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Static synthetic magnetic fields give rise to phenomena including the Lorentz force and the quantum Hall
effect even for neutral particles, and they have by now been implemented in a variety of physical systems.
Moving toward fully dynamical synthetic gauge fields allows, in addition, for backaction of the particles’ motion
onto the field. If this results in a time-dependent vector potential, conventional electromagnetism predicts the
generation of an electric field. Here, we show how synthetic electric fields for photons arise self-consistently
due to the nonlinear dynamics in a driven system. Our analysis is based on optomechanical arrays, where
dynamical gauge fields arise naturally from phonon-assisted photon tunneling. We study open, one-dimensional
arrays, where synthetic magnetic fields are absent. However, we show that synthetic electric fields can be
generated dynamically. The generation of these fields depends on the direction of photon propagation, leading
to a mechanism for a photon diode, inducing nonlinear unidirectional transport via dynamical synthetic gauge
fields.
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I. INTRODUCTION

The field of cavity optomechanics, addressing the interac-
tion between light and sound, has made rapid strides in recent
years [1]. Experiments have shown ground-state cooling [2,3],
measurements of motion with record sensitivity [4], efficient
conversion between microwave and optical photons [5], dy-
namics of vibrations near exceptional points [6], and the
control of single phonons [7], to name but a few achievements.

Due to the optomechanical interaction, mechanical vibra-
tions can change light frequency. During this process, the
mechanical oscillation phase is imparted onto the light field.
This provides a natural means to generate synthetic magnetic
fields for photons, as was first suggested in Refs. [8,9]. To-
gether with reservoir engineering [10], these ideas form the
theoretical basis underlying a recent series of pioneering ex-
periments on optomechanical nonreciprocity [11–16]. While
those still operate in few-mode setups, future extensions to
optomechanical arrays [17–20] will enable studying photon
transport on a lattice in the presence of an arbitrary tunable
synthetic magnetic field [9]. A similar optomechanical de-
sign underlies the first proposal for engineered topological
phonon transport [21]. These developments tie into the wide
field of synthetic magnetic fields and topologically protected
nonreciprocal transport, first envisaged and implemented for
cold atoms [22–25] and then for photons [26–32], phonons
[21,33–38], and other platforms [39,40].
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In these works, gauge fields are fixed by external pa-
rameters, e.g., the phases of external driving beams. It was
understood only recently that optomechanics provides a very
natural platform for creating dynamical classical gauge fields
[41]: if the mechanical resonator is not periodically modulated
by external driving but rather undergoes limit-cycle oscilla-
tions, the phase of those oscillations becomes a dynamical
gauge field. This field is a new degree of freedom that can
be influenced by photons.

The theory of classical dynamical gauge fields is not only
important as a starting point for high-energy quantum field
theory (e.g., Yang-Mills and Higgs theories [42–44]), but is
also an active area of research in modern condensed matter
physics (e.g., in the gauge theory of dislocations [45], spin ice
[46], and nematic liquid crystals [47,48]). We emphasize that
our main goal is different from the attempts to build quantum
simulators for existing high-energy gauge theories (suggested
theoretically for ultracold atoms in optical lattices [49,50],
superconducting circuits [51,52], cavity quantum electrody-
namics [53], and trapped ions [54]), where the experimental
implementation remains very challenging (see Ref. [55] for
the first steps). Rather, our work provides insights for all
physical systems where limit-cycle oscillators assist transi-
tions between linear modes, by connecting these systems to
the general mathematical framework of classical dynamical
gauge fields. This includes different kinds of limit cycles
(electrical, mechanical, optical, and spin oscillators, pumped
using electrical feedback, optomechanical backaction, etc.),
different kinds of linear modes (microwave, mechanical, op-
tical, magnon resonances, etc.), and almost arbitrary non-
linear coupling, using optical or mechanical nonlinearities,
Josephson junctions, etc. For concreteness, we describe it here
for the case of optomechanics, but the mathematics and the
predictions are general and of wide experimental applicability.
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If the gauge field dynamics results in a time-dependent
vector potential, conventional electromagnetism dictates that
this describes an electric field. In this work, we predict that
synthetic electric fields can arise in elementary optomechan-
ical systems, in a dynamical way. The scenarios in which
these electric fields arise, and their physical consequences,
are qualitatively different from the more conventional self-
consistently generated magnetic fields discussed in our pre-
vious work [41]. They can arise even in a linear arrangement
of coupled photon modes, where static vector potentials do not
have any effect, since they can be gauged away. This makes
them a very relevant phenomenon for present-day experimen-
tal implementations, in setups as simple as two coupled op-
tical modes. Moreover, the appearance of electric fields turns
out to depend on the direction of photon propagation. In this
way, we uncover a mechanism for nonlinear unidirectional
transport of photons (a photon diode). This works especially
well in arrays, where transport is significantly suppressed in
the blockaded direction.

Synthetic electric fields for photons have been previously
analyzed only in the context of prescribed external driving
[56,57], i.e., not dynamically generated. In these cases, the
nonlinear dynamics and unidirectional transport explored in
our work are absent.

