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Zusammenfassung
Motiviert durch die selektive Adsorption von funktionalisierten Wirkstoffträgerpar-
tikeln an bestimmte Zelltypen für medizinische Anwendungen werden in dieser Ar-
beit grundlegende Heteroaggregationsphänomene unter besonderer Berücksichtig-
ung des dynamischen Verhaltens in physikalischen und biologischen Modellsyste-
men untersucht. Die Adsorption von Antikörpern als mögliche funktionelle Ein-
heit an Rezeptoren auf Zelloberflächen stellt einen entscheidenden ersten Schritt in
einer Reihe weiterer Transportbeschränkungen bei der zellulären Aufnahme funk-
tionalisierter Wirkstoffträgerpartikel dar. Zur Etablierung geeigneter wissenschaft-
licher Methoden für die Analyse von selektiven und kompetitiven Heteroaggrega-
tionsprozessen, wurden spezifische Interaktionen sowie die Heteroaggregation von
mehreren unterschiedlichen kolloidalen Spezies zunächst in physikalischen Partikel-
systemen untersucht. Die experimentellen Methoden umfassen vorrangig die Durch-
flusszytometrie sowie diverse mikroskopische Verfahren, während die Simulationen
auf Populationsbilanzgleichungen basieren mit Kernen, die in klassischen kolloid-
chemischen Grundlagen wurzeln. Beide Ansätze wurden auf biologische Systeme
angewendet, um eine quantitative Beschreibung der Dynamik und Effizienz von me-
dizinischen Wirkstoffapplikationsprozessen zu erreichen. Dies könnte sich als wert-
voll für künftige Optimierungsbestrebungen erweisen.

Zur Bestimmung der Aggregatzusammensetzung und ihrer Dynamik in Heteroag-
gregationsprozessen hat sich die Durchflusszytometrie als leistungsfähiges Messver-
fahren erwiesen. Sie ermöglicht eine unabhängige und sehr detaillierte Auflösung
mehrdimensionaler Verteilungen durch eine zuverlässig automatisierte Einzelpar-
tikelanalyse. Die Untersuchungen in binären und ternären Partikelgemischen fokus-
sieren auf elektrostatische De- und Restabilisierungseffekte, die durch die Auswahl
geeigneter Partikelspezies und deren Mischungsverhältnis maßgeblich gesteuert wer-
den können. Die experimentellen Ergebnisse wurden mit mehrdimensionalen de-
terministischen Populationsbilanzen nachgestellt, in denen die internen Koordinaten
die Partikelanzahl der jeweiligen Spezies in einem Aggregat abbilden. Der physi-
kalisch diskrete Eigenschaftsraum wurde adaptiv mit einer semi-heuristischen Me-
thode so reduziert, dass nur Eigenschaftskoordinaten mit hohen Partikelkonzentra-
tionen im Modell berücksichtigt werden. Die verwendeten Aggregationskerne basie-
ren auf deterministischen Modellen aus der Kolloidchemie, insbesondere der DLVO
Theorie, und verknüpfen die Interaktionen auf der Einzelpartikelskala mit dem ma-
kroskopischen Verhalten mehrerer Partikelpopulationen. Die an Partikelsystemen
entwickelten Methoden wurden erfolgreich für eine systematische, modellgestützte
Aufklärung präferentieller Aggregationsprozesse in einem ternären System aus An-
tikörpern und zwei humanen Tumorzelllinien (KARPAS-299 und U-937) eingesetzt.
Trotz angenommener instantanter Aggregation bei Rezeptor-Ligand-Kollisionen, ver-
ursacht die geringe Rezeptorkonzentration auf den Zelloberflächen einen ratenlim-
itierten Aggregationprozess (engl.: rate limited cluster aggregation, RLCA). Popula-
tionsbilanzsimulationen mit Kernen, die stark heterogene Oberflächenstukturen der
aggregierenden Spezies berücksichtigen (patchy particles), bestätigen die experimen-
tellen Befunde. Die zielgerichtete Verabreichung pharmazeutischer Wirkstoffe mit-
tels funktionalisierten Trägerpartikeln an spezifische Zellen unter Minimierung nach-
teiliger Beeinflussung anderer Zelltypen (targeted drug delivery) stellt ein potentielles
Anwendungsgebiet dieser Ergebnisse dar.



Abstract
Motivated by the selective adsorption of functionalised drug carrier particles to cer-
tain cell types for medical applications this thesis investigates fundamental heteroag-
gregation phenomena under special consideration of the dynamic behaviour in phy-
sical and biological model systems. The adsorption of antibodies as possible func-
tional moieties to receptors on cell surfaces represents an essential first step in a series
of further transport limitations for the cellular uptake of functionalised drug carrier
particles. To establish suitable scientific methods for the analysis of selective and
competitive heteroaggregation processes, the specific interaction and heteroaggrega-
tion of multiple colloid constituents was studied in physical particle systems first.
Experimental methods primarily include flow cytometry and diverse microscopic
techniques, while simulations are based on population balance equations with ker-
nel models rooting in classical colloid science. Both approaches were transferred to
biological systems to achieve a more rigorous description of drug delivery dynamics
and efficiency. This could prove valuable for future optimisation efforts.

Flow cytometry was established as a very powerful and convenient tool to char-
acterise cluster composition and its dynamics in heteroaggregation processes. It en-
ables an independent and very detailed resolution of multidimensional distributions
by a reliably automated single particle analysis. Investigations in binary and ternary
particle mixtures focus on electrostatic de- and restabilisation phenomena, that can
be tailored by the choice of suitable particle species and their mixing ratio. Experi-
mental results were reconstructed by multivariate population balance simulations in
which the internal coordinates represent the particle number of the respective species
inside an aggregate. The physically discrete property state space was adaptively
reduced by a semi-heuristic approach, so that only property coordinates featuring
high aggregate concentrations were considered in the model. The applied aggre-
gation kernels are based on deterministic models from colloid science, in particular
DLVO theory, and connect interactions on the single-particle level with the macro-
scopic behaviour of multiple particle populations. The methods established for parti-
cle systems were successfully transferred to a systematic, model-based investigation
of preferential aggregation processes in a ternary system of antibodies and two hu-
man tumour cell lines (KARPAS-299 and U-937). Despite the assumed instantaneous
aggregation following receptor-ligand collisions, the low receptor expression on cel-
lular surfaces causes a rate limited aggregation process (RLCA). Population balance
simulations with kernels that consider the strong surface heterogeneities of the ag-
gregating species (patchy particles) confirm the experimental results. The targeted
administration of pharmaceutical compounds by functionalised carrier particles to
specific cells under minimisation of adverse effects represents a potential area of ap-
plication of these results.
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Chapter 1
Introduction
With scientific progress over the past decade, activities on the micro- and nanoscale
have greatly intensified and open up new possibilities for technological and indus-
trial use. However, the processing of matter on these scales remains difficult since di-
rect mechanical handling is usually not feasible, especially on the nanoscale. To over-
come this limitation for particulate materials, natural self-assembly processes can be
harnessed in a bottom-up approach to direct aggregation and the formation of new
functional materials. In this context particles with tailored surface heterogeneities,
like Janus particles, may attain an important function as building blocks19,45,107,157.

An application of directed aggregation processes with strong impact is found in
the recent field of nanomedicine. Within this rapidly evolving and highly interdis-
ciplinary research area strong efforts are aimed at improving the delivery of phar-
maceutical compounds by innovative drug targeting methods112. In this context di-
rected aggregation processes between a carrier entity to which the drug is bound and
the target cell represent one of the key issues in improving the efficiency of drug de-
livery processes and reducing adverse medical effects at the same time. Common
carrier systems include micro- or nanoscale biodegradable particles or capsules and
vesicles like liposomes with tailored surface properties in order to evade premature
degradation by the immune system and to target specific cells, followed by an opti-
mal release of the drug34,91,112,129,139.

An abundant diversity of carrier design and drug release studies can be found in
the literature31,38,105,136,143,158. Most of these, however, are of a qualitative experi-
mental nature and lack a rigorous, quantitative approach by simulation. This can be
attributed to the profound complexity and high level of interdisciplinarity that inves-
tigations of mammalian cells tend to present. Therefore, despite the possible scien-
tific impact, only few simulation efforts exist - some in the field of virus infection - in
which the transport process of a biological entity (e.g. antibody, protein, virus) or a
drug carrier particle and its dynamics are investigated in detail along the route to the
intracellular target destination6,43,137,153.

From a chemical engineers point of view, this route constitutes three central trans-
port limitations on the single cell level: transport from the medium to the cell surface,
transport of adsorbed particles through the cell membrane and further intracellular
transport or degradation mechanisms. The first issue represents the main focus of this
thesis. In order to tackle the challenges, skills from diverse scientific disciplines, in-
cluding biology, medicine, physics as well as colloidal and engineering sciences, can
deliver valuable synergetic insights for an improved understanding and optimisation
of drug targeting processes.



2 Introduction

Motivation and scope

Attempting a more rigorous understanding of the targeted transport process to the
cell surface, this thesis investigates the aggregation dynamics of model drug carrier
particles to cellular surfaces experimentally and by simulation. Figure 1.1 schemati-
cally illustrates the scope of the thesis with the adopted structure.

Since directed assembly processes on the micro- and nanoscale are strongly related
to colloidal sciences and aggregation / breakage phenomena in particular, prelimi-
nary studies in particle systems under exclusion of biological variabilities are con-
ducted first. In these, the fundamental understanding of heteroaggregation between
different species from the molecular scale towards the scale of a particle ensemble
are attained. Model aggregation processes in multi-species particle systems are in-
vestigated by closely monitoring the dynamics of the cluster composition. For this
purpose, flow cytometry on the experimental side and population balance modelling
on the simulation side represent the central techniques extensively used during the
investigations. Both satisfy the requirements to deal with multi-dimensionally dis-
tributed dynamic systems. Results for binary and ternary particle systems are anal-
ysed with respect to different mixing ratios and dosage experiments. They demon-
strate the unmatched level of detail reached by the applied methods. The experimen-
tal heteroaggregation dynamics are successfully reconstructed by a bivariate popu-
lation balance equation on a physically discrete and adaptively reduced state space.
Literature models describing the aggregation rates under consideration of DLVO the-
ory are extended to heteroaggregation in binary systems. The modified rate models
are used as kernels in the population balance equation. In an attempt to explain
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Figure 1.1: Schematic representation outlining the scope and structure of this thesis.
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differences in macroscopic aggregation dynamics for diverse primary particles, the
pair interaction energies on a single particle level are determined by colloidal probe
microscopy. This approach aims at establishing the causality between microscopic
interactions on the single particle level and the macroscopic aggregation behaviour
of the different particle standards.

By means of the experimental and simulation methods developed with the model
particle systems the targeted transport process to cell surfaces can now be investi-
gated in a multi-species biological system (Figure 1.1). This second main pillar of
the thesis focuses on cellular targeting in a mixed suspension of two model human
tumour cell lines by antibody-antigen specific interactions. An interesting model
system with a potential biomedical application is represented by aminopeptidase N
(CD13) receptors on human tumour cells. Aminopeptidase N is known to repre-
sent a functionally important marker of angiogenically active vasculature and might
represent an important marker for tumours15,36,106,145. The selective and specific
drug delivery to these target cells thus represents a future application in therapeutic
medicine. Bearing this in mind, preferential aggregation was studied with aminopep-
tidase N antibodies in a mixture of two human tumour cell lines differing with regard
to their CD13 expression on the cellular surface. U-937 cells isolated from histiocytic
lymphoma and KARPAS-299 cells from anaplastic large cell lymphoma were selected
as cellular system. As in the particle systems, experimental investigations of aggre-
gation dynamics by flow cytometry are complemented by population balance simu-
lations. The aggregation kernels are adapted to biological interactions by non-DLVO
interaction potentials between the aggregating entities. By means of simulation, the
dynamics of larger biofunctionalised carrier particles with different surface charac-
teristics could also be predicted.

In summary, this thesis combines aspects of colloidal sciences with dynamic pop-
ulation balance simulations for the application to biological systems in the area of
preferential cell targeting to provide a more rigorous theoretical approach in describ-
ing the dynamics and efficiency of drug delivery processes.

The thesis was conducted under supervision of Prof. K. Sundmacher in his group
Physical and Chemical Process Engineering at the Max Planck Institute for Dynam-
ics of Complex Technical System in Magdeburg. Due to its complexity and the high
level of interdisciplinarity the work was integrated into the activities of the Research
Centre ‘Dynamic Systems in Biomedicine and Process Engineering’ at the Otto-von-
Guericke-University Magdeburg. In particular, a cooperation with Prof. M. Naumann
and Prof. U. Lendeckel (now at the Institute of Medical Biochemistry and Molecular
Biology, Ernst-Moritz-Arndt University Greifswald) of the Institute of Experimental
Internal Medicine was initiated. Experimental investigations with the atomic force
microscope were supported by group of Prof. H.-J. Butt investigating the Physics of
Polymers at the Max Planck Institute for Polymer Research in Mainz. Furthermore,
in-house cooperations with Prof. U. Reichl of the Bioprocess Engineering group and
Prof. H. Briesen (now chair of Process Systems Engineering at the Technical Univer-
sity of Munich) were launched.



4 Introduction

Content and structure of the thesis

The scope of the thesis shown in Figure 1.1 inherently represents the adopted struc-
ture. Faced with the multitude of scientific disciplines, some having been developed
over more than a century, only brief introductions to central theoretical and experi-
mental aspects of colloidal science are provided in Part I. It first focuses on funda-
mental theoretical issues regarding the stability of colloidal dispersions in Chapter
2. This is followed by a short discussion of important experimental techniques to
characterise colloidal suspensions, highlighting atomic force microscopy and flow
cytometry in Chapter 3. Finally in Chapter 4, an overview of the simulation methods
is given with special emphasis on population balance equations and their numerical
solution. Based on these foundations, aggregation phenomena and their dynamics in
multi-species colloid systems are studied in the following parts.

Part II focuses on electrostatically induced heteroaggregation in multi-species par-
ticle systems. The experimental results are presented in Chapter 5 for binary and
ternary particle mixtures. These mainly rely on flow cytometric measurements, but
also contain microscopic validations and electrophoretic measurements. Some results
concerning the influence of the surface functionalisation on the aggregation dynam-
ics are included in this chapter. By using particle species from two different manufac-
turers and employing colloidal probe microscopy on a single particle level, different
macroscopic aggregation behaviour is explained on the population level between the
two sets of polystyrene particle standards used in the respective experiments. For a
more detailed understanding of the aggregation process, a bivariate population bal-
ance simulation is defined in Chapter 6 on a discrete state-space which was adap-
tively reduced by a semi-heuristic algorithm. The aggregation kernels are developed
under consideration of literature models for perikinetic systems based on DLVO and
non-DLVO interaction potentials. Simulation results show excellent agreement with
experimental distribution data.

In Part III the fundamental insights on colloidal aggregation phenomena in multi-
species mixtures are applied to a biological system. The investigations focus on the
preferential aggregation of antibodies in an incubated mixture of human U-937 and
KARPAS-299 tumour cells. This part is structured in accordance with Part II, first pre-
senting the experimental results in Chapter 7, followed by the detailed development
of the population balance model and a discussion of results in Chapter 8.

Apart from concise summaries following every milestone, concluding statements
and a short outlook for the thesis as a whole are given in Chapter 9.



Part I

Theoretical and experimental
background
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Colloidal science concerns disperse phase systems in which one or more of the com-
ponents has at least one dimension within the nanometre to micrometre range135.
Technically important disperse phase systems involve numerous combinations of
solid, liquid and gaseous substances, of which dispersed solid particles in a continu-
ous liquid phase represent the most common class dealt with in the scope of colloidal
science. Solid particles may include inorganic materials as well as organic polymer
particles. Although polymers show different material properties compared to inor-
ganic materials, giving rise for instance to swelling and gelation phenomena, their
approximative treatment as solid is usually justified. For biological matter this ap-
proximation can often not be maintained, especially if the particulate phase consists
of fluid volumes surrounded by flexible biomembranes, as is the case for cells or lipo-
somes. Depending on membrane flexibility, deformations on the interface can exert
dominant influences usually of hydrodynamic origin on the interaction properties
between disperse elements. However, for the treatment within this thesis any de-
tailed hydrodynamic analyses on the microscale are neglected and also biologically
disperse elements are considered as particles. All particulate entities used within this
thesis range between 10 nm and 10 μm in size and are thermodynamically unstable
due to their high surface free energies.

Colloid science is a very interdisciplinary research area. Owing to the complexity
of most colloidal systems, the subject often cannot be treated with the exactness that
tends to be associated with the respective areas of physics and physical chemistry.
It is probably a combination of this lack of precision and its interdisciplinary nature,
rather than a lack of technical importance, that has favoured work with well-defined
systems, like single component monodisperse suspensions or the use of pure sur-
face active agents. Despite the large number of variables which are often involved,
research of colloidal systems coupled with advances in understanding of the funda-
mental principles of physics and chemistry has made it possible to formulate coherent
theories related to many aspects of colloidal behaviour. Since colloidal science can be
understood at both descriptive and theoretical levels, the study of this area ranges
widely from relatively simple descriptive material to extremely complex theory.

For well over a century colloids and their aggregation behaviour have been stud-
ied intensely, ever since focusing on stability as a central issue. Theoretical consid-
erations culminated in a first coherent theory in the 1940’s, which was developed
independently by Derjagiun and Landau23 as well as Verwey and Overbeek151 and
became known as DLVO theory. Because of its importance in describing the stabil-
ity of colloidal materials, central aspects of DLVO theory are presented in Chapter 2.
Hand in hand with theoretical progress, several techniques for the characterisation
of colloidal materials have been developed, most of them relying on the diffraction
of light transmitted through a sample, like microscopic and scattering techniques.
Some important methods that were employed within this thesis, like atomic force mi-
croscopy and flow cytometry, are discussed in Chapter 3. This is followed by a short
introduction into modelling tools used to describe aggregation dynamics in colloidal
dispersions. Population balance treatments date back to von Smoluchowski’s semi-
nal paper of 1917. With the advent of computer technology, modelling methods were
considerably extended beyond the realm of analytical solutions. Numerical solutions
of predictive models, like population balances or molecular modelling, were comple-
mented by stochastic Monte Carlo methods. A brief overview of the most important
methods in the context of colloidal aggregation phenomena is presented in Chapter 4.





Chapter 2
Stability of colloidal dispersions
A characteristic feature of colloidal dispersions is the large area-to-volume ratio for
the particles involved135. At the interface between the dispersed phase and the dis-
persion medium, characteristic surface properties, such as adsorption and electric
double layer effects, play a very important role in determining the physical proper-
ties of the system. But despite the high area-to-volume ratio, the amount of surface-
active material required to achieve modification of the interfaces in a typical colloidal
dispersion can be quite small because the material within some molecular layers
of the interface exerts by far the greatest influence on particle-particle and particle-
dispersion interactions. Substantial changes of the bulk properties can thus be ef-
fected by small quantities of suitable additives. A very important physical property
of colloidal dispersions affected by surface additives is the tendency of the particles
to aggregate. Depending on particle concentration, encounters between particles dis-
persed in liquid media may occur frequently and the stability of a dispersion is de-
termined by the interaction between the particles during these encounters.

Colloidal stability is influenced by a variety of mechanisms. Apart from steric in-
teractions which play a decisive role for rough polymeric surfaces where segments of
lyophilic polymer chains extend some distance into the dispersion medium, potential
interaction energies between the particle surfaces exert an essential influence on the
aggregation behaviour. It is by tuning these interaction potentials, that aggregation
can be tailored according to technical demands for designed processes. All predomi-
nant forces between colloidal particles arise from electromagnetic interactions on the
molecular scale. This is encapsulated in the Hellman-Feynman theorem, which states
that once the spatial distribution of the electron clouds has been determined by solv-
ing the Schrödinger equation, the intermolecular forces may be calculated on the basis
of classical electrostatics68. But since exact solutions of the Schrödinger equation are
not easily accessible, it has been found useful to classify intermolecular forces into
a number of seemingly different categories, such as van der Waals, Coulombic and
solvation forces, hydrophobic interactions as well as ionic and hydrogen bonding, of-
ten accompanied by further divisions into strong and weak or short ranged and long
ranged interactions.

Regarding the range of interaction, three main areas of recent activities can be iden-
tified68, two of which investigate short ranged forces in quantum mechanical or stat-
ical mechanical approaches to describe chemical bonding in solids or to derive phys-
ical bulk properties of single atoms or molecules. The third deals with the long range
interactions between surfaces and small particles in colloid science. Here, effects at
short range take place at very close to molecular contact (< 1 nm) and long range
forces are rarely important beyond 100 nm68. A rough categorisation of typical in-
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Figure 2.1: Overview and categorisation of interactions between particles.

teractions and their theoretical descriptions is presented in Figure 2.1 in dependence
of the separation distance between two solid surfaces. While molecular theories at-
tempt to describe the long range interactions all the way from atomic dimensions,
the central focus of this thesis is directed at continuum models that apply for inter-
actions beyond the molecular scale. Although the assumption that some of the bulk
properties hold right down to the molecular scale presents some serious conceptual
problems and neglects some highly specific solvent effects, for example expressed by
oscillating interaction forces at separation distances of molecular dimensions68, these
models present an acceptable level of approximation for the length scales examined
in this thesis.

In the following sections, first the electrical properties at solid-liquid interfaces
will be discussed, before potential interaction energies are derived for macroscopic
spheres which are used to assess the stability in a colloidal mixture.

2.1 Electrical properties of interfaces
Most substances acquire an electric surface charge when brought into contact with a
liquid medium. Possible charging mechanisms depend on the chemical composition
and include ionisation, ion adsorption or ion desorption. For example oxides usually
develop a surface charge as result of adsorption or desorption of protons, hydrox-
ide or other dissolved ions, while in salt-like colloids ions adsorb to the surface and
produce surface charge. A prominent example is solid silver-iodine, where iodine
ions preferentially adsorb to the surface of AgI crystals and reduce the point of zero
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charge from pAg = 8 as expected from the solubility product to pAg = 5.778. The
surface charge at solid interfaces influences the distribution of nearby ions in the sur-
rounding liquid phase. Ions of opposite charge (counter-ions) are attracted towards
the surface and ions of like charge (co-ions) are repelled. In combination with thermal
motion, the interactions between immobile and mobile charges gives rise to an elec-
tric double layer, with an excess of neutralising counter-ions over co-ions distributed
near the charged surface in a diffuse manner. Despite the local separation of electrical
charges, the condition of electro-neutrality is always maintained for the total system.

2.1.1 Electrical double layer

The adsorption of mobile charges at solid-liquid surfaces was first treated by Helm-
holtz55 in 1853. In his model, the charged solid surface is covered by a single layer of
oppositely charged counter-ions referred to as Helmholtz layer. Gouy46 and Chap-
man18 independently refined this theory in the early 20th century by replacing the
single counter-ion layer by an exponentially decreasing ion concentration layer. This
is achieved if the concentration of the counter-ions is assumed to be Boltzmann dis-
tributed at chemical equilibrium. In 1924 Otto Stern drew attention to contradictions
encapsulated in the Gouy-Chapman model, which become especially apparent for
highly charged surfaces, and offered a solution by combining both concepts142. In his
model of an electric double layer, the charged solid surface is covered by an immo-
bile compact layer of counter-ions (Stern layer) followed by a diffuse layer of mobile
charges analogous to Gouy-Chapman’s diffuse layer. The main assumptions include
a flat uniformly charged surface of infinite extent, point charge ions, a dielectric per-
mittivity constant throughout the double layer and equal to the bulk value, as well as
the restriction to a single symmetric electrolyte. Despite its limitations, the combined
Gouy-Chapman-Stern model is still frequently applied. In later years the double layer
theory was subject to further modifications with ever increasing levels of detail. For
ions not longer considered as point charges, two layers within the Stern model were
introduced: one with strongly adsorbed pure counter-ions, referred to as the inner
Helmholtz plane, and a second layer of slightly larger solvated counter-ions in the
outer Helmholtz plane47. In the treatment of aggregation adopted in this thesis, the
prediction of colloidal stability is predominantly influenced by the long range inter-
actions between the particles. The Gouy-Chapman model, which accounts for the
diffuse part of the electrical double layer, provides a sufficient level of detail for de-
scribing the electrostatic effects in colloidal suspensions with long range interaction
energies. To this end, substitute particles are defined by the solid particles including
their surrounding Stern shell. Therfore the Gouy-Chapman model without any Stern
layer is described in the following.

A detailed analysis of the electrostatic field surrounding a solid interface in an elec-
trolyte solution, requires knowledge about the ion distributions. As mentioned be-
fore, counter-ions with charges opposite in sign to the surface charge will be attracted
and like-charged co-ions will be repulsed, while the charge balance condition is main-
tained globally. At the same time, each ion participates in the randomising thermal
motion of the solution. The electrostatic potential of distributed charges must sat-
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isfy the Poisson equation, which relates the mean force potential Ψ to the electric free
charge density ρC

dl
127.

∇ · (−ε0εr∇Ψ) = ρC
dl (2.1)

with ε0 as vacuum and εr as relative static dielectric permittivity. Because the ions
in the diffuse region are considered to be in equilibrium, the force which equals the
gradient of the mean electrostatic potential Ψm must vanish in68,127

kBT∇ ln ci + zie∇Ψm = 0 (2.2)

with ci as ion concentration in the diffuse layer with valency zi and e as elementary
charge. From Eq. (2.2) the Boltzmann distribution of the ion concentration follows as

ci = ci,∞ exp
(
− zieΨm

kBT

)
. (2.3)

Recognising that the free charge density ρC
dl equals the local excess of ionic charge

arising from N ionic species ρC
dl = ∑

N
i=1 zieci and assuming that the potential of

mean force Ψ is equal to the average electrostatic potential Ψm, the Poisson-Boltz-
mann equation is derived as127

ε0εr∇2Ψ = −e
N

∑
i=1

zici,∞ exp
(
− zieΨ

kBT

)
. (2.4)

It represents the basis of the Gouy-Chapman model of the diffuse layer surrounding
an electrically charged surface. For a diffuse layer near a flat half-plane for a single
zi-zi electrolyte, we obtain

d2Ψ

dx2 =
2ezi

ε0εr
ci sinh

(
eziΨ

kBT

)
, (2.5)

with x indicating the distance from the half-plane. Linearisation of sinh for small
dimensionless potentials eziΨ/ (kBT) � 1 leads to the Debye-Hückel approximation

d2Ψ

dx2 =
2e2z2

i ci

ε0εrkBT
Ψ = κ2Ψ . (2.6)

The prefactor on the right hand side of Eq. (2.6) expresses the Debye decay length κ−1,
which represents a measure for the extent of the diffuse double layer. The dimension-
less quantity κrP represents the ratio of curvature to the double layer thickness and is
frequently used to generate approximate solutions. For small κrP , a charged particle
may be treated as a point charge; for large κrP, the double layer is effectively flat29.
From Eq. (2.6) we obtain an exponential decay of the potential within the diffuse layer
following Ψ = Ψdl exp (−κx). Due to the condition of global electroneutrality, the po-
tential at the surface balances all diffuse charges σ0 + σdl = 0 in the Gouy-Chapman
model. The area specific surface charge σ0 is obtained by integrating over the charge
density ρC

dl

σ0 = −σdl = −
∞∫

0

ρC
dldx , (2.7)
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Figure 2.2: Schematic illustration of the electrostatic double layer surrounding a negatively
charged particle in an electrolyte solution with positive and negative ions. (IHP: inner
Helmholtz plane, OHP: outer Helmholtz plane)

and by applying the Poisson-Boltzmann distribution ρC
dl = ε0εr∇2Ψ, we obtain127,135

σ0 =
√

8ε0εrkBTci sinh
eziΨ0

2kBT
≈ ε0εrκΨ0 (2.8)

for the surface charge with the Debye-Hückel approximation for low surface poten-
tials Ψ0.

The treatment of the diffuse double layer so far is based on the assumption of point
charges in the electrolyte medium. The finite size of the ions will, however, limit
the inner boundary of the diffuse part of the layer, since the centre of an ion can
only approach the surface to within it hydrated radius without becoming specifically
adsorbed135. The diffuse layer was complimented with a plane located at about a
hydrated ion radius from the surface by Stern in 1924, thus establishing the theory of
an electric double layer. This concept is illustrated in Figure 2.2. Since the Stern layer
contains charge, the electroneutrality condition now reads as σ0 + σs + σdl = 0, where
σdl in the diffuse part of the layer is given by Eq. (2.8) with the sign reversed and with
Ψ0 replaced by Ψdl.

In his theory Stern assumed a Langmuir-type adsorption isotherm to describe the
equilibrium between the ions adsorbed in the Stern layer and those in the diffuse part
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of the double layer142. Considering only the adsorption of counter-ions, the surface
charge density σs is given by135

σs =
σm

1 + NA
ni,∞vM,i

exp
[

zieΨdl+VvdW
kBT

] (2.9)

where σm is the surface charge density corresponding to a monolayer of counter-ions
and the fraction NA/ (ni,∞vM,i) represents the molar fraction of solvated substance i
with NA as Avogadro’s constant, vM,i as molar volume and ni,∞ as solvated amount
of moles. The adsorption energy is separated into electrical zieΨdl and van der Waals
ΨvdW terms.

Within the Stern layer the ions are assumed to be represented by point charges con-
fined to the Stern layer at x = xdl

142. Since measurements indicate that the thickness
of the Stern layer ranges around 0.5 nm, so that only a few layers of solvent molecules
can be accommodated64, this approximation is exact enough for our long-range con-
siderations. Thus assuming a region 0 < x < xdl free of any charges, the potential
difference follows from the Poisson equation as64

Ψ0 −Ψdl =
σ0xdl

ε0εr
(2.10)

where ε0εr is an average permittivity over the inner layer region. For constant per-
mittivity Eq. (2.10) thus predicts a linear change in potential.

Before we move on to issues of colloidal stability in which double layer interac-
tions can play a decisive role, a generalised approach is sketched, by which the above
interactions between flat planes can be transferred to macroscopic bodies of differ-
ent geometries. The main types of interaction energies are then shown for spherical
geometries.

2.2 Interaction potentials between macroscopic
bodies

The potential energy of two macroscopic particles with respect to each other can be
obtained, in principle, in two different ways. Either one may try to find an expression
for the force between the particles as a function of their distance, or one may deter-
mine the free energy difference of the system as a function of the distance151. Both
methods are equivalent and in the following some light is shed on the first method.

The simplest procedure to calculate the interaction energies between two macro-
bodies is to use the method of pairwise summation of given intermolecular energies.
In a N-body system this is given by

V1,2,...,N
mol =

1
2

N

∑
i=1

N

∑
j=1( �=i)

Vij
mol

(
rij
)

(2.11)

where Vij
mol

(
ri,j
)

is the interaction energy of molecules i and j separated by distance
rij in the absence of any other molecules64. Clearly, the error will be least when the
molecules are far from one another, so that the individual pair interactions are rela-
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tively unaffected by the presence of other molecules. By assuming pairwise additivity
and integrating out all molecular interactions in both macroscopic bodies, the inter-
action energies between two flat half-planes can be derived64,68.

Interactions between macroscopic shapes of simple geometry can then be calcu-
lated by integrating over area specific interaction energies of locally flat parallel half-
planes64. This approximation holds best, when the distance of closest approach is
small compared to the radii of curvature of the two bodies. From this a very use-
ful approximate expression for the interaction energy of the bodies can be derived,
as was first done by Derjaguin24. A general expression for any type of interaction
potential between macroscopic bodies of arbitrary geometry is given by64

VP′,P′′ (a) =

∞∫
a

F
(
a′
)

da′ = 2π√
Cm

∞∫
a

Eplanes
(
a′
)

da′ (2.12)

where Eplanes denotes the area specific interaction energy between two half-planes
and the mean curvature Cm is given by

Cm =

(
1

r(1)
P′

+
1

r(1)
P′′

)(
1

r(2)
P′

+
1

r(2)
P′′

)
+ sin2 φ

(
1

r(1)
P′
− 1

r(2)
P′

)(
1

r(1)
P′′
− 1

r(2)
P′′

)
(2.13)

with r(1) and r(2) as the principal radii of curvature of the respective particles, and φ as
the angle between the principal axes of the two surfaces. Considering r(1) = r(2) = rP
for spherical bodies, the expression readily simplifies to

VP′,P′′ (a) = 2π
rP′rP′′

rP′ + rP′′

∞∫
a

Eplanes
(
a′
)

da′ . (2.14)

In the following sections the interaction energies between macroscopic bodies of
spherical geometry are discussed for London-van der Waals and electrostatic double
layer interaction. In addition to these interactions some non-DLVO Born repulsion
and solvation effects are highlighted which become important in modelling the po-
tential interaction energy at very close particle approach and for biologically medi-
ated aggregation, respectively.

