = Bη

⌊
η+1

2

⌋∑
k=1

ãη(k) zη−2k+1 ρ2k−1 (24)

with the coefficient

ãη(k) =
(−1)k k
22k−1

η!
(η − 2k + 1)! (k!)2 . (25)

Note that all powers of ρ in B(ρ)
η are odd, whereas the powers of

z have the opposite parity of η. Thus, the radial magnetic field is
symmetric with respect to z for η odd, and antisymmetric for η
even.

4. Theoretical framework

The real Penning trap is typically a very good approximation
of the ideal one. Meticulous care is taken manufacturing and
assembling the trap electrodes, and in some cases mechanical
devices for in-situ alignment of the trap with respect to the mag-
netic field are installed. Moreover, correction electrodes allow
for the tuning of lower-order electric imperfections [38], while

shimming and correction coils achieve the same for magnetic
imperfections [39]. Additionally, the stored particle is cooled
and by virtue of its small motional amplitudes mainly suscepti-
ble to lower-order imperfections. Nevertheless, with a relative
single-shot resolution as high as 10−10 for ω+ [40, 41], even
small frequency-shifts become important.

The combination of small imperfections with benign conse-
quences is the ideal domain of perturbation theory, which builds
the solution bottom-up, order by order, rather than top-down.
We recall that we have already solved the problem in the ab-
sence of imperfections in Section 2. This result will serve as the
zeroth-order input. Before we get to our formulation of pertur-
bation theory for the specific problem, we present two important
trigonometric identities.

4.1. Powers of cosine

As one might expect, inserting the solution from Equa-
tions (7)–(9) for the trajectory in the ideal Penning trap into
the higher-order terms brought about by the imperfections will
result in powers of trigonometric functions. We shall see that we
need to analyze the frequency components of such a term. By
writing 2 cos(ωt) = exp(iωt) + exp(−iωt), the straightforward
application of binomial expansion yields

[cos(ωt)]2n =
1

22n

(2n
n

)
+ 2

n∑
j=1

(
2n

n − j

)
cos(2 jωt)

 (26)

with the binomial coefficient defined as(
n
k

)
=


n!

k! (n − k)!
if 0 ≤ k ≤ n,

0 otherwise.
(27)

Although the latter case is prevented by the limits of the sum
in Equation (26), we stress that it will become important later
on. The general formulas for the frequency-shifts given in this
paper must be evaluated accordingly. By defining the binomial
coefficient to vanish for negative k and n, as well as for k > n, we
will be able to write the formulas for the first-order frequency-
shifts in a more systematic way. In particular, the binomial
coefficient has all exceptions covered without using different
summation limits for the sums that will show up.

For odd powers, we obtain

[cos(ωt)]2n+1 =
1

22n

n∑
j=0

(
2n + 1
n − j

)
cos

[
(2 j + 1)ωt

]
. (28)

Even powers of cos(ωt) result in a constant term and higher
harmonics at even multiples of the fundamental frequency ω.
Decomposing the odd powers of cos(ωt) results in an oscillatory
term at the fundamental frequency ω and in higher harmonics at
odd multiples thereof. However, there is no constant term. We
shall see that this difference between even and odd powers of
an oscillatory term goes a long way in understanding why the
imperfections associated with Bη and Cη do not give rise to a
first-order frequency-shift for η odd.
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Before we proceed, we introduce the piece of notation 〈· · ·〉ω,
which extracts the component at the frequency ω from the argu-
ment in angle brackets. In particular, we have〈[

cos(ωt)
]2n

〉
0

=
1

22n

(
2n
n

)
=

(2n)!
22n(n!)2 (29)

for the constant component and〈[
cos(ωt)

]2n+1
〉
ω

=

(
2n + 1

n

)
cos(ωt)

22n =
(2n + 2)! cos(ωt)
22n+1 [(n + 1)!]2

(30)

for the component at the fundamental frequency ω. Note that, in
addition to the amplitude, the oscillatory term is recovered, too.

4.2. Perturbation theory

While we have solved the classical equations of motion ex-
actly for the ideal Penning trap, general analytic solutions are
not available for the ion dynamics in the case of cylindrically-
symmetric imperfections. As remarked by [42], already the
low-order anharmonic electric imperfection present enormous
difficulties [43, 44]. Despite the richness of non-linear phe-
nomena, insofar as they do not cause instability, the main con-
cern for Penning-trap mass spectrometry has always been the
frequency-shift that goes along, because measuring frequencies
is paramount. We will briefly touch on motionally-induced
dynamics at the end of this subsection.

With a general solution somewhere between impracticable
and impossible, the treatment of anharmonic frequency-shifts
in a Penning trap has always been the domain of perturbation
theory. The calculation of relativistic corrections for an electron
in an ideal Penning trap [45] ranks among the first applications.
The first comprehensive summary of frequency-shifts caused by
the imperfections of a real Penning trap is given in [5], including
the effects of the two cylindrically-symmetric electric and mag-
netic imperfections associated with C4 and B2. It is probably
because of a long-standing history of measurements on electrons
and positrons [46] on which quantization can be observed that
part of the calculation was performed in a quantum-mechanical
framework of the anharmonic oscillator. Quantum numbers were
then related to the energies in the respective modes. The result
was later picked up on in [6] in order to express the shifts as
a function of the motional amplitudes, and the same method
was applied for C6. The quantum-mechanical starting point is
overkill for an online-trap working with heavy particles cooled
by buffer-gas, and classical methods were used to derive the shift
to the radial frequencies in [7] for C4,C6 and B2, albeit named
differently.

Whereas the aforementioned publications remain vague about
the actual calculation, showing intermediate steps at best, the
prescription for the use of classical Hamiltonian perturbation
theory has been outlined and applied in [10, 11]. Drawing heav-
ily from [12, 13], we opt for a different formalism based on the
physical interpretation of the additional forces that result from
the higher-order terms.

The one-dimensional anharmonic oscillator. The train of thought
behind the implementation of perturbation theory for the specific
problem of calculating first-order frequency-shifts in this paper
is illustrated best by exposing the shortcomings of a simple-
minded, straightforward approach on the one-dimensional an-
harmonic oscillator

z̈ + ω2
z z = −εκηzη−1 , where κη =

ηω2
z

2C2dη−2 . (31)

The particular choice of the parameter κη is well-motivated. By
setting the amplitudes of the radial modes to zero, this axial
equation of motion results from a Penning trap with an additional
contribution Φη to the electrostatic potential. We have made the
substitution ε = Cη for the perturbation parameter.

Since the solution for ε = 0 is known and ε is typically a
small parameter, the ansatz of the solution as a power series

z(t) = z0(t) + εz1(t) + ε2z2(t) + · · · (32)

of the perturbation parameter ε seems to suggest itself. The zi(t)
are unknown functions, which need to be determined. As usual,
the power-series solution is inserted into the original problem of
Equation (31) and subsequently evaluated order by order. For
the zeroth-order contribution, we have

z0(t) = ẑ0 cos(ωzt + ϕz) , (33)

which is the solution of the one-dimensional harmonic oscillator
as was the case for the axial motion in the ideal Penning trap
shown in Equation (9).

By collecting all terms of first-order in ε, we arrive at the
differential equation

z̈1(t) + ω2
z z1(t) = −κη

[
z0(t)

]η−1 (34)

for the first-order contribution z1(t). Let us now choose η = 2n
in order to illustrate the problem of the simple-minded power-
series ansatz. This is a generic problem; it would also show
up for odd η, albeit one order later. Equation (30) tells us that
from inserting z0(t) into the right-hand side of Equation (34) we
get one oscillatory term at the fundamental frequency and other
terms at odd higher harmonics. Whereas the terms at the higher
harmonics lead to motional sidebands in z1(t), the term

〈[
z0(t)

]2n−1
〉
ωz

=
ẑ2n−1

0

22n−1

(2n)!
(n!)2 cos(ωzt + ϕz) (35)

right at the fundamental frequency is devastating because it
drives the undamped harmonic oscillator for z1(t) on resonance,
eventually leading to a linear growth of the amplitude of z1(t).
Even though z1(t) is suppressed by a factor of ε, the emergence
of such a secular term is unphysical because it violates the con-
servation of energy, and it clearly goes against our expectation
of periodicity despite imperfections.

The pathological effect of secularity is typically removed by
introducing multiple (time) scales, a strained variable of time or
by developing the frequency as a power-series, too. However,
we note that all this effort is unnecessary if we are willing to
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settle for first-order frequency-shifts, provided we understand
the message of resonant terms.

We begin by conceding that our initial ansatz was too restric-
tive because it did not incorporate frequency as a quantity in
its own right and hence lacked the adequate means of describ-
ing frequency-shifts in a natural way. When the zeroth-order
solution z0(t) from Equation (33), which we believed to be the
most important contribution to the overall solution z(t), turned
out to oscillate at the unperturbed frequency, we should have
questioned the ansatz, given that a frequency-shift was the dom-
inant effect we expected out of imperfections. The first order
alone cannot set this shortcoming right and diverges. If this res-
onant coupling between different orders of perturbation theory
is carried through all orders, the first-order frequency-shift is
recovered [47].

However, the first-order frequency-shift is related to the res-
onant term in a much more direct manner based on physical
grounds. Looking back at our power-series ansatz in Equa-
tion (32), we iterate that there is a hierarchy of contributions to
the trajectory. We want the zeroth order to be the most important
one. From Equation (34), we conclude that the leading contri-
bution to the additional force caused by the imperfection comes
from the zeroth-order contribution z0(t) to the trajectory. This is
not surprising since the additional force is of first-order in the per-
turbation parameter ε right from the beginning. In other words,
as the particle goes along z0(t), it experiences additional forces,
most of which are non-resonant and hence only cause small
motional sidebands. The term from Equation (35) which looks
like a resonant drive-term in Equation (34) actually means that
one part of the additional forces has just the same dependence
as the force that gave rise to the original motion z0(t). Therefore,
the resonant term does not turn the amplitude into a dynamical
quantity; it changes the frequency because—effectively—it adds
coherently to the main force. Consequently, we must allow for a
change of the frequency of z0(t) and

z̃(t) = ẑ cos(ω̃zt + ϕ̃z) (36)

with the perturbed frequency ω̃z is a better ansatz for the zeroth-
order trajectory. We have suppressed any indication about the
order of z̃ because we will not have to go beyond zeroth order in
the trajectory to calculate the first-order frequency-shift.

Nevertheless, we stress what this single-minded obsession
with frequency-shifts misses out on. Sidebands—motional com-
ponents at higher harmonics of the fundamental frequency—
have already been mentioned in conjunction with Equation (34).
Note that, for a driven harmonic oscillator, even non-resonant
excitation triggers a finite response at the fundamental frequency
unless for very special initial conditions. If damping is present,
only the driven motion survives in the long run, but for the un-
damped case, the response at the fundamental frequency is here
to stay. Obviously, the presence of sidebands means that ẑ in
Equation (36) is no longer equal to the amplitude of the motion.
As a more subtle consequence of sidebands, the response at the
fundamental frequency also means that ẑ is not even equal to the
amplitude of the Fourier component at that frequency. However,
the discrepancy is at least of first order in the perturbation param-
eter ε. Therefore, we will sloppily continue to refer to ẑ and ρ̂±

in the case of the perturbed radial modes as the amplitude of that
motion in order to avoid the bulky but more exact expression of
“zeroth-order amplitude of the respective Fourier component of
the motion at the perturbed fundamental frequency”.

Our goal is to collect all secularity-inducing terms in the
effective equation of motion

¨̃z(t) + ω2
z (1 + γz)z̃(t) = 0 , (37)

from which the perturbed frequency can be read off as

ω̃z = ωz
√

1 + γz ≈ ωz

(
1 +

γz

2

)
(38)

with the last approximation assuming |γz| � 1. By writing the
perturbed frequency as ω̃z = ωz + ∆ωz, we obtain

∆ωz

ωz
=
γz

2
(39)

for the first-order axial-frequency shift ∆ωz.
For the one-dimensional anharmonic oscillator presented in

Equation (31), we would determine the parameter γz as

γzz̃(t) =
εκη

ω2
z

〈[
z̃(t)

]η−1
〉
ω̃z
. (40)

With the help of Equation (26), we note that γz = 0 for η odd.
For η even (given as η = 2n), the crucial step is to go beyond the
result of Equation (35) by writing the resonant term〈[

z̃(t)
]2n−1

〉
ω̃z

=
ẑ2n−1

22n−1

(2n)!
(n!)2 cos(ω̃zt + ϕ̃z) =

ẑ2n−2

22n−1

(2n)!
(n!)2 z̃(t)

(41)

as proportional to z̃(t). Note that the phase of the resonant term
is just right to do so.