II. DYNAMICAL GAUGE FIELDS FOR PHOTONS

The optomechanical interaction can be used to realize
phonon-assisted photon tunneling, which, as we have shown
previously, offers a natural route toward classical dynami-
cal gauge fields for photons [41]. Photons hopping between
optical modes â1 and â2 absorb or emit a phonon from a
mechanical mode b̂. A pictorial representation of this process
is shown in Fig. 1(b). Many implementations are conceivable
(photonic crystal devices, coupled toroids, and microwave
circuits [1]), but a suitable realization might simply consist of
the well-known membrane-in-the-middle setup [58,59]. The
Hamiltonian is

Ĥ =
2∑

j=1

ν j â
†
j â j + � b̂†b̂ + J (b̂â†

2â1 + H.c.), (1)

where ν j are the optical frequencies of modes â j , � is the
frequency of the mechanical oscillator, and J is the tunneling
amplitude [41]. In the following, we set h̄ = 1. The optical
frequencies are detuned from one another to suppress direct
tunneling between the optical modes. The phonon-assisted
photon tunneling is selected by tuning the mechanical fre-
quency, � ≈ |ν2 − ν1|. The Hamiltonian (1) is valid within
the rotating-wave approximation for ν2 > ν1 and � � κ, J ,
JB, where κ is the photon decay rate and B is the amplitude
of the mechanical oscillations: 〈b̂〉 = Beiφe−i�t .

During the photon tunneling process b̂â†
2â1, the mechanical

phase φ is imprinted on the photons, similar to an Aharonov-
Bohm (Peierls) phase. This can be used for optomechanical
generation of static gauge fields, as proposed in Ref. [9], and
the scheme can be readily implemented in optomechanical
crystals [60,61] or the membrane-cavity setup [58,59,62]. It
was experimentally realized in Ref. [14].

(a)

(c)

(b)

FIG. 1. Setup exhibiting dynamically generated synthetic elec-
tric fields. (a) In general terms: Limit-cycle oscillator assisting the
transition between linear modes. (b) Optomechanical realization: A
cavity with a movable membrane (green rectangle) in the middle
supporting optical supermodes â1 and â2 (mostly localized left and
right, respectively). The mechanical mode b̂ undergoes limit-cycle
oscillations. Photons tunneling (red arrow) from optical mode â1 to
â2 absorb a phonon from the mechanical oscillation, thereby acquir-
ing a phase shift set by the oscillation phase φ. Photon transport
through the setup can be probed by driving mode â1 or â2. Optical
frequencies are represented by the blue lines. (c) A one-dimensional
array, with optical modes â j of increasing frequency. Mechanical
modes b̂ j assist tunneling between modes â j and â j+1. Some mode,
âd , is driven by a laser (blue arrow), probing photon transport both
toward the left and right.

To implement dynamical gauge fields for photons, i.e.,
fields that are themselves dynamical degrees of freedom, the
oscillation phase φ (the “gauge field”) has to evolve freely,
which is the case if the mechanical mode performs limit-cycle
oscillations [41]. The limit-cycle oscillations can be generated
by pumping an ancillary optical mode, situated at a different
frequency, on the blue sideband [63]. This pumping does
not impose any particular phase on the mechanical oscillator
and thus the phase is able to evolve according to its own
dynamics. In this way, the phase φ turns into a dynamical
gauge field, being influenced by photon transport and acting
back on photons. The system of Eq. (1) can be used as
a building block for optomechanical arrays with dynamical
gauge fields for photons, as we first proposed in Ref. [41].
We use the equations of Ref. [41] as our starting point, to
predict the phenomenon of synthetic electric fields generated
by nonlinear dynamics, giving rise to unidirectional photon
transport.

III. THE BASIC PHYSICS BEHIND OUR RESULTS

We start with a preview of our results, emphasizing the
physical intuition. Any oscillator driven by a resonant force
F0 cos(�t − θ ) experiences a drift, φ̇ ∝ F0 cos(φ − θ ), of its
phase φ. In our case, the force is the radiation pressure
oscillating at the beat note between the two optical modes,
and we obtain φ̇ = −(J/B)|a1||a2| cos(φ − θ ), where θ is the
phase difference between the optical modes. If the forcing
phase θ is kept constant, this results in a stable fixed point
φ = θ − π/2. For a limit-cycle oscillator, that behavior is
known as phase locking (injection locking) to an external
drive (see Appendix D for more details).
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(a) (c) (d)

(e)

(b)

FIG. 2. Dynamically generated synthetic electric fields in the two-site system. (a), (b) Phase evolution on the mechanical limit cycle (green
orbit). (a) When the higher-frequency optical mode is laser-driven, the system settles into a stable fixed point, with a phase lag φ − θ =
−π/2. (b) When the lower-frequency optical mode is driven, the phase is continuously repelled from an unstable fixed point φ − θ = +π/2,
generating a finite synthetic electric field E = φ̇ �= 0 acting on the photons. (c) The phase diagram. In the white region, E vanishes in the
steady state. If the lower-frequency mode, a1, is driven, E bifurcates in the colored region to finite steady-state values. Their absolute values
are indicated by the color scale. The blue insets show the effective potential V (E ) determining the steady-state value of E . The dashed black
line denotes the cut along which E and the optical transmission T are plotted in (d) and (e), respectively. For the higher-frequency mode, a2,
being driven, E always vanishes for any values of the system parameters. Consequently, the transmission is never suppressed.