2.2.1 London-van der Waals interaction

As mentioned in the introductory comment to this chapter, attractive forces between
neutral, chemically saturated molecules, as postulated by van der Waals to explain
non-ideal gas behaviour, are of electromagnetic origin. Three distinct forces con-
tribute to the total long-range interaction between polar molecules, collectively known
as van der Waals force: these are the Debye induction force between two dipoles, the
Keesom orientation force between a dipole and a non-dipole and the London disper-
sion forces between two non-polar molecules, each of which has an interaction free
energy that varies with the inverse sixth power of the separation distance68. In the
interaction between two dissimilar molecules of which one is non-polar, the van der
Waals energy is almost completely dominated by the dispersion contribution68. The
origin of dispersion forces may be understood intuitively as follows: for a non-polar
atom the time average of its dipole moment is zero, yet at any instant there exists a
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finite dipole moment given by the instantaneous positions of the electron about the
nuclear protons68. This instantaneous field generates an electric field that polarises
any nearby neutral atom, inducing a dipole moment in it. The resulting interaction
between the two dipoles gives rise to an instantaneous attractive force between the
two atoms, and the time average of this force is finite. Unlike Coulomb forces, van
der Waals forces are not generally pairwise additive. The net effect on the interaction
energy is however usually small, so that the approximations made by Hamaker51

discussed below are valid to a sufficient level of accuracy68. Furthermore, when two
atoms are an appreciable distance apart, the propagation time of the electric field can
become comparable with the period of the fluctuating dipole itself. With increasing
separation, the dispersion energy between two atoms begins to decay faster than r−6,
giving rise to retardation effects68. Assuming pairwise additivity, Hamaker derived
an analytical expression for the van der Waals interaction energy in the non-retarded
case51. For spherical particles with different radii rP′ and rP′′ it is given by Eq. (2.15):

VvdW
P′,P′′(a) = −AP′,P′′

6

[
2rP′rP′′

a2 + 2a (rP′ + rP′′)
+

2rP′rP′′

a2 + 2a (rP′ + rP′′) + 4rP′rP′′

+ ln
(

a2 + 2a (rP′ + rP′′)

a2 + 2a (rP′ + rP′′) + 4rP′rP′′

)]
(2.15)

in which AP′,P′′ represents the Hamaker constant between the two particles P′ and
P′′ across the separating liquid medium. The van der Waals contribution to the total
energy of interaction is shown for typical cases in Figures 2.3 and 2.4. For the non-
retarded case, the Hamaker constant for two macroscopic phases 1 and 2 interacting
across medium 3 can be gained from the Lifschitz-theory as68

A132 ≈ 3
4

kBT
(

εr1 − εr3

εr1 + εr3

)(
εr2 − εr3

εr2 + εr3

)

+
3hνe

8
√

2

(
n2

1 − n2
3
) (

n2
2 − n2

3
)

(
n2

1 + n2
3

) 1
2
(
n2

2 + n2
3

) 1
2

[(
n2

1 + n2
3

) 1
2 +
(
n2

2 + n2
3

) 1
2

] (2.16)

where h is the Planck constant, n represents the relative refractive index and νe is
the so-called plasma frequency of the free electron gas. From Eq. (2.16) we can ob-
serve that the van der Waals force between identical bodies in a medium is always
attractive with positive AP′,P′′ , while that between different bodies in a medium can
be attractive or repulsive68. If the medium is vacuum or air, the force is always at-
tractive. To obtain approximate values for unknown Hamaker constants in terms of
known ones combining relations are frequently used, but in view of the ease with
which Hamaker constants may be reliably computed using Eq. (2.16) or more rigor-
ous numerical methods, their use is not always recommendable68.

For the interaction of polystyrene surfaces and lipid membranes across water the
Hamaker constants are known from literature as APS−H2O−PS ≈ 1 · 10−20 J68 and
ALipid−H2O−Lipid ≈ 4 · 10−21 J54, respectively. The interaction between polystyrene
and melamine-formaldehyde across water was determined under consideration of
the Lifschitz theory by Eq. (2.16), yielding APS−H2O−MF ≈ 2.2 · 10−20 J. The calcu-
lations are based on the following parameters: the relative static dielectric permit-
tivities were chosen as εr,PS = 2.55 for polystyrene22, εr,MF = 6.8 for melamine-
formaldehyde132 and εr,H2O = 80 for water68. The absorption frequency νe ranges be-
tween (3− 5) · 1015 s−1 and for polystyrene it is approximately68 νe,PS ≈ 2.3 · 1015 s−1.
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As refractive indices nH2O = 1.33 for water68, nPS = 1.59 for polystyrene and nMF =

1.68 for melamine-formaldehyde as determined by the supplier were assumed. For
lipid membranes Israelachvili68 estimates nlipid = 1.45.

2.2.2 Double layer interaction

The calculation of the interaction energy resulting from the overlap of the diffuse
parts of the double layer is difficult. Since no exact analytical solutions can be ob-
tained, numerous (sometimes numerical) approximations have been developed135.
If we assume that the ion adsorption equilibrium is maintained upon approach of
two particles, two distinct situations can be distinguished. If the surface charge is
the result of potential-determining ions, the surface potential remains constant at the
surface and the surface charge density adjusts accordingly. But if the surface charge
is the result of ionisation, the surface charge density remains constant and the surface
potential adjusts accordingly135.

Throughout this thesis the constant potential assumption will be applied. It recog-
nises that in the derivation of the Fuchs stability ratio (section 2.3.1), the boundary
concentration of a totally absorbing sphere remains zero, which corresponds to a sur-
face with constant potential6. The electrostatic interaction between different spherical
particles with surrounding double layers has been characterised by Hogg, Healy, and
Fuerstenau60 (HHF theory). For constant surface potentials the interaction potential
is given by

Vel
P′,P′′(a) = 4πε0εr

rP′rP′′
((

Ψ0
P′
)2

+
(
Ψ0

P′′
)2
)

4 (rP′ + rP′′)
(2.17)

·
⎡
⎣ 2Ψ0

P′Ψ
0
P′′((

Ψ0
P′
)2

+
(
Ψ0

P′′
)2
) ln

(
1 + exp (−κa)
1− exp (−κa)

)
+ ln (1− exp (−2κa))

⎤
⎦

with κ =
(
2e2z2

i NA IM/ (ε0εrkBT)
)1/2 as reciprocal Debye length with NA as Avo-

gadro’s number and IM = 1
2 ∑

N
i=1 zici as molar ionic strength of the electrolyte solu-

tion. In this expression, the particle surface potential Ψ0
P is regarded equivalent to the

potential at the Stern layer Ψdl. This is justified by the electrophoretic measurement
technique, in which actually the potential at a shear plane is measured (section 3.2).

The energy of the electrostatic potential between two spherical particles can be
attractive or repulsive. Usually suspensions of colloidal particles are stabilised by
surface modifications which yield highly repulsive energies. In heteroaggregation
process, however, the electrostatic force can be strongly attractive owing to particle
surface potentials of opposite sign. Figure 2.3 illustrates a sample electrostatic pair
interaction potential as function of separation distance.

2.2.3 Non-DLVO interactions

In classical DLVO theory, named in honour of their authors Derjagiun and Landau23

as well as Verwey and Overbeek151, only electrostatic and van der Waals interac-
tions are considered. However, when two surfaces or particles approach each other
closer than a few nanometres, continuum theories may break down or other non-



18 Chapter 2. Stability of colloidal dispersions

10−1 100 101 102 103
−1000

−500

0

500

1000

a [nm]

V
 / 

(k
B
T)

P’
1,8

P"
2,9

Figure 2.3: Pair interaction energy be-
tween particulate heteroaggregates as
function of separation distance calculated
from DLVO theory with charge-balance
model (Eq. 6.9). The total energy ( )
decomposes into contributions from Born
VBorn

P′,P′′ ( ), van der Waals VvdW
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electrostatic Vel
P′,P′′ (· · · ) energies.
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of separation distance. Specific receptor-
ligand attractions and unspecific repul-
sions both show indicated exponential be-
haviour (· · ), that can be represented by
conceptually similar models. The remain-
ing interactions are encoded identically to
Figure 2.3.

DLVO forces come into play. These additional forces can be monotonically repulsive,
monotonically attractive or oscillatory, and they can be much stronger than either of
the DLVO forces at small separations. The most important non-DLVO forces are the
Born repulsion as well as solvation and structural forces and interactions of steric and
fluctuation origin67,68.

Short-range oscillatory solvation forces arise if liquid molecules are induced to or-
der into quasi-discrete layers in highly restricted spaces between two surfaces by
strong solvent-solvent or solute-solvent interactions, significantly modifying the pro-
perties of the solvent in the solvation zone compared to the bulk values. Such oscilla-
tory forces are mainly of geometric origin68. In addition, surface-solvent interactions
can induce positional or orientational order in the adjacent liquid and give rise to a
monotonic solvation force which usually decays exponentially with separation dis-
tance67,70. This type of solvation force may be repulsive or attractive, and its range is
generally larger than that of oscillatory forces. Solvation forces depend not only on
the properties of the intervening medium but also on the chemical and physical prop-
erties of the surfaces, for instance on whether they are hydrophilic or hydrophobic.

For non-smooth, fluid-like surfaces steric and fluctuation forces can also have great
impact on colloidal interaction. Here, interfaces are spatially diffuse and the forces
between them depend on how their diffuse boundaries overlap. A diffuse surface is
characterised by its thermally mobile surface groups, as either in inherently mobile
interfaces between two fluids or in molecule chains that are fixed at the solid surface
and diffusively protrude out into the solution. For both types of diffuse interfaces the
interactions are subject to the complex molecular rearrangements and other effects,
such as repulsive thermal fluctuations of biological membranes or protrusion forces.
Artificially prepared lipid layers have been successfully used as models for study-
ing the interactions of biological membranes84,89,92. By direct force measurements
(section 2.2.4) it was shown that solvation forces are characterised by an exponential
decay function, yielding very strong repulsive forces at close distances.
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2.2.3.1 Born repulsion

At subnanoscale separation distances the repulsive overlap of electron clouds de-
termines how close two atoms can ultimately approach each other. At subnanome-
tre separation distances it gains dominance over all other potentials68. By applying
Derjaguin’s approximation under assumption of pairwise additivity of the atomic
interaction energies, Feke et al.33 derived a lengthy expression for the Born energy
VBorn

P′,P′′ between two interacting spheres, which was implemented in the simulations
discussed in this thesis. The expression depends on two parameters: the hardness
factor b, i.e. the exponent of the Lennard-Jones attractive term, and the separation
distance at zero potential rσ. Throughout this thesis, these were chosen as 12 and 4 Å,
respectively. Then the Born repulsion simplifies to
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with R = (a + rP′ + rP′′) /rP′ . Figures 2.3 and 2.4 show the Born potential energy
in dependence of the separation distance of the two spheres. The superposition of
van der Waals and Born forces for interaction between single atoms results in a 6-12
Lennard-Jones potential.

2.2.3.2 Modelling biological interactions

As follows from the previous discussion, the four main types of forces acting between
surfaces in liquid are: van der Waals, electrostatic, solvation (or hydration if the sol-
vent is water) and steric forces68. For colloidal systems of rigid particles in water, the
interactions are usually dominated by the first two, as suggested by DLVO theory. In
contrast, forces between the highly mobile amphiphilic surfaces of fluid bilayers as
in biological membranes can have all four interactions operating simultaneously, as
well as other more specific types of interactions68. In addition, when two non-rigid
structures collide, the forces between them can cause shape deformations. These will
remain unconsidered in the treatment adopted in this thesis.

It has long been known that many biological interactions such as those involved in
immunological ligand-receptor interactions and cellular contacts can be totally spe-
cific for a single molecule. These non-covalent interactions give rise to very strong
binding54,81. Investigations on the design of effective drug carrier particles attempt to
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harness these properties by functionalising the surfaces of drug carrier particles with
specific proteins57,105,158, for instance with antibodies129. Provided specific surface
receptor(s) by which malign cells can be discriminated from benign ones have been
identified, immunological recognition can be utilised for therapeutic purposes38,136.

The interactions between receptor and ligand proteins including their conforma-
tional changes, which provide the basis of the lock-and-key binding mechanism, are
subject to numerous detailed molecular dynamics simulations. Such a detailed ap-
proach is not considered suitable to describe aggregation dynamics on the mesoscale.
Instead, approximate models characterising the specific interactions between ligands
and receptors at greater distances are adopted from colloid science. The potential en-
ergies involved are subject to direct empirical methods, as discussed in section 3.1.1.

Using the surface force apparatus, interaction potentials between biological com-
pounds were measured, that indicated an exponential decay with increasing sepa-
ration distance68. After normalising the measured force by the radius of the SFA
surfaces and converting it into a force between differently sized spheres by applying
Derjaguin’s approximation, the interaction potential energy Vsol

P′,P′′(a) can be obtained
from the force by integration as

Vsol
P′,P′′(a) = 2πk0λ

rP′rP′′

rP′ + rP′′
exp

(
− a

λ

)
(2.19)

with k0 as maximum extrapolated force at contact and λ as the decay length. An ex-
pression like this seems to be suitable for both specific receptor-ligand and unspecific
interactions. For biologically unspecific aggregation, the solvation potential equals
the repulsive hydration potential Vhydr

P′,P′′(a), which originates from strongly bound
water molecules on hydrophilic surfaces like cell membranes, with k0 = k0

hydr ≈
3− 30 mN/m and λ = λhydr ≈ 0.6− 1.1 nm68. For ligand-receptor interactions on
the other hand, Eq. (2.19) was applied with negative k0 = k0

LR and λ = λLR. For
the biotin-streptavidin interaction Leckband et al. found k0

LR = −2.5/π mN/m and
λLR = 1.7 nm81. The interaction potentials for specific and unspecific binding are
shown in Figure 2.4 as functions of separation distance a. Due to their exponential
nature, the solvation potentials outmatch the ones resulting from Born repulsion and
DLVO interactions on the considered scale. The total potential energy for specific and
unspecific aggregation thus essentially deviate only with respect to the parameters
used in the solvation interaction potential Vsol

P′,P′′(a).

2.2.4 Direct measurement of surface forces

Much effort has been devoted to the measurement of interaction energies between
macroscopic bodies at close separations, owing to their fundamental nature and their
practical importance in issues such as colloidal stability. Nowadays, experimental in-
formation on surface properties can be gained by colloidal probing techniques, such
as atomic force microscopy (AFM)12,27 and surface force apparatus (SFA)69,71,80,146.
These methods facilitate measurements of interaction forces on the molecular and sin-
gle particle scale, which can be transformed into interaction energies by means of Der-
jaguin’s approximation, as discussed in the beginning of this chapter. To date numer-
ous studies on force measurements can be found in the literature8,13,14,20,28,70,81,84,92,115.
In this thesis colloidal probe measurements were performed to characterise different



2.3. Colloidal stability 21

particle surface properties, giving rise to different aggregation dynamics. A brief de-
scription of AFM is given in section 3.1.1.

2.3 Colloidal stability

Derjagiun and Landau23 as well as Verwey and Overbeek151 independently devel-
oped a quantitative theory in which the stability of lyophobic sols in solutions of
electrolytes is treated in terms of the energy changes upon interparticle approach.
The theory considers double layer interactions as well as van der Waals energies in
terms of the particle separation distance, as presented in the previous sections. By
summation of all interaction potentials the total energy of interaction is obtained.
Because the van der Waals force decreases with the inverse square power of the sepa-
ration distance it dominates at small and large interparticle distances over the double
layer energy. At very small separation distances the repulsion of overlapping elec-
tron clouds (Born repulsion) predominates when the particles come into contact, and
create a deep potential minimum of the energy curve. At intermediate distances, de-
pending on the character of the electrostatic interactions, double layer repulsion may
dominate and form a maximum in the energy curve. If the potential energy maxi-
mum is large in comparison with the thermal energy kBT of the particles, the system
should be stable, otherwise the system should coagulate irreversibly. Furthermore,
at relatively large interparticle distances a secondary minimum can form, causing
reversible flocculation.

2.3.1 Stability ratio

Based on the interaction potentials the stability of colloidal suspensions can be as-
sessed. The foundations were laid by Fuchs in his contribution of 1934 which still
receives considerable attention to date37. It assumes the equivalence of particle aggre-
gation with the diffusion of particles towards an absorbing sphere placed inside an in-
finite medium with spatially independent particle number concentration c (t = 0,�x) =

c∞ and a superimposed force field �F. The radius of the totally absorbing sphere equals
the collision radius 2rP between two equally sized particles of radius rP. From a mass
balance of particles surrounding an adsorbing sphere we obtain the following partial
differential equation

∂c
∂t

= DP�∇2c−MP�∇ ·
(
�Fc
)

(2.20)

with DP as constant diffusion coefficient and MP as the mobility of a particle inside
the medium. In anticipation of Chapter 4, the transport density �φN comprises a dif-
fusive −�∇ (DPc) and a convective component MP�Fc. For a spherically symmetric
system in steady-state the particle flux J in terms of centre-to-centre separation dis-
tance r follows as

J = DPr2 dc
dr
−MPr2F(r)c (2.21)

with the boundary conditions c (t, r → ∞) = c∞ and c (t, 2rP) = 0 at the surface of the
adsorbing sphere. By integration within these boundaries and replacing the mobility
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MP by the Einstein expression DP/ (kBT) the following expression for the particle
flux can be derived

J =
DPc∞

∞∫
2rP

1
r2 exp

(
VP(r)
kBT

)
dr

(2.22)

with the potential energy VP (r) =
∫ ∞

r F (r′) dr′. The ratio of the particle flux in
absence of any force field J0 = 2DPc∞r to the particle flux inside a force field VP (r) �=
0, is called stability ratio W and is given by Eq. (2.23).

W =
J0

J
= 2rP

∞∫
2rP

1
r2 exp

(
VP (r)
kBT

)
dr (2.23)

For two differently sized particles P′ and P′′ and a surface-to-surface separation dis-
tance a, this expression can be recast as

W = (rP′ + rP′′)

∞∫
0

BP′,P′′ (a)

(rP′ + rP′′ + a)2 exp
(

VP′,P′′ (a)
kBT

)
da (2.24)

now with BP′,P′′ (a) introduced as hydrodynamic correction. The potential interac-
tion energy is obtained by superposition of Born VBorn

P′,P′′(a), van der Waals VvdW
P′,P′′(a),

electrostatic Vel
P′,P′′(a) and further non-DLVO components if applicable.

In case the potential energy of interaction does not provide a repulsive barrier
against colloidal aggregation, the aggregation process is limited only by the diffusion
which determines the frequency with which two aggregates collide. Upon collision, a
bond is spontaneously formed. The diffusive fluxes are equal J0 = J and the stability
ratio runs into its lower limit of W = 1. This regime is called diffusion limited cluster
aggregation (DLCA) or rapid coagulation regime. Should the interaction potential
present an energy barrier, aggregation is retarded by the repulsive interactions and
not every collision results in the formation of a product aggregate. This regime is
named reaction limited cluster aggregation (RLCA) with WP′,P′′ increasing to values
greater than one. Colloidal stability is attained when W → ∞. This is either achieved
in the absence of any potential minima (thermodynamically stable) or by a potential
barrier exceeding the thermal energy of the particles (kinetically stable).

2.3.1.1 Hydrodynamic correction

The viscous resistance of the continuous medium upon very close approach of two
particles reduces the coagulation rate by a factor of up to 0.461. To account for this
aggregation resistance due to fluid viscosity, the diffusion coefficient for an infinitely
diluted system DBrown

P′,P′′ is corrected by the hydrodynamic factor BP′,P′′ (a), yielding
DP′,P′′ as a more accurate diffusion coefficient. The following empirical correlation
for the hydrodynamic correction factor has been developed by Honig et al. 61:

BP′,P′′(a) =
DBrown

P′,P′′

DP′,P′′
≈

6
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a
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(
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P′,P′′

) (2.25)
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with a∗P′,P′′ = 2rP′rP′′/ (rP′ + rP′′). Starting at BP′,P′′ (a) 
 1 for small distances, the
correction factor approaches unity at infinite separation distances.

2.4 Aggregate morphology
The theoretical aspects presented to this point give little insight into the structure of
the resulting aggregates. Yet aggregation behaviour shows that the aggregate mor-
phology is enormously influenced by these factors64. In very rapidly aggregating sus-
pensions the aggregates tend to form very loose, open geometries with large amounts
of entrained liquid. Slowly coagulating systems may take much longer to form ag-
gregates but they will be much more compact64. In real aggregation processes, aggre-
gates containing thousands of primary particles can arise and a detailed description
of their structure is impossible. A convenient method which enables the aggregate
structure to be characterised in general terms, but still conveys useful information, is
found by recognising aggregates as fractal objects29.

The morphology of aggregates can be affected by many mechanisms11. Classically,
diffusion-limited, reaction-limited and ballistic cluster aggregation (DLCA, RLCA,
BCA) have been investigated in depth95. In early studies, Sutherland144 studied bal-
listic cluster aggregation. In ballistic cluster aggregation the primary particles move
along straight lines and get instantly attached when they contact the cluster. To con-
sider the diffusivity of the particles, the formation of aggregates has been studied
by Witten and Sander154 and Meakin94 using stochastic formation algorithms. Their
diffusion limited cluster aggregation (DLCA) was modified by Jullien and Kolb72,
who introduced a probability that the particle reaching the aggregate actually gets
attached, which represents the reaction limited cluster aggregation (RLCA). One of
the main findings is that clusters formed by diffusion or reaction limited cluster ag-
gregation have a fractal nature. This self-similarity in structure allows to characterise
aggregates by the fractal dimension d f

53, which relates the total number of primary
particles i in an aggregate consisting of single species particles to the radius of gyra-
tion rG

P normalised by primary particle radius r1 by the following equation:

i = k f

(
rG

P
r1

)d f

. (2.26)

The scaling factor k f usually remains near unity. The fractal dimension d f =[1, . . . ,3]

∈ R describes the compactness of the aggregates and can be measured by determin-
ing the slope of the structure factor from static light scattering experiments94,154, as
briefly described in section 3.2. A fractal dimension of d f = 1 corresponds to a linear,
chain-like aggregate geometry, while the radius of gyration for d f = 3 expresses the
radius of a sphere with equal volume. In the DLCA regime without restructuring
effects, d f was found to attain values of approximately 1.888 and in RLCA d f ≈ 2.187.
For single monodisperse particle systems the number of particles i within an aggre-
gate can be expressed by the ratio of aggregate and primary particle mass mP/m1

128.
By assuming that the aggregate mass only comprises the total solid mass, the mass
ratio is identical to the dimensionless aggregate volume νP = VP/V1. For homoag-
gregates, i.e. aggregates of a single species, the dimensionless volume νP thus equals
the number of primary particles i. This approach is extended to aggregates compris-
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ing more than one species, for example binary heteroaggregates P(i, j) composed of i
and j particles of different species. Throughout this thesis, particle species with con-
siderable differences in their length scales are used. By neglecting any restructuring
effects95 as well as the monomer volume of the smaller particle species in the denom-
inator due to r3

0,1 � r3
1,0, the dimensionless aggregate volume is obtained in a similar

manner as

νP ≈ VP

V1,0
=

i r3
1,0 + j r3

0,1

r3
1,0

= i + j
(

r0,1

r1,0

)3

(2.27)

with r1,0 and r0,1 as monomer radii. The radius of gyration rG
P for a binary aggregate

P(i, j) then follows as

rG
P = r1,0

(
νP

k f

) 1
d f

. (2.28)

It is well known that real particles can hardly ever be represented by a single char-
acteristic length. Even non-agglomerated particles can exhibit complex morphologies
that can strongly affect particulate properties11. For instance, biological systems may
strongly respond to particle shape, as was recently shown by Champion and Mi-
tragotri17. This could become essential with respect to bioavailability or to certain
drug targeting applications. However, for the investigations treated in this thesis the
concept of fractal aggregate geometry is applied to define the radius of gyration of
a representative spherical particle. It offers the advantage of a simple yet physically
rooted model that reduces complex aggregate structures to a manageable amount of
information. Due to the limited amount of parameters necessary, the structure can be
easily solved alongside the population balance model applied to study the dynamics
in aggregation processes. Furthermore, an essential influence of the particle morphol-
ogy on the aggregation process beyond their increasing particle size is not expected,
thus supporting the use of fractal geometries.



Chapter 3
Experimental techniques
Aggregation in colloidal systems can be probed by diverse experimental techniques
with respect to a multitude of properties, which are usually used to elucidate the ag-
gregate composition and its dynamic changes. Most of these techniques are based on
optical methods that involve diffraction of either normal light or coherent laser light.
Light, fluorescence, confocal laser scanning and scanning electron microscopy were
used to characterise the aggregate and cell structure of random samples primarily for
illustrative purposes only. Although a quantification of aggregation by these meth-
ods is in principle possible, it is rather cumbersome and difficult to realise, especially
with techniques that only image one perspective of the aggregate. Tremendous ef-
forts would be required to obtain statistically validated data that are free of external
influences during measurement. With atomic force microscopy topographical images
can be generated, but its use within this thesis mainly focuses on the experimental
validation of theoretically predicted particle interaction potentials (section 2.2).

Further important experimental techniques are based on scattering of laser light,
like dynamic and static light scattering as well as flow cytometry. These are more
suitable for the measurement of aggregation dynamics inside statistically relevant
particle ensembles. In this work, flow cytometry was extensively used and its con-
venient and powerful single-particle analysis was established to detect heteroaggre-
gation in multi-species particle systems. Also, electrophoretic measurements of the
ζ-potential contribute important information in the characterisation of the primary
particles of each species as well as in detecting aggregation dynamics.

In the following, most experimental techniques are only briefly outlined, since a
rigorous discussion would exceed the scope of this work and not yield new insight.
Only atomic force microscopy and flow cytometry are explained in more detail since
the experimental work of this thesis is mainly based on these methods.

3.1 Microscopic techniques
Qualitative insight into aggregate structure and dynamics in aggregation processes
was gained by means of light, fluorescence and confocal scanning microscopy. Light
and fluorescence microscopy were performed with a combined setup in an Axio Im-
ager.A1 (Zeiss, Germany), that was equipped with a mercury arc lamp for fluores-
cence analyses. Both methods were also applied for a quantitative validation of the
flow cytometric measurements, by manually determining the distribution of the ag-
gregation state in a Thoma haemocytometer (Assistent, Germany). In this way a cali-
bration was obtained that related the fluorescence intensities determined in the flow
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cytometer to the absolute number of fluorescent particles. Experimental details and
results are shown in Chapter 5.

Sample aggregates were also visualised by a confocal laser scanning microscope
LSM-510 (Zeiss, Germany). By using different fluorescent dyes for the particle species,
three dimensional images of the aggregate morphologies in a liquid environment
were obtained. In order to provide images with improved resolution scanning elec-
tron microscopy (Ultra-High Resolution FE-SEM S-4800, Hitachi, Japan) was em-
ployed. Since in electron microscopy images are recorded in vacuum conditions, only
solid samples can be examined. This excluded detailed analysis of biological samples
and motivated a special preparation of the aggregate samples by sintering to ensure
stable aggregate structure even after drying.

3.1.1 Atomic force microscopy

The interaction between two surfaces across a medium is a fundamental issue in
colloid and surface science and has practical relevance when colloids are involved
in technical processes. During the past decades several devices for measuring sur-
face forces have been developed. The most prominent tools are the atomic force
microscopy (AFM), dating back to the seminal work of Binnig et al. 7 of 1986, and
the surface force apparatus (SFA)71,146. Others include the force balance, the osmotic
stress method or the total internal reflectance microscope. Nowadays, AFM is one
of the most important and versatile scanning microscopic tools that yields material
information with an unsurpassed level of detail (ideally with subnanometre resolu-
tion) at reasonable signal-to-noise ratios. This includes structural details of biological
samples such as proteins, nucleic acids, membranes, and cells in their native fluid
environment73.

The SFA contains two crossed atomically smooth mica cylinders of roughly 1 cm
radius between which the interaction forces are measured. One mica cylinder is
mounted to a piezoelectric translator, by which the separation distance can be ad-
justed. The other mica surface is mounted to a spring of known and adjustable spring
constant and the separation between the two surfaces is measured with an optical
technique. Knowing the position of one cylinder and the separation to the surface of
the second cylinder, the deflection of the spring and the force can be calculated14.

In contrast to SFA, in AFM the sample is scanned by a tip (probe), which is mounted
to a cantilever spring. The primary modes of operation are dynamic mode and static
(contact) mode. In the dynamic mode, the cantilever is excited to oscillate at or close
to its resonance frequency. The oscillation amplitude, phase and resonance frequency
are modified by tip-sample interaction forces. The changes in oscillation with respect
to the external reference oscillation provide information about the sample’s char-
acteristics. Dynamic mode operation includes frequency or amplitude modulation.
During the measurements, the cantilever can be moved in every spatial direction by
means of very precise separate piezo elements. An improved control for the posi-
tion regarding all three axes down to the nanometre range is guaranteed by feedback
loops via a sensor with proportional and integral gains. In the x-y directions the ex-
act lateral position can thus be maintained in closed loop mode, which considerably
reduces drift during repetitive vertical scanning for force distance measurements. In
z-direction the travelled piezo distance is also precisely know from the calibration.
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Figure 3.1: Schematic illustration of colloidal probe microscopy. Laser light is reflected
from the backside of the cantilever and recorded in a quadrant detector to determine flex-
ural and torsional forces. For force-distance measurements, the force between a particle
glued to the cantilever tip and sintered substrate particles is measured in dependence of
the separation distance z at constant x-y-position.

In contact mode a topographic image of the sample is obtained by plotting the de-
flection of the cantilever (or the height of the translation stage in constant force mode)
versus the position on the sample. Image contrasts arise because the force between
tip and sample is a function of their separation distance and the material proper-
ties13. In most applications the image contrast is obtained from the very short ranged
Born repulsion, which occurs when the electron orbitals of tip and sample overlap14.
However, further interactions between tip and sample, like van der Waals and elec-
trostatic forces, can be investigated giving rise to techniques commonly referred to as
force measurements between the cantilever probe and some substrate material. By
fixing the tip at a constant lateral position on the sample and moving the cantilever
in normal direction (scanning), the interaction forces can be measured as a function
of separation distance of up to hundreds of nanometres (Figure 3.1).

One major step to measure surface forces independent of the cantilever tip quanti-
tatively was the introduction of the colloidal probe technique12,27. In colloidal probe
microscopy a spherical particle of typically 2 to 20 μm diameter is attached to the
end of a tipless cantilever. Then the force between this microsphere and a substrate
surface is measured. Since the radius of the microsphere can easily be determined,
surface forces can be measured quantitatively for arbitrary geometries. For imaging,
a microsphere is of course not suitable at the tip of the cantilever. A multitude of in-
vestigations followed to verify models for particle interactions, like DLVO interaction
potentials28,159 or the Derjaguin approximation117.

The direct result of a force measurement is a relation between the photodetector
current and the height of the piezoelectric translator Δzp = zp − z0

p. To obtain a
force-distance curve for hard materials with surface forces in terms of the cantilever
deflection Δzc = zc − z0

c , both data sets have to be converted. Essentially two pa-
rameters are necessary for this: the sensitivity and the zero distance. In atomic force
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Figure 3.2: Schematic illustration of force distance curves as plot of cantilever deflection
Δzc against separation from substrate surface Δzp. A cycle in force measurement begins
at large tip-surface separation where interaction forces are negligible and the cantilever is
not deflected. With decreasing separation upon piezo approach, forces begin to act. In
the scheme repulsive forces were assumed, bending the cantilever upwards. Since tip and
sample are not in contact, this region is often referred to as non-contact region. Once the
gradient of the attractive forces exceeds the sum of spring constant and gradient of repul-
sive forces, the tip jumps onto the sample surface (jump-in). Decreasing the separation
even further causes a deflection at the same scale as the piezo distance travelled. This lin-
ear part is called contact region. Finally, the cantilever is withdrawn to its original position.
During retraction the tip often sticks to the surface due to adhesion. 13

microscopy both parameters must be inferred from the measured curve itself and not
through an independent method14. The curves can be divided into a contact and a
non-contact part (Figure 3.2). In contact, the separation distance a between cantilever
and piezo element is zero a = Δzp + Δzc = 0, so that Δzp = −Δzc. The slope in this
linear part yields the sensitivity of the photodiode current with respect to the can-
tilever deflection Δzc (deflection sensitivity), that can now be determined from the
negative piezo distance −Δzp. The zero deflection of the cantilever z0

c is found from
the non-contact part of the measured curve at large distances where the surface forces
are negligible14. The zero distance of the piezo element z0

p then follows from the in-
tersection of the extrapolated linear regimes of contact and non-contact mode (Figure
3.2). The degree of extrapolation determines the error in zero distance. The weaker
and shorter ranged the repulsive force is and the larger the two linear regimes of the
curve are, the more accurate z0

p can be defined. From the cantilever deflection Δzc, the
force is obtained by the force law F = K · Δzc, where K represents the spring constant
of the cantilever. The spring constant can in principle be calculated from the material
properties and cantilever geometry. More details can be found in Butt et al.14. Close
to the surface of the sample, attractive forces can be quite strong, causing the tip to
snap-in to the surface at a certain point (jump-in). The jump-in into contact occurs
when the gradient of attractive forces exceeds the spring constant plus the gradient
of the repulsive forces13. During retraction the tip often sticks to the surface due to
adhesion13.
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Currently AFM is evolving into a standard tool to characterise biological surfaces.
It is able to image biological samples under physiological conditions at high reso-
lution and probe molecular interactions of biomolecules14. In combination with the
unique capability of AFM to acquire forces locally and with high sensitivity it is possi-
ble to obtain information about the interactions of single biological molecular pairs14.
These kind of experiments are known as force spectroscopy. Two main fields of in-
terest have emerged: molecule stretching and specific interactions between biological
pairs14. With biofunctionalised tips, receptor-ligand binding potentials73,155 and lo-
cal receptor distributions on cellular surfaces14,20 were mapped.

The main focus of AFM measurements within this thesis is to study surface forces
between the aggregating particle species. To this end, an Agilent 5500 Scanning Probe
Microscope (Agilent, USA) was used. The handling of the cantilevers under the mi-
croscope for the preparation of the colloidal probe was facilitated by a three axis water
hydraulic micromanipulator (MHW-3, Narishige, Japan).

3.2 Light scattering techniques
A suspension of particles illuminated by a light beam causes some of the light to be
scattered. In general, scattering by particles depends on their size, shape and refrac-
tive index, the wavelength of the incident light and the angle of observation. The
scattering of light results from the electric field associated with the incident light. It
induces periodic oscillations of the electron clouds in the atoms of the investigated
material, which then act as secondary sources and radiate the scattered light135. A
mathematical framework to describe light scattering is obtained from the formal solu-
tion of Maxwell’s equations with the appropriate boundary conditions. For a homo-
geneous spherical particle the full solution was first formulated by Mie97 in 1908 and
became known as Mie theory. Some general restrictions were made97,148. For one, the
scattered light is assumed to be of the same frequency as the incident light, excluding
Raman or any quantum transitions effects. Furthermore, particles are considered as
independent scatterers. Together with the first assumption we obtain that the intensi-
ties scattered by various particles can be added without regarding the phase, which is
justified for most practical purposes. Early estimates fixed the distance between par-
ticles sufficiently large to ensure independent scattering at a mutual distance of three
times the particle radius148, which is met in many colloidal solutions. In 1912 Mie the-
ory was extended to spheroidal particles by Gans40. Depending on size of the colloid
particles, approximations of Mie theory can be adopted. For particles much smaller
than the light wavelength (below about 10% of the wavelength) the scattered light
is described by the Rayleigh expression for spherical and the Rayleigh-Gans-Debye
expression for irregularly shaped particles29. For particle sizes much greater than the
light wavelength, scattering can be treated by Fraunhofer diffraction as a problem of
geometrical optics, where the scattering depends on wavelength and particle diame-
ter, but not on particle properties29. Further detailed information on light scattering
by particles can be found in the textbooks by van de Hulst148 and Elimelech et al.29

or a review by Sorensen140.

