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Abstract—Subgroup discovery is a local pattern mining tech-
nique to find interpretable descriptions of sub-populations that
stand out on a given target variable. That is, these sub-
populations are exceptional with regard to the global distribution.
In this paper we argue that in many applications, such as scien-
tific discovery, subgroups are only useful if they are additionally
representative of the global distribution with regard to a control
variable. That is, when the distribution of this control variable
is the same, or almost the same, as over the whole data.

We formalise this objective function and give an efficient
algorithm to compute its tight optimistic estimator for the
case of a numeric target and a binary control variable. This
enables us to use the branch-and-bound framework to efficiently
discover the top-k subgroups that are both exceptional as well
as representative. Experimental evaluation on a wide range of
datasets shows that with this algorithm we discover meaningful
representative patterns and are up to orders of magnitude faster
in terms of node evaluations as well as time.

Index Terms—Subgroup discovery, Branch-and-bound, Fair-
ness

I. INTRODUCTION

Pattern mining in general, and subgroup discovery in par-
ticular, are powerful exploratory data mining techniques that
can reveal important local structure that can easily be missed,
or not explicitly represented, by global models [2]. More
precisely, subgroup discovery aims to find interpretable se-
lectors of local data regions by optimising a trade-off between
exceptionality, i.e., the degree to which the distribution of
a designated target variable varies locally from its global
distribution, and generality, i.e., the fraction of the data space
covered by the selector.

A problem with this traditional approach is its simplistic
notion of generality: if a subpopulation is relatively sizeable
it is considered general, even though it might show arbitrary
statistical obscurities. This lack of representativeness is a key
problem in many important scenarios.

In scientific discovery and theory development, we often
seek to identify local factors that influence some variable,
but want to control for the influence of other potential ex-
planations. For instance, in materials science we may want
to discover structural patterns that characterise the HOMO-
LUMO energy gap in gold nanoclusters [11], independent of
the parity of their atom count, which is already known to have
a strong influence. As another example, in political science we
are often interested in discovering demographics with a high

affinity to a certain political party. However, findings should
not rediscover known geographic influences (See Fig. 1).

Besides science, there are other of examples where tradi-
tional subgroup discovery fails. In policy development and
other fairness-aware applications there are often ethical and
legal requirements that demand the distribution of policy
recipients to match the underlying population w.r.t. to some
sensitive variable. For instance, while students with a high
chance of obtaining a degree are reasonable candidates for
defining the application criteria of a scholarship, we might still
want to ensure that the eligible population is gender-balanced.

All of the above settings share the requirement of subgroups
to not only be relatively sizeable, but also statistically repre-
sentative w.r.t. some control variable. Specifically, this variable
should have a similar distribution between the subgroup and
the global population, exhibiting what is called statistical
parity [26]. In contrast, simply removing the control variable,
to avoid it influencing the result, is infeasible, since it can
usually be approximately recovered by the remaining variables
(known as red-lining effect [5]). See again Fig. 1.

While there are several techniques to enforce representa-
tiveness of binary global classifiers, it is unclear how those
can (i) be generalised to settings that go beyond a binary
prediction task, and (ii) be integrated effectively into branch-
and-bound, the standard framework for optimal subgroup
discovery. This framework requires an efficiently, i.e., near
linear time, computable optimistic estimator for the desired
objective function.

Therefore, in this work we propose a general representa-
tiveness term that can be incorporated into subgroup discovery
objective functions, which is based on the statistical distance
between the local and the global distribution of the control
variable. Moreover, we show how the resulting representative
subgroup discovery problem can be solved efficiently for the
case of a binary control and a numeric target variable. In par-
ticular, we propose RAWR, an algorithm to compute the tight
optimistic estimator for the representativeness-aware objective
function, in O(n log n) time. Experiments show that, when
employing this algorithm in the branch-and-bound framework,
we can prune orders of magnitude of candidates in comparison
to the state of the art, which, besides reducing memory
consumption, leads to orders of magnitude gain in runtime;
therewith, RAWR makes it possible to mine representative
subgroups in otherwise computationally infeasible settings.
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Figure 1: Subgroups of German voting districts in 2009 elections with high percentage of the left-wing party “DIE LINKE”.
Blocks show the cdf of percentage in the subgroup (red) and global population (blue), along with the the distribution of district
locations. Traditional subgroup discovery (left) recovers the main trend: eastern districts support “DIE LINKE”. Removing the
region attribute (middle) results in a similar subgroup. Only when explicitly controlling for geography (right) do we discover
subgroups that stand out with regard to voting behaviour, while at the same time being representative for the whole country.

II. PRELIMINARIES

In this section we recall the necessary basics of subgroup
discovery and Branch and Bound (B&B) search.

A. Subgroup discovery

The goal in subgroup discovery is to identify useful sub-
populations of a given global population P , which can be
viewed as a set of n entities P = {e1, . . . , en}. These sub-
populations are identified by Boolean functions, σ : P →
{>,⊥}, the subgroup selectors, each of which defines a
subpopulation Q = ext(σ) through the extension function
ext : σ 7→ {e ∈ P : σ(e) = >}; note that we will often use
σ and Q interchangeably. The set of all available subgroup
selectors, the selection language L, most commonly com-
prises conjunctions formulated over a set of basic descriptive
conditions, e.g., [age>18] or [sex=‘Male’]. In this paper,
however, it suffices to consider an abstract selection language.

Additionally, we assume a continuous target variable y :
P → R and a discrete control variable c : P → {1, . . . ,K}.
The usefulness of a subgroup can then be encoded by a real-
valued objective function f : 2P → R. An exemplary such
function, for numeric target variables, is the impact function

fct(Q) := fc(Q)ft(Q) =
|Q|
|P |

ȳQ − ȳP
maxe∈P y(e)− ȳP

, (1)

where ȳP := mean{y(e) : e ∈ P} is the mean of the target
values in the population, and ȳQ is the mean of those in Q.

A subgroup Q with a high fct value is exceptional, as the
central tendency factor

ft(Q) :=
ȳQ − ȳP

maxe∈P y(e)− ȳP

ensures a high mean deviation of y within the subgroup. At the
same time, Q exhibits a basic notion of generality, provided
by the coverage factor fc(Q) := |Q|/|P |.