However, in our case an interesting self-consistency prob-
lem arises: the phase difference θ = θ2 − θ1 of the two optical
modes depends on φ itself, as the phase φ is imprinted onto
the photons during the phonon-assisted photon tunneling. The
phase of the force thus follows the oscillation phase. We
now discuss qualitatively the resulting physics, which will be
bolstered by detailed analysis later. Two cases need to be dis-
tinguished, depending on which optical mode is driven by the
laser [see Figs. 2(a) and 2(b)]. If the higher-frequency optical
mode (labeled “2”) is driven, then we find θ = φ + π/2. The
crucial term π/2 comes about due to the resonant excitation of
the lower-frequency mode via the phonon-assisted transition
2 → 1. Comparing with the stable fixed point for φ deduced
above, we conclude that any value of φ is now stable.

The situation drastically changes if the lower-frequency
optical mode is driven by the laser. Then, we find θ = φ −
π/2, where the sign has flipped because the roles of optical
modes have been interchanged (now the higher-frequency
mode is excited by the phonon sideband of the driven lower-
frequency mode). This corresponds to an unstable fixed point.
Once φ tries to move away, θ will follow, such that φ is
forever repelled. This results in a finite phase drift φ̇ �= 0,
corresponding to an effective shift of the mechanical fre-
quency. Thus, the phonon-assisted tunneling process toward
the higher optical mode is no longer in resonance but detuned
by φ̇. This off-resonant excitation shifts the optical phase
difference according to θ ≈ φ − π/2 − φ̇/(κ/2). The equa-
tion φ̇ ∝ − cos(φ − θ ) can then be fulfilled at a certain value
of φ̇, which has to be obtained self-consistently. This is the
qualitative origin of the nonlinear dynamics that gives rise to
what we will identify below as a synthetic electric field E = φ̇

acting on photons.

IV. DYNAMICS AND SYNTHETIC ELECTRIC FIELDS

Let us analyze the dynamics of the two-site system (1)
with the mechanical oscillator performing limit-cycle oscilla-
tions. The optical mode â j is driven by a laser of amplitude

Ej at frequency νD, j , probing photon transport through the
system. The optical and mechanical amplitudes are assumed
large such that quantum noise can be neglected, which is
an excellent approximation for all existing optomechanical
experiments studying nonlinear dynamics.

Following Ref. [41], the classical equations of motion for
the optical amplitudes a j = 〈â j〉 and the mechanical phase φ

read

φ̇ = �M − J

B
Re[a∗

1a2e−iφ], (2)

ȧ1 = i�1a1 − iE1 − iJBe−iφa2 − κ

2
a1, (3)

ȧ2 = i�2a2 − iE2 − iJBeiφa1 − κ

2
a2, (4)

where � j = νD, j − ν j and �M = νD,2 − νD,1 − � are optical
and mechanical detunings, respectively (switching to suitable
rotating frames). The mechanical amplitude B is considered
fixed. These equations form the starting point of our analysis.

If only one optical mode is driven, no external phase is
imprinted. The mechanical oscillator is free to pick any phase
despite the interaction with the optical modes. The phase
forms a classical gauge field with U (1) symmetry. The gauge
transformation

φ 
→ φ + χ2 − χ1, (5)

a j 
→ a je
iχ j , for j = 1, 2, (6)

generates a new valid solution of the dynamical equations,
for any real functions χ j (t ). The transformation also pre-
serves optical and mechanical frequencies whenever it is time-
independent, i.e., χ j = constant. However, if χ j are time-
dependent, Eqs. (5) and (6) have to be supplemented by a
shift in frequencies: � 
→ � + χ̇1 − χ̇2 and ν j 
→ ν j − χ̇ j .
Any time-evolving phase φ can be viewed as generating a
synthetic electric field

E = φ̇ (7)
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for photons. For example, if mode 1 is driven, we can re-
gauge using χ1 = 0, χ2 = −φ, which results in a description
where the mechanical phase is static but ν2 
→ ν2 + E . This
describes an effective optical frequency shift, which can be
interpreted as a synthetic electric field for photons in the same
way that an energy difference between electronic levels indi-
cates a voltage drop, i.e., a real electric field. In conventional
electromagnetism, an electric field can be represented either
as a time-dependent vector potential or a scalar potential gra-
dient. Analogically, the synthetic electric field E is described
either by the time evolution of the mechanical phase or by an
effective frequency shift. As we will show, E has important
consequences for photon transport.

V. DYNAMICAL PHASE DIAGRAM

Here, E is not prescribed externally but it arises due
to the dynamics of coupled optical and mechanical modes.
The optical modes induce the force F acting on the me-
chanical phase. The resulting phase evolution may generate
a field E which effectively modifies the optical frequency
difference and, consequently, the population of the optical
modes.

The results of the dynamical analysis are shown in Fig. 2.
The results were obtained by linear stability analysis and
numerical simulations.

We consider the fully resonant situation where physical
effects are most pronounced, as both optical driving and
phonon-assisted photon tunneling are resonant (�M = �1 =
�2 = 0). The system always converges to a steady state.
The steady-state value of E depends on two dimensionless
parameters: the rescaled limit-cycle amplitude BJ/κ and the
rescaled laser amplitude EJ/κ2.