A major motivation for understanding how aggregates scatter and absorb light is
its importance for in situ scattering and absorption measurements of particle size,
morphology and number density. Light scattering is noninvasive, remote, fast and is
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usually superior to other more direct method for particle characterisation140. Mea-
surements of extinction or turbidity exploit the reduction of light intensity as conse-
quence of scattering during transmission through the suspension29. Next to this very
simple method of deriving information on particle size or the state of aggregation in
suspensions, more detailed information can be gained by measuring the angular dis-
tribution of scattered light. In static light scattering (SLS) the average of the scattered
light intensities provides information over a wide range of particle sizes. Here, the
intensity, polarisation and angular distribution of the light scattered from a colloidal
system are subject to direct measurement by means of detecting photocells placed
at different angles around the sample135. The particle size distribution is calculated
from Mie theory and its approximations. In addition to the particle size distribution,
information regarding aggregate morphology is obtained by SLS. In a double loga-
rithmic plot of the structure factor against the scattering vector, the fractal dimension
d f , characterising the compactness of an aggregate (section 2.4), can be determined29.
When the reciprocal value of the scattering vector exceeds the aggregate radius of
gyration rG

P or is smaller than the primary particle radius r1, the structure factor is
independent of the scattering vector. For intermediate values of the scattering vector,
the slope equals −1/d f . In this way, fractal dimensions characterising DLCA88 and
RLCA87 regimes could be identified experimentally in accordance with the preceding
simulation studies94,95,154.

In dynamic light scattering (DLS), also referred to as photon correlation spectro-
scopy (PCS) or quasi-elastic light scattering (QELS), the diffusion coefficients of the
particles inside the suspension are measured, from which the size information can
be derived. Light scattered by a moving particle will experience a Doppler shift to
slightly higher or lower frequency, depending on whether the particle is moving to-
wards or away from the observer135. For an ensemble of particles moving at random
due to Brownian motion, a Doppler frequency broadening will appear. Analysis of
this effect involves autocorrelation of the scattered light intensity, measured as pulses
from a photomultiplier.

The laser Doppler technique can also be used to determine the convective velocity
of charged particles in a superimposed electric field. In this way charged particle
surfaces can be studied. Fundamental to electrophoretic behaviour is the existence of
a shear plane, which separates the fixed from the mobile parts of the electric double
layer135. It is usually assumed that the shear plane lies outside but fairly close to the
Stern plane, so that essentially all of the diffuse layer charge is mobile and the counter-
ions in the Stern layer are fixed29. The electrical potential at the shear plane is referred
to as the ζ-potential and it represents a measure of the particle surface charge. Due to
its influence on the electrostatic interaction potential, manifested by Eq. (2.17), the ζ-
potential is a very important quantity in the characterisation of colloidal suspensions.
Colloidal particles are generally found to be stable if the ζ-potential exceeds a certain
value and to aggregate at lower absolute values29.

From the induced particle velocity in the electrolyte solution, the ζ-potential can
be determined for conducting and non-conducting spheres by means of the approx-
imative Henry equation56 from electrokinetic theory. The Henry equation is based
on the Debye-Hückel approximation for constant ε0εr and η and assumes the super-
position of applied electric field and electric double layer. However, more detailed
models were investigated, which couple the velocity field in the electrolyte to the dis-
tribution of ions and the electrostatic potential around a colloidal particle100. The use
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of laser Doppler velocimetry is restricted to rather small particles (for size measure-
ments rP < 1 μm, for ζ-potential measurements rP < 5 μm). Therefore, its use in
aggregation studies is limited.

3.2.1 Flow cytometry

Flow cytometry took its origin in biomedical research. The need to characterise hu-
man blood and to discriminate between the individual cell types promoted the deve-
lopment of modern flow systems. Major advances in designing flow chambers for
fluorescence analysis were achieved in the late 1960’s, yielding flow chamber based
microscopes to detect fluorescence intensity histogrammes25 and first fluorescence
detection cytometers149. But it was not until the 1980’s that self-contained bench-
top devices made flow cytometry accessible to a broader user group. With the re-
cent advances in detecting and discriminating biological components by fluorescent
labelling, flow cytometry has become a standard tool in biological and biomedical
research.

In flow cytometry, particles are passed through a capillary of about 50 to 250 μm
diameter by a stream of sheath fluid from a pressurised reservoir. Sheath fluids are
usually composed of phosphate-buffered saline solutions and provide the support-
ing vehicle for directing the cells through a light source for scattering44. The sample
suspension is injected into the centre of the sheath stream in a flow chamber (coaxial
flow) and is hydrodynamically focused for its passage through a laser beam, usually
an Argon laser with λAr = 488 nm (Figure 3.3)109,110. The laser beam is itself optically
modified from 1-2 mm in diameter to an elliptical spot of about 20 μm by 60 μm in
size44. The ellipsoid geometry represents a compromise between lateral path toler-
ance inside the capillary and adequate temporal resolution. Particles passing through
the laser beam generate scattering signals, that can be analysed with respect to sev-
eral signals simultaneously. The scattered light is detected by photomultipliers at two
principal angles, the forward scattering (FS) at a near-zero angle and the side scatter-
ing (SS) perpendicular to the incident light, which can only be reached by diffracted
or emitted light. This provides information about the physical characteristics of the
detected particle or cell, regarding size and granularity; granularity is related to the
size, shape, surface texture and internal structure of the detected particle44. The side
scattered light is passed through an optical bench for further analysis of sample fluo-
rescence. Fluorescence originates from electrons that fall back from an excited state
to their ground state orbitals. Due to dissipation effects, the emitted light always
is of longer wavelength that the absorbed light (Stokes shift). In a flow cytometer
the excitation is caused by the laser light and common detection wavelengths in-
clude λ = 525, 575, 620, 675 nm. All detected light signals are converted to electrical
impulses by photodetectors. Since this requires input by the user, some extent of
arbitrariness is introduced44. However, the important benefit of not fixing the pho-
tomultiplier settings is the influence over the measurement sensitivity. The electric
current as response to detected light can be modified in two ways, either by chang-
ing the voltage applied to a photomultiplier or the signal amplification. The control
over signal amplification offers variations in gain as well as in linear or logarithmic
amplification. All data over a particle ensemble produced during a measurement is
recorded electronically in a standardised file format called flow cytometry standard
(FCS)21. More information on the complex hydrodynamic and optical experimental
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set-up and applications of flow cytometry can be found in the textbooks of Shapiro134

and Givan44.

Optimal operating conditions imply restrictions with respect to the size and con-
centration of the colloidal particles in suspension. Particles larger than the hydrody-
namic instrumentation will clog the system. Most commercial systems permit diame-
ters of 50-100 μm44. In order to discriminate the particles from experimental noise,
particle size also faces a lower limit, which lies somewhere below 1 μm44. In this
thesis fluorescent particles of 350 nm could be detected well, albeit with elevated
signal dispersion. However, if in mixture with larger particles, the stronger signals
dominated and the small particles were hardly visible (section 5.2.2.1). In order to
facilitate reasonably quick measurements, particle or cell concentrations of approxi-
mately 1 · 106 particles/ml are suggested at detection rates of 1000-2500 particles/s,
depending on the device.

The signals of all photomultipliers (channels, parameters) are recorded for each
detected event. They can be retrieved from the FCS files for post-processing and ex-
perimental analysis. By plotting the signal intensities of a single detector for all events
of a measurement we obtain a number distribution histogramme (Figure 3.3), which
can be characterised by standard statistical methods. Correlations between multiple
signals are also frequently studied, giving rise to dot plot representations. However,
such analyses are usually restricted to two-dimensional plots, like the one shown in
Figure 3.4, due to the restrictions set by visualising plots of higher dimensionality.
Thus from x detected signals, (x− 1)! dual-parameter plots can be generated, from
which in most cases only a few contain relevant information. To analyse the data, cer-
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Figure 3.3: Schematic illustration of a flow cytometer. Sample particles are passed single-
file through a laser beam. The scattering signal is processed by an optical bench and trans-
formed into an electrical signal by photomultipliers (PTM). The data for each particle of an
ensemble is collected electronically so that by further analysis histogrammes of intensity
distributions are obtained.
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Figure 3.4: A two-dimensional dot plot (c) combines the information of two independent
histogrammes (a) and (b). Colour coding represents the number density. Gates indicate
user specified regions in the histogrammes or the dot plot.

tain subsets within the analysed event population are usually defined. These subsets
are found by observing some specifying characteristic regarding one or more signals.
As shown in Figure 3.4, subsets can be established as regions in histogrammes or dot
plots. Because an automated definition of regions is not possible, finding the appro-
priate regions represents one of the most subjective aspects of flow cytometry. For
some evaluations it is necessary to focus only on those events within a certain region
or a boolean combination of regions. This process is called gating and the considered
region(s) are referred to as gates44.

Since fluorescence represents an average over many fluorophore molecules and
excitation-emission cycles, emitted light is not ideally monochromatic but distributed
with respect to the wavelength. The distribution is characteristic for the specific kind
of fluorescent molecule and causes spectral overlap or cross-over. In multicolour flow
cytometry spectral overlap may cause artifacts of the signal intensities, which have to
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be compensated for electronically. Compensation networks measure the intensity of
the signal on one photodetector and subtract a certain percentage of that signal from
the signal on another photodetector44. The percentages are routinely determined
empirically prior to the measurements.

For the analyses conducted in this thesis, an Epics XL flow cytometer (Beckman-
Coulter, USA) was used. The device is equipped with an argon laser that yields an
incident wavelength of λAr = 488 nm and detectors for λ = 525, 575, 620, 675 nm.

3.2.2 Detecting heteroaggregation by light scattering

In this thesis static light scattering with a Master Sizer 2000 (Malvern Instruments,
UK) and dynamics light scattering with a Zetasizer Nano ZS (Malvern Instruments,
UK) were used to characterise the sizes of primary particles and cells. Additionally,
the DLS device was used to determine the ζ-potentials of the primary particles and
of the suspension during aggregation. To reduce possible effects of interference by
particle fluorescence, the Zetasizer was equipped with a narrow band filter perme-
able only for the He-Ne laser at λHeNe = 633 nm. Structural analyses regarding the
fractal dimension d f for DLCA and RLCA regimes were not performed, instead the
values were adopted from literature as discussed in section 2.4. Although it is com-
mon to determine also the size evolution during aggregation in form of cumulative
mass distributions with SLS or DLS90, they do not provide an optimal resolution of
cluster composition in multi-species systems.

A technique enabling a higher resolution is multiangle simultaneous static and dy-
namic light scattering. It essentially represents a combination of SLS and DLS by
which estimates of absolute heteroaggregation rates can be found39,86. However,
since this technique probes a large particle ensemble - like SLS and DLS generally do -
only rates are obtained that represent averages over the cluster composition. An alter-
native method yielding complementary information is single cluster light scattering
(SCLS), which is also referred to as single particle optical sizing (SPOS)35,109,110. Much
like a one parameter flow cytometer, clusters in SCLS can be differentiated according
to their size (FS signal) by means of an automated single particle analysis. Although
this allows the detection of monomeric and several multimeric aggregation states (un-
der ideal conditions up to heptamers110), simultaneous homo- and heteroaggregation
processes cannot be distinguished. It is only by using additional measurement infor-
mation in a single particle analysis, that complex heteroaggregation processes can be
determined in full. In a flow cytometer the additional information is provided by
the measurement of aggregate fluorescence. This requires fluorescent labelling of all
particle species, each species with a different fluorophore, so that an optimal discrim-
ination is possible. Depending on the size of the primary particles, one species may
be fully characterised by the FS signal, reducing the amount of fluorescent colours by
one.

Flow cytometry was extensively used within this thesis to quantify the dynamic
evolution of cluster composition in multi-species mixtures. Although the use of sim-
ilar flow systems for the detection of aggregation processes was already investigated
previously9,10,109,110, it has not been applied in combination with fluorescence signals
to investigate complex heteroaggregation phenomena in particle systems. All mea-
surements were conducted by an Epics XL (Beckman-Coulter, USA) and aggregation
rates were determined by comparison to simulation data.



Chapter 4
Population balance modelling of
colloidal aggregation
Most discussions of aggregation processes take their origin in the classic work of von
Smoluchowski152, who laid the foundations for their kinetic description and the use
of population balances in this field. In his work, a dispersion of initially identical
particles (primary particles) was considered, which, after a period of aggregation,
contained aggregates of various sizes and different concentrations. Aggregate size
implies the number of primary particles comprising the aggregate. With the help
of conservation equations which balance the amount of aggregates for each prop-
erty state, von Smoluchowski first predicted the distribution of aggregate size and its
dynamic evolution. A fundamental assumption still common today is that aggrega-
tion is a second-order rate process, in which the rate of collision is proportional to
the product of concentrations of two colliding species29. Three-body collisions only
become important at very high particle concentrations29, and will therefore be ig-
nored throughout this thesis. Although there are some theoretical difficulties, it is
further assumed that the collision frequency is independent of colloid interactions
and depends only on the particle transport. This can be justified on the basis of the
short-range nature of interparticle forces. They operate over a range which is less
than the particle size, so that particles are nearly in contact before these forces come
into play29. The decoupling of transport and attachment steps greatly simplifies the
analysis of aggregation kinetics. Nowadays, the use of population balance models to
investigate aggregation processes is well established in academia and increasingly in
industry. The basic concepts and some general implications on their use also within
this thesis will be established in the following sections of this chapter.

4.1 General formulation of population balance
equations

Generally, a disperse phase can be characterised quantitatively by a set of selected
properties. Following the seminal works of Hulburt and Katz63, these properties are
categorised into internal�e and external �x coordinates summarised in

�P =

(
�e
�x

)
. (4.1)
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The external coordinates �x describe the geometrical position of the disperse entity in
space and are therefore limited to three dimensions. The internal coordinates �e are
usually referred to as property coordinates and represent particle properties which
are considered important for the state of the disperse phase. For instance in particle
heteroaggregation, this can be the number of constituent particles of each species.
In theory, their number remains unlimited, in practice their number is constrained
by the computational feasibility. One or more of either the internal and/or external
coordinates may be discrete while the others may be continuous. There are several
ways in which the internal coordinates may be discrete116. A simple example is that
of particle size in a population of particles, initially all of uniform size, undergoing
pure aggregation. In this case the particle size can only vary as integral multiples of
the initial size. External coordinates are discrete if particles can occupy only discrete
sites in a lattice. All property coordinates constitute a property state space P 42,116,
also referred to as property phase space63 or simply as property space. At every
time each entity can be represented as point in this phase space, exactly defining the
momentary state of the entity regarding its position and properties. In this thesis the
focus lies on discrete property coordinates, representing absolute particle numbers
inside an aggregate. External coordinates are neglected due to the assumption of
homogeneous mixing (section 4.4).

Fundamental to the formulation of a population balance equation is the assump-
tion that there exists a number density of particles at every point in the particle state
space116. The number density f describes the number of entities inside a certain state
space volume

f = f (�e,�x, t) (4.2)

and thus depends on the property coordinates�e, the spatial coordinates �x and time t.
The number of particles in any region of the state space is obtained by integrating the
number density over the desired region:

N (t) =
∫

Vx⊆Ωx

∫
Ve⊆Ωe

f (�e,�x, t) dVedVx . (4.3)

where Ωx represents the domain of external coordinates and Ωe that of the internal
coordinates. In a discrete region the integration amounts to simply summing over the
discrete states in the region. The population balance equation is formulated in terms
of the number density f and basically represents a number balance on particles of
a particular state116. The equation is often coupled with conservation equations for
properties of the continuous (environmental) phase surrounding the particles. The
number density function, along with the environmental phase variables, completely
determines the evolution of all properties of the dispersed phase system116.

A population balance accounts for various ways in which particles of a specific
state can either form in or disappear from the system. Processes which cause the
smooth variation of particle states with time must contribute to the rates of formation
and disappearance of specific particle types. Such processes may be seen as con-
vective processes since they result from convective motion in particle state space116.
They cause no change in the total number of particles in the system except when par-
ticles depart from the boundaries of the system. Other ways in which the number
of particles of a particular type can change is by processes that create new particles
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Figure 4.1: Schematic illustration of general population balance phenomena in a disperse
system.

(birth processes) and destroy existing particles (death processes). The processes to
which the disperse phase is subject to are schematically illustrated in Figure 4.1.

Birth of new particles can occur due to nucleation, aggregation or breakage pro-
cesses. Breakage and aggregation processes also contribute to death processes, as
does dissolution, since a particle that aggregates with another particle or breaks into
other smaller particles no longer exists as such after the event. For a detailed elegant
derivation of a the population balance equation the reader is referred to the textbook
of Ramkrishna116 and the PhD thesis of Gerstlauer42. Following their concept, we
begin with the integral balance equation for the absolute number of particles N (t) in
an arbitrary control volume of state space Ve ∪Vx according to the Reynolds transport
theorem

dN
dt

= ΓN + ΣN (4.4)

with ΓN as transport term across the boundaries of the control volume Ve ∪ Vx and
ΣN as source/sink term42. Considering Eq. (4.3) in combination with the volume
integral for ΣN , which introduces the source density σN , and a surface integral for ΓN
we obtain

d
dt

∫
Vx

∫
Ve

f (�e,�x, t) dVedVx = −
∫
Sr

∫
Se

�n ·�φN (�e,�x, t) dSedSr +
∫

Vx

∫
Ve

σN dVedVx

d
dt

∫
Vx

∫
Ve

f (�e,�x, t) dVedVx = −
∫
Vx

∫
Ve

�∇ · �φN (�e,�x, t) dVedVx +
∫
Vx

∫
Ve

σN dVedVx . (4.5)

The second equation follows from application of the Gaußtheorem to the transport
term, obtaining the transport density �∇ · �φN (�e,�x, t) across the boundaries of the con-
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trol volume. If we assume a control volume of fixed size, we can derive the following
equation

∫
Vx

∫
Ve

(
∂ f (�e,�x, t)

∂t
+ �∇ · �φN (�e,�x, t)− σN (�e,�x, t)

)
dVedVx = 0 (4.6)

from which, since the choice of the control volume is arbitrary, the population balance
equation follows in local formulation as

∂ f (�e,�x, t)
∂t

= −�∇x ·�φN,x (�e,�x, t)− �∇e · �φN,e (�e,�x, t) + σN (�e,�x, t) . (4.7)

In this equation the transport density was subdivided into its contributions from
property associated �φN,e and from spatial �φN,x transport42. Both fluxes can be ex-
pressed by the sum of convective �w · f (�e,�x, t) and diffusive �φD

N contributions in anal-
ogy to balance equations for non-disperse systems42

�φN,x = �wx · f (�e,�x, t) + �φD
N,x (4.8)

�φN,e = �we · f (�e,�x, t) + �φD
N,e (4.9)

where �w represents the average convective velocity.

4.1.1 Source and sink terms in population balances

The source or sink term σN (�e,�x, t) comprises all birth and death phenomena related
to variations in the distribution of the number density function f (�e,�x, t) within the
control volume (Figure 4.1). These include nucleation ḟ +

Nuc, solvation ḟ−Sol as well as
aggregation ḟ±Agg and breakage ḟ±Br phenomena

σN = ḟ +
Nuc + ḟ−Sol + ḟ±Agg + ḟ±Br . (4.10)

While nucleation and dissolution represent a particle source and a particle sink, re-
spectively, aggregation and breakage each include a source and a sink term. In this
context nucleation describes the formation of new particles, like the formation of new
seed crystals observed in crystallisation processes. Usually nucleation is determined
by means of a nucleation rate ωNuc (�e,�y (�x, t)) in dependence of the state of the con-
tinuous phase �y, such that42

ḟ +
Nuc (�e,�x,�y) = ωNuc (�e,�y (�x, t)) · fNuc (�e,�x) . (4.11)

The distribution of the formed particles is captured by a normalised density function
fNuc (�e,�x), with an integral value of unity since it represents a distribution probabil-
ity42. If particles are lost in the control volume, for instance by dissolution in the
continuous medium, their number is balanced by ḟ−Sol. The mathematical description
is similar to that of nucleation processes with a dissolution rate ωSol (�e,�y (�x, t)) in42

ḟ−Sol (�e,�x,�y) = −ωSol (�e,�y (�x, t)) · f (�e,�x, t) (4.12)

and is directly proportional to the number distribution of particles within the control
volume f (�e,�x, t). Because this term represents a particle sink, the sign is negative. For
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both types of events, the fluxes between the continuous environment and the disperse
phase have to be considered in order to conserve mass or energy, as illustrated in
Figure 4.1.

In contrast, aggregation and breakage phenomena are processes which are confined
to the disperse phase and do not have to be balanced with the continuous phase.
Therefore they each feature a source and a sink term, to account for disappearing
educt particles and appearing product particles. Aggregation includes phenomena
like coagulation or coalescence, while breakage describes attrition effects of the dis-
perse solid or liquid entities. It is common to model aggregation as a process where
a number of educt particles form a new single product particle upon collision. As
mentioned in the introductory part of this chapter we now apply the assumption that
the probability of three or more particles aggregating in a single event is negligible
compared to events limited to binary interactions29,42.

For a mathematical description of aggregation we may balance the source and sink
terms of an arbitrary particle P (�e,�x) within the confined volume. For the source
term we express the formation rate of a product particle P (�e,�x) by any two educt
particles P′ (�e′,�x) and P′′ (�e′′,�x) (Figure 4.2) as ω+

Agg (�e′,�e′′,�y (�x, t)), in which all po-
sitions are approximated by those of the product particle �x′ ≈ �x′′ ≈ �x. The aggre-
gation rate must be symmetrical with respect to the choice of educt particles, so that
ω+

Agg (�e′,�e′′,�y (�x, t)) = ω+
Agg (�e′′,�e′,�y (�x, t)). For the death term of particle P (�e,�x) a

similar rate is defined ω−Agg (�e,�e′,�y (�x, t)), in which the particle P′ (�e′,�x) represents
any other particle which can aggregate with P (�e,�x). The source and sink terms for
aggregation processes are then given by the following expression42,128

ḟ±Agg (�e,�x,�y) =
1
2

∫
V∗e

ω+
Agg

(
�e′,�e′′,�y (�x, t)

)
f
(
�e′,�x, t

)
f
(
�e′′,�x, t

)
dV∗e

− f (�e,�x, t)
∫
Ve

ω−Agg

(
�e,�e′,�y (�x, t)

)
f
(
�e′,�x, t

)
dVe (4.13)

where the integration for the source term is carried out only over a region V∗e of
smaller aggregates within the property space, while in the sink term the particles
P′ (�e′,�x) may belong to the whole property space. The prefactor to the source term
of 1/2 corrects double counting effects during integration over V∗e for symmetric sys-
tems.

In breakage processes a single educt particle P (�e,�x) may decompose into several
differently sized product particles (Figure 4.2). The breakage rate of particle P (�e,�x)

depends on the particle properties as well as on the environmental conditions at its
spatial position �x in state space. It is given by ωBr (�e,�y (�x, t)). The number of formed
product particles depends on the educt particle P (�e,�x) as well as the ambient condi-
tions and may be expressed by a function υ (�e,�y (�x, t)). The distribution of the formed
product particles throughout the property space is represented by a dimensionless
probability density function fF (�e,�e′,�y (�x, t)) which is normalised to unity upon inte-
gration over Ve. The source for product particle P (�e,�x) following breakage of a larger
aggregate P′ (�e′,�x) is obtained by means of an integration weighted over all possible
sinks. The integration is performed over the subspace V∗e that comprises all bigger
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Figure 4.2: Schematic illustration of sources and sinks in aggregation and breakage of par-
ticulate entity P.

aggregates which can form the product particle by breaking apart. Considering this,
the contribution of breakage events to σN is given by42

ḟ±Br (�e,�x,�y) =
∫

V∗e

υ
(
�e′,�y (�x, t)

)
fF
(
�e,�e′,�y (�x, t)

)
ω+

Br

(
�e′,�y (�x, t)

)
f
(
�e′,�x, t

)
dV∗e

−ω−Br (�e,�y (�x, t)) f (�e,�x, t) . (4.14)

In addition to the normalising condition for fF, mass conservation yields an addi-
tional condition42

υ
(
�e′,�y (�x, t)

) ∫
Ve

m (�e) fF
(
�e,�e′,�y (�x, t)

)
dVe = m

(
�e′
)

(4.15)

with m (�e′) as mass of the educt particle P′ (�e′,�x).

As just shown, the population balance approach uses particle density distributions
for problem formulation and, under consideration of initial, boundary and conserva-
tion conditions, might yield complex partial-integro-differential-algebraic equation
systems. These are rarely accessible by analytical solutions. In order to facilitate a
numerical solution, in most disperse systems the system size has to be constrained
to only a handful or less property coordinates. And even for these few coordinates
the total size of the property space P might have to be reduced further. This implies
that only the most important system characteristics can be mapped and reduction
methods are necessary for a quick numerical calculation. A huge number of different
numerical methods has been developed over the previous decades, many of them
even exhibiting different variants. A brief overview on the main classes of solution
techniques is given in the following section.
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4.2 Methods for numerical solution
With increasing system size population balance models tend to yield large, highly
linked systems of differential equations. Excluding analytical and stochastic tech-
niques, the solution of population balance equations depends on numerical approa-
ches. However, quick numerical solutions are often impeded by the system com-
plexity, which motivates model reduction strategies. From literature several methods
to reduce the complexity and especially the system size are known beyond limiting
the number of property coordinates. These basically all aim for a suitable discretisa-
tion, either of the population balance equation itself or of its solution11. By means of
discretisation, population balance equations can be transferred into a set of discrete
ODE’s that can be numerically solved by a computer. Usually most model reduction
methods are accompanied with a certain loss of system information, so that opti-
mal numerical conditions are only found by a trade-off between computational cost
and solution detail. A comprehensive overview of numerical techniques for solving
population balance equations was recently provided by Briesen11.

Common methods to approximate the population balance equation without any
assumptions on the solution include finite difference and finite volume methods as
well as discretised formulations of the original equation. Here, the primary handle
on the computational cost is represented by the discretisation length scale of the grid
on which the equation is solved. A very fine grid results in a high number of differen-
tial equations, yielding very detailed numerical solutions, while coarse grids reduce
the number of equations but only achieve approximated information on the omitted
grid points. Discretised expressions for continuously formulated population balance
equations can be achieved by approximating the size spectrum of the state space with
a set of size classes or sections150. The approximation is achieved by lumping an in-
terval on state space or several discrete states into a single representative coordinate,
referred to as nodes or pivots, which for instance represent the size of an aggregate in
a particular domain11. Mechanisms, like nucleation, growth, aggregation and break-
age are formulated for these nodes. In essence this represents a finite volume method,
since the sets or sections are based on the integration of the population balance over
a certain size domain. In the literature these approaches are often referred to as sec-
tional methods or methods of classes, without explicitly drawing the connection to
finite volume methods. By introducing correction factors, it is assured that the physi-
cally desired conservation of volume or mass and number is guaranteed62. Kumar
and Ramkrishna77 have developed such a fixed pivot approach that can adopt ar-
bitrary grids and allows the conservation of two arbitrarily chosen moments of the
distribution. Since this method assumes that the population of particles is distributed
on grid points, only particles with masses m1, m2, . . . , mmax exist. If, due to a breakage
or aggregation event, a particle is formed with mass m between mi and mi+1, such a
particle is split by assigning fractions a (m) and b (m) to the populations at mi and
mi+1, respectively, in such a way as to ensure conservation of the two chosen mo-
ments150. The internal distribution is lost by this approach but the solvable systems
size is considerably expanded. Regarding the internal distribution within a section,
we can distinguish between zero-order and higher-order methods150. In zero-order
methods, all particles belonging to a section are supposed to be of the same size and
thus the distribution is approximated by a histogramme. In contrast, higher order
methods approximate the size distribution within each section with a specified func-
tional form, usually a low order polynomial, through cubic splines or orthogonal
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collocation. Of course higher order methods are more accurate, but they may suffer
from stability problems or dispersion effects when dealing with very narrow initial
distributions150. For systems which can originally be defined in a discrete manner,
this method can also prove relevant in order to reduce system size by defining the
population balance equation on a coarser grid of state space.

Fundamentally different strategies to solve partial differential equations are pro-
vided by the concept of weighted residuals. For the solution of population balance
equations the method of weighted residuals has been first employed by Singh and
Ramkrishna138. In contrast to the techniques presented above, these methods do not
begin with the equation to be solved, but instead a trial solution is formulated which
comprises a linear combination of a set of basis functions11. The linear coefficients of
this expansion need to be determined to obtain an approximate solution. To specify
a particular method, basis and test functions need to be chosen which determine the
classification of the method. A major classification is with respect to the character of
the basis functions allowing the distinction of local (finite element methods), global
and hierarchical basis functions. For more information, the reader is again referred to
the works of Ramkrishna116 or Briesen11.

A special branch of weighted residuals with global basis functions are moment
methods. Moment methods have been suggested along with the first formulation of
population balance equations by Hulburt and Katz63 and can be viewed from differ-
ent angles, which prevents the strict classification as a method of weighted residu-
als11. In rare cases the integration of the population balance equation weighted by
global monomials of the particle size can be performed quasi-analytically. Then no
assumptions on the size distribution are necessary and the method of moments is a
transformation technique rather than a method of weighted residuals. However, in
most cases the integration of the population balance equation weighted by several
monomials leads to an unclosed system of equations and/or introduces fractional
moments. To close the system of equations additional assumptions on the shape of
the distribution can be made or interpolation techniques need to be employed. Alter-
natively, the closure problem can be solved by the quadrature method of moments93

enabling a very efficient approximate solution of population balance equations. The
comparatively low computational costs of this approach becomes especially impor-
tant when dealing with multivariate population balance equations124,125,156.

4.3 Other simulation approaches
Apart from deterministic population balance equations, aggregation processes can be
simulated by other methods. The most prominent are Monte Carlo108,114 and Brown-
ian dynamics simulations16,75. Both use discrete representations of reasonably large
sets of individual particles (ensemble) to approximate the behaviour of the generally
unaccessible huge number of actually present particles. In Monte Carlo methods the
behaviour of a discrete particle set is then directly rendered by stochastic events fol-
lowed by ensemble averaging. Brownian dynamics approaches essentially represent
an approximation of deterministic molecular dynamics simulations. The approxima-
tion concerns the extremely large differences in time scales and particle motions. In
colloidal systems interactions of the particles with molecules of the environmental
phase is usually replaced by stochastic effects.
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The Monte Carlo method74,96,141 aims at generating a trajectory in phase space by
sampling from a given ensemble so that the ensemble average can be evaluated29.
Although there is no single Monte Carlo method all approaches tend to follow a par-
ticular pattern of defining a domain of possible inputs, generating random inputs
from the domain using certain specified probability distributions, then performing a
deterministic computation using the inputs and finally combining the results of the
individual runs into an overall result. Monte Carlo methods are often chosen be-
cause of three principal advantages: simplicity of implementation, capability of deal-
ing with high-dimensional problems and ease of representing complex behaviour11.
On the other hand Monte Carlo methods are often computationally expensive. As
shown in the previous section, the dimensional limitations of deterministic popula-
tion balance modelling are a major obstacle for mechanistic modelling of particulate
processes. Hence, the use of Monte Carlo methods seems to be a logical consequence.
They were already successfully applied to evaluate aggregate morphologies, as dis-
cussed in section 2.4 and disperse phase aggregation processes108,114.

In molecular dynamics a set of coupled equations of motion, usually ordinary dif-
ferential equations, for many-body systems, is solved using finite difference tech-
niques29. The method has been widely applied to homogeneous systems such as
monoatomic liquids to produce the correct time ordering of the generated configu-
rations. However, for mixtures like colloidal dispersions where hydrodynamic and
stochastic forces must be correctly included as well as the usual interparticle interac-
tions, this method is hardly practical at present because of the complexity and com-
putational cost involved29. In mixtures containing different particulate species such
as dispersions of macromolecules or colloids, the timescale characterising the mo-
tion of each species can differ by several orders of magnitude29. To simulate such
systems using the standard molecular dynamics methods would require extremely
short time intervals to handle the fast motion of some species and exceedingly long
runs to allow the slow evolution of the others. Thus, where the fast motions are not of
great interest molecular dynamics methods are simply too demanding with respect
to computing resources to be practical. Fortunately, approximate approaches such
as Brownian dynamics can be used in such cases. In Brownian dynamics, the fast
motion of solvent particles are omitted from the simulation and their impact on the
solute is represented by a combination of random and frictional force terms29. The
Newtonian equations of motion are replaced by Langevin-type equations of motion.
Brownian dynamics type simulations are frequently used to solve the system evolu-
tion in disperse phase systems, for instance to investigate internal cluster structure
and dynamics in heteroaggregation processes between different species16,75. One of
the advantages of molecular dynamics over Monte Carlo is its ability to provide dy-
namic or time-dependent properties. Although these properties can be calculated
with alternative methods in statistical mechanics, non-equilibrium molecular dynam-
ics offer improved efficiency and enhanced versatility29.

For completeness it should be briefly mentioned at this point that some studies use
a combination of different simulation techniques, like sectional approaches on small
scales with Monte Carlo simulations on large scales82, in order to obtain models that
are only as detailed as necessary.
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4.4 Application context
In order to investigate the dynamics of directed self-assembly processes for the tar-
geted delivery of drugs to cells, this thesis focuses on heteroaggregation phenom-
ena between different particulate species. The aggregation is simulated by means
of multivariate population balance models. Although multivariate population bal-
ance equations provide a convenient method for describing aggregation in multi-
ple species systems, most models in the literature concerning aggregation remain re-
stricted to homoaggregation79,128,133. Recently, an overview of multivariate popula-
tion balance formulations for other than crystallisation applications was published by
Briesen11. The physical complexity of heteroaggregation processes in multi-species
systems results in a lack of exact kernels which efficiently couple the aggregation rate
to the aggregate composition distributed over property state space. The development
of appropriate kernels is an area of ongoing research30,98,101,102,103. Exact expressions
and further details concerning the establishment of property state space, the popu-
lation balance equation and the aggregation rates will be discussed later in sections
6.1 and 8.1. At this point only a succinct classification of the model according to the
outlined criteria is intended. In addition, some assumptions and specifications of
general impact to the work of this thesis are made beyond the restriction to binary
particle interaction and the decoupling of particle transport and attachment, which
were mentioned in the introductory comment of this chapter.