In Sec. III we will augment this objective function to also
represent a statistical notion of generality of Q w.r.t. the
control variable.

B. Branch and Bound with Optimistic Estimators

The standard algorithm for finding a set of k optimal
subgroup selectors is Branch and Bound (here we give a basic
overview and refer to Boley et al. [3] for more details). This
algorithm employs a refinement operator ρ : L −→ 2L, as
well as an optimistic estimator f̂ of the objective function f ,

f̂(Q) ≥ max
R⊆Q,R 6=∅

f(R), ∀Q ⊆ P . (2)

The algorithm maintains a priority queue of candidate
subgroup selectors σ ∈ L, initialised to contain only a root
selector, describing the entire population P . While keeping
track of the subgroup Q∗ with the the best value discovered
so far, the algorithm iterates by picking from the queue
that selector (resp. subgroup) Q = ext(σ) with the highest
optimistic estimator value f̂(Q); this favours subgroups with
the greatest potential for improvement, resulting in a best-
first-search scheme. If the optimistic estimator of Q ensures
that none of its subgroups surpass the current best, i.e.,
f̂(Q) < f(Q∗), all its refinements ρ(σ) can be safely pruned;
otherwise, these refinements are placed in the queue. This
procedure iterates until the queue empties, which guarantees
to find the best, or by an easy extension, the best k subgroups.

Obviously, as the bound of the optimistic estimator gets
tighter, the pruning potential increases, to become maximal
when Eq. (2) holds with equality. Then we refer to f̂ as a
tight optimistic estimator [12] of the objective function f .

Optionally, and to achieve even better pruning, the B&B
algorithm may use the relaxed comparison αf̂(Q) > f(Q∗),
for an approximation factor α ∈ (0, 1], where a value of α =
1 yields the best subgroup. Lower α generally yield better
pruning, while guaranteeing that the discovered subgroup has
a value no less than α times that of the best subgroup.

The impact function fct allows an efficient implementation
of its tight optimistic estimator, (since maxQ⊂P fct(Q) =
fct(Q

∗), with Q∗ = {e : y(e) ≥ ȳP} ), computable in linear
time [3], [19]. We refer to this implementation as Binary
Representativeness IGnorant (BRIG), to remind that fct is
oblivious to the control variable.

In the next section we develop RAWR, an efficient algorithm
to compute the tight optimistic estimator for the controlled
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impact function, and also show that any optimistic estimator
of the impact function (and thus also BRIG) can be used as a
non-tight stand-in for the augmented one.

III. REPRESENTATIVE SUBGROUP DISCOVERY

In order to describe the theoretical contributions of this
paper, let us fix the following notation. We consider sub-
populations Q ⊆ P , whose items we assume to be ordered
in decreasing target value. Hence, yi is the item of Q with
the i-th greatest target value, which has a control class of
ci. Out of those elements of Q with class k, we denote
y
(k)
i the one with the i-th greatest target value, and by
nk(Q) := |{e ∈ Q : c(e) = k}| their count, which we also
refer to as the k-th class count. Similarly, we define the class
probability vector p(Q) with elements the class probabilities
pk(Q) := nk(Q)/|Q|, for each class k.

A. The controlled impact function

We now augment the standard objective function of Eq (1)
to also account for a broader notion of generality than cover-
age: the statistical generality of the subgroup w.r.t. the control
variable. Specifically, we add a representativeness factor
fr(Q), quantifying the similarity of the control distribution
between Q and P . This forms the controlled impact function

f(Q) := fct(Q)1−γfr(Q)γ , (3)

where the γ ∈ [0, 1) parameter tunes the trade-off between
representativeness and the typical properties quantified by fct.

Viewed probabilistically, our goal is to select subpopulations
independently of the control variable. This is equivalent to
requiring, for a random entity e ∈ P from the population, that

P
(
c(e)|σ(e) = >

)
= P

(
c(e)

)
⇐⇒ d(q,p) = 0 ,

where d is some distance measure between distributions with
q := p(Q) and p := p(P ). In this work, we further fix d
to be the total variation distance d(q,p) = 1

2

∑
k |qk − pk|,

equal to the maximal difference between probabilities of any
set of control classes. This measure is at once intuitively
interpretable and simple enough to allow efficient calculations.

Similar to the coverage and the central tendency factors,
we design this new factor to assume values in the interval
fr ∈ [0, 1], with more representative subgroups scoring higher:

fr(Q) := 1− d(p, q)− dmax

dmax
, dmax := max

R⊆P
d(p, r) .

We note that an important consequence of these bounds is
that any optimistic estimator for the impact function is also a
valid, albeit non-tight, optimistic estimator for the controlled
impact function. This corresponds to fixing the added factor
to its maximal value of fr = 1.

Having introduced all constituents of the controlled impact
function, we now proceed with the computation of its tight
optimistic estimator. We first introduce a transform of the do-
main of the original optimisation problem from exponential to
polynomial size in Sec. III-B. We then employ this transform
in Sec. III-C to derive an efficient algorithm that computes this

tight optimistic estimator in O(n log n) time, for the special
case of a population with balanced binary classes.

B. Searching in the class counting space (CCS)

In this section we describe a transformation which aggre-
gates the exponentially many subsets of Q in the original
optimisation problem of Eq. (2) into polynomially many sets
of subsets. Additionally, the maximum f value attained by any
subset within each of these sets can be efficiently computed.
From now on, we call any subset R ⊆ Q a refinement of Q.

For any given subgroup Q, we consider the space of all
possible class count vectors I :=

(
n1(Q), . . . , nK(Q)

)
that

any refinement R ⊆ Q might assume,

I(Q) :=
K×
k=1

{0, . . . , nk(Q)} .

This space, which we refer to as the class counting space
(CCS), is a subset of the lattice ZK , and partitions the original
space 2Q into |I(Q)| =

∏K
k=1(nk(Q) + 1) partitions. Each of

these partitions, called the equi-count refinement setsRI(Q),
consists of these refinements of Q with Ik items of control
class k, for each class k = 1, . . . ,K,

RI(Q) := {R ⊆ Q : nk(R) = Ik, k = 1, . . . ,K} .