The dynamical analysis becomes more intuitive by “inte-
grating out” optical modes. This leaves us with an effective
potential V (E), whose minima determine steady-state values
of E (see Appendix B for the full analytical expression):

Ė = −dV (E )

dE = 0. (8)

In the white region of the phase diagram, Fig. 2(c), the
potential V (E ) has a single minimum at E = 0 (see the blue
inset). For the lower-frequency mode, a1, being driven, this
steady state becomes unstable in the colored region of the
phase diagram, where the potential V (E ) has two minima at
finite values of E . The field E can develop such a nonzero
value for B < E/κ (above the dashed orange line). In terms
of physical parameters, the occupation of the driven optical
mode has to exceed the phonon number in the limit-cycle
oscillation. In contrast, if the higher-frequency mode, a2, is
driven, V (E ) always has a single minimum at E = 0 for
any values of system parameters. The states are not qualita-
tively changed for finite mechanical and laser detunings (see
Appendix B).

We now study effects of the dynamically generated syn-
thetic electric field on light transport. The transmission T
is the ratio of the output power leaking from the nondriven
mode, κ|a2|2 (if mode 1 is driven) or κ|a1|2 (if mode 2 is

(a) (b)

FIG. 3. Light transport in a 1D array with dynamical gauge fields
and the generation of a barrier for photon transport induced by
synthetic electric fields. (a) The optical amplitudes |aj | as a function
of position for different values of the laser amplitude E and BJ/κ = 1
(shown on a logarithmic scale). The dashed red line denotes the
driven site. Transport to the right is strongly suppressed. (b) The ratio
R = |ad−1/ad+1|2 of the optical amplitudes adjacent to the driven site
j = d . (Plotted for n = 81 sites, site d = 40 being driven.)

driven), and the driving power E2/κ . We find that

T =
B2J2

κ2(
B2J2

κ2 + 1
4

)2
+ 1

4κ2 E2
(9)

is suppressed when a finite field E detunes the tunneling
process from resonance. In Figs. 2(d) and 2(e), E and T ,
respectively, are depicted along the cut in Fig. 2(c) denoted
by the dashed black line.

When light propagates to higher optical frequencies, the
phonon-assisted photon tunneling is suppressed due to the
synthetic electric field. In contrast, the field always vanishes
when light propagates toward lower optical frequencies. In
this way, dynamical gauge fields give rise to a mechanism
for unidirectional light transport. In the following, we demon-
strate this effect in one-dimensional arrays.

VI. NONLINEAR UNIDIRECTIONAL LIGHT TRANSPORT
IN A ONE-DIMENSIONAL ARRAY

The physics of synthetic electric fields also affects pho-
ton transport in arrays [Fig. 1(c)]; for more details see
Appendix E. Figure 3(a) shows the result for a 1D array: for a
sufficiently large laser drive, the system switches into a state
where finite E develops to the right of the laser drive. This is
the direction where photons need to gain energy when tunnel-
ing, and where we already saw in the two-site system that (i) a
finite field can develop, and (ii) it suppresses photon transport.
In the array, this results in a rapid exponential suppression
of light intensity. In contrast, light easily propagates toward
the left, where E remains zero. In Fig. 3(b), we plot the ratio
R = |ad−1/ad+1|2 of transmission to the sites adjacent to the
driven site j = d as a function of EJ/κ2. The suppression of
light propagation to the right, i.e., R > 1, is achieved above
the threshold of the laser amplitude. At m sites distance from
the driven site, the ratio is exponentially increased to Rm.

Our numerical simulations indicate that unidirectional light
propagation can also be observed in two-dimensional square
arrays. In the future, one might study how these phenomena
affect synchronization dynamics of coupled optomechanical
self-oscillators [18,64,65].
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VII. EXPERIMENTAL PARAMETERS REQUIRED FOR
GENERATING THE SYNTHETIC ELECTRIC FIELD

We estimate that unidirectional light transport can be
observed for experimentally realistic parameters. For the
membrane-in-the-middle setup, feasible parameters are κ ≈
300 kHz, J ≈ 1 Hz, a zero-point fluctuation amplitude of
xZPF ≈ 10−15 m, and a number of photons in the cavity
(E/κ )2 ∼ 1010 [59]. A typical phonon number in limit-cycle
oscillations driven well above threshold is B2 ∼ (κ/J )2 ∼
1010 with a corresponding real oscillation amplitude 2xZPFB ∼
100 pm [63]. Optical modes can be represented by hybridized
modes of a cavity with avoided crossing [59]. The splitting
of their frequencies ≈200 kHz can match the mechanical
frequency. For these experimental parameters, EJ/κ2 ∼ 1 and
BJ/κ ∼ 1 are promising for observing unidirectional light
transport (see Fig. 2). The phonon number can be decreased
below the photon number in the driven mode by driving me-
chanical self-oscillations closer to threshold [63], fulfilling the
necessary condition for a finite synthetic electric field (Fig. 2).

VIII. CONCLUSIONS

While synthetic gauge fields for photons have been investi-
gated thoroughly in recent years, little has been known about
the dynamical situation. In this work, we have uncovered how
a synthetic electric field can be spontaneously created in a
readily realizable optomechanical setup. The resulting nonlin-
ear photon-diode type of unidirectional transport can lead to a
large isolation ratio, especially in arrays. We demonstrate how
the interplay of nonlinearity, dynamics, and artificial gauge
fields can produce novel physical effects and possible new
devices, which are not limited only to optomechanics but
can be reached whenever a limit-cycle oscillator assists the
transition between harmonic oscillators.
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APPENDIX A: PHONON-ASSISTED PHOTON TUNNELING

In this section, we derive the Hamiltonian (1) that describes
our scenario in the main text including the photon-phonon in-
teraction term b̂â†

2â1. This term is obtained in optomechanical
systems with two (or more) optical modes. Qualitatively, this
term arises whenever there are two optical modes that couple
to the same mechanical resonator, and the term becomes
important dynamically if the mechanical frequency matches
the optical frequency difference. The earliest, well-known
example is the membrane-in-the-middle setup of the Harris
group [58,59]. More generally, such a three-body interaction
term will generically arise in systems of nonlinearly coupled
modes (e.g., between three optical modes in a χ (2) medium,
or between microwave modes in the presence of a Josephson
nonlinearity).