All factors combined and the substitution Cη = ε undone,
the first-order frequency-shift then becomes

∆ωz

ωz
=

C2n

C2

n
22n

(2n)!
(n!)2

ẑ2n−2

d2n−2 . (42)

Radial modes. The same strategy as for the axial mode is also
applied to the two radial modes. We will insert the solutions of
the ideal Penning trap

x̃(t) = x̃+(t) + x̃−(t) , ỹ(t) = ỹ+(t) + ỹ−(t) , (43)

defining the two abbreviations

x̃±(t) = ρ̂± cos(ω̃±t + ϕ̃±) , ỹ±(t) = −ρ̂± sin(ω̃±t + ϕ̃±) (44)

with the same twist: we allow for a change of the frequency as
indicated by the use of ω̃± instead of the unperturbed frequen-
cies ω± in the original solution shown in Equations (7) and (8).
We will use the abbreviation χ̃i as defined in Equation (10) ac-
cordingly.

Resonant terms at the frequency ω̃± are then absorbed in
the parameters β± and γ± in order to yield the effective radial
equations of motion(

¨̃x±
¨̃y±

)
= ωc(1 + β±)

(
˙̃y±
− ˙̃x±

)
+
ω2

z (1 + γ±)
2

(
x̃±
ỹ±

)
(45)
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for the zeroth-order trajectory described by x̃±(t) and ỹ±(t). For
β± = 0 and γ± = 0, we recover the radial equations of mo-
tions (3) of the ideal Penning trap with the free-space cyclotron-
frequency ωc from Equation (5) and the unperturbed axial fre-
quency ωz from Equation (4). Note that we have allowed for the
fact that the two parameters β± and γ± may be different for the
two radial modes. We shall see that β± is associated with mag-
netic imperfections, while γ± is related to electric imperfections.

By sending ωc → ωc(1 + β±) and ω2
z → ω2

z (1 + γ±) in
Equation (6), we use a Taylor expansion around the unperturbed
case of β± = 0 and γ± = 0, in order to calculate the first-order
frequency-shift as

ω̃± = ω± +
∂ω±
∂ωc

ωcβ± +
∂ω±

∂ω2
z
ω2

zγ± + · · · (46)

= ω± ±
ω±ωc

ω+ − ω−
β± ∓

ω+ω−
ω+ − ω−

γ±︸                              ︷︷                              ︸
∆ω±

+ · · · . (47)

With the help of Equation (12), we have expressed ω2
z as a

product of the two radial frequencies. Note that γ± describes a
change of the effectiveω2

z in Equation (45). Taking the derivative
with respect to ω2

z instead of ωz is not a typo. Moreover, ω2
z (1 +

γ±) is not to be confused with an actual axial frequency squared;
there is only one, and it is given by ω2

z (1 + γz) in Equation (37).
Similarly, there is only one free-space cyclotron-frequency ωc,
with ωc(1 + β±) describing an effective frequency rather than a
measurable frequency associated with an actual motion.

The divergence at ω+ = ω− is an artefact of the first deriva-
tive rather than a fundamental flaw of perturbation theory. Equa-
tion (6) does not diverge; however, it may yield complex fre-
quencies as a consequence of exceeding the limit of stability
in the Penning trap. For a measurement on the ion-of-interest,
an experiment typically has |ω+| � |ω−|, and the root in the
denominator of Equation (47) is not an issue. Lacking experi-
mental relevance, we are not prepared to deal with the effects of
near-degeneracy at the brink of stability.

As we have seen, the first-order frequency-shifts are linear
in the perturbation parameter by definition, and the shifts add
up linearly as long as the next orders of the Taylor expansion
in Equations (38) and (46) can be neglected. From the perspec-
tive of a power series solution, these next-order terms in the
Taylor series may be considered at least of second order. Be-
cause of the linearity to first order in the frequency-shift and the
linearity of the equations of motion (2), as well the superposi-
tion principle for electric and magnetic fields, we will treat only
one higher-order term at a time, resting assured the effects of
several terms can be combined afterwards. This holds for mul-
tiple electrostatic or magnetic imperfections separately as well
as the interplay of both kinds of imperfections. Consequently,
we devote Section 5 to the frequency-shifts caused by former
and Section 6 to the latter. In fact, interplay of imperfections is
saying too much. It is only in second-order that the effects of dif-
ferent imperfections may conspire to produce a frequency-shift
in concert.

Spurious motional resonances. So far, we have assumed that
two kinds of terms arise from inserting the zeroth-order solution

into the higher-order imperfections: non-resonant and totally
coherent ones. Since the non-resonant terms do not give rise
to a first-order frequency-shift, we have ignored them. Non-
resonant terms for the one-dimensional anharmonic oscillator
involved either a constant term or an oscillatory term at higher
harmonics of the fundamental frequency. We have assumed the
fundamental frequency to be high enough for higher harmonics
to be considered non-resonant instead of near-resonant. As far
as the resonant terms are concerned, our experience with the
one-dimensional harmonic oscillator has prompted us to believe
that these terms are proportional to a component of the zeroth-
order solution, always coming back with the same phase as a
component of the original motion. We shall call these terms
truly resonant. However, the three eigenmotions in a Penning
trap allow for new phenomena.

What would happen if a term had the right frequency to be
resonant, but had incurred a phase-shift along the way? We
will content ourselves with a handwaving explanation for why
there is more than static frequency-shifts to consider in this case.
Suppose, instead of z̃ = ẑ cos(χ̃z) as for the original motion in
the one-dimensional anharmonic oscillator, the resonant force
resulting from the anharmonic term came with a phase shift ϕ.
With the identity

cos(χ̃z + ϕ) = cos(χ̃z) cos(ϕ) − sin(χ̃z) sin(ϕ) (48)

we know how to treat the first term as a frequency-shift. In order
to understand the effect of the second term, we take a look at the
work

dW = −Fdz = −Fżdt (49)

performed by a force F along the way dz. With F ∝ sin(χ̃z) and
˙̃z ∝ sin(χ̃z), there is a net change of the particle’s energy that
does not average over one cycle. In other words, the amplitude
becomes a dynamical quantity. This is in stark contrast to a truly
coherent force F ∝ cos(χ̃z), whose net influence on the energy
of the particle vanishes. This vindicates the interpretation of
truly resonant terms as an addition to the main force rather than
an external drive.

Although this simple model gives a first impression of how
instabilities come about as a consequence of imperfections, our
self-imposed restriction to zeroth-order trajectories prevents us
from seeing the full spectrum of spurious mode-coupling for
which motional sidebands offer additional possibilities. More-
over, with the frequencies depending on the amplitudes, the
resonance conditions change as the amplitudes become dynami-
cal. In other words, a resonance-condition may lead to its own
demise, receding to near-resonant after having changed the am-
plitude of an eigenmotion. However, since all the eigenmodes
are treated as undamped, even near-resonant coupling is still
likely to have substantial impact.

A Fourier series expansion of the electrostatic potential per-
formed in [10] predicts instabilities for

j+ω̃+ + j−ω̃− + jzω̃z = 0 , where | j+| + | j−| + | jz| ≤ η (50)

and the ji are integers—positive, negative or zero. The param-
eter η describes the order of the imperfection and is the same
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as in Cη. The motional resonances and instabilities have been
observed on trapped ions [48] and electrons [49] as a rapid loss
of particles from the trap. Given these drastic consequences,
frequency-shifts become the lesser problem, and there is little
we can do about the rest. Our method of absorbing truly reso-
nant terms does not cope with dynamical effects. Therefore, we
will assume that a stable operating point for the trap far away
from instabilities has been chosen. Spurious resonances will be
ignored for the rest of the paper.

Before we demonstrate how coherence is born naturally
from higher-order imperfections without requiring any particular
relationship between the eigenfrequencies, we will derive two
very important identities. The origin of naturally resonant terms
is fully understood without these, but the final result would not
look as elegant.

4.3. Radial ion displacement

As we have outlined in the previous subsection, we will in-
sert the zeroth-order solution with the provision for a frequency-
change. Since we will deal with cylindrically-symmetric imper-
fections, powers of the radial ion displacement squared play an
important role. By adding the zeroth-order solutions x̃ and ỹ
from Equation (43) in quadrature, we obtain

ρ̃2 = ρ̂2
+ + ρ̂2

− + 2ρ̂+ρ̂− cos(χ̃b) with χ̃b = χ̃+ − χ̃− (51)

for the zeroth-order radial ion displacement squared. Note that
ρ̃2 is not a single-frequency term; it possesses a constant contri-
bution and an oscillatory term at the frequency ω̃b = ω̃+ − ω̃−.
Consequently, the frequency-spectrum of ρ̃2n has contributions at
0ω̃b, 1ω̃b, 2ω̃b, 3ω̃b, . . . , nω̃b, with all higher harmonics up to n,
not just even or odd multiples of the fundamental frequency ω̃b,
regardless of whether n is even or odd.

Fortunately, just two frequency-components in ρ̃2n share all
the load of preserving and creating naturally resonant terms: the
constant component and the term oscillating at the frequency ω̃b.
As a common starting point for calculating these two relevant
terms, we have

ρ̃2n =
[
ρ̂2

+ + ρ̂2
− + 2ρ̂+ρ̂− cos(χ̃b)

]n (52)

=

n∑
j=0

n− j∑
k=0

(
n
j

)(
n − j

k

)
ρ̂

j+2k
+ ρ̂

2(n−k)− j
−

[
2 cos(χ̃b)

] j (53)

after applying binomial expansion twice. It is at this point that
the pathways begin to differ slightly.

Before we continue with the calculation, we remark that
all the powers of ρ we will ever need in this paper are actually
integer powers of ρ2. Therefore, we do not have to bother about
performing a frequency-analysis on ρ, which would be much
more complicated because of the square root involved.

Constant term. Thanks to Equations (26) and (28), we know
that only even powers of cos(χ̃b) come with a constant term,
and we incorporate this by sending j → 2 j in Equation (53).
The new upper limit in the sum over j is then given by the

floor function defined in Equation (16). With the result from
Equation (29) for the non-oscillatory component, we have

〈
ρ̃2n

〉
0

=

b n
2 c∑

j=0

n−2 j∑
k=0

(
2 j
j

)(
n
2 j

)(
n − 2 j

k

)
ρ̂

2( j+k)
+ ρ̂

2(n− j−k)
− . (54)

Transforming the summation variables as illustrated in Figure 1
according to

b n
2 c∑

j=0

n−2 j∑
k=0

fn( j, k) =

n∑
p=0

n
2−|

n
2−p|∑

q=0

fn( j = q, k = p − q) (55)

with the substitution for j and k as indicated in the argument of
a generic function fn( j, k) leaves us with

〈
ρ̃2n

〉
0

=

n∑
p=0

n
2−|

n
2−p|∑

q=0

(
2q
q

)(
n
2q

)(
n − 2q
p − q

)
ρ̂

2p
+ ρ̂

2(n−p)
− . (56)

Note that the sum over q entirely determines the coefficient of
ρ̂

2p
+ ρ̂

2(n−p)
− and the sum can be evaluated independently. Even

more pleasantly, the summation can be executed by hand. By
rearranging the triple product of binomial coefficients as(

2q
q

)(
n

2q

)(
n − 2q
p − q

)
=

(
n
p

)(
p
q

)(
n − p

q

)
(57)

and by invoking Vandermonde’s identity

r∑
q=0

(
n1

q

)(
n2

r − q

)
=

(
n1 + n2

r

)
, (58)

the final result 〈
ρ̃2n

〉
0

=

n∑
p=0

[(
n
p

)]2

ρ̂
2p
± ρ̂

2(n−p)
∓ (59)

contains one coefficient and only one sum. This sum includes
all the combinations of ρ̂2p

± ρ̂
2(n−p)
∓ and cannot be reduced further

because the two amplitudes represent actual degrees of freedom
of the experiment. We have written ρ̂± in order to emphasize
that the result is symmetric with respect to the two amplitudes
as expected because ρ̃2 from Equation (51) has the same sym-
metry. We will find it convenient to choose either of the two
combinations.