For an example of a CCS with K = 2 classes see Fig. 2.
The computation of the tight optimistic estimator f̂(Q) :=

maxR∈2Q f(R) of Eq (2) can now be expressed as

f̂(Q) := max
I∈I(Q)

max
R∈RI(Q)

f(R) = max
I∈I(Q)

fQ(I) ,

where fQ(I) refers to the maximal value attained over all
refinements in the equi-count refinement set RI

fQ(I) :=

 max
R∈RI(Q)

f(R) I ∈ I(Q) \ {0}

−∞ I = 0
.

Similarly, the maxima of the impact function, central tendency
and representativeness values over all refinements within RI
are denoted fQct (I), fQt (I) and fQr (I), respectively.

In the next proposition we derive a closed form for the
optimiser of f(Q) within an equi-count refinement set RI ,
which can then be used to compute fQct (I) and thus fQ(I).

Proposition 1. The optimal value fQct (I) is attained by the set

R∗I :=

K⋃
k=1

{
y
(k)
1 , . . . , y

(k)
Ik

}
,

which contains the Ik items with the greatest target value
among those with control class k, for all classes k = 1, . . . ,K.

Proof. All sets R ∈ RI(Q) have a constant coverage |R| =∑K
k=1 Ik, so that maximising the objective value is equivalent

to maximising the central tendency factor fQt . We will show
that R∗I attains the greatest ft value over RI(Q) by contra-
diction.

Assume there is a refinement R′ ∈ RI with R′ 6= R∗I and
ft(R

′) > ft(R
∗
I). Since R∗I contains the items with maximum

3
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(a) Toy population P , consisting of n1(P ) = 8 items of control class
1 and n2(P ) = 5 of class 2, a subgroup Q ⊆ P , with n1(Q) = 5
items of class 1 and n2(Q) = 4 of class 2, and a refinement R ⊂ Q.
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(b) The CCS of Q, denoted I(Q), and the maximum fQr ray. Each
refinement R ⊆ Q with class counts I = (I1, I2), where I1 = n1(R)
and I2 = n2(R), is contained in the equi-class refinement set RI ,
which corresponds to the point I in I(Q) = {0, . . . , 5}×{0, . . . , 4}.
Points closer to the max fr ray have a class count probability (ratio)
closer to that of P and thus a higher fr score.

Figure 2: The class counting space (bottom) for a toy popu-
lation with K = 2 control classes (top). The refinement R is
contained in R(2,3), corresponding to the annotated point.

y value for each class, there is at least one sequence of
refinements

(
R(0), . . . , R(T )

)
, starting with R(0) := R∗I and

ending at R(T ) := R′, so that at each index τ we exchange
a single element between Rτ with another in Q \ Rτ of
the same class, but a smaller target value. Formally, R(τ) =(
R(τ−1)\{e}

)
∪{e′}, such that c(e′) = c(e) and y(e′) < y(e).

This implies that, for each τ = 2, . . . , T we get∑
e∈R(τ)

y(e)−
∑

e∈R(τ−1)

y(e) = y(e′)− y(e) < 0 .

Dividing these sums with
∑K
k=1 Ik, turns them into means,

and since ft is increasing w.r.t. the target value mean, we have
ft(R

(τ)) < ft(R
(τ−1)). By transitivity, it is ft(R

′) < ft(R
∗
I),

contradicting the optimality of ft(R
′).

As a result, we can express the target value mean of the
optimiser R∗I as mean(R∗I) =

∑K
k=1

∑Ik
i=1 y

(k)
i /‖I‖1, where

‖I‖1 =
∑K
k=1 Ik is the cardinality of each refinement in RI .

Now the impact function fct of Eq. (1) can be transformed
onto the CCS as

fQct (I) :=αt

K∑
k=1

Ik∑
i=1

y
(k)
i − αc‖I‖1 , (4)

where

αt =
1

ν
> 0 , αc =

ȳP
ν
, and ν = |P |

(
max
e∈P

y(e)− ȳP
)
.

Since the representativeness factor fr(Q) depends only on
the class counts of Q, it remains constant over RI and does
not affect the maximiser. Therefore, the transformed controlled
impact function can be written as

fQ(I) := fQct (I)
1−γ · fQr (I)

γ
γ ∈ [0, 1) .

Notice that the value fQct (I) can be computed in constant
time for any point I ∈ I(Q), after a pre-processing step
of linear time. Indeed, assuming the items of a candidate
subgroup are in decreasing order of target values, we can
achieve this by first passing through the values and creating
K cumulative sums of target values, one for each class; after
this step, the value fQt (I) can be easily retrieved as the sum
of indices Ik within the cumulative sum for each class k,
appropriately scaled. The controlled impact function fQ(I)
can be computed with trivial extra work to compute fQr (I).

Therefore, this transform can be used in a straightforward
way to derive an algorithm to compute the tight optimistic
estimator in O(nK) time. However, a practical algorithm can
benefit from further improvement, achieved in the next section
for a special case of a population.

C. A linearithmic algorithm for balanced binary controls

We now present a linearithmic algorithm able to compute
the tight optimistic estimator of the controlled impact function
of Eq. (3) for the case of a population P with balanced binary
control classes, i.e., c : P → {1, 2} with n1(P ) = n2(P ).

The rest of the analysis can be summarised in two key steps.
First, we show that there is a sub-region of I(Q) where fQ(I)
attains its maximum and then we present an efficient algorithm
to search within this sub-region.

For this purpose we study the two factors, fQct and fQr
within the CCS. Both these factors form sequences that exhibit
an appropriate notion of convexity for sequences, borrowed
mutatis mutandis from Yucer [25]: a sequence a : N → R,
with N = {0, . . . , n} and n ≤ ∞, is called a convex sequence
over N , if for all x, y ∈ N and each λ ∈ (0, 1)

λa(x) + (1− λ)a(y) ≥ min
u∈bzc

a(u) , z = λx+ (1− λ)y .