4.4.1 Derivation of a population balance equation for particle
aggregation

One very important assumption is that all investigated particle suspensions are con-
sidered as homogeneously mixed so that �x can be neglected and �P = �e. The hydro-
dynamic conditions within the suspension are therefore approximated by a step-like
behaviour, ensuring complete mixing of all particle species by turbulence before, but
purely diffusive (perikinetic) regimes after the experiment begins. Experimentally
this is realised by gentle shaking directly following the addition of particle all parti-
cle species. As expected some particle aggregation was observed during the initial
mixing phase. In order to consider this in the simulation, the beginning of each ex-
periment was defined as the time when the first sample had been analysed in the
flow cytometer. The measured initial distribution of aggregate composition could
then be used as initial condition for solving the population balance equation and
the hydrodynamic turbulences are assumed to have decayed, yielding a perikinetic
regime. Although the time scale for a total decay of convective motion is probably
longer, the assumption of a step like mixing behaviour represents a good compro-
mise between model complexity and physical reality and is supported by the very
good reproducibility, demonstrated in Chapter 5.

Furthermore, the liquid suspension is considered as a closed system. Due to ho-
mogeneous mixing any influence of the extracted sample volume on the aggregation
dynamics is not expected. With the complete lack of any spatial dependence, no
convective and diffusive spatial transport terms across the boundaries of the control
volume exist, i.e. �∇x · �φN,x (�e,�x, t) = 0. If we further assume that property related
convective and diffusive transport, like crystal growth, may remain unconsidered in
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aggregating colloidal systems with �we = 0 and �φD
N,e = 0, the population balance

equation (4.7) simplifies to

d f (�e, t)
dt

= σN (�e, t) = ḟ±Agg . (4.16)

In Eq. (4.16) we already considered that in the systems of interest, the source/sink
term only contains the aggregation contribution. Nucleation and dissolution remain
unconsidered and in perikinetic regimes, where hydrodynamic shear forces are neg-
ligible, aggregate breakage is also negligible. The neglect of breakage events corre-
sponds to simulating the aggregation process with net-rates.

Since in our investigations the population balance equation accounts for the dis-
tribution of particles or particulate entities throughout the state space, the proper-
ties �e that span open the property state space P are intuitively constructed from all
possible discrete particle numbers for each species. The population balance equa-
tion then has to be recast in a discrete manner. In the system of interest, the parti-
cle species are electrostatically stabilised against homoaggregation. Due to the dif-
ferences in particle properties between the species, mixed clusters will form due to
heteroaggregation. The heteroaggregation comprises two distinct contributions: the
attachment of monomeric primary particles to the clusters and the aggregation of
clusters themselves. Throughout this thesis, the first contribution will be termed pri-
mary heteroaggregation and secondary or cluster-cluster aggregation, respectively. The
attachment of monomeric particles from the environment to clusters is identical to
aggregation along a single property dimension. For the unconstrained secondary
aggregation term, the summation has to be performed over all dimensions of state
space. In binary particle heteroaggregation this is expressed by the separate sum-
mation over both properties �e = (i j)T, which represent discrete particle numbers
constituting the aggregate and span open state space. The conservation of particle
numbers �e′′ = �e−�e′ can be expressed as i′′ = i − i′ and j = j− j′ in the source and
sink terms for a binary system. Both effects are included as separate terms in the
following expression:

ḟ±Agg =
[
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�e′,�e′′,�y (t)

) · f
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�e′, t
)−ω
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in which i′∗ and j′∗ represent regions within property space. Primary aggregation is
given by P (�e′, t) + P (�e′′, t) → P (�e, t). with P (�e′′) representing the monomer educt
particle.

For discrete systems, where the property space is spanned open by particle num-
bers, the number density function f (�e, t) is equivalent to the number concentration
c (�e, t) of particles within a certain spatial volume. This follows from the formal unit
of the number density function [ f ] = ΠK

k [ek]
−1 · m−3, in which [e1] = [e2] = 1 for

particle numbers42. In the following, the number density functions are replaced by
the particle number concentrations c (�e, t).
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4.4.2 Solution method

As shown in section 4.4.1, the heteroaggregation processes in the investigated multi-
species systems can be described by simple, yet highly coupled, systems of ordinary
differential equations. From physical considerations, these are defined in a fully dis-
crete manner with respect to the property coordinates. Therefore no artificial dis-
cretisation has to be established in order to solve them numerically on a computer.
However, the computational costs of solving systems with fully occupied state spaces
might impede a numerical solution. System size can efficiently be reduced by focus-
ing on regions in property space with high aggregate concentration. To this end a
zero-order sectional approach with varying interval spacing is applied, which creates
regions of property space with heterogeneous resolution levels. The interval spacing
can be determined on a heuristic basis and may be adaptively refined according to
the drift of the aggregate distribution within the property space.

In the investigated particle and cellular systems, the aggregation process over the
respective analysed time spans yields aggregates of limited configurations only. There-
fore, it is possible to choose the absolute particle numbers of each species as finest
discretisation in areas of high particle concentrations, i.e. the property coordinates
are directly used as nodes around which population balances are set up. Also, it
seems convenient to lump all aggregates outside of this highly resolved region into
very few representative coordinates with averaged properties and thus restrict the
analysis to two resolution levels. To regulate the extent of the fine region a scaling
parameter ξ is introduced, which determines a cut-off criterion as percentage of the
particle fraction contained in a certain property node. For very large regions of fine
discretisation this factor is selected small, for small ones it is chosen greater.

In the binary particle system discussed in Chapter 5, a combination of fixed and
adaptive grids is applied to resolve the evolution of the distribution on each prop-
erty axis, while for the biological system an independent adaptive grid is used for
each species in Chapter 7. Numerical solutions were generated with MATLAB on a
conventional desktop computer.

There a two striking advantages of applying this method. For one, in the areas of
high aggregate concentration with maximum resolution essentially no system infor-
mation is lost by global approximation rules. Therefore, most approximations on the
boundaries of the discretised elements are avoided. Some minor inaccuracies are gen-
erated on the boundaries to the regions of low resolution, but these are of negligible
influence. This is why very low numerical diffusion was achieved over the simulated
time span.



Part II

Heteroaggregation in
multi-dimensional particle systems
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When studying colloidal dispersions, many different physiochemical factors have
to be understood in order to optimise their use in industrial processes66. Impor-
tant technical use of colloids is made in separation processes, like filtration and flota-
tion48, or in the production of emulsions and foams65. In addition to their traditional
use, promising new fields are opening up with investigations of self-assembly and
biomedical applications of nanotechnology. For instance, specific colloid aggregation
could prove essential for biological separation processes, like affinity precipitation59,
or for cell targeting and drug delivery issues as discussed in this thesis.

As was shown in Chapter 2 of the previous theoretical part, colloidal stability de-
pends on the interactions that occur between the dispersed particles and also between
the particles and the solvent. When particles are suspended within a medium, ran-
dom particle collisions are inevitable. These can be the result of intrinsic Brownian
motion, or of external forces, such as shear from agitation and flow or gravitational
forces in case of sedimentation. As a consequence aggregation may occur and, de-
pending on the particle properties, may result in permanent contact referred to as
coagulation, or temporary contact which is known as flocculation66.

When a system contains only one type of particles, the kind of interactions that
predominate will differ from situations where more than one particle species co-exist
within the same medium66. The particles may differ in a variety of ways, for exam-
ple in composition, shape, size, surface potential and charge. Aggregation in single
species systems is called homoaggregation, while the instability of multi-species col-
loidal dispersions is referred to as heteroaggregation29,66,90. Although homoaggrega-
tion is the more widely studied field, it is nevertheless inadequate in explaining many
heteroaggregation phenomena, due to the complexities which result from the mixing
of different particulates66. One important feature of heteroaggregation is that par-
ticles which are colloidally stable, for instance by electrostatic repulsion, may read-
ily adsorb to a surface of a different particle type, with which there is no repulsion.
Given a large difference in particle size, smaller particles then adsorb onto the surface
of the larger species. When the whole surface is covered, the surface properties of the
larger coated particle become similar to those of the small particles, which may cause
restabilising effects66.

As aggregation processes become ever more complex in their applications, he-
teroaggregation gains in importance. A review on experimental and simulation as-
pects of heteroaggregation was recently published by Lopez-Lopez et al.90. In con-
trast to homoaggregation, where aggregates can be adequately described by cluster
size and structure, heteroaggregation demands a multidimensional aggregate anal-
ysis to determine the cluster composition, for instance by means of flow cytometry.
In this second part of the thesis, the dynamic evolution of the cluster composition in
mixed particle systems is studied experimentally and by simulation. In Chapter 5,
flow cytometric measurements are presented, which enable a detailed analysis of the
heteroaggregation dynamics. To validate model predictions from colloidal science,
the particle interaction potentials were characterised by colloidal probe microscopy.
On the basis of theoretical interaction potentials a rate model for heteroaggregation in
perikinetic systems is developed in Chapter 6. The rates are used in a population ba-
lance equation to describe the predominant electrostatic effects during aggregation.
The investigations provide the methodological tools for a rigorous approach to tar-
geting processes in biological systems discussed in Part III and were published/are
submitted in four journal contributions119,120,121,122.





Chapter 5
Experimental aggregation dynamics
The dynamics of heteroaggregation processes in multi-species particle systems were
investigated by flow cytometry. The high level of detail, with which simultaneous
homo- and heteroaggregation processes can be resolved by tracking the cluster com-
position, is used to enhance the physical insight into the consecutive interplay of
distinct electrostatic effects. To this end particle species differing in size and surface
properties were selected. The employed materials and experimental methods for all
three are summarised in sections 5.1 and 5.2 with a special emphasis on the acqui-
sition and analysis of flow cytometric data. In total three experimental aspects are
discussed in this chapter. Starting off with investigations of binary particle systems
in section 5.3, the principal electrostatic aggregation phenomena are discussed. This
is followed by section 5.3.3 which highlights the influence of microscale differences
in particle interactions on macroscale aggregation behaviour by employing colloidal
probe microscopy. It prepares the stage for the population balance simulations in
Chapter 6. Finally, the methods established for binary systems are successfully ap-
plied to ternary particle systems and dosage experiments in section 5.4.

5.1 Materials
In all investigations, purchased monodisperse particle suspensions of polystyrene
(PS) and melamine-formaldehyde (MF) latices with spherical geometry were used.
Depending on the investigated aspect, the particle size, its fluorescent label and the
manufacturer vary. All particle suspensions were used as delivered and their charac-
teristics are shown in Table 5.1. In most experiments the particle species were diluted
in deionised MilliQ water (Millipore, USA). For some experiments, the ionic strength
was increased to 2 M by addition of NaCl (99.5% purity, Roth, Germany).

In the preliminary investigations of binary mixtures, 2 μm sized negatively charged
PS particles and 366 nm sized positively charged MF particles were obtained from mi-
croParticles GmbH (Berlin, Germany). The MF particles were fluorescently labelled
with Rhodamine B, which features an excitation maximum at λex = 560 nm and an
emission maximum at λem = 584 nm. For confocal imaging by laser scanning mi-
croscopy, the non-fluorescent PS particles were exchanged with green fluorescent PS
particles (PS-Fluo) from the same manufacturer. The excitation and emission maxima
of this fluorophore are similar to fluorescein isothiocyanate (FITC) with λex = 506 nm
and λem = 529 nm, but show less sensitivity to photobleaching.

Investigations in binary systems were extended by exchanging the PS particle sus-
pension with that of a different manufacturer. Instead of PS latices from microPar-
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ticles, 2 μm PS particles of Duke Scientific (Thermo, USA) with more negative sur-
face potential were used. Together with pronounced deviations in the aggregation
dynamics this indicates different surface functionalisation between the two particle
suspensions.

Finally, the investigations of ternary mixtures are based on 2 μm sized negatively
charged PS particles from Duke Scientific (Thermo, USA). The other two species were
positively charged MF latices from microParticles, one with a diameter of 530 nm and
FITC as fluorescent label, the other of 2 μm in diameter and fluorescently marked with
Rhodamine B.

Table 5.1: Characterisation of the particle systems used in the aggregation studies. The
following abbreviations were used: polystyrene (PS), melamine-formaldehyde (MF), Rho-
damine B (RhB), fluorescein isothiocyanate (FITC).

Particles Manufacturer cM [w/v %] d [μm] a ζ [mV] b Fluorophore Sections
PS microParticles 2.0 1.998 -48 - 5.3.1-
MF-RhB microParticles 2.5 0.366 +43 RhB c 5.3.2
PS Duke Scientific 0.4 1.998 -82 - 5.3.3MF-RhB microParticles 2.5 0.366 +43 RhB c

PS Duke Scientific 0.4 1.998 -82 -
5.4MF-RhB microParticles 2.5 2.0 +25 RhB c

MF-FITC microParticles 2.5 0.530 +43 FITC d

anominal diameter determined by the manufacturer
bζ-potential determined with a Zetasizer Nano ZS, Malvern, UK
cλex = 560 nm, λem = 584 nm
dλex = 506 nm, λem = 529 nm

5.2 Methods

5.2.1 Experimental procedures

The experiments were carried out in 50 ml polypropylene centrifuge tubes (Sarstedt,
Germany) which were thoroughly rinsed with deionised water before use. In all ex-
periments non-fluorescent PS particles were diluted to cPS = 1.14 · 104 particles/μl
in 30 ml MilliQ water (Millipore, USA). This concentration was empirically adjusted
to the optimal operating conditions of the flow cytometer at detection rates of 1500 to
2000 events/s. At the same time sufficient aggregate concentration is guaranteed for
experiments at cPS/2 in section 5.3.1, which becomes especially important towards
the end when the particle concentration is depleted due to aggregation. To achieve
elevated electrolyte concentration in section 5.3.2, the PS particles were diluted in 2 M
NaCl (99.5% purity, Roth, Germany) solution instead of deionised water.

The experiments were initiated by adding the other particle species in appropri-
ate quantities to achieve a desired mixing ratios within the total liquid volume. To
this end, small volumes of the other particle suspensions were prediluted with 200 μl
MilliQ water of which about 150 μl were added to the total volume of 30 ml. In the
binary mixtures, the particle concentration ratio was varied from cMF−RhB/cPS = 1:1
over 20:1 to 100:1. Experiments with intermediate ratios of 5:1, 10:1 and 50:1 were
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also conducted, but do not contain any additional information. In the ternary mix-
tures both MF particle species were added simultaneously at the beginning of each
experiment in ratios of cPS/cMF−FITC/cMF−RhB = 1:20:1 or 1:1:1. The total solid vol-
ume fraction always remained below 5 · 10−3 %.

Directly after addition of all species, a homogeneous distribution of the particles
throughout the liquid volume was established for perikinetic investigations by gently
tipping the tube over once. This led to an accelerated formation of heteroaggregates
prior to the first measurement taken immediately after mixing. To verify the repro-
ducibility of the initial condition, several repetitions of selected experiments were
made in the binary systems of section 5.2.2. In Figure 5.2, the initial flow cytomet-
ric measurement shows maximum standard deviations between the experiments of
1.6 % for monomers, 8.3 % for dimers and 10.6 % for trimers. Because these three ag-
gregate structures initially account for > 98 % of all particles, reproducibility is con-
firmed. If not specified otherwise, perikinetic conditions were maintained through-
out the remaining experiment. To obtain the cluster composition, samples of 200 μl
volume were taken at various times and analysed in the flow cytometer.

To demonstrate the sensitivity of flow cytometric analyses against orthokinetic hy-
drodynamics regimes and further particle dosage, variations of experimental param-
eters were made. In section 5.3.1, orthokinetic conditions were generated by con-
tinuously agitating the liquid volume with a magnetic stir bar at constant speeds of
250 or 500 rpm inside a cylindrical liquid volume of 30 ml. Initial mixing by tip-
ping the tube over once was omitted here. In section 5.4 two experiments with in-
termittent dosage of additional PS particles are shown. At t = 30 min or 1 h, the
concentration of PS primary particles was instantaneously raised by an additional
cadd

PS = 0.57 · 104 particles/μl, half the initial concentration.

Generally all experiments were conducted at a room temperature of approximately
T = 298 K. Additional experiments were carried out to study binary aggregation
dynamics at an elevated temperature of T = 310 K as reported in section 5.3.1. For
the particle species volumetric forces are considered to be small compared to the force
causing Brownian motion. This is ensured by the small density difference between
PS particles and water, and the small size for MF particles being of higher density.
Sedimentation effects could therefore be neglected for experiments of approximately
6 h duration.

5.2.2 Flow cytometric analysis of aggregation

The Epics XL flow cytometer was used to measure the multi-dimensional cluster dis-
tributions. In binary systems two-dimensional distributions of the forward scatter
intensity (FS) and the fluorescence intensity at λ = 575 nm (FL2) were studied. The
FL2 channel coincides with the emission peak of Rhodamine B, which labels the MF
particles. A three-dimensional analysis was made in order to characterise cluster
compositions in ternary mixtures. Similar to binary systems, the large particle species
were detected by the forward scatter intensity. Aggregate fluorescence was detected
on the FL1 = 525 nm channel for the MF-FITC particles and the FL2 = 575 nm
channel for the MF-RhB particles.

Prior to experiments, the scatter and fluorescence detector voltages were optimised,
to ensure that the whole aggregation process would not exceed the signal ranges. The
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settings were established with unmixed particle suspensions and stored in standard
operating procedures (protocols). For reasons of reproducibility all measurements
were conducted with the same respective protocols. Detector voltages were adjusted
to show the PS monomers at about FS = 102 a.u. and the mean fluorescence intensi-
ties of the labelled monomers at FLx = 101 a.u., both with logarithmic scaling. The
SS intensity was measured on a linear scale detecting the PS particles at low inten-
sities. Any effects due to differences in the refractive indices of PS and MF particles,
i.e. 1.59 and 1.68 relative to water, on the scatter signal during heteroaggregation are
neglected. In ternary systems, the fluorescence intensity of the MF-FITC particles
was low compared to that of the MF-RhB particles due to the large difference in size.
The sensitivities of both fluorescence channels were adapted accordingly: high sen-
sitivity in FL1 and low sensitivity in FL2. This had the positive side effect, that the
signal cross-talk between the FL1 and FL2 channels did not have to be compensated.
The spill-over of FITC into FL2 was negligible due to the different sensitivities, and
Rhodamine B did not have influence on the FL1 intensity.

In each measurement 20000 events were evaluated. However, with proceeding
aggregation both aggregate concentration and count rate decrease. To avoid exceed-
ingly long measurement times and increased sample volumes, a maximum measur-
ing time of 100 s was set. Once the flow cytometer reached either of the abort criteria
(20000 particles or 100 s), the measurement was terminated. The sample volume for
each measurement was less than 200 μl.

After the cluster composition was measured by the flow cytometer, the data was
analysed in multiple post-processing steps of varying complexity. The raw data can
be represented in two-dimensional dot plots as explained in section 3.2.2. Dot plots
represent snapshots of the aggregation status at sampling time t. By analysing the
particle distribution inside specific regions, a series of snapshots can be transformed
into time-dependent aggregation dynamics. In the analysed particle systems, differ-
ent resolutions were obtained on the scattering and fluorescence intensity axes. For
the primary particles in the micrometre range (PS and large MF-RhB), different ag-
gregation states are directly indicated by a discrete signal distribution. For submicron
particle species (small MF-RhB and MF-FITC) the fluorescence intensities changed
gradually, so that exact particle numbers could only be obtained by correlations as
explained in section 5.2.2.4.

5.2.2.1 Analysis of binary systems

In the binary system, gating was performed with respect to the discretised FS inten-
sity. Figure 5.1 shows a sample dot plot. In total three manually adjusted regions are
indicated characterising PS primary particles, MF-RhB covered PS monomers and
complex oligomers of mixed composition. Faced with several more clearly visible
discrete aggregation states which would allow a much more detailed analysis, the
artificial restriction to only three regions may seem a little crude. However, clarity
is considerably improved by lumping all PS oligomers into a single region and for
a detailed understanding of the aggregation process these three regions suffice. The
cluster composition of each region is indicated by a two element vector (i, j) related
to the number of PS and MF-RhB particles, respectively. Monomeric MF-RhB par-
ticles could not be detected very well in the flow cytometer when mixed with PS
particles. This is because PS aggregates dominate both the FS and FL2 signals due to
their size, which causes high scattering intensities and high fluorescence when cov-



5.2. Methods 55

100 101 102 103
101

102

103

FL2 LOG [a.u.]

FS
 L

O
G

 [a
.u

.]

PS primary monomers  (1,0)

covered PS monomers
            (1,j)

PS oligomers  (i>1,j)

PS dimers  (2,j)

PS trimers  (3,j)

t = t*

Figure 5.1: The two-dimensional dot plot coloured by event density shows the distribution
of cluster composition in a binary mixture of 2 μm PS and 366 nm MF-RhB particles.
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Figure 5.2: Reproducibility and experimental error of flow cytometric measurements of
aggregation dynamics in binary particle mixtures. The information of three repetitions is
presented along with the 95% confidence interval that is indicated as shaded area. The
values at t∗ ≈ 4 h indicated by vertical lines were obtained from the dot plot in Figure 5.1.
The plots show a representative perikinetic experiment with cPS = 1.14 · 104 particles/μl
and a ratio of cMF−RhB : cPS = 20:1 at T = 298 K and cNaCl

M = 0 M. PS primary monomers
(◦), covered PS monomers (•), PS dimers (�), PS trimers ( ), PS oligomers (�).

ered by MF-RhB. Some monomeric MF-RhB particles appear below the gates around
FL2 = 101 a.u. in the dot plot. In all experiments identical regions were applied,
except at elevated electrolyte concentration, where they had to be corrected slightly.
This minor deviation of the FS signal at increased ionic strength is likely to be caused
by the changing refractive index of the medium.

Inside each region, the particle fraction and mean fluorescence intensity were recor-
ded. By plotting these values for each measurement in a single experiment against the
experimental time t, the aggregation dynamics are obtained. For a representative ex-
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periment, these are shown in Figure 5.2, together with two repetitions. The included
95% confidence interval around all experiments is very narrow over the complete ag-
gregation experiment. This shows the excellent reproducibility of the initial condition
(section 5.2) and the experiment on a whole.

5.2.2.2 Analysis of ternary systems

In ternary systems, the complete distribution information has to be represented in
a three-dimensional distribution plot, like the ones shown in Figure 5.3. As before,
increasing signal intensities indicate aggregates growing in size and complexity. The
analysis of aggregation dynamics in three-dimensional plots is, however, more diffi-
cult. That is why, two-dimensional projections of the original dot plot are preferred
for the analysis of the cluster composition and for the definition of regions. In Figure
5.4 two projections of the FS signal against both fluorescence signals FL1 and FL2 are
shown.

Several regions of distinct cluster composition are indicated by the three element
vector (i, j, k) representing PS, MF-FITC and MF-RhB particle species respectively.
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Figure 5.3: Three-dimensional distribution plots of ternary cluster composition. Colour
coding performed according to the gates indicated in Figure 5.4.
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the FL2 channel. Several distinct cluster compositions are indicated by composition vectors
(i, j, k). Colour coding according to number density.
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Unspecified particle numbers are indicated by the general index, as in (1, j, 0) for PS
monomers covered with several MF-FITC particles. Because PS and MF-RhB primary
particles are equally sized, both species show up in the same gate of the FS vs. FL1
plot with composition vector (i ∈ {0, 1}, 0, k ∈ {1, 0}). A distinction can only be made
by additionally considering the FL2 signal. As done previously for the binary system,
the gates are analysed with respect to particle fraction and average fluorescence in-
tensities.

5.2.2.3 Validation of cluster concentration and composition

All considered particle concentrations were gained by theoretical calculations. They
are based on manufacturer information that characterises the original suspensions.
To validate, that all particles are detected by the flow cytometer and that the mea-
surements are reliable, theoretical concentrations were confirmed by validation stu-
dies. The validation of particle concentration focuses on the initial PS concentration
of cPS = 1.14 · 104 particles/μl, from which all other concentrations are calculated by
the applied ratios and which therefore is of central importance. The particle concen-
tration can be derived from each measurement by the following relation

cexp
PS =

NPS

texp V̇exp (5.1)

with NPS as absolute number of PS particles detected in a flow cytometric measure-
ment, texp as measurement duration and V̇exp as flow rate during measurement. The
amount of PS particles, NPS, is usually less than the limit of 20000 events set by the
abort criterion (see Section 5.2.2), since a small amount of MF-RhB particles and con-
taminating particles add to the total count. These have to be excluded by appropriate
gating. The total particle number was therefore determined by the sum of all par-
ticles within any of the region indicated in Figure 5.1. The lower bounds of the PS
primary and oligomer particle gates were chosen as FL2 = 0 a.u.. The duration
of each measurement texp is automatically recorded by the flow cytometer software
in full seconds. To calibrate the flow rate, experiments with bead suspensions of ex-
actly known concentration (Flow Count Fluorospheres, Beckman-Coulter, USA) were
conducted. Transient deviations at the beginning of a measurement were neglected.
Thus, a mean flow rate of V̇exp ≈ 9.8± 0.25 μl/min could be determined. Given
the flow rate, the deviation of theoretical to experimental PS monomer concentration
for each initial measurement can be calculated. The errors (cexp

PS − cPS)/cexp
PS of all

experiments shown in this contribution range from a minimum value of -15 % to a
maximum value of 41 % and scatter around a mean of 13 % with a standard devi-
ation of 16 %. Since the error is sensitive to parameter inaccuracies, deviations of
13 % can be considered as reasonably accurate. For example, a flow rate deviation of
±1 μl/min, results in error differences of ≈ ∓9 %.

Apart from the verification of matching theoretical and experimental particle con-
centrations, the distribution of PS particles between different cluster compositions
was determined by light microscopy. For selected measurements the numbers of
PS monomers, dimers, trimers and oligomers were manually counted in a Thoma
haemocytometer (Assistent, Germany). The results are plotted in Figure 5.5 and
agree well with those of flow cytometric measurements. This essentially confirms
that the cluster composition is not influenced by the measurement and that the de-
tected distributions are reliable. Hydrodynamic shear forces acting on the aggregates
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Figure 5.5: Validation of PS aggregate distribution by light microscopy (scattered data).
Flow cytometric data is copied from Figure 5.2(a) and represented by lines. PS monomers
(◦, ), PS dimers (•, ), PS trimers (�, · · · ), PS oligomers ( , · · ).

are not strong enough to cause breakage, as was already shown for similar systems
by Plessers et al.110 in contrast to the previous findings of Bowen et al.9. The intro-
duction of a sheath stream surrounding a thin sample stream considerably reduces
hydrodynamic shear acting within the sample, so that flow cytometers also guarantee
the survival of shear sensitive cells after measurement.

5.2.2.4 Quantification of cluster composition

There are essentially two possibilities of relating the signal intensities with the abso-
lute particle number causing it. The easiest way is that the signal itself shows discre-
tised areas which directly indicate the number of constituent particles. Depending on
the electronic resolution of the flow cytometer and the protocol settings, aggregates
of micrometre sized particles usually produce discrete distributions. This applies for
the FS signal of PS aggregates as well as for the FL2 signal of the 2 μm MF-RhB par-
ticles. Smaller particle species like the 366 nm MF-RhB or the 530 nm MF-FITC par-
ticles, however, generate gradually changing continuous distributions only. Because
the fluorescence intensity is subject to nonlinearities, the absolute particle number in
these cases can only be determined by means of a correlation. A common method to
conduct quantitative flow cytometry is the calibration with mean equivalents of solu-
ble fluorochrome (MESF)44. By comparing the detected fluorescence intensity of the
sample with that of purchased calibration particles with known amount of bound flu-
orophore, estimates of the fluorophore amount in the sample aggregates are gained44.
Due to possible specific fluorophore interactions, it is strongly advised that sample
and MESF fluorophore be identical. If this method is applied to identify an abso-
lute particle number, it is required that each particle contains comparable amounts
of fluorophore. Another possibility to correlate fluorescence intensities with particle
numbers is given when fluorescent particles of different sizes with equal fluorophore
concentration profiles throughout the particle volume are available. Then a constant
volume specific fluorescence intensity can be determined that correlates the detected
fluorescence intensity to a total particle volume. However, since neither MESF cali-
bration beads for Rhodamine B nor particles with guaranteed equal volume specific
fluorophore concentration could be obtained, an alternative method for converting
the fluorescence intensities into absolute particle numbers was applied. The most di-
rect approach to relate fluorescence intensities with particle numbers is by way of mi-
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croscopy. Similar to the validation studies mentioned in paragraph 5.2.2.3, the num-
ber of small MF-RhB particles bound to PS monomers can be manually counted in a
Thoma haemocytometer (Assistent, Germany) and related to the fluorescence inten-
sity observed in a parallel flow cytometric measurement. Due to restricted visibility,
the calibration is based only on samples with low MF-RhB coverage (one to four par-
ticles) taken in the early phase of selected measurements. The specific fluorescence
intensity per unit particle volume f l2 is calculated from the following formula

f l2 =
FL2

j VMF−RhB
(5.2)

with FL2 as fluorescence intensity, j as counted number of MF-RhB particles and
VMF−RhB as MF-RhB particle volume. By assuming a constant volume specific in-
tensity f l2, this relation also serves to extrapolate j for any measured FL2 intensity.
Microscopic counting of MF-RhB coverage on monomeric PS particles was performed
in 39 cases, each comprising the information over approximately 90± 35 PS particles.
After excluding six values that exceeded the standard deviation interval around the
arithmetic mean value and could thus be considered as outliers, the average volume
specific fluorescence intensity was determined as f l2 = 1.05 · 1020 [a.u./m3] with a
standard deviation of Δ f l2 = 4.77 · 1019 [a.u./m3] (≈ 45%). Apart from the relatively
high standard deviation, this calibration method retains uncertainty when extrapo-
lating the data to higher fluorescence values.

5.3 Aggregation dynamics in binary particle systems
Numerous studies have been published recently, in which systems of binary particle
mixtures with differences in size16,147 or in other surface properties35,41,75,86,113 were
investigated. In this thesis PS and MF latices were used as binary particle system. The
different particle characteristics are summarised in Table 5.1. The choice of particles
with opposite surface charge promotes interesting electrostatic effects that dominate
the aggregation behaviour.

Selected distribution plots of a representative experiment are displayed in Figure
5.6. The perikinetic experiment was conducted in deionised water at a PS concentra-
tion of cPS = 1.14 · 104 particles/μl and a particle ratio of cPS/cMF−RhB = 20:1 at room
temperature. In each single-species suspension, homoaggregation is prevented by re-
pulsive electrostatic interparticle forces at low ionic strength. Figure 5.6(a) shows the
initial distribution of PS and MF-RhB particles directly after mixing them together in
30 ml deionised water. At this early stage already some dimers and fewer trimers
are visible. Measurements of the pure PS particle standard indicate that dimers are
already contained in the original suspension, probably caused by an improper stabil-
isation. The fluorescence of the PS monomers quickly increases as can be seen in Fig-
ure 5.6(b). This is due to the small MF-RhB particles covering the surface of the larger
PS particles. The formation of such ‘raspberry’ type heteroaggregates66 is considered
as primary heteroaggregation step. Depending on the extent of surface coverage,
the heteroaggregates may now form a stable suspension or more complex aggregates
consisting of multiple PS particles in a secondary aggregation step (cluster-cluster
aggregation). Stable suspensions are obtained at very low coverages, where desta-
bilisation by bridging is negligible, and for very high coverages, where the covered
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Figure 5.6: Time series of two-dimensional distributions of cluster composition in the bi-
nary particle mixture. The plots belong to the same experiment that was shown in Figure
5.1. The transition of primary into secondary heteroaggregation is clearly visible.

PS surface adopts similar properties of the MF-RhB particles and is essentially resta-
bilised. Only at intermediate coverages, destabilisation occurs meditated by bridging
between the heterogeneities of the cluster surfaces. The extent of surface coverage
can be controlled by the macroscopic mixing ratio. At the considered particle ratio of
20:1, the coverage is high enough to facilitate cluster-cluster aggregation. The onset of
cluster-cluster aggregation is indicated by the increase of PS oligomers with complex
composition in Figure 5.6(c) and (d). The distinct ‘islands’ originate from the discre-
tised resolution of PS particle number within an aggregate. High resolution FE-SEM
micrographs of heteroaggregates are shown in Figure 5.7 and a laser scanning mi-
croscopic image using two fluorescent colours is shown in Figure 5.8. The two-step
aggregation process is schematically represented in Figure 5.9.

The complete aggregation dynamics of the discussed 20:1 experiment were already
plotted in Figure 5.2 in terms of fractions and mean fluorescence intensities reached
inside the respective gates. Due to the increasing MF-RhB coverage of PS particles,
the fraction of uncovered PS monomers decreases rapidly with a simultaneous in-
crease in covered PS monomers. With the subsequent onset of secondary aggregation
at sufficient coverage, monomeric heteroaggregates coagulate into oligomeric clus-
ters. This generates a peak of covered PS monomers at around 1000 s. From the
fluorescence signal at this time, the minimum surface coverage that facilitates sec-
ondary heteroaggregation can be estimated. The onset of secondary heteroaggrega-
tion occurs gradually, so that there is no explicit transition region. It is accompanied
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Figure 5.7: Electron micrographs of binary heteroaggregates of large PS and small MF-RhB
particles. To arrest the morphology of the clusters for vacuum conditions, the aggregates
were autoclaved at the glass temperature of polystyrene. This did not have direct influence
on the aggregate morphology as was validated by means of fluorescence and laser scanning
microscopy (data not shown).