Oscillatory component at ω̃b. The starting point for calculating
the component at the frequency ω̃b is Equation (53), just like
for the constant term. As evidenced by Equations (26) and (28),
the oscillatory term is present only for odd powers of cos(χ̃b).
Therefore, we substitute the summation variable j → 2 j + 1.
Using Equation (30) to determine the term at the frequency ω̃b,
the intermediate result is

〈
ρ̃2n

〉
ω̃b

= 2
ρ̂+

ρ̂−
cos(χ̃b)

b n−1
2 c∑

j=0

n−2 j−1∑
k=0

cn( j, k) ρ̂2( j+k)
+ ρ̂

2(n− j−k)
− (60)
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Figure 1: Illustrating the transformation of summation variables in Equation (55)
for n = 7. The squares represent combinations of ( j, k) and (p, q) that are part
of the summation; the triangles lie outside the range. In jk-space, the dark gray
line indicates the upper limit n − 2 j for k. Points of constant j + k = p inside
the range of the summation are connected by light gray lines. On such a line,
each point is uniquely identified by j aka q. As the lines of constant p do not
intersect, the coordinates of a point can also be described by p and j. For a given
p, the two constraints 0 ≤ k ≤ n − 2 j read 0 ≤ p − j and p − j ≤ n − 2 j. Thus,
we infer that j ≤ p and j ≤ n − p, in addition to j ≥ 0. Switching from j to q as
the summation variable, the constraints are combined as 0 ≤ q ≤ n

2 −
∣∣∣ n

2 − p
∣∣∣.

The upper limit for q is indicated by the dark gray line in pq-space. The dotted
lines represent continuations of the upper limits q = p and q = n − p outside the
range of the summation.

with the coefficient

cn( j, k) =

(
n

2 j + 1

)(
n − 2 j − 1

k

)(
2 j + 1

j

)
. (61)

The upper limits of the two sums are not yet right to apply the
transformation from Equation (55) directly. Since cn( j, n−2 j) =

0 as the second binomial coefficient vanishes according to its
definition in Equation (27), we shift the upper limit of the sum
over k up by one to n − 2 j. Concerning the sum over j, we
note that b n−1

2 c = b n
2 c for n odd. If n is even, the first binomial

coefficient vanishes for 2 j = n. Therefore, we are allowed to
increase the upper limit of the sum over j to b n

2 c and we can
use the same transformation of summation variables as for the
constant component before, which results in

〈
ρ̃2n

〉
ω̃b

= 2
ρ̂+

ρ̂−
cos(χ̃b)

n∑
p=0

n
2−|

n
2−p|∑

q=0

cn(q, p − q) ρ̂2p
+ ρ̂

2(n−p)
− (62)

with the coefficient

cn(q, p − q) =

(
n

2q + 1

)(
n − 2q − 1

p − q

)(
2q + 1

q

)
=

(
n
p

)(
p
q

)(
n − p
q + 1

)
.

(63)

After rearranging the triple product of binomial coefficients as
shown above, Vandermonde’s identity (58) allows to execute the
sum over q. This final step yields〈

ρ̃2n
〉
ω̃b

=
2ρ̂±
ρ̂∓

cos(χ̃b)
n∑

p=0

(
n
p

)(
n

p + 1

)
ρ̂

2p
± ρ̂

2(n−p)
∓ (64)

for the oscillatory component at the frequency ω̃b. Note that we
could lower the upper limit of the sum over p to n − 1 as the

second binomial coefficient vanishes for p = n. However, having
the same limits as the sum in Equation (59) will help combine
variations of the two sums later on. Once again, we stress that
the result is symmetric with respect to the amplitudes of the
two radial modes. We underline this by showing both combina-
tions ρ̂±, which we will capitalize on to treat the frequency-shifts
for both radial modes simultaneously.

5. Frequency-shifts caused by electric imperfections

Recalling the parametrization of cylindrically-symmetric im-
perfections of the electrostatic potential in Subsection 3.1, the
additional electric field caused by one higher-order contribu-
tion Φη from Equation (14) is

~Eη(ρ, z) = −
∂Φη(ρ, z)

∂z
~ez −

∂Φη(ρ, z)
∂ρ

~eρ (65)

= E(z)
η (ρ, z)~ez + E(ρ)

η (ρ, z)~eρ (66)

with the axial component

E(z)
η = −Cη

V0

2dη

bη/2c∑
k=0

aη(k) (η − 2k) zη−2k−1ρ2k (67)

and the radial component

E(ρ)
η = −Cη

V0

dη

bη/2c∑
k=1

aη(k) k zη−2kρ2k−1 . (68)

The coefficient aη(k) is as defined in Equation (19). By express-
ing the radial unit vector ~eρ in Cartesian coordinates, the two
Cartesian components of the additional radial electric field are
found as(

E(x)
η

E(y)
η

)
=

E(ρ)
η

ρ

(
x
y

)
= −Cη

V0

dη

bη/2c∑
k=1

aη(k) k zη−2k ρ2k−2
(
x
y

)
. (69)

Since the classical Newtonian equation of motion (2) for a
charged particle in electric and magnetic fields is linear in both
fields, we can simply add the additional electric field ~Eη to the
equations of motion (3) in the ideal Penning trap in order to
arrive at ẍ

ÿ
z̈

 = ωc

 ẏ
−ẋ
0

 +
qV0C2

2md2

 x
y
−2z

 +
q
m


E(x)
η

E(y)
η

E(z)
η

 . (70)

We will search for frequency-changing terms in the axial and
the radial modes separately.

5.1. Axial mode
Plugging in the additional axial electric field from Equa-

tion (67) into Equation (70), the axial equation of motion reads

z̈ + ω2
z z +

Cη

C2

ω2
z

2dη−2

bη/2c∑
k=0

aη(k) (η − 2k) zη−2k−1ρ2k = 0 (71)
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with the unperturbed axial frequency ωz introduced in Equa-
tion (4).

We insert the zeroth-order solution z̃(t) and [ρ̃(t)]2 from
Equations (36) and (51), respectively. In order to save some
space, we will suppress the time-dependence. In contrast to
the amplitude-like constant quantities ρ̂± and ẑ, the zeroth-order
solutions expressed with a tilde are explicitly time-dependent.

Next, we need to understand how oscillatory terms at the
axial frequency ω̃z are produced. Spurious motional resonances
aside, the natural mechanism is written as〈

z̃η−2k−1ρ̃2k
〉
ω̃z

=
〈
z̃η−2k−1

〉
ω̃z

〈
ρ̃2k

〉
0

(72)

in our notation. In words, an oscillatory component at the per-
turbed axial frequency ω̃z results from that very component
in z̃η−2k−1, and the component is preserved by mixing it only
with the constant contribution in ρ̃2k, because the oscillatory
components in ρ̃2k are at multiples of ω̃b = ω̃+ − ω̃−. Note
that according to Equations (26) and (28) the term z̃η−2k−1 has
a contribution at the perturbed axial frequency ω̃z only if the
exponent η − 2k − 1 is odd. Therefore, η must be even, which
we incorporate by writing η = 2n. The terms for our effective
equation of motion (37) are then expressed as

γzz̃ =
C2n

C2

1
d2n−2

n−1∑
k=0

a2n(k) (n − k)
〈
z̃2n−2k−1

〉
ω̃z

〈
ρ̃2k

〉
0
. (73)

Even though we have figured out that coefficients with η odd
are not a natural source of first-order frequency-shifts, we high-
light one peculiarity. C1 is special among the odd coefficients
because its contribution is constant, which translates the center
of the axial oscillation. In the ideal Penning trap with its homo-
geneous and therefore translationally invariant magnetic field,
C1 does not cause a frequency-shift because Φ1 ∝ z without any
dependence on ρ neither changes the curvature of the potential
in the axial direction nor affects the electrostatic potential for
radial modes at all. Moreover, there is no particular location in a
homogeneous magnetic field.

The effect of C1 could be encompassed non-perturbatively
in the translated zeroth-order solution

z̃′(t) = z̃(t) −
C1

2C2
d . (74)

However, calculating powers of z̃′(t) would be more tedious.
Nevertheless, the additional terms would at least be of first order
in C1, and it is still true that C1 does not give rise to a frequency-
shift to first-order. Note that since Φ1 ∝ z, the radial modes
would only be affected via the C1 in z̃′(t), which means that the
effect is at least of second order because it has to be mediated by
a higher-order term, z being absent from the radial equations of
motion in the ideal Penning trap. Sticking with the original z̃(t)
still allows for a perturbative treatment of C1, but as we have
seen one has to go beyond the friendly confines of first order.

Alternatively, the electrostatic potential and the magnetic
field may be parametrized around the new center of the axial
oscillation, where there is no effective C1. Compromising the re-
flection symmetry about the xy-plane results in the proliferation

of perturbation parameters with η odd. Although these terms do
not go along with a first-order frequency-shift and their effects
may be considered subordinate, a quantitative treatment requires
second order in perturbation theory as before.

The effect of odd coefficients is more subtle than one might
expect at first glance, in large parts because there is no mecha-
nism to ensure that the C2n+1 are small with respect to C2. For
hyperboloidal traps, the shape of the electrodes guarantees that
C2 dominates over C2n, but the C2n+1 cannot be dismissed along
these lines. When reflection symmetry of the potential is de-
liberately broken, for instance by introducing an offset voltage
on one electrode, the second-order effects of odd coefficients
may not necessarily be smaller than the first-order effects of
even coefficients. Moreover, since typical traps barely resemble
plate capacitors, C1 and C3 are of the same order or magni-
tude [16, 17, 37], and the two conspire to produce an effective
C2, thereby causing a frequency-shift independent of the par-
ticle’s amplitudes. In this case, seemingly anharmonic terms
combine to yield a harmonic shift. Whereas a change of the
effective C2 affects the individual frequencies, Equations (11)
and (13) remain valid. As the C1C3-shift is of second order in
the perturbation parameters, we will stay true to the title of this
paper by ignoring it.

Nevertheless, we have to warn of mistaking orders for actual
relevance. Speaking of orders in perturbation theory is simply
adding the exponents of all the perturbation parameters in a
particular term. When different perturbation parameters are com-
pared, higher orders do not necessarily imply lesser importance,
although we hope to operate in a regime of imperfections and
amplitudes in which the hierarchy is at least maintained for the
terms that involve the same set of perturbation parameters. In
other words, the first-order effect of B2n or C2n is supposed to
dominate over its second-order effect. For anharmonic shifts, the
assumption is verified experimentally by measuring a frequency-
shift as a function of the amplitude of an eigenmotion. If the
second-order effects of B2n or C2n were important, the scal-
ing with amplitude would differ from the first-order prediction.
However, the second-order effects of odd coefficients may be
much harder to disentangle from the first-order effects of even
coefficients.

Having underlined the importance of reflection symmetry in
a Penning trap, we return to the truly resonant terms given by
Equation (73). Using Equations (41) and (59) to evaluate the
two terms in angle brackets, and the definition of a2n(k) from
Equation (19), the parameter γz is written as

γz =
C2n

C2

(2n)!
22n−1d2n−2

n−1∑
k=0

(−1)k (n − k)
[k!(n − k)!]2

·

k∑
p=0

[(
k
p

)]2

ρ̂
2p
+ ρ̂

2(k−p)
− ẑ2(n−k−1) .

(75)

Expressing the binomial coefficient with factorials according
to Equation (27), the parameter γz is related to the first-order
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frequency-shift

∆ωz

ωz
=

C2n

C2

(2n)!
22n

n−1∑
k=0

k∑
p=0

(−1)k (n − k) ρ̂2p
+ ρ̂

2(k−p)
− ẑ2(n−k−1)

[(n − k)! p! (k − p)!]2 d2n−2

(76)

with the help of Equation (39). For zero amplitude of the radial
modes, the only contribution comes from p = 0 and k = 0, and
we recover the result from Equation (42) for the one-dimensional
case as a little crosscheck. The more comprehensive benchmark
is Equation (3.57) in [14] and it agrees.

Note that the result is symmetric with respect to the am-
plitudes of the two radial modes. If they were swapped, the
frequency-shift caused by the electrostatic imperfection would
not change. Essentially, this symmetry is due to the fact that
the coupling of the radial modes to the axial motion is mediated
non-resonantly through the amplitudes, but not velocities. We
shall see that this changes for magnetic imperfections. More pre-
cisely, via electrostatic imperfections, the axial mode is sensitive
to the average of powers of the radial ion displacement.

5.2. Radial modes
By inserting the radial components of the additional elec-

tric field shown in Equation (69) into Equation (70), the radial
equations of motion become(

ẍ
ÿ

)
= ωc

(
ẏ
−ẋ

)
+
ω2

z

2

(
x
y

) 1 − Cη

C2

2
dη−2

bη/2c∑
k=1

aη(k) k zη−2kρ2k−2


(77)

with the unperturbed axial frequency ωz from Equation (4).
Like for the axial mode, we plug in the zeroth-order solutions

for the trajectory searching for resonant terms. In addition to z̃(t)
from Equation (36) and [ρ̃(t)]2 from Equation (51), we will need
the zeroth-order solution for the two radial coordinates given in
Equation (43).