We consider a membrane in a cavity whose vibrational
mode b̂ couples to two optical modes of the cavity. The
position of the membrane determines the frequencies ωL and

ωR of the optical modes âL (to the left of the membrane)
and âR (to the right of the membrane), respectively. Placing
the membrane exactly in the middle of the cavity results in
equal optical frequencies. Dislocating the membrane slightly
from the center introduces splitting ω = ωR − ωL between the
optical frequencies. Without loss of generality, we assume
ω � 0. The optical modes âL/R coupled to the mechanical
mode b̂ are described by the Hamiltonian

Ĥ = ωLâ†
LâL + ωRâ†

RâR + � b̂†b̂ + J0(â†
LâR + H.c.)

− g0(â†
LâL − â†

RâR)(b̂† + b̂), (A1)

where � is the mechanical frequency, g0 is the single-photon
optomechanical coupling strength, and J0 is the optical cou-
pling strength. For optical modes with a different transversal
spatial profile, J0 can be arbitrarily tuned by the tilt of the
membrane [59]. Due to the optical coupling, the cavity modes
hybridize and that gives rise to supermodes

â1 = −J0 âL + λ âR√
J2

0 + λ2
, (A2)

â2 = λ âL + J0 âR√
J2

0 + λ2
, (A3)

at frequencies ν1 = ωL − λ and ν2 = ωR + λ, where λ =√
ω2

4 + J2
0 − ω

2 . In terms of the supermodes, the Hamiltonian
reads

Ĥ =
2∑

j=1

ν j â
†
j â j + � b̂†b̂ + [Jres(â

†
2â2 − â†

1â1)

+ J (â†
1â2 + H.c.)](b̂† + b̂), (A4)

where

J = g0√
1 + ω2

4J2
0

, (A5)

Jres = g0√
1 + 4J2

0
ω2

. (A6)

Next, we assume driving of âL/R with lasers of strengths
EL/R at frequencies νD,L/R. Neglecting quantum fluctuations
around large optical amplitudes, we can derive equations of
motion

φ̇ = �M + Jres

B
(|a1|2 − |a2|2) cos[φ − δt]

− J

B
Re[a∗

1a2e−iφ + a1a∗
2e−iφ+2iδt ], (A7)

ȧ1 = i�1a1 − iE1 − iE res
1 e−iδt + iB[Jresa1(e−iφ+iδt + eiφ−iδt )

− Ja2(e−iφ + eiφ−i2δt )] − κ

2
a1, (A8)

ȧ2 = i�2a2 − iE2 + iE res
2 eiδt − iB[Jresa2(e−iφ+iδt + eiφ−iδt )

+ Ja1(eiφ + e−iφ+2iδt )] − κ

2
a2, (A9)

in frames rotating at suitable frequencies (mode a1

at νD,L, mode a2 at νD,R, and mode b at δ = νD,R −
νD,L), where we assume mechanical limit-cycle
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oscillations 〈b̂〉 = Beiφ with a fixed amplitude B.
We define �1 = νD,L − ν1, �2 = νD,R − ν2, �M =
δ − �, E1 = EL/

√
1 + λ2/J2

0 , E res
1 = ER/

√
1 + J2

0 /λ2 ,

E2 = ER/
√

1 + λ2/J2
0 , and E res

2 = EL/
√

1 + J2
0 /λ2 .

Now we consider the resonant case, �1 = �2 = 0, when
the generation of the synthetic electric fields is the most
pronounced. In this case, driving of âL mostly addresses
supermode â1, since the laser is on resonance with its fre-
quency and the overlap of âL with the other supermode â2

is small provided that ω � J0. As a result, we can neglect
the residual driving of the supermode â2. Similarly, driving
of âR leads to addressing mostly the supermode â2. If the
residual drivings are negligible and we tune the mechanical
frequency such that � = ν2 − ν1, the coupling term b̂â†

2â1

is selected and the other coupling terms in the Hamiltonian
(A4) are off resonance. Neglecting the off-resonant coupling
terms within the rotating-wave approximation, which is valid
for � = ν2 − ν1 ≈ ω � κ, g0, g0B, the equations of motion
reduce to Eqs. (2), (3), and (4) considered in the main text
with the effective tunneling amplitude J given by Eq. (A5).
The tunneling amplitude J decreases with decreasing J0. As a
result, a fine tuning of the ratio ω/J0 is necessary to achieve
the optimal trade-off between eliminating the residual driving
of unwanted supermodes and maximizing the amplitude of the
term b̂â†

2â1.
We have derived the Hamiltonian (1) for optical super-

modes, which is considered as the starting point in the main
text, from the fundamental optomechanical Hamiltonian (A1)
for two optical modes coupled to a single mechanical mode.
In summary, whenever two optical modes and one mechanical
resonator are in a mutual interaction, and when the mechanical
frequency matches the optical frequency difference (at least
approximately), the interaction term â†

2â1b̂ + H.c. assumed in
our work is the generic outcome.

