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Compact binaries are the most promising source for the advanced gravitational wave
detectors, which will start operating this year. The influence of spin on the binary
evolution is an important consequence of general relativity and can be large. It is argued
that the spin supplementary condition, which is related to the observer dependence of the
center, gives rise to a gauge symmetry in the action principle of spinning point-particles.
These spinning point-particles serve as an analytic model for extended bodies. The
internal structure can be modelled by augmenting the point-particle with higher-order
multipole moments. Consequences of the recently discovered universal (equation of state
independent) relations between the multipole moments of neutron stars are discussed.
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1. Conservative Spin Effects to Fourth Post-Newtonian Order

An important source for the advanced ground-based gravitational wave detectors1–3

are inspiraling and merging binaries of compact stellar-mass objects. An analytic

description of the inspiral phase and the emitted gravitational waves is given by

the post-Newtonian (PN) approximation, which is a weak field and slow motion ap-

proximation. The description of the conservative part of the motion was completed

to 4PN order for (nonrotating) point masses recently.4,5

However, it is important to include the effects of the angular momenta of the

bodies, i.e., theirs spins, to the same order of approximation. Also this was achieved

recently. All the work that went into this can be summarized in the following table,

sorted by PN and spin order S:

1.5PN 2PN 2.5PN 3PN 3.5PN 4PN

S
H6–10 H11–15 H16–18

E19,20 E21,22 E23,24

S21
H7,8,25 H26–28 H29,30

E19,20

S1S2
H7,8 H31–33 H17,34,35

E19,20 P36

S3
H37–40

P41

S4
H39

P37,38,41

...
. . .
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Here H stands for Hamiltonians or potentials, E refers to results for equations of

motion, and P denotes partial/incomplete results. Some of the references at S21 order

are only valid for black holes but not for generic bodies like neutron stars.19,27,37,38

A variety of different formalisms was used, in particular for the more recent

works.30,32,42,43 This is important, since the calculations bear conceptual and tech-

nical difficulties, which makes independent checks mandatory. For instance, a dis-

agreement in the 4PN point-mass results4,5 still needs to be reconciled. In the case

of spinning bodies, some works were dedicated to establish connections between the

formalisms and the comparison of results.44,45 All results to 4PN with spin were

checked by independent collaborations and using independent methods, except for

the next-to-next-to-leading order S21 potential.29 (The S4 partial result37,38,41 taken

together form a complete result in agreement with Ref. 39.) It is also the only result

where a Hamiltonian form is missing, from which, e.g., the gauge invariant binding

energy can be derived.

2. Spin Gauge Symmetry in an Action Approach

It is convenient to derive the above results from an action principle. For a review

of action principles with spin, see, e.g., Refs. 42, 46. A more recent concept is the

introduction of a so called spin gauge symmetry at the level of the action.30,47 The

motivation for this symmetry arises from the observer-dependence of the center in

relativity. This is best explained by the following figure.

fast and heavy

slow and light

∆~x~v

spin

Figure: Consider a spinning spherical symmetric object,

which moves with a velocity ~v to the left. Since the observer

sees the upper hemisphere moving faster than the lower

one, the former acquires a larger relativistic mass than the

latter. The observed center of mass is therefore shifted by

∆~x away from the geometric center, see, e.g., Ref. 48. This

shift depends on ~v, that is, it is observer dependent. In the

rest-frame, the center of mass coincides with the geometric

center.

This ambiguity in the center becomes problematic once a quadrupole or higher

multipoles of the body are taken into account, since the definition of the multipoles

hinges on the center as a reference point. One way to overcome this problem is to

pick the rest-frame center of mass, which is singled out since the rest frame provides

an intrinsically defined observer. But other centers are useful, too, for instance for

Hamiltonian descriptions. Now, any choice of a reference point in a body describes

the same physical situation, i.e., it can be understood as a gauge choice. It is then

natural to expect that this gauge freedom should correspond to a (gauge) symmetry

in an action principle, as implemented in Refs.30,47. Interestingly, this action is

supported on the rest-frame center worldline and the shift is encoded through a
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time derivative of the linear momentum in the action.

The choice of center is usually encoded in a condition on the spin 4-tensor. This

is called the spin supplementary condition. A generalized version of this condition

is the generator of spin gauge transformations in the special relativistic case.47

3. Finite Size, Multipole Moments, and Universal Relations

The (effective) action principle for spinning bodies is a point-particle action with

support on a worldline. An interesting question is therefore how the finite size of

the body is taken into account. On large scales, the internal structure is encoded in

the multipole moments of the bodies. These are represented in the action through

nonminimal coupling terms. Following an effective field theory philosophy, one can

construct all possible terms compatible with the symmetries, with a constant for

each term. The first terms in this expansion indeed correspond to the quadruple,

octupole, and hexadecapole26,30,40,41.

If all the constants in the action would be arbitrary, then one obtains an undesir-

able enlargement of the parameter space for waveform models. Fortunately, certain

universal relations were discovered49,50 for slow rotating compact objects (neutron

stars, quark stars), which are approximately independent of the nuclear equation

of state. These also hold for rapid rotation51,52 and for multipole moments up to

the hexadecapole51,53. This implies that the waveform model does approximately

depend only on one additional constant, which takes on different values for black

holes and each neutron star model. This even holds when tidal effects are taken into

account. Such a reduction of parameters is important, since the difficulties in ex-

tracting parameters from gravitational waves grow significantly with the dimension

of the parameter space.
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38. S. Hergt and G. Schäfer, “Higher-order-in-spin interaction Hamiltonians for

binary black holes from Poincare invariance,” Phys. Rev. D78 (2008) 124004,

arXiv:0809.2208 [gr-qc].

39. M. Levi and J. Steinhoff, “Leading order finite size effects with spins for

inspiralling compact binaries,” JHEP 06 (2015) 059, arXiv:1410.2601

[gr-qc].

40. S. Marsat, “Cubic order spin effects in the dynamics and gravitational wave

energy flux of compact object binaries,” Class. Quant. Grav. 32 (2015)

085008, arXiv:1411.4118 [gr-qc].

41. V. Vaidya, “Gravitational spin Hamiltonians from the S matrix,” Phys. Rev.

D91 (2015) 024017, arXiv:1410.5348 [hep-th].

42. L. Blanchet, “Gravitational Radiation from Post-Newtonian Sources and

Inspiralling Compact Binaries,” Living Rev. Rel. 17 (2014) 2,

arXiv:1310.1528 [gr-qc].

43. J. Steinhoff, “Canonical formulation of spin in general relativity,” Annalen

Phys. 523 (2011) 296–353, arXiv:1106.4203 [gr-qc].
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