It is immediately obvious that x̃±(t) in x̃(t), and ỹ±(t) in ỹ(t) as
defined in Equation (44) stay resonant at ω̃± as long as they are
multiplied only with constant components. However, we must
resist our temptation to average over the sum in square brack-
ets in Equation (77) because the two frequency-components in
x̃(t) and ỹ(t) allow for a second mechanism: producing reso-
nant terms via mixing. From Equation (51) we recall that the
radial ion displacement squared and powers thereof contain an
oscillatory term at the difference frequency ω̃b = ω̃+ − ω̃− of
the two radial modes. With the standard laws of multiplying
trigonometric functions, we have〈

cos(χ̃+ − χ̃−) cos(χ̃±)
〉
ω̃∓

=
1
2

cos(χ̃∓) , (78)〈
cos(χ̃+ − χ̃−) sin(χ̃±)

〉
ω̃∓

=
1
2

sin(χ̃∓) . (79)

In other words, mixing an oscillatory term at the frequency ω̃b
with an oscillatory term at the radial eigenfrequency ω̃± results
in a resonant term at the other radial frequency ω̃∓. Of course,
there is a second term at the frequency |2ω̃± − ω̃∓|, which we

have ignored because it is generally non-resonant. Note that
Equations (78) and (79) mean that the mechanism for producing
coherence via mixing is the same for x̃(t) and ỹ(t). From now
on, we will extract naturally resonant terms from one of the two
radial coordinates, knowing that these terms can be described
by one single parameter for both coordinates. This comes as no
surprise since cylindrical symmetry must not favor one radial
direction over the other.

In our notation, producing resonant terms in Equation (77)
is written as〈

z̃η−2kρ̃2k−2 x̃
〉
ω̃±

=
〈
z̃η−2k

〉
0

〈
ρ̃2k−2 x̃

〉
ω̃±

. (80)

Barring spurious resonances, oscillatory terms at the radial fre-
quency ω̃± result from the radial motions themselves, and these
terms need to be preserved by multiplying them with the time-
independent contribution of the axial oscillation. According to
Equations (26) and (28), the exponent η − 2k has to be even
for z̃η−2k to have a constant term. Therefore, η must be even.
As for the axial mode before, we incorporate this property by
writing η = 2n.

Resonant terms in the radial equations of motion (77) then
take the form

γ± x̃± = −
C2n

C2

2
d2n−2

n∑
k=1

a2n(k) k
〈
z̃2(n−k)

〉
0

〈
ρ̃2k−2 x̃

〉
ω̃±

(81)

with the parameter γ± defined in the effective equations of mo-
tion (45). The constant contribution by the axial motion is
derived from Equation (29). The coefficient a2n(k) is defined in
Equation (19). Oscillatory terms at either radial frequency ω̃±
are produced by the two mechanisms discussed before: on the
one hand, preserving the resonant term present in x̃±(t) by mul-
tiplying it with constant terms only; on the other hand, mixing
the term x̃∓(t) with the oscillatory component at ω̃b = ω̃+ − ω̃−
to produce a term proportional to x̃±(t). In our notation, these
mechanisms read〈

ρ̃2k−2 x̃
〉
ω̃±

=
〈
ρ̃2k−2

〉
0

x̃± +

〈〈
ρ̃2k−2

〉
ω̃b

x̃∓
〉
ω̃±

. (82)

Note that there is no double counting because x̃±(t) is multiplied
with two distinct components of powers of the radial displace-
ment squared. Combining x̃+(t) with the constant component
of ρ̃2k−2 results in a resonant term at the reduced cyclotron-
frequency ω̃+; mixing x̃+(t) with the oscillatory component of
ρ̃2k−2 at ω̃b yields a resonant term at the magnetron frequency ω̃−.
The same holds true for ỹ+(t). Similarly, the same mechanism is
at work for the effect of x̃−(t) and ỹ−(t) on ω̃− and ω̃+.

With the help of Equation (59), we write the first of the two
summands as〈

ρ̃2k−2
〉

0
x̃± = x̃±

k−1∑
p=0

[(
k − 1

p

)]2

ρ̂
2p
± ρ̂

2(k−1−p)
∓ . (83)

Using Equations (64) and (78), the second summand becomes〈〈
ρ̃2k−2

〉
ω̃b

x̃∓
〉
ω̃±

= x̃±
k−1∑
p=0

(
k − 1

p

)(
k − 1
p + 1

)
ρ̂

2p
± ρ̂

2(k−1−p)
∓ . (84)
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We have chosen the combination ρ̂± in Equation (64) such that
the factor ρ̂±/ρ̂∓ compensates for the factor ρ̂∓/ρ̂± that results
from producing x̃± from x̃∓ through mixing. Recall that x̃∓
comes with ρ̂∓, whereas an additional factor of ρ̂± is necessary
to create x̃± after mixing with the oscillatory component at ω̃b.
Accidentally, this choice also means that the exponents of the
radial amplitudes ρ̂± are the same in both sums, which allows us
to proceed without any transformation of summation variables.

With the identity(
k − 1

p

)
+

(
k − 1
p + 1

)
=

(
k

p + 1

)
(85)

the two results can be combined and—the contribution from the
axial motion considered—the coefficient of the resonant terms
at ω̃± takes the form

γ± = −
C2n

C2

(2n)!
22n−1

1
d2n−2

n∑
k=1

(−1)kk
[k!(n − k)!]2

·

k−1∑
p=0

(
k − 1

p

)(
k

p + 1

)
ρ̂

2p
± ρ̂

2(k−1−p)
∓ ẑ2(n−k) .

(86)

Note that both binomial coefficients are defined by their explicit
expression with factorials shown in Equation (27) within the
limits of the sum, and we will consequently replace the binomial
coefficients with factorials. Equation (47) relates γ± to the first-
order frequency-shift of the radial modes and we obtain

∆ω± =
±ω+ω−
ω+ − ω−

C2n

C2

(2n)!
22n−1

1
d2n−2

·

n∑
k=1

k−1∑
p=0

(−1)k (p + 1) ρ̂2p
± ρ̂

2(k−1−p)
∓ ẑ2(n−k)

[(n − k)! (k − p − 1)! (p + 1)!]2 .

(87)

Equation (3.56) in [14] provides a crosscheck and there is agree-
ment.

By transforming the summation variable according to p→
k− p−1, the exponents of the two radial amplitudes are swapped
and we obtain

∆ω± =
±ω+ω−
ω+ − ω−

C2n

C2

(2n)!
22n−1

1
d2n−2

·

n∑
k=1

k−1∑
p=0

(−1)k (k − p) ρ̂2p
∓ ρ̂

2(k−1−p)
± ẑ2(n−k)

[(n − k)! p! (k − p)!]2 .

(88)

It is now clear to see that the result is not symmetric with re-
spect to the two amplitudes of the radial motions. Technically,
this imbalance results from producing resonant terms at ω̃± by
mixing with x̃∓, which brings in the amplitude ρ̂∓ of the other
radial motion in an asymmetric way.

The cyclotron sideband. The shift to the sideband cyclotron-
frequency defined in Equation (11) is simply calculated by
adding the two shifts of the radial modes. From Equations (87)

and (88) we have

∆ωc =
ω+ω−
ω+ − ω−

C2n

C2

(2n)!
22n−1

1
d2n−2

n∑
k=1

(−1)k ẑ2(n−k)

[(n − k)!]2

·

k−1∑
p=0

ρ̂
2p
+ ρ̂

2(k−1−p)
−

[p! (k − p − 1)!]2

[
1

p + 1
−

1
k − p

]
.

(89)

By substituting the summation variable as p → k − p − 1 as
before, the exponents of the two radial amplitudes are swapped
and we obtain

∆ωc = −
ω+ω−
ω+ − ω−

C2n

C2

(2n)!
22n−1

1
d2n−2

n∑
k=1

(−1)k ẑ2(n−k)

[(n − k)!]2

·

k−1∑
p=0

ρ̂
2p
− ρ̂

2(k−1−p)
+

[p! (k − p − 1)!]2

[
1

p + 1
−

1
k − p

]
.

(90)

Clearly, the result is antisymmetric with respect to the ampli-
tudes of the radial modes. If the two radial amplitudes are
swapped, the frequency-shift ∆ωc changes sign. In particular,
the shift must vanish for equal radial amplitudes. This finding is
in line with [14, 50], where the common root (ρ̂2

+−ρ̂
2
−) is factored

out in the specific expressions for the first few C2n. We now
understand this as a general feature of cylindrically-symmetric
electrostatic imperfections.

Our interest in swapping the radial amplitudes stems from
an experimental motivation. Probing the degree of conversion
of an initial ρ̂− into ρ̂+ is the standard method for measuring the
sideband cyclotron-frequency at online traps [51]. The ampli-
tude and the duration of the coupling pulse are typically chosen
such that there is a full conversion when the frequency of the
pulse coincides with the sideband cyclotron-frequency.

Recently, individual frequency-measurements on the two
radial modes have been combined [52] to calculate the sideband
cyclotron-frequency via Equation (11). Essentially, the phase-
sensitive measurement of ω̃± is performed after having excited
the amplitude of the corresponding radial mode to ρ̂± = ρ̂set,
whereas the amplitude of the other radial mode is ρ̂∓ = ρ̂cool
during the evolution time of the phase. Assuming equal axial
amplitudes for both measurements, the shifts from Equation (87)
are equal in magnitude but opposite in sign:

∆ω+(ρ̂set, ρ̂cool, ẑ) = −∆ω−(ρ̂cool, ρ̂set, ẑ) . (91)

The order in both arguments is (ρ̂+, ρ̂−, ẑ). Thus, these two
shifts cancel in the sideband identity (11) for this particular
measurement scheme. Equation (91) also confirms that the
shift ∆ωc changes sign when the amplitudes of the radial modes
are swapped.

6. Frequency-shifts caused by magnetic imperfections

With the additional magnetic field, the classical Newtonian
equations of motion (2), shown in Equation (3) for the ideal
Penning trap, becomeẍ

ÿ
z̈

 = ωc

 ẏ
−ẋ
0

 +
ωc

B0


ẏB(z)

η − żB(y)
η

żB(x)
η − ẋB(z)

η

ẋB(y)
η − ẏB(x)

η

 +
ω2

z

2

 x
y
−2z

 , (92)

12



where the radial magnetic field from Equation (24) is translated
into Cartesian coordinates as

(
B(x)
η

B(y)
η

)
=

B(ρ)
η (ρ, z)
ρ

(
x
y

)
= Bη

⌊
η+1

2

⌋∑
k=1

ãη(k) zη−2k+1ρ2k−2
(
x
y

)
(93)

just like the radial electric field in Equation (69).
Like for electrostatic imperfections, we will examine the ax-

ial mode and the radial modes separately. Because the magnetic
field couples to velocities, the additional factor of ω̃i that results
from taking the time-derivative of the zeroth-order trajectory
makes the treatment more cumbersome, but the mechanism for
producing frequency-shifting terms stays the same as for electro-
static imperfections. As we will not encounter new phenomena,
we will remain brief about the basics.