Figure 5.8: Laser scanning image of an het-
eroaggregate in deionised water. A dimer
of PS-Fluo particles (green) form a clom-
plex cluster with MF-RhB particles (red).

Figure 5.9: Schematic illustration of het-
eroaggregation phenomena in binary par-
ticle mixtures. Particle species are differ-
ently sized and oppositely charged. Pri-
mary heteroaggregation may be followed
by secondary heteroaggregation depend-
ing on the surface coverage.

by primary heteroaggregation until either no more unbound MF-RhB particles are
available or the PS clusters are restabilised, as illustrated in Figure 5.9.

The extent of surface coverage and hence the aggregation process on the whole can
be controlled by modifying either the frequency of particle encounters or the collision
efficiency. These two factors are considered to be uncoupled. Particle transport and
colloid interaction can then be treated independently by encounter frequency and
collision efficiency, as already mentioned in the introductory comment to Chapter
4. They represent the central constituents that determine the aggregation rates in the
population balance simulations of section 6.1. Following the argumentation of Odrio-
zola et al.101 or Endres and Wingreen30 for maximum likelihoods of time series, each
encounter may comprise multiple collision events. Their frequency can be influenced
by temperature, hydrodynamics and also by absolute and relative particle concen-
trations. The relative particle concentration is equivalent to the macroscopic mixing
ratio of the particle species. The collision efficiency considers that only a fraction of
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encounters is successful in establishing stable aggregates and is usually expressed by
the reciprocal of the stability ratio W. With the introduced dependence on interaction
energies, the collision efficiency is subject to versatile variations depending on ma-
terial and medium properties, like the electrolyte concentration that plays a decisive
role in electrostatically stabilised systems.

In the following, several experiments focusing on variations of encounter frequency
and collision efficiency demonstrate the performance of flow cytometry as a measure-
ment technique to investigate the dynamics of colloidal aggregation. Apart from par-
ticle concentrations, number ratios, temperatures and mixing modes which change
the encounter frequency (section 5.3.1), the collision efficiency was modified by addi-
tion of NaCl to the continuous medium, affecting the charge screening by the electric
double layer (section 5.3.2).

5.3.1 Variation of encounter frequency

The number of particle encounters inside a suspension is determined by several fac-
tors, which can all be attributed to the mean free path length travelled by the parti-
cles between two consecutive encounters. This path length can be manipulated by
the particle concentration and particle ratio, or by changing the travelling speed of
the particles, for instance by temperature variations or by imposing different hydro-
dynamic regimes. These factors were investigated for the binary particle systems by
flow cytometry. The variations of particle concentration, temperature and mixing
mode are presented in section 5.3.1.1 and meet expectations, thus demonstrating the
reliability of flow cytometric quantification.

5.3.1.1 Variation of concentration, temperature and hydrodynamics

The experimental results for different particle concentrations (cPS = 1.14 · 104 parti-
cles/ μl and cPS = 0.57 · 104 particles/μl), temperatures (T = 298 K and T = 310 K)
and mixing modes (perikinetic and orthokinetic with stirrer speeds of 250 rpm and
500 rpm) are summarised in Figure 5.10. All experiments were conducted at an in-
termediate particle ratio of 20:1 to facilitate cluster-cluster aggregation. The results
confirm well-known behaviour at enhanced encounter frequencies.

All experiments show a similar dynamic behaviour: a sigmoidal decrease of PS
primary particles (Figure 5.10(a)), a peak in covered PS particle concentration (Fig-
ure 5.10(b)), monotonically increasing oligomer concentration (Figure 5.10(c)) and
sigmoidally increasing MF-RhB coverage of PS monomers (Figure 5.10(d)). Differ-
ences between the experiments are expressed by shifts in time scale. Also in the or-
thokinetic experiments PS monomers with low MF-RhB coverage reappear towards
the end of the experiment. This phenomenon was not investigated further, but it is
likely to be caused by grinding effects when particles get caught between the stirring
bar and the tube wall.

Figures 5.10(a) and (d) show that primary heteroaggregation is accelerated with
increasing concentration, temperature and shear forces. This results in earlier desta-
bilisation and accelerates the onset of secondary heteroaggregation with PS oligomer
formation, as seen in Figures 5.10(b) and (c). The hold-up of insufficiently covered
PS monomers generates a peak in Figure 5.10(b), which changes in amplitude and
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(b) PS monomers covered with MF-RhB.
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(d) MF-RhB coverage of PS monomers.

Figure 5.10: Influence of PS concentration, temperature and shear force on aggregation
dynamics. Standard experimental conditions imply a PS particle concentration of cPS =
1.14 · 104 particles/μl, a mixing ratio of cMF−RhB/cPS = 20:1 and cNaCl

M = 0 M at T =
298 K in perikinetic regimes. Results are shown for standard conditions (•, from Figure
5.2), cPS = 0.57 · 104 particles/μl (◦), T = 310 K (�), orthokinetic at 250 rpm ( , ),
orthokinetic at 500 rpm (�, ).

time for the individual experiments. With decreasing encounter frequency the ampli-
tude grows and is postponed, indicating an extended destabilisation phase in which
more covered PS monomers can accumulate before aggregating with other PS parti-
cles. Under the influence of stirring, particle encounter frequencies are increased by
several orders of magnitude. This increases the aggregation dynamics tremendously
compared to perikinetic experiments. Finally, a steady-state for a particle number
ratio of 20:1 could not be reached in any of the experiments within 105 s. Longer
measuring times would only be possible if the aggregates were not subject to sedi-
mentation.

5.3.1.2 Variation of particle ratio

With increasing particle ratio at a fixed PS concentration, encounters between MF-
RhB particles and PS aggregates become more probable and primary heteroaggre-
gation occurs faster. The changing quality of the PS surface affects the aggregation
efficiency and produces different aggregation dynamics. The aggregation dynamics
for three different ratios, each representing a distinct electrostatic effect, are plotted
in Figure 5.11. Substantial variations of the initial distributions resulting from the
turbulent mixing are observed. These differences are inevitable in systems where
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aggregation is allowed during the generation of homogeneously mixed particle sus-
pensions.

In contrast to the aggregation dynamics for a 20:1 mixing ratio that were discussed
as standard experiment above, no significant aggregation could be detected for a ra-
tio of 1:1. The binding of a single MF-RhB particle occurs so fast, that most of the
PS monomers already have a MF-RhB particle bound when the first measurement
is performed. As is expected for this ratio, the average amount of surface MF-RhB
particles remains steady at a single MF-RhB particle for the rest of the experiment
as can be seen from Figure 5.11(d). Due to the low surface coverage, the probability
of bridging between two clusters is rather low and the particles are not destabilised.
The lack of destabilisation is expressed by the absence of PS oligomer formation in
Figure 5.11(c).

As ratios increase beyond 50:1 very fast primary with almost no secondary het-
eroaggregation is observed and a near steady-state is reached towards the end of the
experiment. Rapid primary heteroaggregation yields densely covered PS monomers
as shown in Figure 5.11(d). This results in a gradual change of the cluster’s surface
property, which impedes further aggregation.

As illustrated in the process scheme in Figure 5.9, aggregation may cease either
due to the lack of suitable clusters or due to restabilisation. While for the 1:1 and 20:1
ratios the first reason seems likely, the 100:1 mixing ratio is limited by restabilisation.
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Figure 5.11: Experimental aggregation dynamics for different bulk particle number ratios
cMF−RhB/cPS = 1:1 (◦), 20:1 (•, from Figure 5.2), 100:1 (�). The experiments were con-
ducted at cPS = 1.14 · 104 particles/μl, T = 298 K, cNaCl

M = 0 M, perikinetic.
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In this thesis two alternative concepts are presented that cause for restabilisation.
One approach is based on an average surface potential of the clusters obtained from
a charge balance, the other considers geometric surface heterogeneities induced by
MF-RhB particles on the PS surface (surface patches). Both approaches are explained
in more detail in Chapter 6. Common to both is the introduction of a maximum MF-
RhB capacity on PS particle surfaces, which might underscore a theoretical coverage
implied by the macroscopic mixing ratio. For the 100:1 ratio, the final coverage does
not exceed 20 MF-RhB particles per PS monomer (Figure 5.11(d)), from which we can
conclude that aggregation is impeded by restabilisation and not by lacking of further
MF-RhB particles. Unbound MF-RhB particles thus have to remain stable in solu-
tion. The rapid evolution of a restabilising MF-RhB shell for the 100:1 experiment is
favoured by the high excess concentration of MF-RhB particles, kinetically outmatch-
ing cluster-cluster aggregation.

The observed onset of secondary heteroaggregation is not sharp, neither with time
nor with process parameters, like the concentration ratio. Recalling that the prob-
ability of aggregation changes gradually when the sum of the interparticle energy
becomes comparable to the thermal energy, no exact measure for the transition can
be obtained. Furthermore, imperfect mixing may cause local non-uniformities that
could result in deviations from the mean aggregate coverage and create some addi-
tional uncertainty.

5.3.1.3 Evolution of aggregate ζ-potentials

The electrostatic destabilisation and induced charge reversal of monomeric heteroag-
gregates was validated by ζ-potential measurements. All ζ-potentials were measured
as intensity distributions. Similar to the flow cytometric analysis, unbound MF-RhB
particles are dominated by signals from larger PS monomers or clusters, so that they
are only detected as a second, smaller peak at high particle ratios ≥ 50:1 (data not
shown).

Representative distributions throughout an experiment with a particle ratio of 20:1
are shown in Figure 5.12. Already from the beginning the distribution is bimodal,
each peak representing different PS heteroaggregates. Towards the end of the exper-
iment, the distribution narrows down to a single peak.

The evolution of average ζ-potentials with proceeding aggregation is shown in Fig-
ure 5.13 and supports the previous observations: for low particle ratios the ζ-potential
changes only slightly and destabilisation of PS primary particles is not achieved, at
elevated particle ratios aggregate charge monotonically increases with proceeding ag-
gregation and even charge reversal is detected for the ratios 20:1 and 100:1. Following
charge reversal, the aggregation process is continuously decelerated until eventually
complete restabilisation is observed for the 100:1 ratio. The final ζ-potential is reached
asymptotically and nearly matches the ζ-potential of the MF-RhB primary particles.

The differences in initial ζ-potential averages given in Figure 5.13 cannot be ac-
counted for by different initial conditions of the suspensions after mixing alone. They
seem to be subject to the concentration of MF-RhB particles: at high MF-RhB concen-
trations, the ζ-potential average is more positive than expected. This effect might
represent an artifact of the measurement technique. Since the measurements are con-
ducted in bulk sample, an influence of the particle majority by numbers on the par-
ticle minority seems likely. Such influences could result from cooperative scattering
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effects or from hydrodynamic effects due to electrophoretic particle drifts into oppo-
site directions.

5.3.2 Variation of encounter efficiency

The potential energies between the cluster surfaces play a decisive role in determin-
ing the aggregation behaviour within the mixture. This is clearly expressed by the
two-step primary and secondary heteroaggregation processes. Interaction potential
energies include van der Waals and electrostatic interactions as well as additional
non-DLVO energies, as described in Chapter 2. Because the aggregation process in
binary particle mixtures is predominantly mediated by electrostatic interactions, it is
subject to the influence of the ionic strength of the continuous phase. With increas-
ing electrolyte concentration, the additional ions shield the particle surface potential
from its surrounding and the spatial extent of the double layer surrounding a cluster,
represented by the Debye length 1/κ, decreases. The influence of the electrostatic in-
teraction is reduced and influence of thermal particle motion on aggregation becomes
more dominant. The consecutive dependence of primary and secondary heteroaggre-
gation is disrupted, and PS oligomer formation is possible without preceding desta-
bilisation. This behaviour was confirmed by experiments at elevated ionic strength
in 2 M NaCl solutions, shown in Figure 5.14. To improve the comparability of exper-
iments with deviating initial conditions, relative values are used in this section. By
normalising the particle fractions with their initial values, relative concentrations are
generated that express deviation from the initial measurement as multiplying factors

In Figure 5.14(a) the aggregation dynamics at an elevated electrolyte concentration
of cNaCl

M = 2 M are compared to those in deionised water for mixing ratios of 1:1.
While in deionised water particles almost remain stable, aggregation of PS particles
is detected at elevated electrolyte concentration. The number of bound MF-RhB par-
ticles per PS particle, plotted as inset of Figure 5.14(a), slightly increases over the
amount observed at low electrolyte concentration but remains too low to cause the
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Figure 5.12: Measured ζ-potential dis-
tributions during aggregation at 2 min
(◦), 18 min (•), 58 min (�), 6 h ( ) for
constant cPS = 1.14 · 104 particles/μl,
cMF−RhB/cPS = 20 : 1, T = 298 K, cNaCl

M =
0 M, perikinetic.
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Figure 5.13: Evolution of average ζ-
potential during aggregation showing
destabilisation and charge reversal.
Experimental conditions: MF-RhB to
PS particle ratios of 1:1 (◦), 20:1 (•) and
100:1 (�), cPS = 1.14 · 104 particles/μl,
T = 298 K, cNaCl

M = 0 M, perikinetic.
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(b) Particle mixing ratio of 20:1.

Figure 5.14: Experimental particle heteroaggregation for different mixing ratios and ionic
strengths: cNaCl

M = 0 M (filled symbols, from Figure 5.2), 2 M (open symbols). PS primary
particles (◦), covered PS monomers (�), MF-RhB coverage of PS monomers (inset). cPS =
1.14 · 104 particles/μl, T = 298 K, perikinetic.

evident PS particle destabilisation. Thus, destabilisation at high electrolyte concentra-
tions is achieved by a more effective shielding of surface charge electrolyte ions in the
double layer and not by coverage with oppositely charged particles. This confirms
expectations gained from theoretical aspects and previous experiments113.

For an improved comparison of the destabilisation dynamics, the experiment was
repeated at an intermediate mixing ratio of 20:1. At this mixing ratio, aggregation dy-
namics are greatly enhanced. The result is plotted in Figure 5.14(b) in comparison to
that of deionised water shown before. At increased ionic strength, both primary and
secondary heteroaggregation slow down. From the considerations in Chapter 2, we
can expect a decreased stability between PS particles. However, this does not apply
for the binding of MF-RhB particles to PS surfaces. As observed in the inset of Fig-
ure 5.14(b), primary heteroaggregation actually decelerates at elevated ionic strength.
From this we can conclude, that the reduced electrostatic interaction increases the sta-
bility between MF-RhB and PS particles and more collisions during an encounter are
necessary for the MF-RhB particle to adsorb onto the surface of a PS particle. This
contrasts the usual findings in single species system and represents an unique effect
in heteroaggregation. As a consequence, the onset of aggregation between clusters is
postponed and the hold-up of covered PS monomers increases.

All in all, species independent aggregation under conditions of weak electrostatic
interaction can be slower than species dependent heteroaggregation with a strong in-
fluence of electrostatic interaction energy if the stability between the different species
is increased (instead of decreased) by elevated electrolyte concentration.

5.3.3 Variation of particle species

If the polystyrene particles from the company microParticles are exchanged by equally
sized ones from Duke Scientific, different heteroaggregation behaviour can be de-
tected. The aggregation dynamics for both binary particle mixtures are summarised
in Figure 5.15. As can clearly be seen from the initial measurement, PS particles from
microParticles show less uncovered and more covered PS monomers as well as a con-
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Figure 5.15: Comparison of the experimental heteroaggregation dynamics of PS particles
from microParticles (•, from Figure 5.2) and PS particles from Duke Scientific (◦) with MF-
RhB particles. Experiments were conducted at 20:1 mixing ratio, T = 298 K and cNaCl

M =
0 M.

siderable extent of PS oligomers. Together with the lower ζ-potential value of Table
5.1 this indicates a lower stability against heteroaggregation.

The cause of deviating aggregation dynamics may be attributed to differences in
the surface functionalisation applied by the two manufacturers to stabilise their par-
ticle standards against aggregation. This is already indicated by the different ζ-
potentials and motivates further investigations by colloidal probe microscopy, which
enables the measurement of interactions between two colloid particles as force-dis-
tance curves within arbitrary aqueous environments. Detailed insight into single par-
ticle interactions can help to explain different aggregation dynamics on the macro-
scopic population level. The measurement principle was already discussed in section
3.1.1 and although atomic force microscopy is well recognised in various scientific
disciplines73,111,155 colloidal probe measurements remain very challenging. Next to
the preparation of the cantilever with monomer particles, the method development
and sample handling during measurement including calibration issues of piezo ele-
ments and sensors represent intricate and cumbersome obstacles. This is why only
preliminary conceptual findings that retain some level of incompleteness, rather than
perfectly reliable and reproducible results, can be presented within the scope of this
thesis.
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Figure 5.16: Electron micrograph of a tip-
less silicon nitride cantilever with a 2 μm
PS particle attached as prepared for col-
loidal probe microscopy (Ultra-High reso-
lution FE-SEM S-4800, Hitachi, Japan).

Figure 5.17: Topographic image of sin-
tered PS substrate particles scanned in
contact mode by a silicon nitride cantilever
with tip for higher resolution.

5.3.3.1 Analysis of colloidal pair interactions

Single-particle interactions were studied with an Agilent 5500 Scanning Probe Micro-
scope. Colloidal probe investigations require a careful preparation of cantilever and
substrate. As illustrated in Figure 3.1, cantilever and substrate represent the anchor
points for the two studied particles. Generally it would be feasible to measure the
interaction of a cantilever particle against a flat substrate polymer layer and convert
it into the desired geometry using Derjaguin’s approximation of Eq. 2.14. However,
the exact same surface characteristics of the commercial particle suspensions would
hardly be achieved. Therefore, monolayers of substrate particles of each PS parti-
cle species were prepared on a clean glass slide. Before use in the AFM, they were
sintered above the material glass temperature of roughly 100◦C for 10 minutes until
bridges between the particles formed. The particle bridges are necessary to increase
the mechanical stability of the substrate layer against cantilever manipulation in con-
tact mode.

Single PS particles were fixed to tipless cantilevers by a solvent-free polymer glue
that dries in humid environments (Flex+bond, Weicon GmbH, Germany). A SEM im-
age of a prepared cantilever is shown in Figure 5.16. The three axis water hydraulic
micromanipulator enabled the handling of the cantilevers under a microscope. For
all measurements, silicon nitride tipless cantilevers (NP-O, Veeco, USA) with a nom-
inal spring constant of 0.58 N/m (range: 0.09-1.2 N/m) at a resonance frequency of
57 kHz (range: 40-75 kHz) were used. Since the spring constant is essential to con-
vert the measured deflection into a force, it was determined for each cantilever with
higher precision by a frequency resonance calibration in the course of every AFM
measurement.

Colloidal probe microscopy was performed in a liquid cell with deionised water
(MilliQ, Millipore, USA) as dielectric medium in correspondence with the continuous
phase in the macroscopic aggregation experiments. Prior to the determination of the
apex-to-apex interactions, a topographic image was obtained for orientational pur-
poses. A representative topography of a sintered PS particle layer is shown in Figure
5.17. Since imaging might affect the particle surface characteristics, the topography
was obtained at very low contact pressures. With special cantilevers the topographic
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imaging can also be performed in tapping mode, reducing the full contact between
the particle surfaces to multiple soft contacts. This might further reduce the effects of
material friction on the particle surface characteristics111.

Once an apex of a substrate particle is localised, force-distance curves are obtained
in the closed-loop mode. The closed-loop mode ensures that during repetitive mea-
surements the exact same lateral position is maintained by a feedback control. Force-
distance curves are obtained from an average of 20 automatically executed scans at
the same position. After completing the scans, the cantilever was retracted from the
surface and the spring constant was determined using an automated procedure pro-
vided by the AFM software. Finally the cantilever was demounted and visualised
under the microscope to asses the condition of the colloid particle regarding con-
tamination and slip. Many cantilever particles showed crystalline contaminations or
additional particles from the substrate. Slip or even the complete loss of the glued on
particle was also detected. These measurements were not considered for analysis.

In total three interactions were investigated: PS particles from Duke Scientific and
from microParticles against sintered layers of identical substrate particles or of MF-
RhB particles. Figures 5.18(a)-5.18(c) show representative results of a single scan
for PS particles from Duke Scientific. The raw approach signal of the photodetec-
tor against the height of the vertical piezo translator in Figure 5.18(a) is transformed
into the force distance curve shown in Figure 5.18(b) by the procedure explained in
section 3.1.1. From this the interaction potential is obtained by integration in Figure
5.18(c). The integration is terminated at the jump-in point. Figure 5.18(d) finally com-
pares the interactions between different materials averaged over the repetitive scans
with DLVO predictions.

From the average curves in Figure 5.18(d) we observe that the measured interac-
tions considerably exceed the thermal energy kBT over the whole scan. For the strong
repulsive interactions from DLVO theory between PS particles in deionised water, a
smaller separation distance for the jump-in would be expected. This can be achieved
by choosing softer cantilevers in terms of spring constant. However, for attractive
interactions they might cause an even earlier jump-in. The interactions between all
three materials raise some ambiguities. While the interactions for PS particles from
Duke Scientific clearly dominate over those between PS monomers from microPar-
ticles, confirming expectations from the ζ-potentials and the aggregation dynamics,
the interactions between PS and MF-RhB particles range in between. Instead of an at-
tractive interaction of oppositely charged particles, a repulsive interaction exceeding
that between PS monomers of microParticle is observed. The comparison to theo-
retical predictions from DLVO theory in Figure 5.18(d) reveals further mismatches.
Experimental interactions tend to be much stronger than the predicted ones. To some
extent the deviations can be attributed to an overestimation of the cantilever spring
constant that essentially scales the calculated force. The determination of the spring-
constant is subject to experimental error that cannot easily be quantified. Any error
in spring constant would severely affect the integrated potential but could hardly ex-
plain all inconsistencies. The strong deviations suggest that the measurements do
not portray the colloidal interactions that exist in the original suspensions. The pri-
mary cause of the deviation could however not be ascertained within the scope of this
thesis. Considering that colloidal probe microscopy was successfully applied previ-
ously to quantify single particle interactions12,27,111, it presents a suitable platform
for follow-up investigations.
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(a) Raw data of cantilever approach (−) and re-
traction (−−) with zero deflection as base-
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(b) Relative force distance curve of cantilever
approach with re f f = rP′ rP′′/(rP′ + rP′′ ).

0 50 100 150 200 250 300

−3

−2

−1

0

1

x 104

a [nm]

V
 / 

(k
B
T)

100 200 300
0

500

1000

a [nm]

V
 / 

(k
B
T)

(c) Interaction potential of cantilever approach.
All values following the jump-in are of infe-
rior physical relevance.

101 102 103
−2000

−1000

0

1000

2000

3000

4000

5000

6000

a [nm]

V
 / 

(k
B
T)

(d) Comparison of measured interaction poten-
tials to DLVO predictions.

Figure 5.18: Colloidal interaction potentials from force distance measurement by colloidal
probe microscopy. Figures (a)-(c) show the results for a single representative closed loop
scan between PS particles from microParticles. Dotted lines indicate the jump-in interval
and the insets in Figures (b) and (c) zoom the data prior to jump-in. Figure 5.18(d) shows
a comparison of measured interaction potentials to DLVO predictions (lines) between PS
particles from Duke Scientific (◦, ), from microParticles (•, ) and between PS and MF-
RhB particles from microParticles ( , · · · ). Each measurement is averaged over 20 scans.

Some fundamental concerns regarding the conservation of the surface functional-
isation are raised by the preparation of the cantilever and substrate particles. Espe-
cially the drying and sintering steps probably exert a considerable influence on the
chemical stability of the polymer latices. Additional uncertainties might be intro-
duced by the mechanical stability of the approaching particles against increasing sur-
face interactions. This would include any deformation of the glue during the repet-
itive switching between contact and non-contact. Indeed, processing effects on the
surface functionalisation with influences on colloidal stability have been reported be-
fore and were harnessed to prepare stacks of colloidal monolayers118. The problem
could be tackled by similar measurements with particles obtained from dry pow-
ders. However, this might then hamper the macroscopic aggregation experiments
through inexact particle concentrations. In consequence, a unique relation of deviat-
ing macroscale aggregation dynamics to microscale colloidal interactions is not guar-
anteed either. A realistic measure to reduce the material friction during contact is
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posed by the use of tapping mode for the topographic imaging. This would require
different cantilevers. Finally, comparison to results by different measurement tech-
niques, like holographic methods that arrest colloidal particles in optical traps49,50,76,
might present a further route to identify sources of error in future.

5.4 Aggregation dynamics in ternary particle systems
Aggregation dynamics in ternary particle mixtures are subject to the same modes of
influence that apply for binary systems. Apart from the encounter frequency and
the sticking efficiency, the rate at which heteroaggregates are formed depends on the
particle concentrations. With increasing particle concentration, successful collision
events become more probable.

Experiments in ternary systems of 2 μm PS and MF-RhB particles with 530 nm
MF-FITC particles were conducted to show that flow cytometry enables a multiscale
analysis of the cluster composition and to establish an experimental method to de-
tect preferential aggregation in particle systems. In the ternary systems preferential
aggregation is facilitated by specific particle interactions. Apart from differences in
size, the particles also vary with respect to their surface potentials, which gives rise to
similar electrostatic effects as encountered in the previous section. The particle prop-
erties are summarised in Table 5.1. Because both MF particle species are positively
charged their aggregation is not likely. In contrast, aggregation with PS particles is
favoured, and MF-FITC and MF-RhB particles competitively bind to the PS surfaces.
Since the diffusive motion of larger MF-RhB particles is slower than that of small
MF-FITC particles, PS surfaces are preferentially covered by MF-FITC rather than
MF-RhB particles. This effect is intensified by choosing elevated MF-FITC concentra-
tions, as shown below. In this system, mixed aggregates of all three species could be
detected. Electron micrographs of ternary heteroaggregates are shown in Figure 5.19.

Figure 5.19: Electron micrographs of complex ternary heteroaggregates composed of large
PS particles, which are covered with many small MF-FITC particles, and uncovered large
MF-RhB particles. To arrest the morphology of the cluster for vacuum conditions, the ag-
gregates were autoclaved at the glass temperature of polystyrene. This did not have direct
influence on the aggregate morphology as was validated by means of fluorescence and
laser scanning microscopy (data not shown).
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(c) MF-FITC covered PS monomers.
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(d) FL1 intensity by MF-FITC coverage on PS
monomers.

Figure 5.20: Experimental heteroaggregation dynamics in a ternary particle system for
cPS/cMF−FITC/cMF−RhB = 1:1:1 ( ) and 1:20:1 (◦) without particle addition as well as
1:20:1 with PS primary particle dosage at t = 30 min (•) and 1 h (�) expressed by par-
ticle concentration fractions and fluorescence intensity.

To demonstrate the effect of different concentration ratios in ternary systems, the
aggregation dynamics of systems with cPS/cMF−FITC/cMF−RhB = 1:20:1 and 1:1:1 ra-
tios were studied. Results for selected aggregate populations are illustrated in Figure
5.20. For both ratios, the aggregation dynamics differ. In the 1:1:1 system the fractions
of PS primary particles (1,0,0) in Figure 5.20(a) and MF-RhB primary particles (0,0,1)
in Figure 5.20(b) remain constant within the first hour of the experiment. During
this time, the number of MF-FITC particles covering the surface of a nearly constant
PS monomer fraction (1,j,0) first increases, as expressed by the FL1 signal in Figure
5.20(d). After approximately 1 h it suddenly drops back to the initial autofluorescence
values. The sudden decrease of MF-FITC coverage correlates with the formation of
mixed heteroaggregates (1,j,1) (data not shown) and only few PS particles of lower
surface coverage remain in the (1,j,0) region. This is also responsible for the higher
FL1 signal variabilities observed towards the end of the experiment.

While in the 1:1:1 system noticeable effects only occur towards the end of the exper-
iment, the 1:20:1 system features faster, more complex aggregation behaviour. Simi-
lar to the aggregation dynamics in binary particle systems, the fraction of PS primary
particles sigmoidally decreases in Figure 5.20(a), while that of MF-RhB particles re-
mains essentially unchanged in Figure 5.20(b). This coincides with the increase of
covered PS monomers (1,j,0) (Figure 5.20(c)). At this mixing ratio, collisions of PS
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particles with MF-FITC particles become more probable than collisions with MF-RhB
particles, and PS surfaces are covered with several smaller MF-FITC particles rather
than with competing MF-RhB particles. This is expressed by rising fluorescence in-
tensities in Figure 5.20(d) at constant MF-RhB fractions of Figure 5.20(b).

The formation of more complex clusters by bridging of oppositely charged surface
patches, that was already observed for binary systems, is indicated by the decreasing
fraction of covered PS monomers (1,j,0). Hence, in Figure 5.3(b) clusters appear in
regions like (2,j,0), (i>1,j,1), (1,j,2), etc..

5.4.1 Dosage experiments

For a possible application of flow cytometry to guide technical processes, the sensi-
tivity against intermittent particle dosage was studied. Two experiments representa-
tively focus on the addition of PS particles after 30 min and 1 h after start. The results
of both dosage experiments in a 1:20:1 system are included in Figure 5.20. The sudden
increase of PS primary particles following dosage is clearly visible in Figure 5.20(a).
Due to the change in total particle number effects are also visible in Figures 5.20(b)-
(d). Generally, in all plots the particle fractions show similar trends as the reference
system without additional dosage. Clusters containing PS particles asymptotically
approach the reference towards the end of the experiment, while in all aggregates
without PS particles the step deviations from the reference system persist. This is
caused by an increase of ∑ ∑ ∑ cP(i,j,k) upon addition of PS monomers.

From Figures 5.20(c) and (d) we can deduce that the additional PS particles are
quickly covered by the remaining MF-FITC particles. Similar to the aggregation dy-
namics in the 20:1 binary particle system, a deceleration of the aggregation dynamics
is observed in Figure 5.20(d). This figure also shows that the average MF-FITC cover-
age remains below the reference experiment without dosage, since a constant number
of MF-FITC particles is distributed among an increased number of PS particles. Ag-
gregation is thus limited by depletion of free MF-FITC particles before the maximum
coverage of all PS particles was reached.

5.5 Summary
In the presented studies central heteroaggregation phenomena in binary and ternary
particle mixtures in well defined environments were investigated. The dynamic evo-
lution of the multi-dimensional cluster composition was successfully tracked with
flow cytometry. The particle species within an aggregate were identified either by size
or by distinct fluorescent markers. Due to different size and material properties of the
particle populations, complex clusters were formed in a two-step heteroaggregation
process. By primary heteroaggregation the surfaces of large particles were covered
by oppositely charged small particles of different species. Thereby surface hetero-
geneities are generated which induce bridging effects enabling the onset of cluster-
cluster heteroaggregation (secondary heteroaggregation). The influences of impor-
tant process parameters on particle encounter frequency and efficiency were stud-
ied. Expected results were confirmed for variations in concentration, temperature
and hydrodynamics conditions. Further investigations focused on the predominant
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electrostatic de- and restabilisation phenomena which are strongly affected by the
particle mixing ratio and the ionic strength of the dispersion medium. It was shown
that different aggregation regimes can be attained by the macroscopic particle mixing
ratio and that elevated electrolyte concentrations can actually increase the stability
between oppositely charged particle species. In addition, colloidal probe microscopy
was tested as a tool for assessing the pairwise potential interaction energies. Experi-
ments in ternary particle systems pave the way towards a higher dimensional analy-
sis of multi-species aggregation. Furthermore, dosage experiments demonstrated the
high sensitivity of flow cytometric measurements emphasising their versatile appli-
cability.

Although flow cytometry allows a very detailed detection of aggregation processes
in multi-dimensional particle systems unmatched by other techniques, the precise
distinction of cluster composition at high signal intensities and the calibration of
fluorescence intensity signals remain challenging. Furthermore, the aggregate mor-
phology resolving the local distribution of the constituent particles within the clus-
ter eluded flow cytometric detection. Structural analysis has only recently been ad-
dressed in flow cytometers that are equipped with a high speed camera that generates
snapshots of the passing particles.





Chapter 6
Population balance simulation of
binary heteroaggregation
In this chapter the experimental data for binary particle systems are theoretically re-
constructed in order to simulate the predominant electrostatic effects. A population
balance model is set up to simulate the dynamic evolution of the cluster composition.
The employed aggregation rates (kernels) are based on classical models incorporating
foundations of colloid science. The basic structure of these deterministic models date
back to the seminal works of von Smoluchowski152 and Fuchs37. The aggregation
rates used as kernels in the population balance model are developed in section 6.1
under consideration of the foundations presented in Chapter 2. This is followed by
defining and reducing a population balance equation on a bivariate discrete property
state space in section 6.2 referring to theoretical foundations of Chapter 4. The nu-
merical solution of the model equations and a comparison to the experimental data
of Chapter 5 are presented in section 6.3.

6.1 Aggregation kernel
The aggregation rate of two particles P′ and P′′ forming a product particle P is rep-
resented by ωP′,P′′ . As already mentioned in the previous chapter, it depends on two
central factors of influence. The aggregation rate represents a transfer frequency be-
tween the different aggregation states, thus accounting for the the number of particle
encounters and the associated probability of successful aggregation. Therefore it fol-
lows from the product of encounter frequency ωF

P′,P′′ and its efficiency ωE
P′,P′′

128:

ωP′,P′′ = ωF
P′,P′′ ·ωE

P′,P′′ . (6.1)

Whether a bond between two particles or clusters is successfully established during
an encounter depends on particle geometry, direction of approach, number of colli-
sions per encounter as well as on the stability ratio W. The stability ratio introduces
the influence of interaction pair potentials. If the potential interaction is purely attrac-
tive, a diffusion limited cluster aggregation (DLCA) regime is present with W = 1, if
the potential contains an intermediate repulsive barrier as in Figure 2.3 aggregation
is reaction limited (RLCA) with W 
 1.

While the encounter frequency in perikinetic systems is generally agreed upon in
literature, a multitude of modelling approaches were published for the encounter effi-
ciency, usually referred to as sticking efficiency, over the past years4,32,37,60,98,101,102,103.
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In the following sections 6.1.1 and 6.1.2 suitable literature models for the calculation
of encounter frequencies and efficiencies are introduced. Cases where modifications
had to be made in order to represent the dependency of aggregation rates from multi-
species cluster composition are explicitly mentioned. Additionally, a new approxi-
mate kernel concept based on a charge balance is presented.