Further, we call a a concave sequence if −a is convex.
We now study the fQct values, as |Q| = I1 + I2 increases.

Definition 1 (Optimal c-t path on I(Q)). Let π(µ) ∈ I(Q) be
the maximiser of the fQct value among all points in the CCS
with a fixed sum µ

π(µ) := arg max
I∈I, ‖I‖1=µ

fQct (I) , 0 ≤ µ ≤ |Q| . (5)

We refer to the optimal point sequence π = (π(0), . . . ,π(|Q|))
as the optimal c-t path.

The optimal c-t path exhibits useful properties, discussed in
the following lemma (for the proof see Appendx A).
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Figure 3: sufficient search triangle T (red circles) in the CCS I,
and optimal point π∗ along the c-t path (crooked line), which
defines the 3 vertices of T (Q). We seek f̂ = max fQ, which
lies on T (Q), and ternary search finds it efficiently along the
concave sequences of fQ (vertical/horizontal lines).

Lemma 2. Let e1 = (1, 0)T and e2 = (0, 1)T be the standard
basis vectors of R2. Then (i) the µ-th element of the optimal c-t
path is the class count of the first µ elements of P ; formally,

π(µ) =

µ∑
i=1

eci 0 < µ ≤ |Q| and π(µ) = 0 . (6)

Moreover, (ii) the sequence fQct ◦π, with elements the fQct values
computed along the c-t path π, is a concave sequence.

Lemma 2 allows for an O(log n) algorithm to find the
optimal c-t point π∗ := arg maxI∈I(Q) f

Q

ct (I), as we call
the point f the CCS that maximises the fQct value. Indeed,

fct(π
∗) = max

0≤µ≤|Q|
max

I∈I(Q), |I|=µ
fct(I) = max

0≤µ≤|Q|
fct(π

(µ)) ,

where the last maximum runs over the fQct values of the
optimal path sequence. Due to the concavity of this sequence,
its maximum can be computed in O(log n) time, using for
instance the ternary search algorithm.

We now study the representativeness factor fr(Q), whose
transform on the CCS for balanced binary controls becomes

fQr (I) := 1−
∣∣∣∣1− 2I1

I1 + I2

∣∣∣∣ = 1−
∣∣∣∣1− 2I2

I1 + I2

∣∣∣∣ .
We observe that the subgroups R ∈ Q that maximise this
factor must have the same control class distribution as the
population. Therefore, these subgroups must have an equal
control class count n1(R) = n2(R), and thus belong to those
equi-count refinement sets RI , for which I1 = I2. These, in

turn, lie on the so-called maximum fQr ray I = (a, a)T ,
a ≥ 0. One example of a maximum fQr ray appears in Fig. 3.

We now state a key theoretical proposition of this section,
showing that it suffices to search for the optimal solution on
a specific triangle of the CCS (for the proof see Appendx B).

Proposition 3. The maximum of the controlled impact function
fQ is attained at a point which lies in the (filled) triangle
T (Q) := {(π∗1 , π∗1), (π∗2 , π

∗
2),π∗}, with vertices the optimal

c-t point π∗ = (π∗1 , π
∗
2) and its horizontal and vertical

projections onto the maximum fQr ray. We call this region the
sufficient search triangle.

The sufficiency of the SST reduces the search space by
at least half, which happens in the worst case scenario that
the optimal c-t point π∗ is on the North-West or South-East
points. More importantly, we can efficiently optimise fQ along
specific directions within this region.

We now describe these directions. For each ordinate i2 ∈
0, . . . , n2(Q) let the (West-to-East) horizontal sequence be

hi2 :=
(
h(0)

i2
, . . . ,h(n1(Q))

i2

)
=
(
(0, i2), . . . , (n1(Q), i2)

)
.

Similarly, for each abscissa i1 ∈ 0, . . . , n1(Q) we define the
(South-to-North) vertical sequence

vi1 :=
(
v(0)

i1
, . . . ,v(n2(Q))

i1

)
=
(
(i1, 0), . . . , (i1, n2(Q))

)
.

When the transformed controlled impact function fQ(I) is
computed along the elements of certain of those sequences,
it forms concave sequences, as we show below (for the proof
see Appendx C), with the direct implication that the maximal
value of f along these sequences can be computed in O(log n).

Proposition 4. Consider the values of the controlled impact
function fQ as they are computed along a horizontal sequence
hi2 ; these form the sequence (fQ ◦hi2)(µ), which for µ ≤ i2
is a concave sequence preceding the maximum fQr ray. Simi-
larly, (fQ ◦ vi1)(µ) is a concave sequence for µ ≤ i1.

Observing the example of the concave sequences of fQ

along the horizontal and vertical directions shown in Fig. 3,
we notice that we can cover the entire SST with an appropriate
selection of these concave sequences. This allows for an
efficient optimisation procedure requiring O(n log n) time,
which is described in Algorithm 1 and operates as follows.

First, the optimal c-t point π∗ is computed in O(log n) time,
along the concave sequence π (line 1); this point locates the
SST. If π∗ lies above the maximum fQr ray (line 3-7), the
points of T (Q) lie along horizontal sub-sequences preceding
the maximum fQr ray; the fQ values along each of them form a
concave sequence, whose maximum can be found in O(log n)
(ln. 6). There are at most n2(Q) such directions in T (Q), and
they can all be scanned (ln. 5-7) in a total of O(n log n) time.
Similarly, when π∗ lies below the maximum fQr line (ln. 8),
we optimise along the vertical sub-sequences (ln. 9-12).

IV. RELATED WORK

Whereas subgroup discovery [17] is well-studied in gen-
eral [2], [4], [8], [12], [19], [24], to the best of our knowledge
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Algorithm 1: Representativeness AWare algoRithm
Input: Population P (sorted w.r.t y, descending)
Input: Subgroup Q
Output: Tight optimistic estimator f̂ of Eq. (3)

1 π∗ ← TernarySearch(on fQct ◦ π from 1 to |Q|);
2 ibeg ← min{π∗1 , π∗2};
3 if π∗1 < π∗2 then
4 iend ← min{π∗2 , n2(Q)};
5 for i from ibeg to iend do
6 φ← TernarySearch(on fQ◦hi from ibeg to iend);
7 f̂ ← max{f̂ , φ};
8 else
9 iend ← min{π∗1 , n1(Q)};

10 for i from ibeg to iend do
11 φ← TernarySearch(on fQ◦vi from ibeg to iend);
12 f̂ ← max{f̂ , φ};

13 return f̂ ;

the notion of representativeness beyond coverage has not been
studied in depth.