6.1. Axial mode

By inserting the radial magnetic field from Equation (93)
into the third component of Equation (92), the axial equation of
motion becomes

z̈ + ω2
z z − ωc

Bη
B0


⌊
η+1

2

⌋∑
k=1

ãη(k) zη−2k+1ρ2k−2

 (ẋy − ẏx) = 0 . (94)

As usual, we will plug in the zeroth-order solutions from
Equations (36) and (43), while still allowing for a frequency-
shift. We start out by defining and evaluating the abbreviation

ξ̃(t) = ˙̃x(t)ỹ(t) − ˙̃y(t)x̃(t) (95)

= ρ̂2
+ω̃+ + ρ̂2

−ω̃− + ρ̂+ρ̂−(ω̃+ + ω̃−) cos(χ̃+ − χ̃−) (96)

for the second term in brackets in Equation (94). It contains
a constant component and an oscillatory term at the difference
frequency ω̃b = ω̃+ − ω̃− of the two radial modes, but resonant
terms at the axial frequency ω̃z naturally result from the axial
motion. Expressed in our notation, the mechanism reads〈

z̃η−2k+1ρ̃2k−2ξ̃
〉
ω̃z

=
〈
z̃η−2k+1

〉
ω̃z

〈
ρ̃2k−2ξ̃

〉
0
. (97)

According to Equations (26) and (28), the exponent η − 2k + 1
has to be odd for z̃η−2k+1 to have a term at the fundamental
frequency ω̃z. Hence, η has to be even. We incorporate this
parity by letting η = 2n. The resonant terms which arise from
Equation (94) are then given by

γzz̃ = −
ωc

ω2
z

B2n

B0

n∑
k=1

ã2n(k)
〈
z̃2(n−k)+1

〉
ω̃z

〈
ρ̃2(k−1)ξ̃

〉
0
. (98)

These terms are to be absorbed in the effective zeroth-order
equation of motion (37). The contribution by the axial oscillation
is read off from Equation (30), and the coefficient ã2n(k) is
defined in Equation (25). The non-oscillatory contribution of
the radial modes results from two terms summarized as〈

ρ̃2(k−1)ξ̃
〉

0
=

〈
ρ̃2(k−1)

〉
0

〈
ξ̃
〉

0
+

〈〈
ρ̃2(k−1)

〉
ω̃b

〈
ξ̃
〉
ω̃b

〉
0
. (99)

Clearly, ρ̃2(k−1) and ξ̃ possess a constant component. However,
mixing the oscillatory contributions at ω̃b yields a constant com-
ponent, too. With Equations (59) and (96), we have

〈
ρ̃2(k−1)

〉
0

〈
ξ̃
〉

0
= ω̃+ρ̂

2
+


k−1∑
p=0

[(
k − 1

p

)]2

ρ̂
2p
+ ρ̂

2(k−1−p)
−


+ ω̃−ρ̂

2
−


k−1∑
p=0

[(
k − 1

p

)]2

ρ̂
2p
− ρ̂

2(k−1−p)
+


(100)

for the first term. We have used the freedom in the choice of the
two radial amplitudes in Equation (59) such that the two sums
in Equation (100) have the same structure for both amplitudes.
We will do the same with the choices in Equation (64) and we
obtain

〈〈
ρ̃2(k−1)

〉
ω̃b

〈
ξ̃
〉
ω̃b

〉
0

= ω̃+ρ̂
2
+


k−1∑
p=0

(
k − 1

p

)(
k − 1
p + 1

)
ρ̂

2p
+ ρ̂

2(k−1−p)
−


+ ω̃−ρ̂

2
−


k−1∑
p=0

(
k − 1

p

)(
k − 1
p + 1

)
ρ̂

2p
− ρ̂

2(k−1−p)
+

 (101)

for the second term in Equation (99). Equations (100) and (101)
share one common binomial coefficient. The other two are
summed with the identity (85) in order to give

〈
ρ̃2(k−1)ξ̃

〉
0

= ω̃+ρ̂
2
+


k−1∑
p=0

(
k − 1

p

)(
k

p + 1

)
ρ̂

2p
+ ρ̂

2(k−1−p)
−


+ ω̃−ρ̂

2
−


k−1∑
p=0

(
k − 1

p

)(
k

p + 1

)
ρ̂

2p
− ρ̂

2(k−1−p)
+

 . (102)

Finally, the two sums with a prefactor of ω̃+ and ω̃− are com-
bined by transforming the summation variable as p → p − 1
in

ρ̂2
+

k−1∑
p=0

(
k − 1

p

)(
k

p + 1

)
ρ̂

2p
+ ρ̂

2(k−1−p)
− =

k∑
p=0

(
k − 1
p − 1

)(
k
p

)
ρ̂

2p
+ ρ̂

2(k−p)
−

(103)

and as p→ k − p − 1 in

ρ̂2
−

k−1∑
p=0

(
k − 1

p

)(
k

p + 1

)
ρ̂

2p
− ρ̂

2(k−1−p)
+ =

k∑
p=0

(
k − 1

p

)(
k
p

)
ρ̂

2p
+ ρ̂

2(k−p)
− ,

(104)

which results in the same exponent 2p for ρ̂+, and 2(k − p) for
ρ̂− in both sums. Note that we have matched the limits of the
two sums by including vanishing contributions at the lower and
the upper limit, respectively. The non-oscillatory contribution
from the radial modes is then found as

〈
ρ̃2(k−1)ξ̃

〉
0

=

k∑
p=0

(
k
p

) [
ω̃+

(
k − 1
p − 1

)
+ ω̃−

(
k − 1

p

)]
ρ̂

2p
+ ρ̂

2(k−p)
− .

(105)
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All the contributions to the parameter γz from Equation (98)
have now been calculated, but before relating γz to the first-
order shift of the axial frequency via Equation (39), we note that
Equation (105) still contains the perturbed radial frequencies ω̃±.
Since the difference between ω̃± and the radial frequencies ω± in
the ideal trap is at least of first order in a perturbation parameter
(not necessarily B2n alone), and γz is of first order in B2n, we
can replace ω̃± with the unperturbed frequencies ω± without
incurring an error of first order in the frequency-shift.

The fact that the first-order frequency-shift is by definition
of first order in a perturbation parameter also has a welcome
practical consequence. For calculating first-order frequency
shifts, it does not matter whether the perturbed and presumably
measured frequency ω̃i or the frequency ωi that the particle
would have in the limit of zero imperfections is used. The
overall difference in the frequency-shift is of second order, which
includes cross-terms between different perturbation parameters.
For our case of cylindrically-symmetric imperfections, the limit
of no imperfections is attained for vanishing amplitudes as far as
quantum mechanics permits, but the effect of other imperfections
may be harder to measure and to correct for. In total, the “true”
frequency ωi the particle would have in the fully classical ideal
Penning trap may remain unknown until corrections are applied.

All things considered, the first-order shift to the axial fre-
quency is given by

∆ωz

ωz
= −

B2n

B0

ωc

ω+ω−

(2n)!
22n+1

n∑
k=1

(−1)k k
[k!(n − k)!]2

ẑ2(n−k)

n − k + 1

·

k∑
p=0

(
k
p

) [
ω+

(
k − 1
p − 1

)
+ ω−

(
k − 1

p

)]
ρ̂

2p
+ ρ̂

2(k−p)
− ,

(106)

where we have used ω2
z = 2ω+ω− from Equation (12) in order to

write the right-hand side with only the frequencies of the radial
modes. We refrain from expressing the binomial coefficients
explicitly with factorials because we would have to deal with two
exceptions. The term with ω+ does not contribute for p = 0; the
term with ω− vanishes for p = k. The definition of the binomial
coefficient in Equation (27) has these exceptions covered more
conveniently than splitting the sum or introducing Kronecker
deltas.

Since a typical experiment has |ω+| � |ω−|, one might be
inclined to neglect the term with ω−, but some care has to be
taken to avoid losing a degree of freedom. As we have seen, the
term with ω− is the only contribution for p = 0. Moreover, the
scaling of the two binomial coefficients is such that the term with
ω− is boosted compared to the other term for the combination
of small p and large k, and hence large n. Since we cannot give
an approximation that is valid for all n, we stick with the full
expression, leaving it to the reader to neglect certain terms after
having evaluated the formula for a specific n and a set of radial
frequencies.

Unlike the axial-frequency shift caused by electrostatic im-
perfections, the shift described by Equation (106) is not sym-
metric with respect to the amplitudes of the two radial modes.
Technically, this imbalance is a consequence of Equation (96),
where the ρ̂2

± enter with their respective frequency ω̃±. On more

physical grounds, the force caused by the additional magnetic
field depends on velocities. For the same radial amplitudes, the
velocity of the modified cyclotron motion is larger than the one
of the magnetron motion by a factor of ω+/ω−.

The axial-frequency shift caused by B2 is often estimated
by assigning a magnetic moment to the radial eigenmotions as
the orbiting charge can be considered a circular current. The
shift then results from the coupling of the averaged magnetic
moment of the radial motions to the axial magnetic field. This
intuitive model works fine for B2, but it obscures the more
general mechanism. It is the radial magnetic field that couples
the radial motion to the axial mode. However, the axial and the
radial magnetic field are related since they originate from the
same scalar potential defined in Equation (20).

Unfortunately, a direct crosscheck of our result in Equa-
tion (106) with the equally general Equation (3.73) in [14] is
of no avail because the latter must be dismissed on a simple
dimensional argument.

6.2. Radial modes

The radial equations of motion are the first two components
in Equation (92). Unlike for the axial mode, which contains only
the radial components of the additional magnetic field, the axial
component shows up here, too. We will first examine which of
the two components leads to natural coherence. Recalling the
radial magnetic field given in Equation (93), we note that the
terms from the axial mode are of the kind

żzη−2k+1 =
1

η − 2k + 2
d
dt

zη−2k+2 , (107)

where we have used the time-derivative in the last step. By
inserting the zeroth-order solution z̃(t), we will get a sum of
single-frequency oscillatory terms. The discrete frequencies in
the frequency-spectrum of z̃η−2k+2 are not changed by taking the
time-derivative; only the weights are affected. Most notably, a
non-oscillatory component is removed by the time-derivative.
Therefore, there is no constant term in ˙̃zz̃η−2k+1. Resonant terms
at the radial frequencies naturally arise from the radial modes,
but the initial oscillatory terms at the right frequency in B(x)

η

and B(y)
η are rendered off-resonant through mixing with the axial

frequency or its higher harmonics. Consequently, the radial
components of the additional magnetic field do not give rise to a
first-order frequency-shift and they are ignored for the remainder
of the calculation. The radial equations of motion then are
effectively simplified to(

ẍ
ÿ

)
= ωc

(
ẏ
−ẋ

) 1 +
Bη
B0

bη/2c∑
k=0

aη(k) zη−2kρ2k

 +
ω2

z

2

(
x
y

)
, (108)

where we have expressed the additional axial magnetic field
according to Equation (23). We perform the frequency-analysis
as before by plugging in the zeroth-order solutions from Equa-
tions (36) and (43).

The mechanism for producing resonant terms is completely
analogous to the treatment of the radial modes in Equation (77)

14



for electrostatic imperfections and it reads〈
z̃η−2kρ̃2k ˙̃y

〉
ω̃±

=
〈
z̃η−2k

〉
0

〈
ρ̃2k ˙̃y

〉
ω̃±

(109)

in our notation. Everything else carries over from the first treat-
ment of the radial modes in Subsection 5.2, too. There is a
constant term in z̃η−2k only for η − 2k even, and hence we have
to choose η even. With the definition η = 2n, the resonant terms
in the x-component of the radial equations of motion are written
as

β± ˙̃y± =
B2n

B0

n∑
k=0

a2n(k)
〈
z̃2(n−k)

〉
0

〈
ρ̃2k ˙̃y

〉
ω̃±

. (110)

Our goal is to end up with the effective equation of motion (45).
The constant component from the axial oscillation is calculated
with Equation (29); the coefficient a2n(k) is defined in Equa-
tion (19). The velocity ˙̃y is found by taking the time-derivative
of Equation (43) and just like the coordinate ỹ(t) it contains a
contribution ˙̃y±(t) at the frequency ω̃±. Thus, ˙̃y±(t) stays resonant
right away if it is multiplied with constant terms only, and ˙̃y±(t)
becomes resonant at the other radial frequency ω̃∓ if it is mixed
with a term at the frequency ω̃b = ω̃+ − ω̃−. Naturally, such
a term results from powers of the radial displacement squared.
Thus, oscillatory terms at the radial frequencies are produced by
the two mechanism formally expressed as〈

ρ̃2k ˙̃y
〉
ω̃±

=
〈
ρ̃2k

〉
0

˙̃y± +

〈〈
ρ̃2k

〉
ω̃b

˙̃y∓
〉
ω̃±

. (111)

The first term on the right-hand side is calculated with the help
of Equation (59). Combining Equations (64) and (78) yields

〈〈
ρ̃2k

〉
ω̃b

˙̃y∓
〉
ω̃±

= ˙̃y±
ω̃∓
ω̃±

k∑
p=0

(
k
p

)(
k

p + 1

)
ρ̂

2p
± ρ̂

2(k−p)
∓ (112)

for the second term. We have chosen the combination ρ̂± in
Equation (64) such that the factor ρ̂±/ρ̂∓ compensates for the
factor ρ̂∓/ρ̂± that results from producing ˙̃y± out of ˙̃y∓ through
mixing. Recall that ˙̃y∓ comes with ω̃∓ρ̂∓, whereas an additional
factor of ω̃±ρ̂± is necessary to create ˙̃y± after mixing with the
oscillatory component at ω̃b. In total, the resonant contribution
from the radial modes is

〈
ρ̃2k ˙̃y

〉
ω̃±

= ˙̃y±
k∑

p=0

(
k
p

) [(
k
p

)
+
ω̃∓
ω̃±

(
k

p + 1

)]
ρ̂

2p
± ρ̂

2(k−p)
∓ . (113)

All terms considered, the parameter β± in Equation (110) is
determined as

β± =
B2n

B0

(2n)!
22n

n∑
k=0

(−1)k ẑ2(n−k)

[k!(n − k)!]2

·

k∑
p=0

(
k
p

) [(
k
p

)
+
ω̃∓
ω̃±

(
k

p + 1

)]
ρ̂

2p
± ρ̂

2(k−p)
∓

(114)

and related to the first-order frequency-shift

∆ω± = ±
B2n

B0

ωc

ω+ − ω−

(2n)!
22n

n∑
k=0

(−1)k ẑ2(n−k)

[k!(n − k)!]2

·

k∑
p=0

(
k
p

) [
ω±

(
k
p

)
+ ω∓

(
k

p + 1

)]
ρ̂

2p
± ρ̂

2(k−p)
∓

(115)

via Equation (47). Along the lines described for γz and the shifts
caused by B2n to the axial frequency in Subsection 6.1, we have
replaced the perturbed frequencies ω̃± in β± with ω±. The error
incurred by this substitution is at least of second order in the
frequency-shift and hence does not affect the first-order result.