6.1.1 Encounter frequency

The kernel describing the frequency of particle encounters in perikinetic (i.e. diffu-
sive) systems accounts for stochastic Brownian particle motion. It was first formu-
lated by von Smoluchowski152 in 1917. From a mass balance around a totally ab-
sorbing particle P′ the flux of another particle P′′ through a surrounding sphere with
collision radius RP′,P′′ = rP′ + rP′′ can be derived. This approach was later applied
in a similar fashion by Fuchs37. He included a superimposed force field into the bal-
ance equation to consider additional particle drift beyond diffusion and thus derived
the stability ratio W. The solution of the mass balance without superimposed force
fields at conditions of t 
 R2/D yields an aggregation rate of 4πDP′,P′′RP′,P′′ with
DP′,P′′ = DP′ + DP′′ as combined diffusion coefficient of the two particles towards
each other152. Following the argumentation of von Smoluchowski152, we assume
spherical morphologies for all multimeric clusters and apply the concept of fractal
geometries (section 2.4). We then obtain

ωF
P′,P′′ = 4π (DP′ + DP′′)

(
rG

P′ + rG
P′′
)

, (6.2)

which is until today a generally accepted expression to describe diffusion limited
aggregation131. The diffusion coefficient of a sphere can be replaced by the Stokes-
Einstein relation DP = kBT/

(
6πηrG

P

)
with kBT as thermal energy and η as dynamic

solvent viscosity131, yielding

ωF
P′,P′′ =

2kBT
3η

·
(

1
rG

P′
+

1
rG

P′′

)(
rG

P′ + rG
P′′
)

. (6.3)

From section 2.4 we can now also substitute the radii of gyration by Eq. (2.28) with
d f = [1, . . . , 3] ∈ R as fractal dimension, νP as dimensionless aggregate volume and
k f ≈ 1. The aggregation kernel then follows as

ωF
P′,P′′ =

8kBT
3η

· 1
4

(
ν
− 1

d f
P′ + ν

− 1
d f

P′′

)(
ν

1
d f
P′ + ν

1
d f
P′′

)
. (6.4)

In this equation, the first fraction is sometimes referred to as Smoluchowski kernel
for Brownian motion ωB, while the rest represents a size correction kernel ωr

P′,P′′ .
The prefactor of 1/4 is explicitly maintained, since it guarantees unity of ωr

P′,P′′ for
the case of equally sized spheres. Although only small aggregates of up to i = 5 PS
particles could be clearly distinguished in the experiments119 and therefore justify a
certain skepticism in the application of the fractal geometries, this concept provides
a convenient method to describe aggregate geometry in a compact manner.

While the aggregation of MF-RhB and PS monomers in primary heteroaggrega-
tion is considered to be diffusion limited with d f = 1.8, secondary heteroaggregation
between heteroaggregate clusters is generally reaction limited with d f = 2.1. How-
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ever, a parameter study concerning the influence of the fractal dimension d f on the
aggregation dynamics in section 6.3 clearly shows that the influence of the fractal
dimension is not very pronounced.

6.1.2 Sticking efficiency

The second factor contributing to the aggregation kernel is the probability that two
particles form a stable bond during an encounter. In the DLCA regime, colliding par-
ticles aggregate spontaneously upon contact. Under the assumption that the particle
motion cannot be enhanced by attractive interaction potentials, this regime repre-
sents the maximum aggregation frequency. In contrast, not every collision results in
the formation of a new aggregate in RLCA and the encounter frequency is retarded
by an efficiency factor ωE

P′,P′′ . For single species systems von Smoluchowski152 intro-
duced an efficiency factor to limit the number of successful encounters in slow or rate
limited coagulation processes. A consistent model for the efficiency was found by
Fuchs37 and presents an important basis of most kernel models today. His stability
ratio W describes the influence of superimposed force fields on particle homoaggre-
gation dynamics. As we recall from section 2.3.1, it is defined as the ratio of a flux for
purely diffusive particle motion at infinite dilution to the diffusion with additional
particle drift. The reciprocal of the stability ratio presents a very useful measure for
the sticking efficiency, since repulsive interaction potentials raise the stability ratio
beyond unity.

In his original publication, Fuchs37 used amin = 0 and amax = ∞ as analytically ex-
act integration boundaries. For a numerical solution of the integral these boundaries
were replaced by amin = 4 Å and amax = 1 μm. The lower boundary now considers
a layer of ions or water molecules bound to each particle surface, preventing further
approach68. The upper boundary is determined under consideration of the superim-
posed force field; when using values beyond 1 μm the stability ratio does not change
considerably. The superimposed force field is expressed as an interaction potential
energy VP′,P′′(a). According to classical DLVO theory23,151 van der Waals VvdW

P′,P′′ and
electrostatic Vel

P′,P′′ energies represent the main contributions at greater separation dis-
tances in particle systems (Figure 2.1). To account for atomic repulsion at very small
separation distances, the Born potential is considered as well. The parameters used
in the interaction potentials are summarised in Table 6.1.

Table 6.1: Parameters used in calculations of potential interaction energies. The same pa-
rameter set was used for both kernel concepts.

Potential Parameter Value Unit Referenceenergy
VBorn

P′,P′′(a) b 12 - Feke et al.33

rσ 4 Å Feke et al.33

VvdW
P′,P′′(a) APS−H2O−PS 1.0 · 10−20 J Israelachvili68

APS−H2O−MF 2.2 · 10−20 J a

Vel
P′,P′′(a) εr 80 - Israelachvili68

ζi [−48, +43] mV b

acalculated from Lifschitz theory Eq. (2.16)
bdetermined with Zetasizer Nano ZS (Malvern, UK)
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An early approach to model colloidal stability in multi-species suspensions was
published by Hogg et al.60 in 1966. For aggregation between particles of population
A and B an overall sticking efficiency was defined as the geometrical sum over all
three types of possible interactions (A-A, A-B and B-B) weighted by their respective
number fractions. In this thesis, binary heteroaggregation was simulated using two
different kernel concepts in comparison. A first simple model directly applies the
stability ratio to predict the efficiency of particle encounters. Here, the stability ratio
varies with changing cluster composition and thus couples the aggregation rates to
the state space of the population balance equation. Considering all parameters dis-
played in Eq. (2.24), it may be assumed that in electrostatically dominated aggrega-
tion the most important parameter variation occurs for the cluster surface potential.
Hence, an average potential for each cluster composition was determined by a mean
field type charge balance, as discussed in section 6.1.2.1. In a second approach, the
model of Moncho-Jordá et al.98 was used to describe inhomogeneous cluster surfaces
(section 6.1.2.2). Similar to the approach by Hogg et al.60, the interactions between
two clusters are determined from interactions of the pure substances, weighted with
their respective fraction of surface coverage. In a binary system the cluster surface
is thus divided into two characteristic surface patches, and the kernel depends on
changing surface fractions rather than changing interaction potentials. In contrast
to the rather crude charge-balance approach, which predominantly depends on a sin-
gle parameter, the patchy-particle model captures compositional cluster variations by
two (coupled) cluster properties. Both kernel concepts are schematically illustrated
in Figure 6.1.

6.1.2.1 Pseudo-homogeneous surface model

In the charge-balance kernel each encounter comprises a single collision event with
an efficiency given by the stability ratio WP′,P′′ between two clusters P′ (i′, j′) and
P′′ (i′′, j′′):

ωE
P′,P′′ =

1
WP′,P′′

. (6.5)

The dependency of cluster composition is introduced by the radius of gyration, the
hydrodynamic correction term BP′,P′′ of section 2.3.1.1 as well as by parameters of
the interaction potential VP′,P′′ , such as the Hamaker constant AP′,P′′ and the sur-
face potentials Ψ0

P′ and Ψ0
P′′ of each cluster. In the investigated particle mixture the

strong variation over cluster composition is primarily caused by the changing cluster
surface potentials which define the electrostatic interaction. While the surface poten-
tials of the monomeric particles are approximated by their ζ-potentials, the surface
potential of complex clusters can be determined from a spherical substitute particle
constructed such that it corresponds in size and charge (Figure 6.1). An analytical
expression for the cluster surface potential is gained from the solution of Poisson’s
equation for spherical clusters of radius rG

P surrounded by an isotropic dielectric
medium. With the boundary conditions of Ψ(r → ∞) = 0 and a charge density

of ρC
P = 3QP/

(
4π
(
rG

P

)3
)

we obtain the surface potential as

Ψel(r = rG
P ) =

QP

4πεoεrrG
P

=
QP

CP
(6.6)
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Figure 6.1: Schematic illustration of the
charge-balance and patchy-particle kernel
concepts.
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Figure 6.2: Surface potential Ψ0
P(i,j) depen-

dence on the average MF-RhB coverage
j/i. Line thickness decreases with increas-
ing number of aggregate PS particles (i =
1, . . . , 5 ∈ N). With increasing coverage
the surface potential increases until resta-
bilisation is reached. The extrapolated sur-
face potential for already restabilised par-
ticles is indicated by dashed lines.

in which QP represents the cluster charge and CP the capacitance. For two approach-
ing clusters each comprising several PS particles, the aggregation behaviour predom-
inantly depends on the interactions at the point of closest approach. Therefore, the
charge of an aggregate can be replaced by the charge of the closest pair of PS particles
each with an average coverage of j/i. Any other interactions between other parti-
cles of each cluster are neglected. The average charge of the PS particle with closest
approach is given by

QP(i,j) = QP(1,0) +
j
i

QP(0,1) (6.7)

with QP(1,0) and QP(0,1) as charge of the monomer particles. From Eqs. 6.6 and 6.7 we
obtain the following surface potential

Ψ0
P(i,j) = Ψ0

P(1,0) +
j
i

rP(0,1)

rG
P(1,j)

Ψ0
P(0,1)

≈ ζPS +
j
i

rP(0,1)

rG
P(1,j)

ζMF−RhB (6.8)

in which the particle surface potentials were replaced by the respective ζ-potentials.
The variation of the surface potential as function of the average specific MF-RhB par-
ticle coverage j/i is shown in Figure 6.2. Although the amount of MF-RhB particles is
not limited by definition, unphysically high average charge is kinetically prevented
by restabilisation.
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An attempt was made to introduce a fitting parameter into Eq. 6.8 to enable an
adaptation to flow cytometric data if applicable. One possibility is presented by the
implementation of a constant C into the surface potential approximation:

Ψ0
P(i,j) ≈ ζPS + C j

i

rP(0,1)

rG
P(1,j)

ζMF−RhB . (6.9)

For C > 1 an overproportional charge neutralisation effect by MF-RhB adsorption is
achieved. This decreases the maximum number of MF-RhB particles that can adsorb
to PS particles. For C < 1 the opposite is expected, resulting in a delayed onset of
secondary heteroaggregation.

All in all, the charge-balance model only provides a crude approach to determine
the electrostatic effects that are responsible for primary and secondary heteroaggre-
gation. Anyhow, simulation results agree surprisingly well with experimental data
as shown in section 6.3. More exact predictions can be obtained by applying different
solution methods that consider the aggregate geometry in detail, like Brownian dy-
namics methods (section 4.3), or by introducing surface heterogeneity into a kernel
for population balance equations. In the following section the literature model for
patchy-particles is briefly summarised.

6.1.2.2 Inhomogeneous surface model

A different model approach for the sticking efficiency was presented by Moncho-
Jordá et al.98 in 2003 based on earlier work concerning time series probabilities101.
It discriminates between surface inhomogeneities and lumps all parts of the cluster
surface which constitute similar aggregation behaviour into representative surface
patches. The surface fraction of each patch is then used as weighting factor in the
calculation of a total sticking efficiency from the interactions of the pure materials.
This method provides a convenient description of bridging coagulation and is thus
well suited to describe heteroaggregation in binary particle systems. The sticking
efficiency is given by98

ωE
P′,P′′ =

PP′,P′′ (φ)

1− [1− PP′,P′′ (φ)
]

Pc
P′,P′′

(6.10)

and accounts for two physical effects: first, the probability PP′,P′′ (φ) with which two
surface patches come into contact during a collision, i.e. PS-PS, PS-MF, MF-MF, and
second, the probability Pc

P′,P′′ of multiple collisions per encounter. The probabilities
are given in Eq. (6.11) and (6.12) adapted to the case of binary heteroaggregation,
with φP(i,j) as surface fraction, N11 as average number of collisions per successful
encounter and α as scaling factor. From the original publication we obtain N11 = 6.1
and α = 0.3598.

PP′,P′′ (φ) =
(1− φP′) (1− φP′′)

WP(1,0),P(1,0)
+

φP′ (1− φP′′) + (1− φP′) φP′′

WP(1,0),P(0,1)
+

φP′φP′′

WP(0,1),P(0,1)

≈ φP′ (1− φP′′) + (1− φP′) φP′′ (6.11)

Pc
P′,P′′ = 1− 1

N11 (νP′νP′′)
α (6.12)
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At very low ionic strength, particles with equal charge remain stable, yielding stabil-
ity ratios of WP(1,0),P(1,0) ≈ WP(0,1),P(0,1) → ∞. Furthermore, since the particle species
are oppositely charged, heteroaggregation is diffusion limited with WP(1,0),P(0,1) = 1.
Under these circumstances, PP′,P′′ reduces to the approximate expression shown in
Eq. (6.11) and the aggregation rate merely depends on the surface fractions φP′ and
(1− φP′) as well as φP′′ and (1− φP′) of the colliding particles. They are limited to
0 ≤ φ ≤ 1.

The surface fraction φP(i,j) for the single representative MF-RhB patch on the PS
surface is determined from the ratio of the total cross-sectional area of the mean ad-
sorbed number of MF-RhB particles j/i to the surface area of a single spherical PS
monomer

φP(i,j) = min

⎧⎨
⎩1,

j
i πr2

eff

4πR2

⎫⎬
⎭ = min

⎧⎪⎨
⎪⎩1,

j
4i

γ2(
r1,0
r0,1

)2
+ 2 r1,0

r0,1

⎫⎪⎬
⎪⎭ (6.13)

where R = r2
1,0 + 2r1,0r0,1 is gained from geometric considerations as the radius from

the centre of the PS particle to the point of intersection between the adsorbed MF-
RhB particles. In order to fit experimental data, the maximum number of adsorbed
particles has to be reduced by means of an effective radius reff = γr0,1 with γ ≥ 1.
This introduces an excluded surface area, which could be caused for instance by an
electrostatic repulsion between neighbouring MF-RhB particles adsorbed on the PS
surface.

Kernel modifications due to reorientation effects caused by multiple contacts dur-
ing each encounter are neglected here and aggregation dynamics are thus prone to
a slight overestimation98. A lower bound can easily be generated with Pc

P′,P′′ = 0.
In the original publication, the kernel is limited in use to the dimer formation rate
and does not consider rotation of the clusters and shielding effects, as investigated in
Olsen et al.102,103. The presented kernel model is not restricted in use to the PS dimer
formation rate, for which the single patch model would be exact. But since PS dimer
formation is the most dominant mechanism in PS oligomer formation within the in-
vestigated time span, any error induced by this extension is assumed to be negligible.

6.2 Population balance model
Both kernel concepts are introduced into a population balance model. The simulation
framework is based on the theoretical considerations of Chapter 4. In order to formu-
late a population balance equation, the constituting property state space is developed
in section 6.2.1 and reduced from its full extent by by neglecting physically irrelevant
aggregation states in section 6.2.2. On this basis the population balance equation is
defined in section 6.2.3 with respect to two internal coordinates describing the clus-
ter composition. In our approach any differences regarding morphological issues are
neglected, so that for instance aggregates like �

�
� or �

� �or �
� � are assumed to act

identically and can therefore be lumped into a single representative state space coor-
dinate.
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6.2.1 Definition of state space

Since the orientation of the particles in each aggregate is arbitrary, the complete prop-
erty space P is spanned by the absolute particle numbers which constitute the cluster.
For the binary particle mixtures investigated in Chapter 5, a two-dimensional prop-
erty space is spanned by i and j, which denote the number of PS and MF-RhB parti-
cles per aggregate, respectively. Since these numbers are physically discrete, property
space and the population balance equation are both formulated discrete with respect
to the internal coordinates. The aggregate number concentrations ci,j for each prop-
erty state are stored in a matrix c. It is shown in Eq. (6.14) and illustrates the full state
space with i ∈ [0, . . . , imax] and j ∈ [0, . . . , jmax].

c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.14)

The maximum number of PS particles per aggregate is denoted by imax, the maxi-
mum amount of MF-RhB particles by jmax. For an unreduced system, imax and jmax

correspond to the total amount of particles within the liquid volume and can reach
very high numbers. However, most of the resulting property coordinates are phys-
ically irrelevant and can be neglected. This motivates model reduction strategies to
accelerate numerical solutions, as explained in section 6.2.2.

For improved mathematical handling, the matrix c over all of property space is
transformed into a concentration vector�c by concatenating the rows. The concentra-
tion vector is shown in Eq. (6.15), along with the composition vectors�ı and�j, which
contain the amount of PS and MF-RhB particles per aggregate for each property state.

�c = ( cP(0,0) . . . cP(0,jmax) cP(1,0) . . . cP(1,jmax) . . . cP(i,j) . . . cP(imax,jmax) ) ∈ R
Pmax

�ı = ( 0 . . . 0 1 . . . 1 . . . i . . . imax ) ∈ N
Pmax

0
�j = ( 0 . . . jmax 0 . . . jmax . . . j . . . jmax ) ∈ N

Pmax

0
(6.15)

The index pair i and j of the matrix then reduce to a single index P(i, j) = j + 1 +

∑
i−1
i′=0

(
jmax
i′ + 1

) ∈ N ranging over i and j as defined above and Pmax as total length
of the vector. With these three vectors the property space is fully characterised. Please
bear in mind that the coordinate transformation only changes the appearance, but not
the content of the property space.
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6.2.2 Model reduction

The full property space P as represented in Eq. (6.14) quickly exceeds computational
feasibility. In real colloidal suspensions very high particle numbers imax and jmax yield
an abundance of theoretically possible aggregate configurations. The state space then
contains millions of coordinates - each balanced by a differential equation - of which
only a fraction is physically relevant. In order to facilitate a numerical solution of the
population balance equation, the model has to be considerably reduced. Some com-
mon numerical methods were already discussed in section 4.2, and the concept of the
method applied in this thesis was already roughly outlined in section 4.4.2. It yields
a property space PR that is as concise as possible but still contains the relevant phys-
ical information at maximum resolution. The reduction algorithm is based on omit-
ting physically irrelevant aggregate compositions in order to considerably reduce the
set of differential equations. Mathematically this corresponds to eliminating zero or
near-zero elements by a simple sectional approach. The focus on regions within prop-
erty space with high cluster concentrations is expressed by an interval spacing that
varies regionally and with simulated time. The adaptive grid is established under
consideration of heuristics gained from predicted aggregation rates. In contrast to
sectional approaches with constant resolution and weighted residuals, the presented
approach does not reduce system information and proves to be stable against numer-
ical diffusion effects.

In the binary particle mixture, the two dimensions of property space can be subject
to different reduction rules. Since restabilisation restricts the coverage with MF-RhB
particles to a certain amount, a fixed grid could be established in j direction. Its extent
is defined on the basis of heuristic estimations. In contrast, adaptivity is established
along the i property vector. Complete rows in the concentration matrix are lumped
into single representative coordinates. Once the concentration collected within these
states exceeds a threshold value, a fixed region in j direction is opened up. In one
adaptation step several neighbouring rows were opened at once to enhance efficiency.
The reduced system c R is illustrated in Eq. (6.16) with lumped coordinates shown as
shaded areas. Still the upper limits imax and jmax have to be chosen much smaller than
the total number of particles inside the suspension. In accordance with experimental
observations, the maximum number of PS particles in an aggregate is estimated as
imax ≈ 10, and jmax corresponds to the highest jmax

i as defined in Eq. (6.18).

c R =

⎛
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(6.16)

The heuristic definition of important regions in j direction involves two aspects.
First, it is assumed that small MF-RhB particles only exist as monomers. Hence, pri-
mary heteroaggregation can be modelled by a simplified expression that only com-
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prises transfer rates between adjacent property coordinates, as explained in section
4.4.1. Then it is possible to remove the entire first row of property space P illustrated
in Eq. (6.14) and instead store the amount of free MF-RhB monomers in the vector
element cP(0,1)(t) = cP(0,1)(0)−�j�cT

P(i,j)(t) for every time step t. The index P(i, j) now
ranges over i ∈ [1, . . . , imax]. It has to be emphasised at this point, that the assump-
tion is only valid at low ionic strength where any homoaggregation of the MF-RhB
particles remains negligible. This approach is not copied for the first column of PS ho-
moaggregates, since such aggregates (dimers and trimers) have been detected in the
original suspensions. They might be caused by insufficient stabilisation due to aging
effects or by incomplete redispersion before the experiments and are considered in
the initial condition of the simulations.

Secondly, property coordinates with zero or near-zero particle concentrations are
eliminated from each row. For instance, it is physically irrelevant to consider a PS
monomer with all MF-RhB particles in the system bound to its surface or an aggre-
gate of five PS particles without any MF-RhB particle bound to it. A more concise
representation of state space can be established by creating an interval within each
row i ∈ [1, . . . , l], where the system is fully discretised and by lumping all border
coordinates into single representative coordinates. The lower and upper boundaries
for high resolution areas are determined from the following equations:

jmin
i =

⎧⎪⎨
⎪⎩

max
{

1, minj

{
j| cP(1,j) > ξ ·max [�c]

}}
for i = 1

max
{

jmin
1 , jmin

i−1

}
for 1 < i ≤ l

1 for l < i

(6.17)

jmax
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minj

{
j

∣∣∣∣∣ ωP′(1,j),P′′(0,1)

maxj

{
ωP′(1,j),P′′(0,1)

} < ξ

}
+ Δ for i = 1

round
{

jmin
i + jmin

1 · 2g(i)
}

for 1 < i ≤ l

jmin
i for l < i

(6.18)

with ξ as threshold value and Δ as additional border coordinates for detailed resolu-
tion. The upper limit of the first row jmax

1 is estimated from the primary aggregation
rate ωP′(1,j),P′′(0,1) along j. As discussed in section 6.3.1, it suddenly drops due to a
sharp increase of the stability ratio WP′,P′′ at the point of restabilisation. As tolerance
in Eq. (6.18) ξ = 1 · 10−6 is chosen as an arbitrary small number. Having identi-
fied jmax

1 , the remaining property space is restricted to jmin
i + jmin

1 · 2g(i). Choosing
g(i) = i− 1, property space includes the aggregation of two clusters with maximum
coverage. Heuristics from simulations in unreduced systems allow further reduction
setting g(i) = i0.4 − 1 and extending jmax

1 by Δ = 30.

Regarding i, the extent of the property space was adaptively refined during the
simulation. All rows in c R with i ∈ [1, . . . , l] are opened in j direction; all elements
in the rows exceeding l are lumped into a single representative coordinate. Because
property space increases dramatically with i, this is a very efficient way of reducing
the system size. In the beginning of a simulation l is chosen according to the ini-
tial particle distribution. After the simulation is started, l is adapted and the size
of the fully discretised property space extends. The adaptation of property space is
performed, once the last fully discretised row l exceeds a threshold aggregate con-
centration. The threshold ξ is determined as fraction from the highest concentration
at time t, i.e. ξ ·max (�c(t)), and was chosen as 1 · 10−6 in this contribution. This value
represents a compromise between system size and loss of information by lumping.
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Once the threshold is reached in row l + 1, the integration is terminated and the re-
sult is transformed back into the full system, equally distributing any particles in
lumped property coordinates over all coordinates of the full system. Subsequently a
new property space grid is defined and the integration is resumed. If imax is limited
in accordance with experimental observations, simulations have shown that usually
just a single adaptation step is sufficient. The reduced system is shown in Eq. (6.19)
with abbreviated vector notation for rows l and l + 1:

�c R=( . . . c R
P(l,j∗) c R

P(l,j∗). . . c R
P(l,j∗) c R

P(l,j∗) c R
P(l+1,j∗) . . . )∈R

Pmax

�ı R=( . . . l l . . . l l l + 1 . . . )∈N
Pmax

�j R=( . . .
〈
0, . . . , jmin

l − 1
〉

jmin
l . . .jmax

l − 1
〈

jmax
l , . . . , jmax〉〈0, . . . , jmax〉. . . )∈R

Pmax

(6.19)

where the domain of�j R has changed from N
Pmax

to R
Pmax

due to the arithmetic av-
eraging performed over MF-RhB particle coverage

〈
j
〉

= ∑j j · cP(i,j)/ ∑j cP(i,j) ∈ R.
The concentrations c R

P(i,j∗) are defined as

c R
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(6.20)

with the vector index P(i, j∗) = j∗ + ∑
i−1
i′=1

[
jmax
i′ − jmin

i′ + 2
]
. It is important to note

that any a priori restrictions of i and j, like imax and jmax
i , in order to decrease system

size have to be performed with great care to avoid any effects on the solution. Particle
concentrations in lumped property coordinates, which basically represent accumulat-
ing ‘overflow’ states, must remain negligible for all times.

6.2.3 Bivariate discrete population balance equation

In the binary colloidal system under investigation, positively charged MF-RhB par-
ticles irreversibly aggregate with PS monomers or more complex aggregates (primary
heteroaggregation). At moderate coverages this results in electrostatic destabilisation
of PS particles and complex heterogeneous aggregates form by secondary heteroag-
gregation. Hence, the aggregation behaviour depends on the cluster composition
which motivates the application of population balance models. As already discussed
in section 4.4.1, primary heteroaggregation represents a single-step movement along
the j coordinate in each row i of property space according to P′(i′, j′) + P′′(0, 1) →
P(i′, j′ + 1). In contrast, secondary heteroaggregation describes jump throughout
property space according to P′(i′, j′) + P′′(i− i′, j− j′) → P(i, j) and is therefore rep-
resented by the classic expression for aggregation. The property-discrete population
balance can then be formulated as

d
dt

cP(i,j) =
[
ωP′,P′′cP′(i,j−1) − ωP,P′′cP(i,j)

]
cP′′(0,1) (6.21)

+
1
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j
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∞

∑
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∞

∑
j=0

ωP,P′cP′(i′,j′)
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with i ∈ [1, . . . , imax] and j ∈ [0, . . . , jmax] on reduced property space. Each coordinate
of property space is balanced with respect to incoming and outgoing particles. Be-
cause in aggregation incoming particles can originate from any two source particles,
a double sum considers all possible source combinations. Likewise, all particles leav-
ing the considered property coordinate are summed up in the sink term. The popula-
tion balance equation is written in a general form and certain aggregation phenomena
have to be excluded by definition in order to guarantee mass conservation. Thus, the
following aggregation rates are set to zero:

ωP′(i,j−1<0),P′′(0,1) = 0

ωP(i,j>jmax
i ),P′′(0,1) = 0

ωP′(i′,j′),P′′(1−i′,0−j′) = 0

ωP′(i′,j′),P′′(i′′>imax−i′,j−j′) = 0

ωP′(i′,j′),P′′(i−i′,j′′>jmax
i −j′) = 0 . (6.22)

All restrictions involving imax or jmax
i are caused by introducing restrictions into pro-

perty space. The artificial exclusion of certain aggregation phenomena due to model
reduction only has negligible effects on the simulation results because only very low
aggregate concentrations are affected. This was validated by simulations with vary-
ing imax values and for imax > 8 no effects could be observed over the complete simu-
lated time span. Furthermore, the amount of particles collected in boundary property
space coordinates remained negligible over the whole simulation, as demanded in
section 6.2.2.

6.3 Simulated aggregation dynamics
The population balance model was implemented in MATLAB in its vectorised form.
All simulations were performed on a standard personal computer (2.66 GHz, 2 GB
RAM) within several minutes. For the two kernel concepts introduced in the previous
sections, different simulation results were achieved.

Some simulation parameters were acquired from the reference experiments per-
formed with PS and MF-RhB particles in Chapter 5. The PS particle concentration was
chosen as cPS = 1.14 · 104 particles/μm and MF-RhB particles were added to yield
concentration ratios of cP(0,1)/cP(1,0) = cMF−RhB/cPS = 1:1, 20:1, 100:1. Throughout
this contribution, the temperature was kept constant at T = 298 K. Unless defined
otherwise, simulations were performed at an ionic strength of IM = 0.1 mM for pure
water. For parameter studies, a totally disaggregated particle system was assumed
as initial condition, while simulations intended for comparison with experimental
data begin with an aggregate distribution similar to the first measurement. Over the
simulated time span of ttot = 1 · 105 s (≈ 27 h) no significant amount of aggregates
comprising more than 10 PS particles were formed. Therefore imax could be limited
to 10 for both kernels, considerably reducing the model size. The parameter jmax

1 was
determined as ≈ 13 + Δ and for the charge-balance kernel and as ≈ 20 + Δ for the
patchy-particle aggregation kernel from the PS monomer coverage rates ωP′,P′′(0,1).
With Δ = 30 the condition of negligible concentrations in the border coordinates was
met, as required in section 6.2.2.
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6.3.1 Kernel evaluation

The distribution of aggregation rates over property space for primary ωP′,P′′(0,1) and
secondary ωP′,P′′ heteroaggregation were calculated for three different kernel mo-
dels: the charge-balance kernel (Eq. (6.5)), the patchy-particle kernel (Eq. (6.10)) and
the patchy-particle kernel with Pc

P′,P′′ = 0. The kernel results are shown in Figure
6.3(a)-(d) for imax = 5. The Smoluchowski kernel ωB generates perikinetic aggre-
gation rates of order 1 · 10−17 m3/s, which may be reduced by the stability ratio
W > 1 in the RLCA regime. The displayed rates compare well to literature data,
which cover a range from 1 · 10−18 to 1 · 10−17 m3/s as average rates in binary het-
eroaggregation39,86,113. As can be observed in Figure 6.3, aggregation is confined to
certain aggregate property states. Outside these, aggregation is prevented by the
restrictions set by the respective kernel concept, i.e. either by a completely cluster
covered surface or by sufficiently high repulsive forces between the approaching par-
ticles. For the coverage process as well as for cluster-cluster aggregation, the rates of
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Figure 6.3: Simulated primary and secondary aggregation rates as predicted by different
kernels. ( ): Charge-balance kernel (Eq. (6.5)), ( ): Patchy-particle kernel (Eq. (6.10)),
(· · · ): Patchy-particle kernel with Pc

P′,P′′ = 0. Large regions with zero rates are caused by
the restriction to imax = 5. For illustrative purposes a white box marks all aggregation rates
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). The symmetry axis is indicated by a

white diagonal line. The colour coding represents the aggregation rate ωP′,P′′ in [m3/s]
with zero and near-zero rates shown in a dark blue colour.
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the different kernels show systematic differences. The charge-balance kernel shows
abrupt changes of the aggregation rates. It indicates the transition from DLCA to
RLCA regime and is caused by the the sudden increase of the stability ratio W at
a critical surface coverage. For the charge-balance kernel, the maximum coverage
is defined by the charge balance: when a certain critical number of MF-RhB parti-
cles is adsorbed, the reversed heteroaggregate charge prevents any further coverage.
For both Pc

P′,P′′ = 0 and Pc
P′,P′′ > 0 in the patchy-particle kernel, the initial rate as

well as the maximum coverage coincide as fixed by the surface coverage expression.
In between, the rate linearly drops to zero at maximum coverage with Pc

P′,P′′ = 0.
For nonzero probability of multiple collisions Pc

P′,P′′ > 0 the rates are higher and no
longer linear. The nonlinearity is more pronounced for higher dimensional clusters.
The maximum coverage for the patchy-particle kernels was fitted by choosing γ = 3
in Eq. (6.13) to achieve agreement on the time evolution of the aggregation kinetics
shown in section 6.3.3.

6.3.2 Variations of the charge-balance kernel

After the kernels have been evaluated for the considered property space, the popu-
lation balance equation can be solved. As an example, Figure 6.4 shows a detailed
cluster distribution on two-dimensional property space calculated on the basis of the
unfitted charge-balance kernel with C = 1. For systems in which the maximum cov-
erage is restricted as specified by the charge balance in Eq. (6.9), bimodal distributions
along the j coordinate are possible. They originate if the leading tail of the particle
distribution is collected in the property coordinate P(i, jmax

i ) with maximum cover-
age, from which the clusters can only drain by means of secondary aggregation. For
a concise and transparent comparison of the time evolution, selected results are pre-
sented in the following graphs. These include the concentration fractions of uncov-
ered and covered PS monomers, PS oligomers as well as the MF-RhB coverage on PS
monomers. For a standard simulation at cPS = 1.14 · 104 particles/μl and a mixing
ratio of 20:1 in deionised water with IM = 0.1 M and T = 298 K, simulations were
validated on an extended property space. The extension was realised by choosing
imax = 7, g(i) = 0.8, Δ = 30 as parameters. A comparison between the reduced
and extended system shows identical results to simulations at imax = 10, g(i) = 0.4,
Δ = 30 that are henceforth adopted as standard simulation parameters. The simu-
lations with the charge-balance kernel shown in this section were not fitted, i.e. the
parameter C was chosen as unity.

The influence of the aggregate morphology and compactness was investigated by
varying the fractal dimension for the rate limited cluster-cluster aggregation from
d f = 1 to 3. The aggregation kinetics remain essentially the same over the complete
interval with deviations becoming evident for high times of t > 4 · 104 s only. Even for
simulations with a constant aggregate radius of rP(1,0) throughout the whole property
space, aggregation kinetics barely change. According to Eq. (2.28) a constant radius
is achieved in the limit of d f → ∞. The results for d f = 1 and 1000 along with
d f = 2.1 are plotted in Figure 6.5. The low sensitivity of aggregation kinetics on
the fractal dimension is caused by the moderate change of aggregate size during the
destabilisation phase, where practically all PS heteroaggregates remain monomeric.
Only after destabilisation at advanced times, the average aggregate size increases
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due to cluster-cluster aggregation and d f gains impact. With increasing aggregate
size, Brownian motion slows down and aggregation is decelerated.