APPENDIX B: STEADY STATES OF THE
TWO-SITE SYSTEM

In this section, we analyze the steady states of the two-site
system with a single mode being driven. They are stationary
solutions of the equations of motion [Eqs. (2), (3), and
(4) in the main text] constant in time. We first apply a
time-dependent gauge transformation to express the time
evolution of the mechanical phase in a form of an effective
optical frequency shift. Then we find a stationary condition
for the synthetic electric field E . Finally, we use an effective
potential for the synthetic electric field to study stability of its
stationary solutions.

As mentioned in the main text, we assume that only one
mode is driven. We label the driven mode by the index k =
1, 2. Driving strengths can then be expressed as Ej = Eδ j,k for
j = 1, 2, where δ j,k is the Kronecker delta. The detuning of
the nondriven mode can be set to zero, since there is no driving

frequency. Therefore, the optical detunings can be expressed
as � j = �Oδ j,k . We make use of the time-dependent gauge
transformation

φ = φ̃ + χ, (B1)

a1 = ã1e−iχ δ2,k , (B2)

a2 = ã2eiχ δ1,k , (B3)

which moves the dynamics of the mechanical phase to the
time-dependent gauge parameter χ . By appropriately choos-
ing χ, we can always achieve φ̃ = 0. The time-dependent
gauge transformation leaves the absolute values of the optical
amplitudes unchanged. As a result, a particular value of the
gauge parameter is irrelevant. Only its first derivative χ̇ = φ̇

influences the optical occupations. The time evolution of the
mechanical phase results in an effective shift (δ2,k − δ1,k )χ̇ of
the nondriven optical mode’s frequency. Note that the driven
mode, ak , is forced to oscillate with the frequency of the laser
drive, and thus it does not experience any frequency shift.

The role of the optical frequency shift χ̇ can be un-
derstood in analogy to electromagnetism. The mechanical
phase corresponds to an effective vector potential. According
to conventional electromagnetism, the time evolution of the
vector potential generates an electric field. This electric field
can be also represented by a scalar potential gradient. In this
analogy, the time evolution of the mechanical phase generates
a synthetic electric field E = χ̇ for photons, which represent
an effective optical frequency shift.

To provide the fixed-point analysis for both the cases k =
1, 2 at once, we use general indexes (k, l ) ∈ {(1, 2), (2, 1)} to
label the optical modes. According to the gauge transforma-
tion (B1), (B2), and (B3), the equations of motion transform to

˙̃φ = E − �M + J

B
Re[ã∗

k ãl ] = 0, (B4)

˙̃ak = i�Oãk − iE − iJBãl − κ

2
ãk, (B5)

˙̃al = i(δ2,k − δ1,k )E ãl − iJBãk − κ

2
ãl , (B6)

where we substituted E = χ̇ . Taking the time derivative of
Eq. (B4), we obtain the equation of motion for the synthetic
electric field

Ė = − κ (E − �M ) + EJ

B
Im[ãl ]

+ J

B
[(δ2,k − δ1,k )E − �O]Im[ã∗

k ãl ]. (B7)

To find stationary solutions of the equations of motion (B5),
(B6), and (B7), we first use that the equations (B5) and (B6)
are linear in terms of optical amplitudes. For a given value of
the synthetic electric field E , the stationary optical amplitudes
read

ãk = E
(δ2,k − δ1,k )E + i κ

2

−J2B2 + (δ2,k − δ1,k )E�O − (
κ
2

)2 + i κ
2 [(δ2,k − δ1,k )E + �O]

, (B8)

ãl = JB

(δ2,k − δ1,k )E + i κ
2

ãk . (B9)
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FIG. 4. The potential for the synthetic electric field. It has a
single minimum at E = 0 for k = 2 (dashed lines) when the higher
optical frequency is driven. For k = 1, when the lower optical
frequency is driven, the stationary value E = 0 becomes unstable
with increasing EJ/κ2 as two minima with a finite frequency shift
emerge (solid lines). (The potential is plotted for BJ/κ = 0.5.)

In the following, we set �O = �M = 0 to present the
important features of the steady states. These features are
not changed by finite detunings. We discuss the effects of
finite detunings at the end of this section. By substituting the
stationary values of the optical amplitudes (B8), (B9) into
Eq. (B7), we obtain the stationary condition for the synthetic
electric field

Ė = −κE

( E
κ

)2 + 4
[(

JB
κ

)2 + 1
4

]2
+ 4(δ2,k − δ1,k )

(
EJ
κ2

)2

( E
κ

)2 + 4
[(

JB
κ

)2 + 1
4

]2 = 0.