By sending the summation variable p→ k − p, we obtain

∆ω± = ±
B2n

B0

ωc

ω+ − ω−

(2n)!
22n

n∑
k=0

(−1)k ẑ2(n−k)

[k!(n − k)!]2

·

k∑
p=0

(
k
p

) [
ω±

(
k
p

)
+ ω∓

(
k

p − 1

)]
ρ̂

2p
∓ ρ̂

2(k−p)
±

(116)

and we confirm that the frequency-shift is not symmetric with
respect to the two amplitudes of the radial modes. Given the
mechanism of producing an oscillatory term at ω̃± by mixing
an oscillatory term at ω̃∓ with the symmetric contribution at ω̃b
from powers of radial ion displacement squared, the imbalance
comes as no surprise.

Note that the binomial coefficient with the factor of ω∓ does
not contribute for p = k in Equation (115), and for p = 0 in
Equation (116). Because of this exception, we will not use
the explicit expression from Equation (27) for the binomial
coefficient. The exception should also be taken into account
when neglecting terms with a factor of ω+ against those with
a factor of ω−. Additionally, the scaling of the two relevant
binomial coefficients is such that the factor of ω+/ω− can be
outweighed for large k, and hence large n. Just like for the
axial-frequency shift caused by magnetic imperfections, there
is no generally valid approximation for all n here, even for
|ω+| � |ω−|.

A direct comparison of our result in Equation (115) with
Equation (3.74) in [14] is inconclusive because the latter must
again be ruled out on a simple dimensional argument.

The cyclotron sideband. By adding Equations (115) and (116)
for the two different radial modes, the shift to the sideband
cyclotron-frequency is expressed as

∆ωc =
B2n

B0

ωc

ω+ − ω−

(2n)!
22n

n∑
k=0

(−1)k ẑ2(n−k)

[k!(n − k)!]2

k∑
p=0

(
k
p

)

·

{
ω+

[(
k
p

)
−

(
k

p − 1

)]
+ ω−

[(
k

p + 1

)
−

(
k
p

)]}
ρ̂

2p
+ ρ̂

2(k−p)
− .

(117)

7. Explicit expressions for frequency-shifts

Having derived the general formulas in Sections 5 and 6,
we generate explicit expression for the most frequently-used
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lowest-order imperfections, thereby also demonstrating that we
have the most comprehensive specific treatment [13] covered.
For the three lowest-order electrostatic imperfections, we evalu-
ate the first-order frequency-shifts as given by Equations (76),
(87) and (89) for the axial frequency ωz, the two radial frequen-
cies ω± and the sideband cyclotron-frequency, respectively. The
shifts caused by magnetic imperfections to the aforementioned
frequencies are given in Equations (106), (115) and (117), and
we evaluate these formulas for the two lowest-order magnetic
imperfections. The frequency-shift is defined as the difference
between the perturbed and the unperturbed frequency. The axial
frequency in the ideal Penning trap is given in Equation (4); the
two frequencies ω± of the radial modes are defined in Equa-
tion (6). The quadrupole potential of the ideal trap is given in
Equation (1), and the ideal magnetic field is ~B0 = B0~ez.

To first-order in the frequency-shift, the parameters ρ̂+, ρ̂−
and ẑ can be identified as the amplitudes of the modified cy-
clotron, magnetron and axial motion, respectively. We stress
that the first-order frequency-shifts caused by multiple imper-
fections add up linearly. Moreover, the imperfections associated
with η odd do not give rise to a first-order frequency-shift.

For reference and better comparison with other definitions
of the perturbation parameters Cη and Bη, we also show the
corresponding higher-order electrostatic potential (according to
Equations (14) and (15)) and magnetic field (calculated from
Equations (23) and (24)), respectively.

7.1. Electrostatic imperfections

Φ4 = C4
V0

2d4

(
z4 − 3z2ρ2 +

3
8
ρ4

)
(118)

∆ωz

ωz
=

C4

C2

3
4d2

(
ẑ2 − 2ρ̂2

+ − 2ρ̂2
−

)
(119)

∆ω± = ∓
C4

C2

3
2d2

ω+ω−
ω+ − ω−

(
2ẑ2 − ρ̂2

± − 2ρ̂2
∓

)
(120)

∆ωc = −
C4

C2

3
2d2

ω+ω−
ω+ − ω−

(
ρ̂2

+ − ρ̂
2
−

)
(121)

Φ6 = C6
V0

2d6

(
z6 −

15
2

z4ρ2 +
45
8

z2ρ4 −
5

16
ρ6

)
(122)

∆ωz

ωz
=

C6

C2

15
16d4

(
ẑ4 + 3ρ̂4

+ + 3ρ̂4
−

− 6ρ̂2
+ẑ2 − 6ρ̂2

−ẑ2 + 12ρ̂2
+ρ̂

2
−

) (123)

∆ω± = ∓
C6

C2

15
8d4

ω+ω−
ω+ − ω−

(
3ẑ4 + ρ̂4

± + 3ρ̂4
∓ − 6ρ̂2

±ẑ2

− 12ρ̂2
∓ẑ2 + 6ρ̂2

+ρ̂
2
−

) (124)

∆ωc =
C6

C2

15
4d4

ω+ω−
ω+ − ω−

(
ρ̂2

+ − ρ̂
2
−

) (
−3ẑ2 + ρ̂2

+ + ρ̂2
−

)
(125)

Φ8 = C8
V0

2d8

(
z8 − 14z6ρ2 +

105
4

z4ρ4 −
35
4

z2ρ6 +
35

128
ρ8

)
(126)

∆ωz

ωz
=

C8

C2

35
32d6

(
ẑ6 − 4ρ̂6

+ − 4ρ̂6
− + 18ρ̂4

+ẑ2 + 18ρ̂4
−ẑ2

− 36ρ̂4
+ρ̂

2
− − 36ρ̂2

+ρ̂
4
− + 72ρ̂2

+ρ̂
2
−ẑ2 − 12ρ̂2

+ẑ4 − 12ρ̂2
−ẑ4

)
(127)

∆ω± = ∓
C8

C2

35
16d6

ω+ω−
ω+ − ω−

(
4ẑ6 − ρ̂6

± − 4ρ̂6
∓ + 12ρ̂4

±ẑ2 + 36ρ̂4
∓ẑ2

− 12ρ̂4
±ρ̂

2
∓ − 18ρ̂2

±ρ̂
4
∓ − 18ρ̂2

±ẑ4 − 36ρ̂2
∓ẑ4 + 72ρ̂2

+ρ̂
2
−ẑ2

)
(128)

∆ωc = −
C8

C2

105
16d6

ω+ω−
ω+ − ω−

(
ρ̂2

+ − ρ̂
2
−

) (
6ẑ4 + ρ̂4

+ + ρ̂4
−

− 8ρ̂2
+ẑ2 − 8ρ̂2

−ẑ2 + 3ρ̂2
+ρ̂

2
−

) (129)

7.2. Magnetostatic imperfections

~B2 = B2

[(
z2 −

1
2
ρ2

)
~ez + (−zρ)~eρ

]
(130)

∆ωz

ωz
=

B2

4B0

ω+ + ω−
ω+ω−

(
ρ̂2
−ω− + ρ̂2

+ω+

)
(131)

∆ω+

ω+

=
B2

2B0

ω+ + ω−
ω+ − ω−

[
ẑ2 − ρ̂2

+ − ρ̂
2
−

(
1 +

ω−
ω+

)]
(132)

∆ω−
ω−

= −
B2

2B0

ω+ + ω−
ω+ − ω−

[
ẑ2 − ρ̂2

+

(
ω+

ω−
+ 1

)
− ρ̂2

−

]
(133)

∆ωc

ωc
=

B2

2B0

[
ẑ2 − ρ̂2

−

ω+

ω+ − ω−
+ ρ̂2

+

ω−
ω+ − ω−

]
(134)

~B4 = B4

[(
z4 − 3z2ρ2 +

3
8
ρ4

)
~ez +

(
−2z3ρ +

3
2

zρ3
)
~eρ

]
(135)

∆ωz

ωz
=

3B4

8B0

ω+ + ω−
ω+ω−

[
ω−

(
−ρ̂4
− + ρ̂2

−ẑ2 − 2ρ̂2
+ρ̂

2
−

)
+ ω+

(
−ρ̂4

+ + ρ̂2
+ẑ2 − 2ρ̂2

+ρ̂
2
−

)] (136)

∆ω+

ω+

=
3B4

8B0

ω+ + ω−
ω+ − ω−

[
ẑ4 + ρ̂4

+ + ρ̂4
−

(
1 + 2

ω−
ω+

)
− 4ρ̂2

+ẑ2

− 4ρ̂2
−ẑ2

(
1 +

ω−
ω+

)
+ 4ρ̂2

+ρ̂
2
−

(
1 +

ω−
2ω+

)]
(137)

∆ω−
ω−

= −
3B4

8B0

ω+ + ω−
ω+ − ω−

[
ρ̂4

+

(
2
ω+

ω−
+ 1

)
+ 2ρ̂2

+ρ̂
2
−

(
ω+

ω−
+ 2

)
− 4ρ̂2

+ẑ2
(
ω+

ω−
+ 1

)
+ ẑ4 + ρ̂4

− − 4ρ̂2
−ẑ2

]
(138)

∆ωc

ωc
=

3B4

8B0

[
ẑ4 + 2ρ̂2

+ρ̂
2
−

+
ωc

(
−ρ̂4

+ + ρ̂4
−

)
+ 4ẑ2

(
ρ̂2

+ω− − ρ̂
2
−ω+

)
ω+ − ω−


(139)
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8. Conclusion

By identifying the mechanism for producing terms that are in
phase with the motions at the fundamental eigenfrequencies, we
have calculated the first-order frequency-shifts caused by static
cylindrically-symmetric electric and magnetic imperfections of
a Penning trap consistently for all perturbation parameters Cη

and Bη, culminating in general expressions for the shifts to
all three eigenfrequencies. The easy evaluation of the fully
analytic expression is enabled by a general parametrization of the
imperfections in cylindrical instead of spherical coordinates. The
explicit link between rηPη(cos(θ)) and cylindrical coordinates
has often been missed by Penning-trap literature, performing the
transformation of coordinates separately for each η.

Acknowledgments

We thank Sven Sturm for helpful comments. This work
was funded by the Max-Planck-Gesellschaft and the ERC Grant
Precision Measurements of Fundamental Constants (MEFUCO).
T. E. was supported by a fellowship of the Alexander von Hum-
boldt foundation. S. S. acknowledges support by the Heidelberg
Graduate School of Fundamental Physics (HGSFP). J. K. ac-
knowledges support by the HGSFP and by the International Max
Planck Research School for Precision Tests of Fundamental
Symmetries (IMPRS-PTFS).

References

[1] K. Blaum, Yu. N. Novikov, G. Werth, Penning traps as a versatile tool for
precise experiments in fundamental physics, Contemporary Physics 51
(2010) 149–175. URL: http://www.tandfonline.com/doi/abs/10.
1080/00107510903387652. doi:10.1080/00107510903387652.

[2] K. Blaum, High-accuracy mass spectrometry with stored ions,
Physics Reports 425 (2006) 1–78. URL: http://www.sciencedirect.
com/science/article/pii/S0370157305004643. doi:10.1016/j.
physrep.2005.10.011.

[3] H. Dehmelt, Continuous Stern–Gerlach effect: Principle and idealized
apparatus, Proceedings of the National Academy of Sciences 83 (1986)
2291–2294.

[4] F. L. Moore, L. S. Brown, D. L. Farnham, S. Jeon, P. B. Schwinberg, R. S.
Van Dyck, Jr., Cyclotron resonance with 10−11 resolution: Anharmonic
detection and beating a coherent drive with the noise, Physical Review
A 46 (1992) 2653–2667. URL: http://link.aps.org/doi/10.1103/
PhysRevA.46.2653. doi:10.1103/PhysRevA.46.2653.