Sensitivity regarding the van der Waals force VvdW
P′,P′′ was assessed by variations

of the Hamaker constant AP′,P′′ (data not shown). For moderate increases of the
Hamaker constant AP′(i′,j′),P′′(i′′,j′′) simulations only show insignificant differences.
Simulations with AP′(i′,j′),P′′(0,1) = 1 · 10−20 J matched those with AP′(i′,j′),P′′(0,1) =

2.2 · 10−20 J, which was used for the interaction of MF-RhB and PS surfaces through-
out the thesis. Deviations begin to take noticeable effect, when the Hamaker constant
is increased by a factor of >10. Likewise, the effect of the hydrodynamic correction
BP′,P′′ in Eq. (2.24) is shown to be negligible. For BP′,P′′ = 1, no differences in ag-
gregation kinetics were detected at all (data not shown). Both effects show how the
electrostatic particle interaction physically dominates the aggregation process over
van der Waals attraction and hydrodynamic close distance effects.

Simulations also demonstrated the sensitivity of aggregation kinetics on the ionic
strength of the surrounding medium. The increased stability of MF particles agains
aggregation to PS surfaces could however not be validated by simulations. At in-
creasing electrolyte concentration, particle surface charge is shielded more effectively,
reducing the extent of the electrostatic double layer and interaction potentials23,151.
Aggregation kinetics begin to be affected by increasing electrolyte concentration from
ionic strengths of IM > 10 mM. The aggregation results for IM = 20 M are included in
Figure 6.5 and exactly match those for a pure DLCA regime, simulated with constant
stability ratio W = 1. This is in full accordance with theory because at very high ionic
strengths virtually no electric double layer remains around the particles and they
can aggregate spontaneously as fast as diffusion permits. Therefore, the coverage
of MF-RhB particles on PS monomers is not impeded by electrostatic repulsion and
can increase beyond the coverage reached under RLCA. Furthermore, at increased
ionic strength cluster-cluster aggregation does not require monomer destabilisation
and aggregation occurs species-independent and simultaneously, not consecutively.
Because the aggregation between MF-RhB monomers is not accounted for in the pop-
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Figure 6.5: Heteroaggregation dynamics simulated with the charge-balance kernel (C = 1)
expressed as concentration fractions and mean coverage. PS monomers at cPS = 1.14 ·
104 particles/μl were set as initial condition. Standard conditions ( ) imply a 20:1 mixing
ratio , d f = 1.8 for primary and d f = 2.1 for secondary heteroaggregation, IM = 0.1 mM
and T = 298 K. The following parameter variation are presented: 1:1 mixing ratio ( ),
100:1 mixing ratio (· · · ), identical d f = 1 (· · ), identical d f = 1000 (• • ), I = 20 M ( ).
In (a) all variations coincide with the simulation at standard conditions.

ulation balance equation (6.21), simulations at elevated ionic strength tend to loose
their accuracy.

Besides the ionic strength, the most dominant effects on aggregation kinetics were
observed by variations in absolute PS particle concentration cPS and by the particle
mixing ratio cMF−RhB/cPS. By doubling cPS, primary and secondary heteroaggrega-
tion are enhanced. All curves in Figure 6.5 are shifted towards the left, so that the peak
of covered PS monomers for the 20:1 ratio at IM = 0.1 mM moves from t = 2830 s
at 1.14 · 104 particles/μl to t = 1410 s at 2.28 · 104 particles/μl (data not shown). At
half concentration the peak of covered PS monomers is observed at t = 5660 s. Varia-
tions of the particle mixing ratio cMF−RhB/cPS considerably changes the aggregation
dynamics as well. The underlying electrostatic effects are discussed in the following
section.

6.3.2.1 Electrostatic effects

Electrostatic effects dominate the aggregation behaviour of the investigated binary
particle system. As discussed in Chapter 5, they can be controlled by the macro-
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scopic mixing ratio cMF−RhB/cPS. Simulations were conducted for particle ratios of
1:1, 20:1 and 100:1, each representing a distinct electrostatic effect. For the 20:1 ratio
primary is joined by secondary heteroaggregation and complex oligomer aggregates
are readily formed. For the 1:1 and 100:1 ratios aggregation ceases after primary het-
eroaggregation. In the 1:1 ratio secondary heteroaggregation is impeded by lacking
destabilisation, while in the 100:1 suspension highly covered PS monomers are resta-
bilised (Figure 5.9).

The same is also expressed by the simulation data of Figure 6.5. For the 20:1 par-
ticle ratio, PS monomers are quickly covered by MF-RhB particles. The sigmoidal
decrease of uncovered PS monomers in Figure 6.5(a) correlates with an increase of
covered PS monomers in Figure 6.5(b). Once the critical coverage is reached, PS
monomer heteroaggregates are electrostatically destabilised and aggregate with other
clusters, forming more complex aggregates. Similar to the experimental section, these
are lumped into a single PS oligomer class for clarity of presentation, which is shown
in Figure 6.5(c). Once the source of covered PS monomers is outbalanced by oligomer
formation, the amount of covered PS monomers in Figure 6.5(b) reaches a peak and
decreases. Towards the end of the simulation, nearly all MF-RhB particles have ad-
sorbed (> 98%, data not shown) and the coverage on PS monomers in Figure 6.5(d)
reaches an asymptotic limit of ≈ 12 MF-RhB particles per PS monomer.

For the 1:1 ratio, aggregation kinetics are much slower, due to fewer collisions be-
tween PS and MF-RhB monomers. PS particles are divided between the uncovered
and covered state (Figures 6.5(a) and (b)), no oligomers are formed (Figure 6.5(c)) and
the PS monomer coverage remains steady at 1 particle per PS monomer as is expected
at this mixing ratio (Figure 6.5(d)). The electrostatic repulsion of weakly covered PS
monomers is maintained and prevents cluster-cluster aggregation.

At cMF−RhB/cPS = 100 : 1, PS monomers are rapidly covered with MF-RhB par-
ticles (Figure 6.5(b)). The chances of destabilised PS monomers to aggregate with
other clusters are very slim, due to low cluster-cluster collision probabilities. Owing
to the high concentration ratio, increasing MF-RhB particle coverage is more probable
and the time-window, in which cluster-cluster aggregation is possible, passes with-
out significant oligomer formation (Figure 6.5(c)). Finally, aggregation is retarded by
the restabilisation effect with an average of 12 MF-RhB particles adsorbed on each PS
monomer (Figure 6.5(d)).

6.3.3 Comparison of both kernels to experimental data

In principle all variations performed with the charge-balance kernel can also be done
with the patchy-particle kernel. Since the central statements remain unchanged, the
results are not included. The patchy-particle kernel is however tested against the
experimental data for different particle mixing ratios.

The fit of simulation results and experiments could be improved by slight modifi-
cations of γ, N11 and α. By choosing γ = 3 the effective surface area covered by a
single MF-RhB particle is extended by a factor of ≈ 8. This reduces the maximum
number of MF-RhB particles from 163 to ≈ 21, which is more consistent with experi-
mental data. The introduction of an excluded surface area to each adsorbed MF-RhB
particle, is also physically reasoned by the electrostatic repulsion to other MF-RhB
particles on the PS surface. However, the exact extent caused by this eluded experi-
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Figure 6.6: Comparison of experimental with simulated aggregation dynamics using the
patchy-particle aggregation kernel. Experimental and simulated data for mixing ratios of
1:1 (◦, ), 20:1 (•, ) and 100:1 (�, · · · ) along with Pc

P′,P′′ = 0 as modification of the
patchy-particle kernel (· · ). The remaining experimental and simulation conditions match
the standard conditions of Figure 6.5.

mental observability with the given devices. Furthermore it is known from literature
that shielding effects due to cluster formation102,103 create surface regions that are
inaccessible for MF-RhB particles and thus limit the the average number of surface
MF-RhB particles. The kernel approach developed by Olsen et al.102 was however
not considered here. In the simulations, particle concentrations and initial conditions
were chosen identical to the experimental values. The results are plotted in Figure 6.6
along with the experimental data.

The charge-balance kernel was also tested against the experimental results. The
results at standard conditions for different mixing ratios of 1:1, 20:1 and 100:1 are
shown in Figure 6.7. The charge balance was fitted by choosing C = 0.7 in Eq. (6.9).
This allows more MF-RhB particles to be attached to a PS monomer, but delays the
onset of secondary heteroaggregation.

In principle, all simulations predict the aggregation behaviour for different con-
centration ratios correctly. However, deviations exist between the different kernel
models, and between simulations and experiments. In Figures 6.6(a) and 6.7(a) the
decrease of uncovered PS monomers is predicted equally well by both kernels and
nearly matches experimental data. Differences exist for the 1:1 ratio, where the simu-
lation predicts a sigmoidal change of PS monomer concentration fractions, while the
experimental data indicates a flat response. Depending on the values of α and N11,
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Figure 6.7: Comparison of experimental with simulated aggregation dynamics using the
charge-balance kernel. Experimental and simulated data for mixing ratios of 1:1 (◦, ),
20:1 (•, ) and 100:1 (�, · · ) fitted with C = 0.7. The remaining experimental and simu-
lation conditions match the standard conditions of Figure 6.5.

the patchy-particle kernel maintains a slight decrease of uncovered PS monomers
even towards the end, while the charge-balance kernel is quite robust here. For both
kernels the small changes caused by the adsorption of a single MF-RhB particle seem
to permit the formation of a small PS oligomer fraction.

The fraction of covered PS monomers is shown in Figures 6.6(b) and 6.7(b) and
the different aggregation regimes for the different mixing ratios are clearly visible:
lacking destabilisation at low, continuous aggregation for intermediate and restabil-
isation at high mixing ratios. The concept of the charge-balance kernel proves to be
more robust for the extreme mixing ratios of 1:1 and 100:1, while for the intermediate
20:1 ratio the aggregation kinetics are better described by the patchy-particle kernels.
The two variations of the patchy-particle kernel represent an upper (Pc

P′,P′′ > 0) and
a lower boundary (Pc

P′,P′′ = 0) with regard to aggregation kinetics98. As can be seen
from Figure 6.6(b)-(d), this only affects the 20:1 ratio. For this ratio, the peak of cov-
ered PS monomers is predicted closer to experimental observations by the patchy-
particle kernel. Only towards the end, the patchy-particle kernel overestimates the
aggregation dynamics. The peak predicted by the charge-balance kernel is higher and
prolonged. The delayed onset of cluster-cluster aggregation is influenced by the fit-
ting parameter C as was explained in section 6.1.2.1. For both extreme mixing ratios,
1:1 and 100:1, the simulation results qualitatively match the experimental findings
over a large interval for the selected parameters. Any cluster-cluster aggregation is
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indicated by the decrease of raspberry aggregates correlating with an increase of the
PS oligomer fraction in Figure 6.6(c) or 6.7(c). For the 100:1 ratio, the charge-balance
kernel predicts a slightly lower fraction of PS oligomers and therefore compares bet-
ter to experimental data.

The evolution of the oligomer fractions is shown in Figures 6.6(c) and 6.7(c). Devi-
ations from experimental data correlate with deviations of the PS monomer fractions
in Figures 6.6(b) and 6.7(b). The slight overestimation of aggregation dynamics by
the patchy-particle kernel causes a steeper rise of PS oligomer concentration as can
be observed in Figure 6.6(c). Similarly, the delayed onset of cluster-cluster aggrega-
tion as predicted by the charge-balance kernel with C = 0.7 propagates into the PS
oligomer fraction as shown in Figure 6.7(c). For this kernel, oligomer formation only
sets in following PS monomer destabilisation, but then causes a very rapid oligomer
increase similar to that of the patchy-particle kernel.

The number of adsorbed MF-RhB particles on PS monomers is shown in Figures
6.6(d) and 6.7(d). It is compared to the experimental data from fluorescence intensity
measurements. The restriction to the coverage of PS monomers was done to limit
the complexity. Although the coverage of higher order PS clusters is available from
experimental and simulated distributions, it is not shown here since no new informa-
tion of essential importance regarding an understanding of the aggregation process
is added. In most cases the simulations confirm the sigmoid increase of MF-RhB cov-
erage on PS monomers. Some mismatch exists with respect to the final equilibrium
coverages. In simulations these can be tuned by γ for the patchy-particle kernel or
C for the charge-balance kernel. But since the calibration f l2 by which fluorescence
intensities are converted into absolute particle numbers is accompanied by a large
error, a rough fit to the experimental is considered as sufficient.

The results for all three mixing ratios vary with regard to the final PS monomer
coverage. For the 1:1 ratio the minimum coverage of a single MF-RhB particle is con-
firmed in both cases. For the 100:1 ratio, the respective maximum coverage is reached
quickly for both kernels. Since PS monomers have reached stability against further
aggregation at maximum coverage, the remaining MF-RhB particle remain unbound
in solution. For the intermediate 20:1 ratio determined with the patchy-particle ker-
nel, the final coverage of ≈11 MF-RhB particles falls remains below the maximum
coverage of ≈ 18 MF-RhB. Thus, a lack of further free MF-RhB particles is noticed, al-
though both the mixing ratio and maximum coverage exceed the final MF-RhB num-
ber. The difference to the theoretically possible maximum coverage is caused by the
simultaneous aggregation of MF-RhB particles with higher order PS clusters. Because
primary heteroaggregation is not limited to PS monomers, PS clusters can also act as
sinks for free MF-RhB particles and thus deplete the number of free MF-RhB parti-
cles. In contrast, the maximum coverage reaches only ≈14 MF-RhB particles for the
charge balance kernel. Since the charge balance kernel allows less MF-RhB particles
on PS particles, the maximum coverage for this kernel is also achieved in case of the
20:1 ratio.

All in all, the results suggest that cluster-cluster aggregation is influenced by bridg-
ing effects between surface patches more than by an averaged cluster surface poten-
tial. The SEM images for binary and ternary systems shown in Figure 5.7 support
these indications. The observed deviations between simulations and experiments are
probably caused by a combination of uncertainties from both approaches. With re-
gard to the simulations, both kernel concepts are based on assumptions, which are
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inevitable for a reduction of the system complexity. On the one hand, the charge-
balance kernel is based on an approximate calculation of the aggregate surface po-
tential (Eq. (6.8)), on the other hand, the patchy-particle concept allows cluster-cluster
aggregation via a bridging effect. Both concepts only provide rather crude considera-
tions of morphological details. In addition, the presented results neglect any restruc-
turing effects, like surface diffusion of MF-RhB particles on PS surfaces. Restructur-
ing effects and aggregate morphology can exert important influence on aggregation
dynamics and would have to be examined in more detail by simulation methods that
resolve geometric details, like Brownian dynamics simulations mentioned in Chap-
ter 4. With respect to the experiments, several sources of error were identified in
section 5.2. Next to the assumption of homogeneous mixing, which can only be ap-
proximate in diffusive systems, the adjustment of particle concentration and mixing
ratio probably present the main sources of error. Additional errors might arise from
measurements by flow cytometry. Although narrow confidence intervals around the
dynamic particle concentrations were verified in section 5.2.2.1, very weak particle
aggregation dynamics might not be detected or breakage of large aggregates might
occur. Furthermore, the transformation of the measured fluorescence intensity into a
MF-RhB number is based on a somewhat insecure microscopic calibration.

6.3.3.1 Phase portraits

The transition between destabilisation, i.e. PS monomer coverage, and cluster-cluster
aggregation for the 20:1 ratio is emphasised in the phase plots of Figure 6.8. While the
results of the charge-balance kernel suggest a very sharp onset of secondary aggre-
gation, the patchy-particle concept indicates a more gradual change consistent with
experimental data. The more gradual transition between initial destabilisation phase
and cluster-cluster aggregation of the patchy-particle kernel, weakens the onset of
restabilisation, and the flattening of the 100:1 curve in Figure 6.6(d) compared to Fig-
ure 6.7(d) is not as pronounced.
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Figure 6.8: Phase portraits of PS monomer and aggregate fractions for cMF−RhB/cPS =
20:1. Destabilisation and cluster-cluster aggregation regimes are indicated. Simulated re-
sults are shown for the charge-balance kernel (Eq. (6.5), ), the patchy-particle kernel (Eq.
(6.10), ) and the patchy-particle kernel with Pc

P′,P′′ = 0 (· · · ). They are independent of
the initial condition. Arrows indicate the direction of temporal evolution and are plotted
at simulation times t/ttot = 0.3, 0.5, 0.85.
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Figure 6.9: Comparison of experimental and simulated ζ-potentials for mixing ratios of 1:1
(◦, ), 20:1 (•, C = 0.7: , C = 1: · · ) and 100:1 (�, · · · ).

6.3.3.2 Evolution of aggregate ζ-potentials

The experimental evolution of the ζ-potential was presented in section 5.3.1.3 for the
Microparticle PS standard. It shows the dynamic evolution of average values over
the total particle ensemble that passed the laser beam. For the Duke Scientific PS
standard the experimental results are plotted in Figure 6.9 and show slight differences
as a consequence of the different pure ζ-potentials (Table 5.1).

To compare this data with simulations, the simulated particle distributions have
to be transformed into averaged aggregate surface potentials Ψ0

P(i,j). This can eas-
ily be achieved with the charge balance of Eq. (6.9). For each coordinate in prop-
erty state a representative cluster charge is calculated and weighted by the respective
particle fraction inside that coordinate. In principle, the surface potential can be ob-
tained for the distributions calculated with both kernel concepts. But it is only for
the charge-balance kernel that a changing potential has direct influence on the ag-
gregation dynamics. For the patchy-particle kernel this information does not affect
the aggregation dynamics. The surface potentials Ψ0

P(i,j) obtained from the simulated
cluster distribution are plotted in Figure 6.9(a) and (b). In order to compare exper-
imental data with simulation results we have to assume that the surface potential
Ψ0

P(i,j) matches the ζ-potential of the clusters. This assumption was already made to
derive Eq. (6.8).

As already mentioned in section 5.3.1.3, ζ-potential measurements in highly con-
centrated systems with particles of opposite ζ-potential are subject to errors. With in-
creasing mixing ratio, the measured initial ζ-potential of PS aggregates is higher than
an increased initial coverage would account for. Because this cannot be accurately
copied in silico, simulations deviate from experimental results, especially in the be-
ginning when large numbers of MF-RhB particles are free in solution. The trends,
however, are predicted well for all three mixing ratios. For the 1:1 ratio we obtain
nearly unchanged particle ζ-potentials, and for cMF−RhB/cPS = 100:1 charge rever-
sal and restabilisation agree qualitatively. For the 20:1 ratio an asymptotic limit is
reached for the charge-balance kernel, which shows a slight overshoot into mean pos-
itive cluster charge. For the patchy-particle kernel, the surface potential at 20:1 shows
an artifact towards the end. For C = 0.7 the mean aggregate potential even exceeds
the ζ-potential of MF-RhB particles. This is caused by the slightly greater maximum
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coverage defined by the patchy-particle kernel in comparison to the charge-balance
kernel. Naturally, the mean aggregate charge takes off towards unphysically high
surface potentials. This can be corrected by adjusting the fitting parameter C to unity,
yielding a higher maximum coverage. The rapid potential towards the end remains
however.

The qualitative agreement between the simulations and the experimental data is
quite satisfactory, especially if the crudeness of the kernel models is considered. The
three main electrostatic effects at the different mixing ratio are predicted well. It
seems reasonable that these results reflect the microscale origin of the dominating
electrostatic effects on the macroscale.

6.4 Summary
Heteroaggregation phenomena in particle mixtures comprising two species of dif-
ferent size and ζ-potential were investigated by simulation. A bivariate population
balance model was established on an adaptive grid within a property-discrete state
space, which was subject to reduction by a semi-heuristic approach. The two internal
coordinates represent the particle species and characterise the cluster composition.
The aggregation rates are determined by two different kernel concepts, which are
based on deterministic models under consideration of Brownian motion and DLVO
theory, incorporating Born, van der Waals and electrostatic pair interaction energies.
The kernel for patchy-particles accounts for the heterogeneous surface structure of
aggregated clusters98, while a charge-balance kernel calculates the interaction poten-
tial between two clusters on the basis of a mean electrostatic charge. Averages of
the calculated rates agree with literature values. Simulations with the charge-balance
kernel were studied with respect to parameter sensitivity. Variation of the fractal di-
mension and the aggregate size, as well as of the hydrodynamic correction in the
stability ratio only show minor effects. The simulation results show sensitivity with
respect to the ionic strength and absolute particle concentration.

Both models are successfully tested against experimental findings. Although slight
deviations exist between simulations and experiments, aggregation phenomena in-
fluenced by the macroscopic mixing ratio cMF−RhB/cPS are predicted correctly. At
1:1 ratio aggregation is essentially prevented, at 20:1 ratio primary aggregation is fol-
lowed by cluster-cluster aggregation forming complex heteroaggregates, and at 100:1
ratio PS monomers are restabilised by a dense coverage with MF-RhB particles im-
peding any further aggregation. While the charge-balance kernel performs slightly
better in the cases of lacking destabilisation at low mixing ratios (1:1) and restabili-
sation at high ratios (100:1), the patchy-particle kernel predicts a more gradual tran-
sition between the initial destabilisation phase and secondary heteroaggregation at
intermediate ratios (20:1). The measured dynamic evolution of the mean ζ-potential
confirms the trends investigated in the simulations.





Part III

Preferential aggregation in biological
systems
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Equipped with the experimental tools and simulation methods presented in Part I
and Part II, we can direct our attention to the systematic investigation of cellular tar-
geting dynamics for drug delivery purposes. The selective adsorption to specific cells
is considered as first important transport limitation that carrier entities encounter
on their route to intracellular drug delivery. Efficient drug delivery under simul-
taneous minimisation of adverse effects is a rapidly evolving research area of very
high potential for medical applications. In this context, the preferential adsorption of
biomolecules, like antibodies, to cellular receptors represents a competitive heteroag-
gregation process. Numerous recent studies have focused on tailoring these interac-
tions to achieve improved control over this process58,85,126. For drug targeting pur-
poses different receptor expression levels are required on the surfaces of the cell types
involved. However, cellular systems in which a certain kind of receptor is exclusively
expressed on one cell type are rare, so that in practice the targeting selectivity is deter-
mined by the extent of receptor expression. Facing these and other limitations, the tar-
geted delivery of drugs poses a research area of high activity, especially in optimising
the carrier particles31,57,105,112,136,143,158 and in cellular uptake studies17,34,91,129,139, in-
cluding the special focus on virus infection studies1,43,137,153. These two angles of
perception, one from particle technology and one from biomedicine, are necessary to
cope with the interdisciplinarity and immense system complexity.

Carrier design for in vivo applications has to combine versatile and sometimes
conflicting functionalities. Next to carrier morphology, which was recently shown
to play a major role in the uptake behaviour of cells17, appropriate surface function-
alities are subject to intense investigations. In general, the surfaces of drug carrier
particles should incorporate functionalities regarding bioavailability inside an organ-
ism, specificity for a target cell and a controlled release of the drug at the target
destination. To enhance the bioavailability of carrier particles inside an organism,
biocompatible polymer coatings, for example with polyethylene glycol (PEG), avoid
premature removal from the vascular system by an immune response (stealth par-
ticles)31,105. Biological specificity is usually generated by attaching specific ligands,
like antibodies or DNA/RNA, to the particle surface31,57,99,129,143. And finally, entry
into the cell and the release of the drug from the carrier at the target site has to be
controlled. The latter can be achieved by time dependent degradation of the carrier
particle or by other approaches that either harness environmental conditions at the
target destination, for instance pH dependent degradation in endosomes26, or make
use of external stimuli139. Furthermore, the biodegradability of the carrier after drug
delivery has to be ensured or at least any adverse effects have to be prevented31,112.

In this part, the targeting dynamics in a model biological system is presented as
case study. It focuses on targeting of two human tumour cell lines in mixture with
antibodies. Experimental results are illustrated in Chapter 7. U-937 histiocytic lym-
phoma cells in mixture with KARPAS-299 cells from anaplastic large cell lymphoma
were targeted by aminopeptidase N (CD13) antibodies. The targeting dynamics were
simulated by means of a discrete population balance model with three internal coor-
dinates in Chapter 8. All species were approximated as particulate entities, so that
the models for geometry and aggregation rates of Part II remain conceptionally valid.
The aggregation rates are based on similar deterministic models, adapted to discrim-
inate between biologically specific and unspecific interaction on heterogeneous cell
surfaces. For convenience, antibodies and antibody coated drug carrier particles are
jointly termed bionanoparticles. The validated model of the targeting process with
antibodies on tumour cells was published as journal contribution123.





Chapter 7
Experimental targeting dynamics
The dynamics of heteroaggregation processes in biocolloidal systems were investi-
gated with flow cytometry. By means of multi-fluorescence staining, the dynamics
of antibody-cell aggregation could be detected separately for each cell type. Fluores-
cent aminopeptidase N antibodies were used to study targeting in a model cellular
system. The adsorption of antibodies to surface receptors on cells represents the first
major transport limitation on a single-cell level. Any insight into the aggregation
process and its dynamics might therefore present a basis to optimise the surface func-
tionalisation of carriers and improve targeted drug delivery. Direct in vivo targeting
studies with functionalised carriers were not conducted within this thesis. Although
they would present the principal aim on a long-term perspective, the extension of
investigations to this area lies beyond the scope of this work.

Following a short introduction into the biomedical background in section 7.1 that
sets the stage as model system for our case study, the experimental materials and
methods are explained in sections 7.2 and 7.3. Like in Chapter 5, special attention is
paid to methods concerning flow cytometry, revealing several matching procedures.
The detected antibody aggregation dynamics are presented and discussed in section
7.4.

7.1 Biological background
As mentioned in the introduction, nanotechnology opens up promising perspectives
for the targeted delivery of pharmaceuticals to specific cells within an organism by
means of carrier particles. The applied carriers are usually tailored to minimise ad-
verse effects for the remaining cells. This application is closely linked to marking spe-
cific cells, e.g. tumour cells, for therapeutic purposes. An interesting model system
with a specific biomedical application is represented by aminopeptidase N receptors
on human tumour cells.

Aminopeptidase N (also known as membrane alanyl-aminopeptidase, EC3.4.11.2,
mAAP, CD13) is a type II membrane spanning 150 kDa cell surface protein that is ex-
pressed in various epithelial cells and in macrophages104. It is known from literature
that the only vascular structures with detectable CD13 proteins are tumour blood ves-
sels and other types of vessels undergoing neo-angiogenesis106. Therefore, CD13 can
be employed as a functionally important marker of angiogenically active vasculature
and might represent an important marker for tumours.
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Angiogenesis is the fundamental process by which new blood vessels are formed,
a process that requires new capillaries to sprout from existing blood vessels. It is a
highly regulated process and the normally quiescent vasculature is activated for a
brief period of time only. Persistent, deregulated angiogenesis has been implicated
in several pathological conditions, notably in tumour development145. Extensive re-
search has shown that tumours can deregulate angiogenesis to ensure their survival,
growth and metastasis145. Because cells require oxygen and nutrients from the blood,
a location within 100 to 200 μm of blood vessels is necessary, which is approximately
the diffusion limit of oxygen within tissue15,36. Therefore, the formation of new blood
vessels presents a rate-limiting step in solid tumour growth. The identification of a
negative regulator of angiogenesis could provide a strategy for tumour dormancy36,
and a promising method for an efficient administration of such regulators is posed
by targeted drug delivery.

Common drug carrier systems involve biocompatible and biodegradable liposomes
or virosomes34,129, (nano)particles105,158, or multi-layer capsules57,143. In order to
target specific cellular receptors or antigens, the surface of the carrier has to be func-
tionalised99, which is usually achieved by coating with different molecules or bio-
logical entities, like DNA/RNA85 or antibodies. Usually the highly specific non-
covalent binding between complementary biological proteins is facilitated by a su-
perposition of molecular interactions and bridging forces as well as dynamic con-
formational adaptations. Due to their high specificity, biomolecules are well suited
for biologically mediated self-assembly processes, like the reversible formation of bi-
nary colloidal structures. Numerous recent studies have focused on tailoring these
interactions between colloidal particles to achieve an improved control over the self-
assembly process58,85. Experimental investigations of cellular uptake of function-
alised carrier particles is an area of ongoing interdisciplinary research91,158. In some
studies the targeted drug is designed to influence cellular control mechanisms or to
preferentially kill the internalising cells1,52.

7.2 Materials
Aggregation experiments were conducted in incubated mixtures of human U-937 and
human KARPAS-299 suspension cells. Both cell lines were obtained from the German
Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany;
ACC 31 and ACC 5, respectively) and cultured at 37◦C in a 5% CO2-in-air atmo-
sphere in 90% RPMI 1640 supplemented with 10% FBS (PAA, Austria, Cat.No. E15-
840). Light microscopic images of the cells are shown in Figure 7.1. Immunological
data as determined by the DSMZ is shown in Table 7.1. Based on this information,
CD13 and CD33 were chosen as cellular targets for the preferential aggregation of
antibodies to tumour cells.

Phycoerythrin (PE) labelled monoclonal mouse anti-human CD13 and mouse anti-
human CD33 antibodies were purchased from BD Biosciences (Becton Dickinson,
USA) at concentrations of cAB,sol = 25 μg/ml and 50 μg/ml, respectively. To obtain
an estimate for non-specific binding and binding mediated by interaction with Fc-
receptors, polyclonal mouse IgG1 (50 μg/ml bottling concentration, BD Biosciences,
USA) was used as an isotype control. Representatively, the structure of an IgG1 an-
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(a) KARPAS-299 cells. (b) U-937 cells.

Figure 7.1: Microscopic images of human tumour cells used in the aggregation experiments
in PBS. The images were recorded with a Zeiss Axio Imager.A1. The bar indicates a scale
of 10 μm.

tibody is illustrated in Figure 7.2. The antibody suspensions were used as delivered
without any further preparation.

To distinguish between both cell lines in the flow cytometer, KARPAS-299 cells
were fluorescently stained with the lipophilic membrane dye 5-hexadecanoylamino-
fluorescein (H110, Invitrogen, USA). The solid dye was solved at 5 g/l in ethanol and
a stock solution was obtained by diluting 1:105 with MilliQ water. For a validation
of cell viability, propidium iodide (PI) was used which was obtained from Sigma
Aldrich, USA (P4170).

7.3 Methods

7.3.1 Experimental procedures

All experiments were carried out in 50 ml polypropylene centrifuge tubes (Sarstedt,
Germany) which were thoroughly rinsed with deionised water before use. Before
the aggregation experiments, the cell number cRPMI and viability in culture medium
of both cell lines was determined with a Vi-CELL XR (Beckman Coulter, USA). The
cells were collected by centrifugation at 200 g for 10 min and the cell pellet was resus-
pended in PBS (ionic strength IM ≈ 0.2 M). The resuspension volume was adjusted to

Table 7.1: Characterisation of KARPAS-299 and U-937 cell lines.

Cell line d a ζ b Immunologyc

[μm] [mV] CD13 CD33
KARPAS-299 14.1 -12.6 + -
U-937 13.8 -11.9 (+) +

adetermined with a Mastersizer 2000 (Malvern, UK) as the average of measurements in RPMI and PBS
bdetermined with a Zetasizer Nano ZS (Malvern, UK) as the average of measurements in RPMI and PBS
cdetermined by the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Ger-

many). Positive, moderately positive and negative immunological results are labelled with +, (+) and
-, respectively.
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Figure 7.2: Schematic representation of an
IgG1 antibody composed of four polypep-
tide chains: two identical heavy chains
(blue colour) each composed of one vari-
able (VH) domain followed by a constant
domain (CH1), a hinge region, and two
more constant (CH2 and CH3) domains,
as well as two identical light chains (or-
ange colour) each with one variable (VL)
and one constant (CL) domain connected
by disulfide bonds in the hinge region.
Constant Fc (fragment constant) domains
and specific Fab (fragment antigen bind-
ing, i.e. antigen binding site) domains are
indicated.
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Figure 7.3: Process scheme of preferen-
tial bionanoparticle aggregation to cellular
surface receptors in mixtures of KARPAS-
299 and U-937 cells. KARPAS-299 cells
are fluorescently stained with fluorescein
(H110) while the CD13 antibody is labelled
with phycoerythrin. Unspecific binding to
both cell types as well as biologically spe-
cific binding to antigen-positive cells is in-
dicated.

yield cell numbers of cPBS ≈ 106 cells/ml. Of all independent repetition experiments,
two were analysed in detail with respect to the cellular concentrations. The results
regarding cell concentration and viability are shown in Table 7.2.

KARPAS-299 cells were fluorescently labelled with small volumes of the H110 stock
solution and incubated for approximately 20 min at 37◦C. After incubation the cells
were washed with PBS by centrifugation for 10 min at 200 g to remove excess dye
which would cross-label U-937 cells in mixtures of both cell types. Flow cytomet-
ric measurements showed that the cell lines could be distinguished very well when
1 μl H110 stock solution was added per 106 cells. The stock solution volume was
determined from the concentration of cells in the PBS solution cPBS of Table 7.2, so
that similar fluorescence is achieved and compensation in the flow cytometer does
not have to be adjusted for each experiment (section 7.3.2). The cells were mixed in a
1:1 volumetric ratio. The resulting KARPAS-299 to U-937 cell ratio was confirmed by
flow cytometry and varied in an interval from 0.74:1 to 1.56:1. In exceptions, large de-
viations were corrected manually by dilution. The cell ratios determined from flow
cytometry are shown in Figure 7.6 listed for several independent experiments. On
average a satisfactory ratio of cKARPAS-299/cU-937 = 1.09 was obtained.
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Table 7.2: Concentration and viability characterisation of the cell lines measured with a
Vi-CELL XR.

Cell line Experiment cRPMI cPBS Viability in PBSa

[106 cells/ml] [106 cells/ml] [%]
KARPAS-299 1 0.82 0.93 91.4

2 0.82 1.19 86.6
U-937 1 0.87 1.06 91.5

2 1.38 1.10 87.3

aautomatically determined by Vi-CELL XR with tryptan blue dye exclusion method

Table 7.3: Calculation of cell specific antibody amount for IgG1, CD13 and CD33.