In pattern mining in general, there has been ample attention
to iteratively discovering patterns that are surprising given
background knowledge, for example with regard to permuta-
tion testing [10], [13], or a maximum entropy distribution [7],
[18], [21], [23]. While seemingly related, representativeness is
not guaranteed by unexpectedness: adding a pattern X to our
background knowledge does not ensure that, relative to X , the
now-most-surprising pattern will be representative with regard
to either pattern X , or to the whole population.

Another seemingly obvious relation that turns out to be
much more subtle is that to fairness in classification. A truly
representative pattern implies statistical parity with regard to
the control variable, although it is worth noting that both
Dwork and Mullainathan explicitly mention that statistical
parity should not be equated with fairness, as it can potentially
be “blatantly unfair” on an individual level [16], [26].

In recent work, Feldman et al. [9] studied the notion of
“disparate impact”—a legal term that says that the probability
ratio of treatment (e.g., job offer) for the different groups
must be at least 0.8—and proposed as a general technique
to remove disparate impact via data pre-processing. In other
words, unlike our approach, the global distribution is changed
to de-correlate sensitive and target attributes. Related as it may
be, their work clearly fails to extend to local pattern mining, as
in the latter, it does not suffice to model the global distribution.

Perhaps closest to our approach is the line of work by
Calders et al. [6], who studied the goal of achieving statistical
parity in classification with different methods, including naive
bayes [5] and decision trees [14]. Kamishima et al. [15]
consider a form of fairness that is related to statistical parity,
although implicitly: during logistic regression a regularisation
term is used, measuring the KL divergence between sensitive
attribute and prediction. Although related, it is unclear whether

Dataset Target y Control c α |V | |P |

baseball Salary Fr.Ag.Elig. 1.0 16 268
gold Evdw-Evdw0 Odd 1.0 19 12200
homicide Victims PerpRace 1.0 10 47236
students G3 failures 0.5 31 366
wine quality colour 1.0 12 3198

abalone Rings Height 1.0 8 4144
ailerons Sa RollRate 1.0 5 7108
airfoil NoiseLevel Displacement 1.0 5 1480
autompg Mpg Cylinders 1.0 8 380
bike registered atemp 1.0 13 730
california Med.Value Latitude 0.5 8 20502
compactiv usr freeswap 0.7 21 8192
concrete Strength Age 1.0 8 562
elevators Goal DiffRollRate 0.3 18 16020
forestfires Area Month 0.6 12 394
house Price P14p9 0.3 16 22784
mortgage 30YRate Mat.Rate3Y 0.8 15 1044
mv Y X6 0.9 10 40768
pole Output Att0 0.3 26 14586
puma32h thetadd6 theta5 0.7 32 8192
stock Company10 Company4 1.0 9 950
treasury X1Rate CMat.Rate3Y 0.4 15 1044
wankara AvgTmp MaxTemp 0.6 9 318
wizmir AvgTmp MaxTemp 0.5 9 1458

Table I: Used datasets, for qualitative (top) and quantitative
(bottom) analysis. Listed are the number of attributes |V | and
number of rows |P |, as well as running configurations: target
and control variables, and approximation factor α. The latter
is decreased by 0.1 every time BRIG exceeds a timeout of 6
hours, or terminates due to exceeding 256GB of memory.

these methods can be utilised in the highly demanding B&B
search, typically able to optimise over exponentially-sized
discrete spaces of arbitrary subgroup descriptor languages.

Closest in terms of pattern mining, but relatively distant with
regard to statistical parity, is the work by Pedreschi et al. [22]
on discrimination-aware pattern mining. Instead of subgroups,
the authors focus on mining association rules that may only
include a sensitive item if this does not improve the confidence
of the rule by more than α.

V. EXPERIMENTS

In this section we evaluate our extended impact function f ,
as well as RAWR, our implementation of its tight optimistic es-
timator for use by the B&B algorithm. We provide qualitative
and quantitative demonstrations of superior representativeness
in the discovered subgroups, and we also report runtime
measurements on a variety of datasets.

For these tasks we implemented1 both RAWR and the non-
tight, representativeness oblivious BRIG, which we use as a
baseline. We then run the B&B algorithm, using each of them.

A. Mining more representative results

We now assess qualitatively and quantitatively the repre-
sentativeness of the discovered subgroups, for different values
of the γ parameter. We first study 5 datasets (retrieved from

1 Our source code is available within the realKD tool bitbucket.org/realKD/.
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the UCI ML repository [20] and the Murder Accountability
Project http://www.murderdata.org/) which contain intuitively
interpretable controls (Table I, top). To rule out the effect of
unbalanced classes, and for our algorithm to be applicable, we
stratify the datasets over the control classes; we then perform
subgroup discovery and measure the fr and fct scores of the
discovered subgroups, as we increase the γ parameter (Fig. 4).

Obviously, a value of γ = 0 corresponds to the
representativeness-oblivious impact function fct of Eq. (1).
Depending on the dataset and choice of y and c, the discovered
subgroups for this case may be representative, although this
is not guaranteed. However, as the γ parameter increases, the
added fr factor comes in effect, yielding consistently more
representative subgroups (Figure 4a). As expected, the fct
score may drop, demonstrating that γ controls the trade-off
between the two factors (Figure 4b). At the same time, it is
guaranteed that no score can be increased without the decrease
of the other, by choosing a subgroup other than the discovered.

We next delve into the subgroups discovered in selected
datasets. We first focus on the Homicide dataset, which tracks
homicide cases, matched with background data on perpetrators
and their victims, alongside the number of victims per case.
We use the latter as a target variable to measure violence and
seek to gain insight on attributes leading to increased violence,
as captured by binary control variables. For each studied
variable, we stratify the dataset and report the discovered
subgroups (Table III), for increasing γ parameter.