(B10)

For k = 2, when the mode with the higher optical frequency,
a2, is driven, only the single stationary solution, E = 0, exists.
For k = 1, when the mode with the lower optical frequency,
a1, is driven, stationary solutions with a finite synthetic elec-
tric field

E± = ±2κ

√√√√(
EJ

κ2

)2

−
[(

JB

κ

)2

+ 1

4

]2

(B11)

emerge for 4EJ/κ2 > 4(BJ/κ )2 + 1 in addition to E = 0.
To gain intuition about the stability of these stationary

solutions, we find the potential

V (E ) = κ3

2

(E
κ

)2

+ 2κ3(δ2,k − δ1,k )

(
JE

κ2

)2

× ln

⎧⎨
⎩

(E
κ

)2

+ 4

[(
JB

κ

)2

+ 1

4

]2
⎫⎬
⎭, (B12)

such that −dV (E )/dE is equal to the right-hand side of
Eq. (B10). The potential shows that the stationary solution
E = 0 is always a stable steady state for k = 2 when the
optical mode with the higher optical frequency is driven (see
Fig. 4). The stability of the steady state does not depend on

the system parameters. For k = 1, when the mode with the
lower optical frequency is driven, the stability of the steady
state depends on the two dimensionless parameters EJ/κ2

and BJ/κ . The potential in Fig. 4 shows that the steady state
E = 0 is the only stationary solution and it is stable in the
white region of the phase diagram depicted in Fig. 2 of the
main text. It becomes unstable as the two steady states with
a finite synthetic electric field emerge in the colored region
of the phase diagram in Fig. 2 of the main text. Note that
the potential does not provide conclusive information about
the stability of the steady states because it does not take into
account the dynamics of the optical modes. Therefore, the
linear stability analysis was used to confirm that the stability
of the steady states is determined correctly by the potential
V (E ).

A finite mechanical detuning, �M �= 0, detunes the
phonon-assisted photon tunneling process from resonance. In
this way, the mechanical detuning represents a static synthetic
electric field for photons in contrast to the dynamically gener-
ated synthetic electric field E . If the higher optical frequency
is driven, the dynamically generated synthetic electric field
E acts against this static synthetic electric field and increases
transmission to the lower optical frequency with the increas-
ing laser amplitude. On the other hand, for the lower optical
frequency being driven, the dynamically generated synthetic
electric field detunes the tunneling process further from res-
onance with the increasing laser amplitude. As a result, it
decreases light propagation to the nondriven optical mode.
Above some threshold of the laser amplitude, the synthetic
electric field bifurcates as the effective potential has two local
minima. This again happens only for the lower frequency
being driven.

A finite laser detuning, �O �= 0, suppresses the coherent
driving, which results in a smaller optical amplitude of the
driven mode. For the higher optical frequency being driven,
the synthetic electric field always vanishes even for a finite
optical detuning. It vanishes also when the lower optical
frequency is driven for small laser amplitudes. Similarly to the
resonant case, the synthetic electric field bifurcates to finite
values above the threshold of the laser amplitude for the lower
frequency being driven. The threshold and the values of the
bifurcated synthetic electric field are modified by the finite
optical detuning since it changes the population and the phase
of the driven optical mode. However, the qualitative features
of the synthetic electric field remain the same. The synthetic
electric field is generated only above threshold and only for
the lower optical frequency being driven.

APPENDIX C: NUMERICAL SIMULATIONS OF THE FULL
EQUATIONS OF MOTION

In this section, we present numerical simulations of the
system described by the fundamental Hamiltonian (A1) when
we consider the laser drive coupling to the original (un-
coupled) cavity modes, out of which the supermodes are
formed. In this way, we demonstrate the validity of the results
presented in the main text where the description of the system
is simplified by assuming that individual supermodes can be
separately coupled to the laser drive.
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(a) (b)

FIG. 5. Dynamically generated synthetic electric fields in the
two-site system considering the model described by the fundamental
Hamiltonian (A1). (a) For the uncoupled optical mode, aL , being
driven with a laser at frequency ν1 (solid lines), a large synthetic
electric field E develops. For driving the uncoupled optical mode, aR,
with a laser at frequency ν2 (dashed lines), a small synthetic electric
field develops; however, it is reduced as the sideband ratio ω/κ

increases (see the legend). (b) As a result, the optical transmission
T to the right (solid lines) is significantly suppressed in comparison
to the transmission to the left (dashed lines). In a one-dimensional
array, this transmission ratio gets exponentiated by the length of the
array, leading to a very significant suppression of transport in one
direction. (Plotted for Bg0/κ = 2, J0/ω = 0.085.)

We now simulate the dynamics of the uncoupled optical
modes âL and âR according to the fundamental Hamiltonian
(A1). To this end, we derive classical equations of motion

φ̇ = −� + g0

B
(|aL|2 − |aR|2) cos φ, (C1)

ȧL = i(�L + 2g0B cos φ)aL − iEL − iJ0aR − κ

2
aL, (C2)

ȧR = i(�R − 2g0B cos φ)aR − iER − iJ0aL − κ

2
aR, (C3)

neglecting quantum fluctuations around the expectation values
aL/R = 〈âL/R〉, where we again assume that the mechanical
mode, 〈b̂〉 = Beiφ , performs limit-cycle oscillation with a
fixed amplitude B as well as �L = νD − ωL, �R = νD − ωR,
and νD is the frequency of the laser drive. We consider driving
of a single uncoupled optical mode at resonance with the
corresponding supermode, i.e., νD = ν1 for EL �= 0 or νD = ν2

for ER �= 0, and � = ν2 − ν1. The generated synthetic electric
field and the optical transmission are shown in Fig. 5 as a
function of the rescaled driving strength Eg0/κ

2. One can see
in Fig. 5(a) that a large synthetic electric field is generated for
mode aL being driven (solid lines). As a result, the transmis-
sion to the right (solid lines) is significantly suppressed; see
Fig. 5(b).