[5] L. S. Brown, G. Gabrielse, Geonium theory: Physics of a single elec-
tron or ion in a Penning trap, Reviews of Modern Physics 58 (1986)
233–311. URL: http://link.aps.org/doi/10.1103/RevModPhys.
58.233. doi:10.1103/RevModPhys.58.233.

[6] G. Bollen, R. B. Moore, G. Savard, H. Stolzenberg, The accuracy of
heavy-ion mass measurements using time of flight-ion cyclotron resonance
in a Penning trap, Journal of Applied Physics 68 (1990) 4355–4374. URL:
http://dx.doi.org/10.1063/1.346185. doi:10.1063/1.346185.

[7] Ch. Gerz, D. Wilsdorf, G. Werth, A high precision Penning trap mass
spectrometer, Nuclear Instruments and Methods in Physics Research
Section B: Beam Interactions with Materials and Atoms 47 (1990) 453–
461. URL: http://dx.doi.org/10.1016/0168-583X(90)90626-6.
doi:10.1016/0168-583X(90)90626-6.

[8] D. W. Mitchell, Theory of trapped ion motion in the non-quadrupolar
electrostatic potential of a cubic ion cyclotron resonance cell, Inter-
national Journal of Mass Spectrometry and Ion Processes 142 (1995)
1–22. URL: http://www.sciencedirect.com/science/article/
pii/016811769404090T. doi:10.1016/0168-1176(94)04090-T.

[9] D. W. Mitchell, A. L. Rockwood, R. D. Smith, Frequency
shifts and modulation effects due to solenoidal magnetic field in-
homogeneities in ion cyclotron mass spectrometry, International
Journal of Mass Spectrometry and Ion Processes 141 (1995) 101–
116. URL: http://www.sciencedirect.com/science/article/
pii/016811769404106H. doi:10.1016/0168-1176(94)04106-H.

[10] M. Kretzschmar, A theory of anharmonic perturbations in a Penning
trap, Zeitschrift für Naturforschung. Teil A: Astrophysik, Physik und
physikalische Chemie 45a (1990) 965–978.

[11] M. Kretzschmar, Single particle motion in a Penning trap: description
in the classical canonical formalism, Physica Scripta 46 (1992) 544.
URL: http://stacks.iop.org/1402-4896/46/i=6/a=011. doi:10.
1088/0031-8949/46/6/011.

[12] J. K. Thompson, Two-ion control and polarization forces for precise mass
comparisons, Thesis (Ph. D.), Massachusetts Institute of Technology, Dept.
of Physics, 2003. URL: http://hdl.handle.net/1721.1/17011.

[13] S. Rainville, A Two-Ion Balance for High Precision Mass Spectrometry,
Thesis (Ph. D.), Massachusetts Institute of Technology, Dept. of Physics,
2003. URL: http://hdl.handle.net/1721.1/16934.

[14] F. G. Major, V. N. Gheorghe, G. Werth, Charged Particle Traps, Springer,
Berlin Heidelberg, 2005. URL: http://link.springer.com/book/
10.1007/b137836. doi:10.1007/b137836.

[15] G. Gabrielse, Relaxation calculation of the electrostatic properties of
compensated Penning traps with hyperbolic electrodes, Physical Review
A 27 (1983) 2277–2290. URL: http://link.aps.org/doi/10.1103/
PhysRevA.27.2277. doi:10.1103/PhysRevA.27.2277.

[16] G. Gabrielse, F. C. Mackintosh, Cylindrical Penning traps
with orthogonalized anharmonicity compensation, International
Journal of Mass Spectrometry and Ion Processes 57 (1984) 1–
17. URL: http://dx.doi.org/10.1016/0168-1176(84)85061-2.
doi:10.1016/0168-1176(84)85061-2.

[17] G. Gabrielse, L. Haarsma, S. L. Rolston, Open-endcap Pen-
ning traps for high precision experiments, International Jour-
nal of Mass Spectrometry and Ion Processes 88 (1989) 319–
332. URL: http://www.sciencedirect.com/science/article/
pii/016811768985027X. doi:10.1016/0168-1176(89)85027-X.

[18] G. Gräff, E. Klempt, Messung der Zyklotronfrequenz im Vierpolkäfig,
Zeitschrift für Naturforschung 22a (1967) 1960–1962.

[19] A. A. Sokolov, Yu. G. Pavlenko, Induced and spontaneous emission in
crossed fields, Optics and Spectroscopy 12 (1967) 3–8.

[20] M. Kretzschmar, The Ramsey method in high-precision mass spectrometry
with Penning traps: Theoretical foundations, International Journal of Mass
Spectrometry 264 (2007) 122–145. URL: http://www.sciencedirect.
com/science/article/pii/S1387380607001649. doi:10.1016/j.
ijms.2007.04.002.

[21] M. Kretzschmar, On the phase dependence of the interconver-
sion of the motional modes in a Penning trap by quadrupolar ex-
citation, International Journal of Mass Spectrometry 309 (2012)
30–38. URL: http://www.sciencedirect.com/science/article/
pii/S1387380611003630. doi:10.1016/j.ijms.2011.08.022.

[22] D. J. Wineland, R. E. Drullinger, F. L. Walls, Radiation-pressure
cooling of bound resonant absorbers, Physical Review Letters
40 (1978) 1639–1642. URL: http://link.aps.org/doi/10.1103/
PhysRevLett.40.1639. doi:10.1103/PhysRevLett.40.1639.

[23] G. Savard, St. Becker, G. Bollen, H.-J. Kluge, R. B. Moore, Th. Otto,
L. Schweikhard, H. Stolzenberg, U. Wiess, A new cooling technique
for heavy ions in a Penning trap, Physics Letters A 158 (1991) 247–
252. URL: http://www.sciencedirect.com/science/article/
pii/0375960191910082. doi:10.1016/0375-9601(91)91008-2.

[24] H. G. Dehmelt, F. L. Walls, “Bolometric” technique for the rf spectroscopy
of stored ions, Physical Review Letters 21 (1968) 127–131. URL: http://
link.aps.org/doi/10.1103/PhysRevLett.21.127. doi:10.1103/
PhysRevLett.21.127.

[25] H. G. Dehmelt, Entropy reduction by motional sideband excitation, Na-
ture 262 (1976) 777. URL: http://dx.doi.org/10.1038/262777a0.
doi:10.1038/262777a0.

[26] A. Mooser, H. Kracke, K. Blaum, S. A. Bräuninger, K. Franke, C. Lei-
teritz, W. Quint, C. C. Rodegheri, S. Ulmer, J. Walz, Resolution of
single spin flips of a single proton, Physical Review Letters 110 (2013)
140405. URL: http://link.aps.org/doi/10.1103/PhysRevLett.
110.140405. doi:10.1103/PhysRevLett.110.140405.

17

http://www.tandfonline.com/doi/abs/10.1080/00107510903387652
http://www.tandfonline.com/doi/abs/10.1080/00107510903387652
http://dx.doi.org/10.1080/00107510903387652
http://www.sciencedirect.com/science/article/pii/S0370157305004643
http://www.sciencedirect.com/science/article/pii/S0370157305004643
http://dx.doi.org/10.1016/j.physrep.2005.10.011
http://dx.doi.org/10.1016/j.physrep.2005.10.011
http://link.aps.org/doi/10.1103/PhysRevA.46.2653
http://link.aps.org/doi/10.1103/PhysRevA.46.2653
http://dx.doi.org/10.1103/PhysRevA.46.2653
http://link.aps.org/doi/10.1103/RevModPhys.58.233
http://link.aps.org/doi/10.1103/RevModPhys.58.233
http://dx.doi.org/10.1103/RevModPhys.58.233
http://dx.doi.org/10.1063/1.346185
http://dx.doi.org/10.1063/1.346185
http://dx.doi.org/10.1016/0168-583X(90)90626-6
http://dx.doi.org/10.1016/0168-583X(90)90626-6
http://www.sciencedirect.com/science/article/pii/016811769404090T
http://www.sciencedirect.com/science/article/pii/016811769404090T
http://dx.doi.org/10.1016/0168-1176(94)04090-T
http://www.sciencedirect.com/science/article/pii/016811769404106H
http://www.sciencedirect.com/science/article/pii/016811769404106H
http://dx.doi.org/10.1016/0168-1176(94)04106-H
http://stacks.iop.org/1402-4896/46/i=6/a=011
http://dx.doi.org/10.1088/0031-8949/46/6/011
http://dx.doi.org/10.1088/0031-8949/46/6/011
http://hdl.handle.net/1721.1/17011
http://hdl.handle.net/1721.1/16934
http://link.springer.com/book/10.1007/b137836
http://link.springer.com/book/10.1007/b137836
http://dx.doi.org/10.1007/b137836
http://link.aps.org/doi/10.1103/PhysRevA.27.2277
http://link.aps.org/doi/10.1103/PhysRevA.27.2277
http://dx.doi.org/10.1103/PhysRevA.27.2277
http://dx.doi.org/10.1016/0168-1176(84)85061-2
http://dx.doi.org/10.1016/0168-1176(84)85061-2
http://www.sciencedirect.com/science/article/pii/016811768985027X
http://www.sciencedirect.com/science/article/pii/016811768985027X
http://dx.doi.org/10.1016/0168-1176(89)85027-X
http://www.sciencedirect.com/science/article/pii/S1387380607001649
http://www.sciencedirect.com/science/article/pii/S1387380607001649
http://dx.doi.org/10.1016/j.ijms.2007.04.002
http://dx.doi.org/10.1016/j.ijms.2007.04.002
http://www.sciencedirect.com/science/article/pii/S1387380611003630
http://www.sciencedirect.com/science/article/pii/S1387380611003630
http://dx.doi.org/10.1016/j.ijms.2011.08.022
http://link.aps.org/doi/10.1103/PhysRevLett.40.1639
http://link.aps.org/doi/10.1103/PhysRevLett.40.1639
http://dx.doi.org/10.1103/PhysRevLett.40.1639
http://www.sciencedirect.com/science/article/pii/0375960191910082
http://www.sciencedirect.com/science/article/pii/0375960191910082
http://dx.doi.org/10.1016/0375-9601(91)91008-2
http://link.aps.org/doi/10.1103/PhysRevLett.21.127
http://link.aps.org/doi/10.1103/PhysRevLett.21.127
http://dx.doi.org/10.1103/PhysRevLett.21.127
http://dx.doi.org/10.1103/PhysRevLett.21.127
http://dx.doi.org/10.1038/262777a0
http://dx.doi.org/10.1038/262777a0
http://link.aps.org/doi/10.1103/PhysRevLett.110.140405
http://link.aps.org/doi/10.1103/PhysRevLett.110.140405
http://dx.doi.org/10.1103/PhysRevLett.110.140405


[27] J. DiSciacca, M. Marshall, K. Marable, G. Gabrielse, Resolv-
ing an individual one-proton spin flip to determine a proton spin
state, Physical Review Letters 110 (2013) 140406. URL: http:
//link.aps.org/doi/10.1103/PhysRevLett.110.140406. doi:10.
1103/PhysRevLett.110.140406.

[28] J. K. Thompson, S. Rainville, D. E. Pritchard, Cyclotron frequency shifts
arising from polarization forces, Nature 430 (2004) 58–61. URL: http://
dx.doi.org/10.1038/nature02682. doi:10.1038/nature02682.

[29] G. Gabrielse, J. Tan, Self-shielding superconducting solenoid systems,
Journal of Applied Physics 63 (1988) 5143–5148. URL: http://link.
aip.org/link/?JAP/63/5143/1. doi:10.1063/1.340416.

[30] R. S. Van Dyck, Jr., D. L. Farnham, S. L. Zafonte, P. B. Schwinberg, Ultra-
stable superconducting magnet system for a Penning trap mass spectrome-
ter, Review of Scientific Instruments 70 (1999) 1665–1671. URL: http://
link.aip.org/link/?RSI/70/1665/1. doi:10.1063/1.1149649.

[31] M. Kretzschmar, Theory of the elliptical Penning trap, Interna-
tional Journal of Mass Spectrometry 275 (2008) 21–33. URL: http://
dx.doi.org/10.1016/j.ijms.2008.05.009. doi:10.1016/j.ijms.
2008.05.009.

[32] G. Gabrielse, The true cyclotron frequency for particles and ions
in a Penning trap, International Journal of Mass Spectrometry 279
(2009) 107–112. URL: http://www.sciencedirect.com/science/
article/pii/S1387380608004247. doi:10.1016/j.ijms.2008.10.
015.

[33] L. S. Brown, G. Gabrielse, Precision spectroscopy of a charged par-
ticle in an imperfect Penning trap, Physical Review A 25 (1982)
2423–2425. URL: http://link.aps.org/doi/10.1103/PhysRevA.
25.2423. doi:10.1103/PhysRevA.25.2423.