We first consider the effect of the Perpetrator Sex.
The subgroup discovered without the fr term rediscovers the
unsurprising fact that males are more violent than females.
To uncover further potentially underlying factors, we use
the Perpetrator Sex as a control variable and perform
subgroup discovery using the controlled impact function. As
γ parameter increases, the discovered subgroups hold for both
male and female perpetrators, leading to the discovery that
Caucasian victims attract more violence, and further that
no sex is more violent when it comes to older victims.

In another example, we study an application for fair sub-
group discovery. Consider that a baseball team decides to
increase its players salary and seeks to find the factors that
lead to higher income drawing experience from other team
managements. At the same time, the raise should not be
unfavourable to players who are contractually bound to one
particular team, in contrast to the Free Agent eligible players,
which might earn more lest they leave the team. Using
the FreeAgencyEligibility variable as control, more
objective criteria describing high salaries are discovered.

B. Evaluating the performance of the proposed tight estimator

We now evaluate the performance of the RAWR implemen-
tation. To sample a broad variety of datasets, we used all of
the regression datasets from the KEEL database [1] with a
number of variables 8 ≤ |V | ≤ 40 (Table I, bottom). As a
target variable we used the designated regression variable. To
emulate a purported scenario of controlling for the main data
trend, we use as control the first variable that appears in the
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Figure 4: Scores of subgroups discovered in the qualitative
datasets (Table I, top). Tuning γ effectively controls the trade-
off between Representativeness and coverage-tendency.

Dataset γ = 0.4 γ = 0.5 γ = 0.6

RAWR BRIG RAWR BRIG RAWR BRIG

gold 172 101 210 99 224 121
wine 296 267 349 305 375 360
house 14 5 13 5 17 4
stock 15 8 16 10 17 12
california 3 2 4 2 4 2
pole 4 2 3 2 3 1
airfoil 9 9 7 8 9 9
concrete 4 6 5 5 6 6
elevators 3 3 3 3 2 2
puma32h 78 84 82 83 83 85
baseball 20 22 17 21 16 19
bike 5 10 5 12 6 11
forestfires 184 272 178 186 193 217
homicide 154 219 171 247 169 236
ailerons 206 317 297 486 703 797
compactiv 504 450 442 349 1299 3397
mv 3877 6837 3243 5273 2300 5026
students 19 175 63 2638 126 4768
autompg 6 3229 6 5577 11 10591
abalone 869 1307 1883 3876 3639 17575
wankara 1 116 1 2543 1 13977
mortgage 56 ∞ 198 ∞ 12568 ∞
treasury 1 1 1 1 1 ∞
wizmir 5 3 2 1648 3 ∞

Table II: [Bold is better] Runtime comparison of RAWR and
BRIG over different γ parameters for all datasets, sorted in
increasing time difference. Using BRIG on the last 3 datasets
exceeds our 256GB of memory, so results are not available.

subgroup descriptor discovered for γ = 0; if this variable is
real we discretise it around the median. Next, we stratify the
dataset on the control variable. We start with an approximation
factor of α = 1, corresponding to exact computation; when all
BRIG invocations for a dataset fail, due to either a runtime of
more than 6 hours or exceeding 256GB of available memory,
we decrease α by 0.1 and repeat.

We assess the performance of our algorithm w.r.t. the num-
ber of searched nodes during each B&B invocation and also
the needed runtime (Fig. 5); we set γ = 0.6, corresponding
to a reasonably practical scenario. As our proposed optimistic
estimator is tighter, it is yielding a significantly better pruning
performance. What is more, our implementation seems to
make use of the better pruning achieved, in order to attain
running times that are comparable to those of BRIG, or in some
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e
γ Subgroup describing Q fr(Q) fct(Q)

Control: Perpetrator Sex

( 0,0.09] Crime=Murder, Vict.=White, Perp=♂ 0.00 0.002
(0.09,0.75] Vict.=White 0.89 0.002
[0.75, . . .) Vict.Age= ¬V.Lo, Vict.=White 0.99 0.001

Control: Perpetrator Race

( 0, 0.6] Crime=Murder, Vict=♀, Perp.= ¬V.Old 0.90 0.002
[ 0.6, . . .) Crime=Murder, Vict=♀, Perp.= ¬Old 0.98 0.002

ba
se

ba
ll

Control: Free Agent Eligibility

( 0,0.09] OnBase= ¬V.Lo, F.A.Eligible= 3 0.00 0.083
(0.09,0.33] OnBase=HI 0.69 0.047
(0.33, 0.8] Batting= ¬V.Lo, OnBase= ¬Lo 0.88 0.042
[ 0.8, . . .) Batting=¬V.Lo, OnBase= ¬Lo, Fr.Ag.= 7 0.97 0.029

Table III: Discovered subgroups for a varying γ parameter, for
the datasets homicide (above) and baseball (below). Increasing
γ produces more representative subgroups.

100

102

104

C
om

pu
ta

tio
n

Ti
m

e
(s

)

go
ld
wine

ho
us

e
sto

ck

ca
lif

orn
ia

po
le
air

foi
l

co
nc

ret
e

ele
va

tor
s

pu
ma3

2h

ba
seb

all
bik

e

for
est

fires

ho
mici

de

ail
ero

ns

co
mpa

cti
v

mv

stu
de

nts

au
tom

pg

ab
alo

ne

wan
ka

ra

mort
ga

ge

tre
asu

ry

wizm
ir

101

103

105

107

Se
ar

ch
ed

N
od

es

RAWR

BRIG

Figure 5: [Lower is better] Performance comparison of RAWR
(solid) and BRIG (dashed), for runtime (blue) and searched
nodes (red), with γ = 0.6. The datasets (x axis) are sorted in
increasing time difference. Using BRIG on the last 3 datasets
exceeds our 256GB of memory, so results are not available.

cases up to 4 orders of magnitude better. Further numerical
results are reported in Table II, for a set of sensible weights
γ ∈ {0.4, 0.5, 0.6}. These show a superiority of our estimator
especially for higher γ values, where BRIG is less tight.