For driving mode aR, a small synthetic electric field
(dashed lines) is generated. This is in contrast to the sim-
plified model in the main text, where the synthetic electric
field completely vanishes when light propagates to the lower
optical frequency. The small generated synthetic electric field
is a result of the residual driving of the supermode a1 due
to its nonvanishing overlap with the driven uncoupled mode
aR. Since the mechanical frequency, � = ν2 − ν1, is chosen
to match the optical frequency difference, the supermode a1

is driven on the blue sideband. However, the residual driving
can be suppressed by increasing the sideband ratio ω/κ; see
Fig. 5(a). As a result, a significant suppression of the optical

transmission to the right (solid lines) in comparison to the
transmission to the left (dashed lines) can be reached; see
Fig. 5(b). This leads to unidirectional transport of light which
works especially well in one-dimensional arrays. In such an
array, the transmission ratio is exponentiated by the length of
the array, which results in a large suppression of transport in
one direction.

Simulating the dynamics of the uncoupled optical modes,
we have shown that unidirectional light transport via synthetic
electric fields is achieved for the fundamental model described
by the Hamiltonian (A1). This demonstrates that the model
in the main text indeed captures the important features of the
interaction between the two optical modes and the mechanical
mode in our scenario. Our results show that unidirectional
light transport is more pronounced with the increasing side-
band ratio ω/κ .

APPENDIX D: PHASE LOCKING

In this section, we provide a brief summary of phase
locking, which can be reached in the two-site system by simul-
taneously driving both optical modes. Note that the analysis
presented in the main text is for a single mode driven only.
We present here quantitative features of phase locking, which
has been previously well studied in a similar optomechanical
system [18].

The starting point of the analysis is the equations of motion
(2), (3), and (4) in the main text. The stationary values for the
optical amplitudes are

a1 = −JBE2e−iφ + i κ
2 E1

J2B2 + (
κ
2

)2 , (D1)

a2 = −JBE1eiφ + i κ
2 E2

J2B2 + (
κ
2

)2 . (D2)

Note that if both optical modes are driven, the phases ϕ1 and
ϕ2 of the laser amplitudes E1 and E2, respectively, determine
the phases θ1 and θ2 of the intracavity modes. This is different
from the case when only a single optical mode is driven, where
the phase of the driving amplitude is irrelevant.

The stationary value of the mechanical phase φ obeys the
Adler equation

�M − |a1||a2| cos(φ − θ ) = 0, (D3)

where θ = θ2 − θ1. However, the absolute values of the op-
tical amplitudes |a1| and |a2| depend on the phase difference
φ − θ . The Adler equation still determines uniquely the sta-
tionary value of cos(φ − θ ) but the full analytical expression
of this equation is complicated. Thus it is simpler to switch to
the phase difference ϕ = ϕ2 − ϕ1 of the laser phases ϕ1 and
ϕ2. The Adler equation then has the form

�M − J

B

|E1||E2|
J2B2 + (

κ
2

)2 cos(φ − ϕ) = 0. (D4)

We can easily read off that the stationary solution of φ exists
for

|�M | � J

B

|E1||E2|
J2B2 + (

κ
2

)2 . (D5)
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The mechanical phase φ is locked under this condition to the
difference ϕ of the laser drives’ phases. Since there is one-
to-one correspondence between the laser drives’ phases and
the intracavity modes’ phases, the mechanical phase φ can be
equivalently thought to be locked to the phase difference θ of
the intracavity modes.

APPENDIX E: ONE-DIMENSIONAL ARRAYS

Here we provide details about one-dimensional arrays
analyzed in the main text. We consider an array, depicted
in Fig. 1(c) of the main text, represented by a stack of
membranes inside a cavity. The sites of the array support
optical modes a j whose frequencies ν j increase with site
index j = 1, . . . , n. We assume that the phonon-assisted pho-
ton tunneling processes are resonant: � j = ν j+1 − ν j , where
� j is the frequency of the mechanical oscillator assisting
tunneling between modes â j and â j+1. Specifically, we will
consider a situation where some optical mode j = d is driven
resonantly from the side, to study light propagation toward
the left ( j < d) and toward the right ( j > d). Alternatively to
membrane stacks, suitably designed coupled-cavity arrays in
optomechanical crystals could implement such a setup.

The mechanical oscillators are again assumed to perform
limit-cycle oscillations 〈b̂ j〉 = B eiφ j with free phases and with
a fixed amplitude B equal for all mechanical oscillators. By
straightforward extension of Eqs. (2), (3), and (4) (in the
main text), we obtain the coupled equations of motion for the
optical amplitudes and the mechanical phases

φ̇ j = − J

B
Re[a∗

j a j+1e−iφ j ], (E1)

ȧ j = −iE jδ j,d − iJBe−iφ j a j+1 − iJBeiφ j−1 a j−1 − κ

2
a j, (E2)

where δ j,d is the Kronecker delta. The optical modes are
expressed in the frames rotating with their frequencies ν j

and the mechanical modes are in the frames rotating with
the difference of optical frequencies on the neighboring sites:
ν j+1 − ν j .

We study the dynamics of one-dimensional arrays by nu-
merically solving the classical equations of motion (E1) and
(E2). The system converges to a steady state for any values
of the parameters EJ/κ2 and BJ/κ . Properties of the steady
states are discussed in the main text.
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