[34] R. S. Van Dyck, Jr., F. L. Moore, D. L. Farnham, P. B. Schwinberg,
Number dependency in the compensated Penning trap, Physical Review
A 40 (1989) 6308–6313. URL: http://link.aps.org/doi/10.1103/
PhysRevA.40.6308. doi:10.1103/PhysRevA.40.6308.

[35] J. V. Porto, Series solution for the image charge fields in arbitrary cylin-
drically symmetric Penning traps, Physical Review A 64 (2001) 023403.
URL: http://link.aps.org/doi/10.1103/PhysRevA.64.023403.
doi:10.1103/PhysRevA.64.023403.

[36] S. Sturm, A. Wagner, M. Kretzschmar, W. Quint, G. Werth, K. Blaum,
g-factor measurement of hydrogenlike 28Si13+ as a challenge to QED
calculations, Physical Review A 87 (2013) 030501. URL: http://
link.aps.org/doi/10.1103/PhysRevA.87.030501. doi:10.1103/
PhysRevA.87.030501.

[37] G. Gabrielse, Detection, damping, and translating the center of the axial os-
cillation of a charged particle in a Penning trap with hyperbolic electrodes,
Physical Review A 29 (1984) 462–469. URL: http://link.aps.org/
doi/10.1103/PhysRevA.29.462. doi:10.1103/PhysRevA.29.462.

[38] R. S. Van Dyck, Jr., D. J. Wineland, P. A. Ekstrom, H. G. Dehmelt,
High mass resolution with a new variable anharmonicity Penning trap,
Applied Physics Letters 28 (1976) 446–448. URL: http://link.aip.
org/link/?APL/28/446/1. doi:10.1063/1.88793.

[39] R. S. Van Dyck, Jr., F. L. Moore, D. L. Farnham, P. B. Schwinberg, Variable
magnetic bottle for precision geonium experiments, Review of Scientific
Instruments 57 (1986) 593–597. URL: http://link.aip.org/link/
?RSI/57/593/1. doi:10.1063/1.1138875.

[40] R. S. Van Dyck, Jr., D. B. Pinegar, S. Van Liew, S. L. Zafonte,
The UW-PTMS: Systematic studies, measurement progress, and fu-
ture improvements, International Journal of Mass Spectrometry 251
(2006) 231–242. URL: http://www.sciencedirect.com/science/
article/pii/S1387380606000650. doi:10.1016/j.ijms.2006.01.
038.

[41] B. J. Mount, M. Redshaw, E. G. Myers, Precision atomic mass spectrom-
etry with applications to fundamental constants, neutrino physics, and
physical chemistry, Hyperfine Interactions 199 (2011) 327–335. URL:
http://dx.doi.org/10.1007/s10751-011-0328-2. doi:10.1007/
s10751-011-0328-2.

[42] M. Kretzschmar, Model calculation of amplitudes for FT-ICR ion detection
in a cylindrical Penning trap, Applied Physics B 107 (2012) 1007–1017.
URL: http://dx.doi.org/10.1007/s00340-012-4905-0. doi:10.
1007/s00340-012-4905-0.

[43] G. Zs. K. Horvath, J.-L. Hernandez-Pozos, K. Dholakia, J. Rink, D. M.
Segal, R. C. Thompson, Ion dynamics in perturbed quadrupole ion traps,
Physical Review A 57 (1998) 1944–1956. URL: http://link.aps.

org/doi/10.1103/PhysRevA.57.1944. doi:10.1103/PhysRevA.57.
1944.

[44] M. Lara, J. P. Salas, Dynamics of a single ion in a perturbed Penning
trap: Octupolar perturbation, Chaos: An Interdisciplinary Journal of
Nonlinear Science 14 (2004) 763–773. URL: http://link.aip.org/
link/?CHA/14/763/1. doi:10.1063/1.1775331.

[45] G. Gräff, E. Klempt, G. Werth, Method for measuring the anomalous
magnetic moment of free electrons, Zeitschrift für Physik 222 (1969)
201–207. URL: http://dx.doi.org/10.1007/BF01392119. doi:10.
1007/BF01392119.

[46] P. B. Schwinberg, R. S. Van Dyck, Jr., H. G. Dehmelt, New compar-
ison of the positron and electron g factors, Physical Review Letters
47 (1981) 1679–1682. URL: http://link.aps.org/doi/10.1103/
PhysRevLett.47.1679. doi:10.1103/PhysRevLett.47.1679.

[47] C. M. Bender, S. A. Orszag, Advanced Mathematical Methods for Sci-
entists and Engineers: Asymptotic Methods and Perturbation Theory,
McGraw-Hill, New York, 1978.

[48] K. Hübner, H. Klein, Ch. Lichtenberg, G. Marx, G. Werth, Instabilities
of ion confinement in a Penning trap, EPL (Europhysics Letters) 37
(1997) 459. URL: http://stacks.iop.org/0295-5075/37/i=7/a=
459. doi:10.1209/epl/i1997-00172-5.

[49] P. Paasche, C. Angelescu, S. Ananthamurthy, D. Biswas, T. Valenzuela,
G. Werth, Instabilities of an electron cloud in a Penning trap, The
European Physical Journal D—Atomic, Molecular, Optical and Plasma
Physics 22 (2003) 183–188. URL: http://dx.doi.org/10.1140/
epjd/e2002-00239-3. doi:10.1140/epjd/e2002-00239-3.

[50] M. Brodeur, V. L. Ryjkov, T. Brunner, S. Ettenauer, A. T. Gallant, V. V.
Simon, M. J. Smith, A. Lapierre, R. Ringle, P. Delheij, M. Good, D. Lun-
ney, J. Dilling, Verifying the accuracy of the TITAN Penning-trap mass
spectrometer, International Journal of Mass Spectrometry 310 (2012)
20–31. URL: http://www.sciencedirect.com/science/article/
pii/S1387380611004568. doi:10.1016/j.ijms.2011.11.002.

[51] M. König, G. Bollen, H.-J. Kluge, T. Otto, J. Szerypo, Quadrupole
excitation of stored ion motion at the true cyclotron frequency, Interna-
tional Journal of Mass Spectrometry and Ion Processes 142 (1995) 95–
116. URL: http://www.sciencedirect.com/science/article/
pii/016811769504146C. doi:10.1016/0168-1176(95)04146-C.

[52] S. Eliseev, K. Blaum, M. Block, C. Droese, M. Goncharov, E. Mi-
naya Ramirez, D. A. Nesterenko, Yu. N. Novikov, L. Schweikhard,
Phase-Imaging Ion-Cyclotron-Resonance measurements for short-lived
nuclides, Physical Review Letters 110 (2013) 082501. URL: http:
//link.aps.org/doi/10.1103/PhysRevLett.110.082501. doi:10.
1103/PhysRevLett.110.082501.

18

http://link.aps.org/doi/10.1103/PhysRevLett.110.140406
http://link.aps.org/doi/10.1103/PhysRevLett.110.140406
http://dx.doi.org/10.1103/PhysRevLett.110.140406
http://dx.doi.org/10.1103/PhysRevLett.110.140406
http://dx.doi.org/10.1038/nature02682
http://dx.doi.org/10.1038/nature02682
http://dx.doi.org/10.1038/nature02682
http://link.aip.org/link/?JAP/63/5143/1
http://link.aip.org/link/?JAP/63/5143/1
http://dx.doi.org/10.1063/1.340416
http://link.aip.org/link/?RSI/70/1665/1
http://link.aip.org/link/?RSI/70/1665/1
http://dx.doi.org/10.1063/1.1149649
http://dx.doi.org/10.1016/j.ijms.2008.05.009
http://dx.doi.org/10.1016/j.ijms.2008.05.009
http://dx.doi.org/10.1016/j.ijms.2008.05.009
http://dx.doi.org/10.1016/j.ijms.2008.05.009
http://www.sciencedirect.com/science/article/pii/S1387380608004247
http://www.sciencedirect.com/science/article/pii/S1387380608004247
http://dx.doi.org/10.1016/j.ijms.2008.10.015
http://dx.doi.org/10.1016/j.ijms.2008.10.015
http://link.aps.org/doi/10.1103/PhysRevA.25.2423
http://link.aps.org/doi/10.1103/PhysRevA.25.2423
http://dx.doi.org/10.1103/PhysRevA.25.2423
http://link.aps.org/doi/10.1103/PhysRevA.40.6308
http://link.aps.org/doi/10.1103/PhysRevA.40.6308
http://dx.doi.org/10.1103/PhysRevA.40.6308
http://link.aps.org/doi/10.1103/PhysRevA.64.023403
http://dx.doi.org/10.1103/PhysRevA.64.023403
http://link.aps.org/doi/10.1103/PhysRevA.87.030501
http://link.aps.org/doi/10.1103/PhysRevA.87.030501
http://dx.doi.org/10.1103/PhysRevA.87.030501
http://dx.doi.org/10.1103/PhysRevA.87.030501
http://link.aps.org/doi/10.1103/PhysRevA.29.462
http://link.aps.org/doi/10.1103/PhysRevA.29.462
http://dx.doi.org/10.1103/PhysRevA.29.462
http://link.aip.org/link/?APL/28/446/1
http://link.aip.org/link/?APL/28/446/1
http://dx.doi.org/10.1063/1.88793
http://link.aip.org/link/?RSI/57/593/1
http://link.aip.org/link/?RSI/57/593/1
http://dx.doi.org/10.1063/1.1138875
http://www.sciencedirect.com/science/article/pii/S1387380606000650
http://www.sciencedirect.com/science/article/pii/S1387380606000650
http://dx.doi.org/10.1016/j.ijms.2006.01.038
http://dx.doi.org/10.1016/j.ijms.2006.01.038
http://dx.doi.org/10.1007/s10751-011-0328-2
http://dx.doi.org/10.1007/s10751-011-0328-2
http://dx.doi.org/10.1007/s10751-011-0328-2
http://dx.doi.org/10.1007/s00340-012-4905-0
http://dx.doi.org/10.1007/s00340-012-4905-0
http://dx.doi.org/10.1007/s00340-012-4905-0
http://link.aps.org/doi/10.1103/PhysRevA.57.1944
http://link.aps.org/doi/10.1103/PhysRevA.57.1944
http://dx.doi.org/10.1103/PhysRevA.57.1944
http://dx.doi.org/10.1103/PhysRevA.57.1944
http://link.aip.org/link/?CHA/14/763/1
http://link.aip.org/link/?CHA/14/763/1
http://dx.doi.org/10.1063/1.1775331
http://dx.doi.org/10.1007/BF01392119
http://dx.doi.org/10.1007/BF01392119
http://dx.doi.org/10.1007/BF01392119
http://link.aps.org/doi/10.1103/PhysRevLett.47.1679
http://link.aps.org/doi/10.1103/PhysRevLett.47.1679
http://dx.doi.org/10.1103/PhysRevLett.47.1679
http://stacks.iop.org/0295-5075/37/i=7/a=459
http://stacks.iop.org/0295-5075/37/i=7/a=459
http://dx.doi.org/10.1209/epl/i1997-00172-5
http://dx.doi.org/10.1140/epjd/e2002-00239-3
http://dx.doi.org/10.1140/epjd/e2002-00239-3
http://dx.doi.org/10.1140/epjd/e2002-00239-3
http://www.sciencedirect.com/science/article/pii/S1387380611004568
http://www.sciencedirect.com/science/article/pii/S1387380611004568
http://dx.doi.org/10.1016/j.ijms.2011.11.002
http://www.sciencedirect.com/science/article/pii/016811769504146C
http://www.sciencedirect.com/science/article/pii/016811769504146C
http://dx.doi.org/10.1016/0168-1176(95)04146-C
http://link.aps.org/doi/10.1103/PhysRevLett.110.082501
http://link.aps.org/doi/10.1103/PhysRevLett.110.082501
http://dx.doi.org/10.1103/PhysRevLett.110.082501
http://dx.doi.org/10.1103/PhysRevLett.110.082501

	1 Introduction
	2 The ideal Penning trap
	3 Parametrizing imperfections
	3.1 Electric imperfections
	3.2 Magnetic imperfections

	4 Theoretical framework
	4.1 Powers of cosine
	4.2 Perturbation theory
	4.3 Radial ion displacement

	5 Frequency-shifts caused by electric imperfections
	5.1 Axial mode
	5.2 Radial modes

	6 Frequency-shifts caused by magnetic imperfections
	6.1 Axial mode
	6.2 Radial modes

	7 Explicit expressions for frequency-shifts
	7.1 Electrostatic imperfections
	7.2 Magnetostatic imperfections

	8 Conclusion