Furthermore, note that the number of nodes is a key factor
contributing to the memory requirement of the B&B algorithm.
As such, even for dataset on which the computation time of
these implementations might be comparable, it is sometimes
the case that the decreased number of nodes is enabling
the computation using RAWR, where otherwise BRIG would
exceed available memory, e.g., in the last 3 datasets of Table II.

VI. DISCUSSION

Our introduced method guarantees the optimality of the
results given the specified parameter, while optionally enabling
a faster computation by relaxing the optimality guarantee.

The sole parameter γ of our method remains intuitive in
its interpretation and possibly in its selection, regardless of

the input, with the zero value corresponding to a vanishing
effect of our extension and a high value an increased weight
of it. Nonetheless, not every dataset is equally sensitive to the
intermediate values and the researcher is still required to make
educated guesses based equally well on expert knowledge or
resort to a trial and error scheme.

A further point of interest is the rate of convergence.
Inheriting the weak points of the B&B algorithm, the worst
case complexity is no better than exponential, although in no
real world cases has this been observed. Additionally, there
seems to be no good estimate on the difficulty of the dataset.

As a downside, our implementation of the tight estimator
for our objective function requires a balanced, binary dataset.
However, the case of binary classes is amongst the most usual,
and the former can be solved by stratification as a workaround.

In the future we are planing to further broaden the applica-
tion settings of our estimator to more than binary classes and
non-balanced datasets, as well as to investigate the underlying
causes of this inherently difficult optimisation problem.

VII. CONCLUSION

We introduce the problem of representativeness aware sub-
group discovery, where we want to discover subgroups that
are exceptional with regard to the target variable, yet at the
same time be to statistical parity with regard to the control
variable. We show how we can achieve this by extending the
typically used impact function by incorporating a tuneable rep-
resentativeness factor. We propose a tight optimistic estimator
for the newly representative aware impact function, and give
an efficient algorithm to compute it in O(n log n) time. Exper-
iments show it may lead to orders of magnitude fewer node
expansions, compared to the representative ignorant estimator,
which is leveraged in similar orders of speedup. In future work
we aim to extend our theory to nominal control variables, and
studying exceptional representative model mining [8].
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[6] T. Calders and I. Žliobaitė, “Why unbiased computational processes
can lead to discriminative decision procedures,” in Discrimination and
Privacy in the Information Society. Springer, 2013, pp. 43–57.

[7] T. De Bie, “Maximum entropy models and subjective interestingness:
an application to tiles in binary databases,” DAMI, pp. 407–446, 2011.

[8] W. Duivesteijn, A. J. Feelders, and A. Knobbe, “Exceptional model
mining,” DAMI, vol. 30, no. 1, pp. 47–98, 2016.

[9] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkata-
subramanian, “Certifying and removing disparate impact,” in KDD.
ACM, 2015, pp. 259–268.

[10] A. Gionis, H. Mannila, T. Mielikäinen, and P. Tsaparas, “Assessing
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APPENDIX

In this section we provide proofs for our theoretical claims.

A. Proof of Lemma 2: optimal c-t properties

Let Q∗µ ⊆ Q be the set attaining the highest fct value
among those with cardinality µ. We now reinterpret Eq. (5)
as follows: the element π(µ) is equal to the index of the equi-
count refinement set Rπ∗ containing Q∗µ. Within all sets with
a fixed cardinality fc remains constant, and Q∗µ is the set with
the maximal central tendency ft; we can then show, similar to
Proposition 1, that the maximiser of ft contains the topmost
µ target values. Altogether, π(µ) is exactly the class count of

Q∗µ := arg max
|R|=µ, R⊆Q

fct(R) = arg max
|R|=µ, R⊆Q

ft(R) =

µ⋃
i=1

{ei} ,

whose control class count is equal to the quantity in Eq (6).
To show (ii) we proceed as follows. Since Q∗µ contains the

top-µ elements, we rewrite Eq. (4) as

(fct ◦ π)(µ) = fct(π
(µ)) =αt

µ∑
i=1

yi − αcµ ,

with discrete derivatives

∆µ(fct ◦ π) =fct(π
(µ+1))− fct(π

(µ)) = αtyµ+1 − αc

∆2
µ(fct ◦ π) =αt(yµ+1 − yµ) ≤ 0 ,

where the last inequality holds because yµ are decreasing.
The negativity of the second discrete derivative, shows the
concavity of the sequence.

B. Proof of Proposition 3: sufficient search triangle

This proof involves partitioning the CCS in compact regions
surrounding the SST, within which the monotonicity of the
factors fQct and fQr remains constant, when computed along
any horizontal or vertical sequences. All the sequences formed
in this way increase toward the region boundary intersecting
with the SST, and so no maximiser of fQ can lie within these
regions, except on the intersection of the region and the SST.

To show the above, we study both factors, starting with fQct .

Lemma 5 (Domination of the fQct factor). The impact value
computed along any horizontal sequence is increasing until
the abscissa π∗1 of the optimal c-t point, and decreasing
afterwards. Similarly, the impact value computed along any
vertical sequence is increasing until the ordinal π∗2 of the
optimal c-t point, and decreasing afterwards. Formally,

fQct (I + ek) ≥ fQct (I) , Ik < π∗k

fQct (I + ek) ≤ fQct (I) , Ik ≥ π∗k
Proof. Denote the optimal c-t path index µ∗ to be the index
within the c-t path sequence attaining the maximum c-t value,
π(µ∗

) = π∗, so that

fct(π
(µ+1)) ≥ fct(π

(µ)) µ < µ∗

fct(π
(µ+1)) ≤ fct(π

(µ)) µ ≥ µ∗
, (7)

due to the concavity of the sequence (fQ ◦ π)(µ).
However, for any two consecutive points on the path, we

can compute fct(π
(µ+1)) − fct(π

(µ)) = αtyµ+1 − αc, which
combined with Eq. (7) yields

αtyµ+1 − αc ≥ 0 µ < µ∗

αtyµ+1 − αc ≤ 0 µ ≥ µ∗
. (8)

Moreover, using Eq. (4) we can express the fQct value of the
point next to I in CCS along dimension k as

fQct (I + ek) = αt

2∑
k=1

(
Ik∑
i=1

y
(k)
i + y

(k)
Ik+1

)
− αc(I1 + I2) ,

and so the difference between the fQct values of these neigh-
bouring points becomes

fQct (I + ek)− fQct (I) = αty
(k)
Ik+1 − αc , (9)

which is the quantity whose sign we study. According to
Eq. (6), however, π is a sequence of single step increases
π(µ+1) − π(µ) = ecµ , starting from the empty count 0. In
other words, the µ-th element π(µ) of the sequence increases
this class count that matches the class of the item in Q with the
next greatest target value. This implies that at the optimal c-t
path index µ∗, the optimal c-t path count π∗ = π(µ∗

) per class
amounts exactly to the number of items with the same control
class and greater target value. Moreover, for each Ik ≥ π∗k
there exists a µ ≥ µ∗ such that yµ = y

(k)
Ik+1, and similarly for

each Ik ≤ π∗k there exists a µ ≤ µ∗ such that yµ = y
(k)
Ik+1.

We can now combine the two equations Eq. (9), and Eq. (8),
to show the claim of the lemma.
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We now proceed to show a similar behaviour of the fr factor.

Lemma 6 (Total Variation domination). The composition of
fr with every horizontal sequence hi, i = 0, . . . , n1(Q), and
every vertical sequence vi, i1 = 0, . . . , n1(Q) forms the
sequences (fr ◦ hi)(τ) and (fr ◦ vi)(τ); these are (i) uni-
modal, (ii) attain a maximum at their intersection (i, i)T with
the equi-representativeness ray a(1, 1)T , a ≥ 0, and (iii) they
are concave for the indices τ = 0, . . . , i.

Proof. We first focus on the horizontal sequences (fr ◦hi)(τ)
for i = 0, . . . , n2(Q) and τ = 0, . . . ,m. Notice that the
dTV(I) vanishes on the equi-representativeness ray a(1, 1)T ,
that is, when I1 = I2. Since the horizontal sequence hi has a
fixed ordinal of i, the previous condition yields τ = i, which
shows the correctness of (ii).

To prove the rest of this lemma, we study the continuous
analogue of (fr ◦ hi)(τ)

f̃r(t) := 1−
∣∣∣∣12 − t

t+ i

∣∣∣∣ , t > 0 ,

which has first and second derivatives

f̃r
′
(t) = sign

(
1

2
− t

t+ i

)
i

(t+ i)2

f̃r
′′
(t) = −2 sign

(
1

2
− t

t+ i

)
i

(t+ i)3

t 6= i .

The sign of both quantities is controlled by the sign factor,
which is negative when t < i and positive when t > i,
and so we can reach the conclusion that f̃r

′
is increasing

concave for t < i and decreasing convex for t > i. Since
(fr ◦ vi)(τ) = f̃r(t), the above properties transfer to the
discrete sequence (fr ◦ vi), as well. For vertical sequences,
the symmetric argumentation can be used.

Combining the two domination lemmas 5 and 6, we can
now prove the sufficiency of SST, by showing that every point
outside the SST is dominated by one within T (Q). For this we
distinguish two cases, depending on whether the c-t optimal
point is above or below the maximum representativeness line.

Assume the optimal c-t point lies above the maximum fQr
ray. The point µ∗, along with the maximum representativeness
ray, partition the CCS in the 6 regions shown in Fig 6, each of
which has a non empty intersection with T (Q). We now show
that the maxima of f over all the points in these regions, lie
on this intersection, and therefore also in the SST.

We first study ASW: the points on the diagonal maximise
fQr , while at the same time fQct is dominated by the SST point
(π∗1 , π

∗
1), therefore maximising f altogether. Similarly within

ANE, we can show that f is maximised by (π∗2 , π
∗
2) ∈ T (Q).

Within regions AW and AN, both terms increase along each
west-to-east and north-to-south path, respectively; these paths
lead to a point of T (Q) that dominates all the rest on the
traversed path. Within ASW, each west-to-east path ends up in
a point of AN, which is itself dominated by a point of SST.

Finally, every south-to-north path of ASE leads to either a
point of T (Q) directly, or to one in the dominated ANE. We
thus showed that no point of I(Q) \ T (Q) can maximise f .
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Figure 6: Domination relations for a c-t optimal point π∗

above the maximum fQr ray: the arrows point to the greater
factor value. The T (Q) partitions I in the 6 marked areas.

We work likewise if π∗ lies below the maximum fQr ray.

C. Proof of Proposition 4: concavity of fQ along sequence

To prove this statement we employ the concavity of the
sequences formed as the two factors fQct and fQr are computed
along the horizontal and vertical sequences. We first treat
the horizontal sequences, along which the entire fQct ◦ hi2 is
concave, and so is (fQr ◦hi2)(µ) for the indices µ = 0, . . . , i2,
according to Lemmata 2 and 5, respectively.

Additionally, all factors are positive (or can be made so
by adding an appropriate constant term) and so, raising the
elements of the sequences to a power in (0, 1] preserves
concavity. Multiplying the two re-weighted sequences yields(

(fQct ◦ hi2)γ(fQr ◦ hi2)1−γ)
)

(µ) = (fQ ◦ hi2)(µ) ,

which is concave as the multiplication of two concave, positive
sequences, therefore showing the concavity of the sequence of
impact function values computed along the specified horizontal
sub-sequence. Similarly we can work for vertical sequences.

Note that in our analysis we seamlessly interchange contin-
uous and discrete convexity definitions. This is enabled by the
uni-variate nature of the functions involved, since their discrete
counterparts corresponds to sampling on regular intervals.
Indeed, on one hand it can be shown that regular sampling
of a uni-variate convex function yields a convex sequence
[25]. As a sufficiently applicable inverse for our needs, we can
show that for any convex sequence, there exists at least one
convex function with the same values at the sampled points
and continuous second derivative; one such function results
from cubic spline interpolation fitted on the sequence values.
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