Antibody - mAB−PE
a ratio mtot

AB−PE cAB−PE,sol
b Vtot

AB−PE,sol
fluorophor [10−13 μg] [AB/cell] [10−5 μg/cell] [μg/ml] [μl/106 cells]
IgG1-PE 6.48 106 6.5 50 12.95
CD13-PE 6.48 106 6.5 25 25.90
CD33-PE 6.48 106 6.5 50 12.95

acalculated from MAB = 150 kDa and MPE = 240 kDa with 1 Da = 1 u = 1.66054·10−18 μg. A single PE
molecule per antibody was assumed and molar masses were provided by BD Biosciences.

bprovided by BD Biosciences

The aggregation experiments with bionanoparticles in binary mixtures of human
tumour cells are schematically illustrated in Figure 7.3. They were conducted at a bio-
nanoparticle concentration ratios of 106 AB/cell. From this, the added bionanoparti-
cle solution volumes Vtot

AB,sol per cell were calculated for each antibody type according
to Table 7.3. At t = 0 the antibody solution was pipetted to the cell mixture, incubated
at 37◦C, and dispersed by gently tipping the tube upside down once, similar to the
procedure for the particle systems. Further gentle shaking was performed immedi-
ately before taking samples in order to resuspend the cells homogeneously. As in
Part II, we assume that cells and antibodies are perfectly mixed inside the medium.
Although this is hardly achieved instantaneously upon the start of each experiment
in perikinetic regimes, a mean-field approach seems to be justified. Samples of 500 μl
volume were taken at t = 2, 5, 10, 20, 40 and 60 min. Aggregation was terminated by
diluting each sample with 500 μl PBS stored on ice and by separating the remaining
unbound antibodies by centrifugation for 5 min at 200 g. Cells were resuspended in
300 μl PBS to obtain a slightly higher concentration for flow cytometric analysis.

7.3.2 Flow cytometric analysis of biocolloids

To detect the aggregation of antibodies to the tumour cells, the Epics-XL flow cytome-
ter was used. A detailed description of the working principle and the evaluation of
the scattering signals in distribution dot plots was presented in section 3.2.1. Living
cells were discriminated from dead cells, cell debris or other particulate contaminants
by analysing forward (FS) and side (SS) scatter data. For a sample measurement, the
dot plots are shown in Figure 7.4(a) and 7.4(b). Cells were distinguished on the FL1
channel, while the aggregation process was detected via the evolution of the FL3 sig-
nal, as plotted in Figure 7.4(c). In all experiments, the standard FS intensity is based
on the peak area signal and a FS discriminator value of 30 a.u. was used. Prior to the
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Figure 7.4: Flow cytometric analysis of a cell mixture without bionanoparticles. Positive
events are coloured by density.

experiments, the detector voltages of all considered channels FS, SS, FL1 and FL3
were calibrated in order to detect all events in appropriate regions. The FL3 intensity
was aimed at 101 a.u. for antibody-free cells.

By plotting FS over SS different regions are visible which could be identified as
viable and dead cells as well as cell debris and other particulate contamination at
small scattering intensities (Figure 7.4(a)). A plot of the FS Peak signal against the
area based FS intensity identifies multimeric cell agglomerates, which would ap-
pear as separate peaks below the diagonal of the gate44. In the tumour cell mix-
tures hardly any cell agglomerates formed over the whole experiment (Figure 7.4(b)).
Cell viability was validated by a propidium iodide (PI) test. The dye PI fluorescently
marks dead cells because it only penetrates ruptured cell membranes. Stained dead
cells can be distinguished from unstained viable cells on an FL2 vs. FL3 plot by
their higher fluorescence intensity. Cells were dyed with a cell specific volume of
VPI ≈ 5 · 10−6 μl/cell directly before analysis. Figure 7.5 shows the results of the PI
viability test, where cells considered as viable in Figure 7.4(a) are coloured in blue and
inviable cells in red. The gates for viable and non-viable cells in Figure 7.4(a) match
the result from PI staining to great extents. The overlap is considered as negligible,
especially its influence on the total cell population.
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Figure 7.5: Overlay of cell viability tests
with propidium iodide (PI) on separate
KARPAS-299 and U-937 cell populations
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Figure 7.6: Validation of KARPAS-299 to
U-937 cell ratio from flow cytometric data.
The average ratio over all plotted data is
cKARPAS-299/cU-937 = 1.09.

Due to the staining of KARPAS-299 cells with H110, the cell lines can be differenti-
ated by the FL1 fluorescence intensity. The ratio of viable monomeric KARPAS-299 to
U-937 cells can thus be obtained for each experiment and is shown in Figure 7.6. The
antibody aggregation dynamics were analysed in a two-dimensional FL1-FL3 dot
plot, as shown in Figure 7.4(c). Due to the intense staining by H110 the fluorescence
cross-over from the FL1 channel into the FL3 channel due to a smeared out emission
spectrum had to be compensated by 23.4%. The compensation is quite high but guar-
antees an accurate discrimination between both cell populations. No compensation
was necessary for the PE cross-over from FL3 into FL1. Every measurement was ter-
minated after detection of 20000 events but latest after 100 s, always requiring less
than 300 μl sample volume.

As already discussed for particles in Chapter 5, a direct quantification of antibody
numbers remains difficult in flow cytometry. A calibration is necessary, by which the
measured fluorescence is related to an equivalent number of fluorophore molecules.
In contrast to particle systems, where the particles can be counted microscopically,
this can only be achieved by MESF (mean equivalents of soluble fluorochrome44) cal-
ibration kits for antibodies. While the assumption that each antibody is labelled with
only one fluorochrome molecule is usually satisfied (but not guaranteed for by the
manufacturer), a remaining uncertainty regarding the fluorescence intensity of the
fluorophores from different companies and different flow cytometers persists. There-
fore, the exact antibody number was not quantified and the comparison to simulation
results in Chapter 8 is performed on a relative basis only.
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7.4 Antibody targeting dynamics
Preferential antibody aggregation dynamics in mixtures of human tumour cells were
investigated for IgG1, CD13 and CD33 antibodies by means of flow cytometry. In
our studies KARPAS-299 and U-937 cells were selected as model human tumour cell
lines. The antibodies were fluorescently labelled with PE, while KARPAS-299 cells
were stained with FITC. As described above, gates were established in a FL1-FL3
plot to determine the aggregation dynamics separately for each cell type. The mean
FL1 intensities for KARPAS-299 and U-937 cells remained nearly constant throughout
the experiments and enabled the distinction between both cell-types.

The aggregation dynamics with PE labelled antibodies in terms of the averaged ab-
solute FL3 fluorescence intensity is shown in Figure 7.7(a) for a single representative
experiment. As can be clearly seen, the cell lines deviate by an initial offset. This
is caused by different autofluorescence intensities associated with the individual cell
types. Assuming a constant mean offset throughout the experiments, the autofluo-
rescence can be corrected for by subtracting the initial fluorescence intensity FL3m,0

/
from the actual signal value FL3m

AB(t).

Furthermore, the fluorescence intensity may include antibody binding beyond that
of the respective target antigens. These artifacts can be identified by an isotype con-
trol with mouse IgG1. The use of mouse IgG1 guarantees that the Fab region of the
antibody (Figure 7.2) is non-specific against any human antigens, so that any detected
binding has to be associated with Fc receptors. Although the adsorption to Fc recep-
tors is biologically specific, it cannot be considered as target specific and is therefore
categorised as an unspecific interaction in Chapter 8. Isotype control experiments
were run parallel to the CD13 and CD33 experiments. The difference of CD13 or
CD33 binding to IgG1 binding indicates the degree of targeted, i.e. receptor-specific
binding. Corrected antibody binding dynamics are then obtained from FL3m

AB(t)−
FL3m

IgG1(t)− FL3m,0
/ . Any comparison of experimental data should be based on these

differences and not on total fluorescence intensities.
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Figure 7.7: Experimental aggregation dynamics of IgG1 (�), CD13 (◦) and CD33 (�) anti-
bodies on KARPAS-299 ( , open symbols) and U-937 ( , filled symbols) cells measured
by flow cytometry. Lines represent linear interpolations between measurements.
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The resulting dynamics are shown in Figure 7.7(b). For CD13 antibodies they indi-
cate a classical saturation behaviour towards an equilibrium value towards the end
of the experiment, while for CD33 the results even underscore untargeted IgG1 bind-
ing throughout the experiment. This is a strong indication for a complete lack of
CD33 receptor protein expression on the cell surfaces, which was not expected for
the U-937 cells and contrasts manufacturer information presented in Table 7.1. For
the CD13 antibody, differences between the two cell types can be noticed that indi-
cate selective (preferential) aggregation. Generally U-937 cells bind more antibodies
than KARPAS-299 cells, as was validated by several repetitions. All final corrected
fluorescence intensities are plotted in Figure 7.8, separated according to cell type and
experiment.

The selectivity of U-937 cells over KARPAS-299 cells is unexpected if compared to
the information from DSMZ presented in Table 7.1. But different receptor expression
levels are not uncommon and present one of the major obstacles in an efficient drug
targeting. Without reproducible specificity regarding cellular receptor expression,
targeted delivery of carrier particles becomes very difficult and other routes might be
better suited. Even in our studies the reproducibility regarding the antibody binding
proved to be highly sensitive to the extent of surface receptor expression. Although
the antibodies generally did indicate preferential binding, differences between the
final antibody binding become clearly visible in Figure 7.8 and the extent of preferen-
tiality in most repetitions does not reach expected levels. Although the cells were cul-
tured and treated identically throughout all experiments, in some experiments only
insignificant differences are observed, in two experiments the preferentiality is in-
verse to the majority of experiments. It is assumed that the large deviations between
the individual experiments are caused by different expression levels of receptor anti-
gens. This is strongly supported by large variations in verification measurements
against CD13 receptors reported by the cell supplier DSMZ. That would explain the
classification of U-937 cells as weakly positive with respect to CD13 (Table 7.1). In
addition to the sources of error discussed above regarding mixing, hydrodynamic
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Figure 7.8: Reproducibility of antibody aggregation experiments shown as final corrected
equilibrium fluorescence intensities at t = 3600 for CD13 (◦) and CD33 (�) antibodies on
KARPAS-299 (open symbols) and U-937 (filled symbols) in 10 independent experiments.
Preferential aggregation is identified by large discrepancies of KARPAS-299 and U-937.
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conditions and flow cytometric measurements, some additional sources of error are
discussed in the context of comparison to simulation results in section 8.3.3.

7.5 Summary
As a prerequisite for cellular uptake by endocytosis for drug targeting purposes, the
preferential aggregation of antibodies to different human tumour cell lines (U-937
and KARPAS-299) in a perikinetic environment was investigated by flow cytometry.
In contrast to the majority of investigations dealing with drug delivery, our studies
focus only on targeted adsorption of antibodies in a deliberately simple and well
defined system of suspension cells. Using this approach, the first of several further
transport limitations is systematically resolved and any final uptake of antibodies
into the cell is irrelevant. Two-dimensional distributions were recorded from which
the aggregation dynamics of viable cells were gained separately for each cell type
by appropriate gating. During the experiments the cells remained monomeric. For
each cell type, CD13 adsorption followed a classical saturation behaviour towards
a steady-state equilibrium coverage, while CD33 did not indicate any binding. A
quantification of the adsorbed antibody number was not performed and corrected
fluorescence intensities were studied instead. The saturation curve depends on the
different extent of receptor surface expression on KARPAS-299 and U-937 cells. The
reproducibility of the studies was found to be highly sensitive to this quantity, which
varied between individual experiments. The results indicate that CD13 antibodies
preferentially target U-937 cells compared to KARPAS-299 cells. This confirms that
carrier particles functionalised with antibodies provide a feasible route to specifically
address cells which exhibit selective expression of a corresponding antigen protein.
Selective drug delivery to target cells might represent a future application of this
principle.



Chapter 8
Population balance simulation of
preferential aggregation
Although abundant literature regarding carrier design and cellular uptake has been
published in recent years, systematic approaches to model the dynamics of targeted
aggregation phenomena for property-distributed systems of cell populations are less
frequent, especially on the basis of colloidal phenomena and population balance
equations. On the single particle scale, adsorption models were developed for par-
ticle aggregation98,101 and biologically mediated receptor-ligand aggregation6,30,153.
On the population scale, some simulations were conducted in the context of virus
infection regarding the adsorption and uptake of viruses by cells43,137. These models
are based on macroscopic ODE models with kinetics fitted to experimental data. Ag-
gregation and fragmentation processes of DNA-mediated assembly have also been
studied by Monte Carlo simulations108.

In this chapter, a property-discrete population balance model in terms of three in-
ternal coordinates, which quantify the number of particles or cells in an aggregate,
was formulated to describe the dynamics of the preferential aggregation phenomena.
Assuming homogeneous mixing of antibodies and cells throughout the medium in
the considered system, a deterministic mean-field approach is expected to deliver a
reasonable representation of the process. Any structural changes taking place within
the receptor and ligand proteins during the aggregation process remain unconsid-
ered. Furthermore, any intercellular aggregation is neglected, in accordance with the
experimental evidence of Chapter 7. Adopting an analogous model structure as in
Chapter 6, first the aggregation kinetics are established in section 8.1. Conceptually
identical deterministic models from colloid science were adapted to biological appli-
cations with strongly heterogeneous surface characteristics. Aggregation primarily
depends on Brownian motion, receptor coverage and receptor-ligand interaction po-
tentials. The trivariate population balance equation and its property-discrete state
space are defined in section 8.2. Similar to particle systems in Part II, each coordinate
of state space is assumed to represent the orientational and morphological average
over all clusters containing the respective number of constituent particles. The in-
vestigations for antibodies are complemented with simulations for biofunctionalised
carrier particles, that differ in size and assumed ζ-potential. Finally, simulated anti-
body aggregation dynamics are compared to experimental data from Chapter 7.
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8.1 Aggregation kernel
The experimental aggregation dynamics for antibodies were presented in Chapter
7. The results imply that the process is kinetically limited and demands a kinetic
rather than an equilibrium treatment. In contrast to the predominant equilibrium
approaches for numerous biological processes, kinetic models from colloidal sciences
are applied for the preferential heteroaggregation of bionanoparticles. Consequently,
bionanoparticles and cells are abstracted as different spherical particle species with
aggregation rates that are defined by encounter frequency and sticking efficiency as
before.

For the following discussion, the ternary system of bionanoparticles, KARPAS-299
and U-937 cells is written in a pseudo-binary notation with i and j expressing the
species and number of bionanoparticles inside an aggregate respectively. This is per-
mitted by the exclusion of intercellular aggregation, as will be shown during the
development of the state space in section 8.2.1. The species index i represents bio-
nanoparticles (i = 1), KARPAS-299 (i = 2) and U-937 cells (i = 3). The number of
bionanoparticles can adopt any whole number between zero and a certain maximum
number jmax. The adsorption of a monomeric or aggregated bionanoparticle P′1,j to
an uncovered cell P′′i,0 thus yields an aggregate Pi,j.

8.1.1 Encounter frequency

The frequency of encounters is subject to essentially the same influences as in particle
systems, which were discussed in section 6.1.1. For perikinetic regimes, the encounter
frequency ωF

P′,P′′ is therefore calculated on basis of Eq. (6.4). It involves temperature
T and dynamic viscosity η as well as antibody and cell radii. The mixed cell sus-
pension was incubated at T = 310 K in order to guarantee the survival of the cells,
and the viscosity of the culture medium PBS was approximated by that of pure water
η = 1 · 10−3 Pas. The size difference between antibody and cells is expressed by the
dimensionless aggregate volume νP, which is determined by assuming a fractal ge-
ometry. For bionanoparticle homoaggregates it is given by νP = j where j denotes
the number of bionanoparticles inside a homoaggregate. For bionanoparticle-cell
heteroaggregates νP = 1 + ji (r1/ri)

3 is obtained from Eq. (2.27) with i = 2, 3 rep-
resenting KARPAS-299 and U-937 cells, respectively. At an electrolyte concentration
of IM = 0.2 M for PBS, the homoaggregation of bionanoparticles, antibodies in par-
ticular, is considered as diffusion limited and d f = 1.8 was chosen as fractal dimen-
sion88. For the heteroaggregation of bionanoparticles with cells, deviations from the
spherical shape of the cells are negligible due to the extreme difference in size. There-
fore, a fractal dimension of d f = 3 was assumed and with r1,0 � ri={2,3},0 hardly
any influence is observed regarding the aggregate size for antibody targeting. For the
targeting with functionalised particles at elevated ionic strength, however, noticeable
effects of increasing aggregate size on the targeting dynamics are expected.

8.1.2 Sticking efficiency

The specificity of bionanoparticle interactions with cellular surface receptors express-
es substantial surface heterogeneities. To discriminate specific interactions with cel-
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lular receptors from unspecific interactions on the remaining surface, characteristic
surface patches are established to model the efficiency of an encounter98. The effi-
ciency is given by Eq. (6.10) which is repeated here for convenience

ωE
P′,P′′ =

PP′,P′′ (φ)

1− [1− PP′,P′′ (φ)
]

Pc
P′,P′′

. (8.1)

The sticking probability PP′,P′′ (φ) and the probability of multiple collisions Pc
P′,P′′ are

based on the same approach as Eqs. (6.12) and (6.11). The collision probability be-
tween two specific patches during an encounter is proportional to the surface frac-
tion φ. While the coverage φP′′ of cells is treated more detailed in section 8.1.2.1, the
bionanoparticle coverage φP′ is approximated by assuming that the interactions of
all bionanoparticles are radially symmetric. This yields a constant surface fraction of
φP′ = 1 and a simplified expression for the sticking probability:

PP′,P′′ (φ) =
φP′φP′′

Wunspec
P′,P′′

+
φP′ (1− φP′′) + (1− φP′) φP′′

Wspec
P′,P′′

=
φP′′

Wunspec
P′,P′′

+
1− φP′′

Wspec
P′,P′′

. (8.2)

The two terms correspond to unspecific and specific interactions between the respec-
tive surface patches. The quality of interaction is captured by the stability ratio W,
discussed in section 8.1.2.2. Unspecific aggregation events include several effects.
Apart from encounters between bionanoparticles and receptor-free surface patches,
collisions between bionanoparticles and occupied cellular receptors as well as be-
tween bionanoparticles themselves are considered. They may further include target
unspecific adsorption to Fc-receptors. Although this essentially represents a biologi-
cally specific process, only the Fc part of antibodies is bound independent of the Fab
characteristics (Figure 7.2). Therefore target unspecific binding events are classified
as an unspecific binding effects. The extent of unspecific binding is experimentally
assessed by the isotype control explained in section 7.4. Figure 8.1 schematically il-
lustrates the different surface compositions of a model cell. To reduce the modelling
effort and because interaction parameters for unspecific binding to cell surfaces re-
main unknown, the different kinds of unspecific aggregation are collectively treated
by a single term in Eq. (8.2). Finally, the probability of multiple collisions per en-
counter Pc

P′,P′′ is given by

Pc
P′,P′′ = 1− 1

N11 (νP′ νP′′)
α (8.3)

with fitted parameters N11 = 15 and α = 0.7.

8.1.2.1 Cellular patch collision probability

For heterogeneous cell surfaces with receptor-free and receptor-covered patches, the
patch encounter probabilities φP′′ for unspecific and (1− φP′′) for specific interactions
are proportional to the respective cell surface fractions. They can be obtained from
geometrical considerations. Specific interactions exist between bionanoparticles and
free receptor sites. Unspecific interactions occur on the remaining cell surface φP′′ ,
comprising receptor-free and bionanoparticle covered surface fractions as illustrated
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(a) Specific aggregation can only occur with free receptors,
unspecific aggregation on the remaining cell surface.
The surface fractions of specific (1− φP′′ ) and unspecific
(φP′′ and φmin

P′′ ) aggregation regions are indicated.
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Figure 8.1: Schematic illustration of a heterogeneous cellular surface with receptors.

in Figure 8.1. Multiple surface heterogeneities are lumped into single representative
patches for the characteristic surface compositions. The surface fraction φP′′ repre-
sents the weighting factor of unspecific interactions. It ranges from φmin

P′′ at the begin-
ning with exclusively free receptors to a maximum value of unity when all receptors
are occupied.

Specific bionanoparticle aggregation to antigens on the cell surface is limited to the
total number of expressed receptors Nmax

i . The surface fraction of free receptors is

then calculated from 1− φP′′ =
(

Nmax
i − jspec

i

) (
rrec/rG

P′′
)2 /4 with Nmax

i as the total

receptor number, jspec
i ≤ Nmax

i as the number of receptor-bound bionanoparticles and
rrec as the radius of a single receptor site. An exact quantification of jspec

i would re-
quire a distinction of the adsorbed bionanoparticles into those specifically jspec

i and
those unspecifically ji− jspec

i bound. The corresponding modelling effort would have
to be tremendously increased by two additional property coordinates. For simplicity,
we here assume that prior to full coverage the impact of unspecific binding is negligi-
ble compared to specific binding, so that jspec

i ≈ ji and the patch collision probability
is given by

φP′′ = min

⎧⎨
⎩1, 1 +

gi ji − Nmax
i

4

(
rrec

rG
P′′

)2
⎫⎬
⎭ (8.4)

not exceeding a total coverage of 1 and with gi accounting for steric exclusion. After
all receptors are saturated at φP′′ = 1, the collision probability becomes independent
of jspec

i anyway, and only unspecific aggregation remains. Unspecific aggregation
is not limited to monolayer coverage on the cell surfaces. Instead multilayers due
to unspecific binding are possible if permitted by the interaction potentials for bio-
nanoparticle homoaggregation Wunspec

P′,P′′ . The coverage jmax
i of each cell type i = 2, 3

may then exceed the maximum receptor number Nmax
i .
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Although being of minor importance for systems with low receptor coverage and
small bionanoparticles, like the ones focused on in this contribution, steric shielding
effects may attain a dominant influence on aggregation dynamics for cells with high
coverage of large bioparticles. Then an approaching bioparticle may shield other
receptors sterically from further particles and thereby decrease the probability of spe-
cific binding overproportionally. To account for additionally blocked receptors per
specifically bound particle, a shielding factor gi was introduced in Eq. (8.4). It can
be estimated from geometrical considerations. Figure 8.1(b) assists in comparing the
proportions of particles and receptors and by assuming an equal distribution of re-
ceptors on the cell surface, the shielding factor gi can be derived as

gi = max

⎧⎨
⎩1,

Nmax
i
4

(
rG

P′

rG
P′′

)2
⎫⎬
⎭ (8.5)

The lower limit of gi = 1 accounts for the case without steric exclusion, when one
bionanoparticle blocks exactly one receptor. For large bioparticles at high receptor
densities, the exclusion effect by steric shielding increases above unity.

Common antigen expression levels on cellular surfaces can be estimated from lit-
erature. Generally they feature a broad range between 103 and 106 receptors per
cell153. With recent advances in scanning probe microscopy, antibody binding maps
have been generated from which receptor size and densities can be estimated. It
could be shown that single receptors of approximately 10 to 20 nm in diameter20

tend to form larger receptor domains on cell surfaces ranging around diameters of
50 nm83. Membrane pore domains range around 80 nm130. Based on these findings,
a receptor radius of rrec = 25 nm was assumed for our simulations. By choosing
φmin

P′′ as independent parameter for each cell line, the maximum number of receptors
Nmax

i can be calculated from Eq. (8.4) by setting jspec
i to zero. For surface fractions of

φmin
P′′(2,j) = 0.9991 and φmin

P′′(3,j) = 0.97 on KARPAS-299 and U-937 cells, Nmax
i = 200

and Nmax
i = 6912 receptors are obtained, respectively.

8.1.2.2 Receptor-ligand interaction potentials

Apart from the individual surface fractions, which represent geometric effects of ag-
gregation, specific and unspecific interactions are characterised by potential energies
contained in the Fuchs stability ratio W given by Eq. (2.3.1). The approach by Fuchs37

was later revisited by Berg and Purcell6 to analyse the physics of chemoreception be-
tween receptors and ligands in a biological system. The interaction energy VP′,P′′
follows from the superposition of van der Waals VvdW

P′ ,P′′ and electrostatic Vel
P′,P′′ en-

ergies as well as Born repulsion VBorn
P′,P′′ and biological effects between receptors and

matching ligands Vsol
P′,P′′ , as explained in section 2.2.3.2. The latter yield strong interac-

tions that essentially constitute the biological specificity, for instance in immunologi-
cal recognition. Biomolecules bind together extremely strong via a mechanism that is
essentially a molecular ‘lock and key’ without establishing covalent bonds68. These
interactions can be measured on a mesoscale with molecular probing techniques and
show exponential behaviour (sections 2.2.3.2 and 2.2.4). Although detailed morpho-
logical changes of receptor and ligand during the aggregation process were not ex-
plicitly resolved, their effect on the interaction was detected. From the experimental
data, mesoscale models characterising the interaction energies Vsol

P′,P′′ were gained by
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Table 8.1: Parameters used in calculations of potential interaction energies. The same pa-
rameter was used for all species, except where the parameters for the individual species
are given in square brackets.

Potential Parameter Value Unit Referenceenergy
VBorn

P′,P′′(a) b 12 - Feke et al.33

rσ 4 Å Feke et al.33

VvdW
P′,P′′(a) ALipid−H2O−Lipid 4 · 10−21 J Israelachvili68

Vel
P′,P′′(a) εr 80 - Israelachvili68

ζi [−5,−12.6,−11.9] mV a

Vhydr
P′,P′′(a) k0

hydr 6 mN/m Israelachvili68

λhydr 0.6 nm Israelachvili68

VRL
P′,P′′(a) k0

RL -1.5 mN/m Leckband et al.81

λRL 1.5 nm Leckband et al.81

adetermined with Zetasizer Nano ZS (Malvern, UK)

fitting. They are essentially given by the same expression in Eq. (2.19), albeit with a
different set of parameters. For convenience Eq. (2.19) is copied here:

Vsol
P′,P′′(a) = 2πk0λ

rG
P′r

G
P′′

rG
P′ + rG

P′′
exp

(
− a

λ

)
(8.6)

with k0 as extrapolated contact force and λ as the decay length. Biological specificity
between an antibody and a corresponding antigen is thus expressed by a highly at-
tractive exponential interaction potential, while unspecific interactions are expected
to be similarly repulsive as those between lipid membranes. In case that the inter-
action energies between bionanoparticles and cells are independent of the cell type,
the stability ratio for specific and unspecific aggregation only deviate with respect to
these two potential energies. All model parameters used to predict the interaction
potential energy are listed in Table 8.1.
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(b) Unspecific interaction potential.

Figure 8.2: Interaction potentials between bionanoparticles and cells. The potentials are
essentially identical for both cell lines. The total energy ( ) decomposes into contribu-
tions from Born VBorn

P′,P′′ ( ), van der Waals energy vvdW
P′,P′′ ( ), electrostatic Vel

P′,P′′ (· · · ) and

specific receptor-ligand VRL
P′,P′′(a) (· · ) or unspecific hydration Vhydr

P′,P′′ (· · ) energies.
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The interaction potentials for specific and unspecific binding are illustrated in Fig-
ure 8.2 as functions of separation distance a. Due to their exponential nature, the
solvation potentials become dominant over Born repulsion and DLVO interactions
on the nanometre scale, so that Wspec

P′,P′′ ≈ 1 and Wunspec
P′,P′′ 
 1. As already mentioned,

detailed interactions at direct contact of antibody and antigen with any induced con-
formational changes are not captured by this approach. But if a high binding affinity
is assumed which allows the use of net aggregation rates, the detailed binding mech-
anism is not required for a simulation of aggregation dynamics on a mesoscale in a
many body system.

8.2 Population balance model
The kernel is applied in a population balance equation to simulate the preferential
aggregation bionanoparticles in an incubated mixture of human tumour cells. Due to
the different extent of receptor expression on the cell surface, U-937 cells are expected
to be targeted. In the following simulations, the potential interactions are assumed to
be independent of cell type and therefore do not cause any aggregation bias. Similar
to section 6.2, a reduced state space is established on which the population balance
equation is formulated.

8.2.1 Definition of state space

In order to treat three populations, the property space P of the population balance
model has to be three-dimensional. By excluding intercellular aggregation, the ma-
jority of coordinates is omitted and property space can be reduced to two dimensions
only. Aggregation of bionanoparticles with other bionanoparticles or KARPAS-299
or U-937 cells can then be illustrated as matrix, in which the first row represents the
bionanoparticles ( � ) and aggregates thereof, the second row the KARPAS-299 cells
( �) with j ∈ [0 . . . , jmax] bound bionanoparticles and the third row U-937 cells ( �)
with likewise varying bionanoparticle coverage. The property space is treated phys-
ically discrete with regard to the number of particles in each aggregate, each coordi-
nate representing the orientational and morphological average as before. Similar to
the state space established in Chapter 6.2.1, the aggregate number concentrations are
stored in a concentration matrix c that is shown in Eq. (8.7):

c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c1,1

(
�
)

c1,2

(
��
)

c1,3

(
���
)

c1,4

(
���
�) · · · c1,jmax

c2,0

(
�
)

c2,1

(
�
� )

c2,2

(
�
�

�
)

c2,3

(
�
�

� �
)
· · · c2,jmax

c3,0

(
�
)

c3,1

(
�
� )

c3,2

(
�
�

�
)

c3,3

(
�
�

� �
)
· · · c3,jmax

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8.7)

where the first index refers to bionanoparticles (i = 1) , KARPAS-299 (i = 2) and
U-937 (i = 3) cells respectively and the second index j ∈ [0, . . . , jmax] to the number
of bionanoparticles in each cluster. The maximum number of bionanoparticles jmax

can theoretically equal the total amount of bionanoparticles inside the system, and
would result in property spaces with many thousands of coordinates for systems with
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high antibody and receptor concentrations. Since each discrete property coordinate
is described by an ordinary differential equation, the full property space has to be
reduced further to facilitate numerical solutions.

8.2.2 Model reduction

In addition to the two assumptions already made in section 8.2.1 concerning inter-
cellular aggregation and morphological averaging, the state space can be reduced
further by focusing on physically relevant property coordinates only. These can be
identified either by using heuristic approaches for fixed cut-off boundaries or by cre-
ating an adaptive coordinate grid limiting the total amount of coordinates within the
simulation to those above a certain threshold concentration. Since here the number of
species is fixed to antibodies, KARPAS-299 and U-937 cells, property space is reduced
by establishing an adaptive grid regarding the number of bionanoparticles j.

For each of the species i the common jmax can additionally be replaced by indepen-
dent jmax

i ≤ jmax. Both simplifications relieve the population balance from unnec-
essary equation ballast for physically irrelevant aggregation events. As before, the
adaptation of property space is performed, once the sum over the final few property
coordinates of either species exceeds a threshold concentration fraction ξ. Depend-
ing on the initial condition with regard to bionanoparticles i = 1, it is possible that
the final coordinate in the reduced system cannot be filled, because formation of the
specific configuration is not possible. For example, if only antibody dimers are as-
sumed as initial condition, formation of aggregates with uneven antibody numbers
is impossible.

Therefore, it can happen that the final property coordinate jmax
i may never be filled

and the adaptation has to rely on a final few coordinates. Their number is obtained
from the initial bionanoparticle distribution. For our simulations a threshold of ξ =

1 · 10−3 was chosen, which represents a compromise between system size and loss
of information. Particle concentrations below the threshold are simply neglected,
which is justified by the marginal loss of aggregates. As control, the absolute particle
numbers were confirmed by balancing each simulation at the end. Once the thre-

shold
(

∑n cP(i,[jmax
i −n,...,jmax

i ]) > ξ ·max
{

cP(i,[0,...,jmax
i ])

})
is reached for either species

, the integration is terminated and property space extended by Δi in this row. Be-
cause breakage processes are excluded, the distribution can only evolve in direction
of higher coverage ji and the lowest property coordinate is replaced by the lowest

filled coordinate jmin
i = max

{
1, minj

{
j| cP(i,j) > ξ ·max

[
�cP(i,j)

]}}
for each species

i before the integration is resumed on the new state space. The extension of property
space by Δi is heuristically adapted to the aggregation kinetics of each species. An
example for a reduced system cR is illustrated in Eq. (8.8) with neglected coordinates
coloured grey:

cR =

⎛
⎜⎜⎜⎝

c1,[1,...,jmin
1 −1] c1,jmin

1
. . . c1,jmax

1
c1,[jmax

1 +1,...,jmax]

c2,[0,...,jmin
2 −1] c2,jmin

2
. . . c2,jmax

2
c2,[jmax

2 +1,...,jmax]

c3,[0,...,jmin
3 −1] c3,jmin

3
. . . c3,jmax

3
c3,[jmax

3 +1,...,jmax]

⎞
⎟⎟⎟⎠ . (8.8)
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For improved mathematical handling, the matrix cR is transformed into a vector by
concatenating the rows and simply omitting unfilled coordinates as shown in Eq.
(8.9).

�c R = ( cP(1,jmin
1 ) . . . cP(1,jmax

1 ) cP(2,jmin
2 ) . . . cP(2,jmax

2 ) cP(3,jmin
3 ) . . . cP(3,jmax

3 ) ) (8.9)

The index P(i, j) =
[
ji − jmin

i + 1
]
+ ∑

i−1
i=1

[
jmax
i − jmin

i + 1
]

relates the position in the
vector to the coordinates of the concentration matrix, i.e. to the kind and number of
constituent particles.

8.2.3 Trivariate population balance equation

To describe aggregation in a ternary mixture of bionanoparticles with KARPAS-299
and U-937 cells only the net aggregation will be considered. In a system where
breakage is considered, net rates balance particle aggregation with breakage events.
Disregarding unspecific binding, this implies that aggregation ceases when all cellu-
lar receptors are occupied, and not when the equilibrium between aggregation and
breakage is reached with some receptors remaining unoccupied. This approximation
becomes exact whenever aggregation or breakage are not restricted by concentration
and in systems with a high ratio of binding to desorption affinities. The first was
ensured by adding bionanoparticles in excess to the medium in the experiments of
Chapter 7, the latter had to be postulated.

With excluded intercellular aggregation and neglecting any spatial variations of
concentration in the homogeneously mixed system, the population balance equation
collapses to a set of three ODE systems each describing the dynamic bionanoparticle
distribution for one species i. The equations can be expressed in the following com-
pact form

d
dt

cP(i,j) =
1

δi1 + 1

j

∑
j′=1

ωP′,P′′ cP′(1,j′) cP′′(i,j−j′) − cP(i,j)

2δi1+1

∑
i′=1

∞

∑
j′=δi′1

ωP,P′ cP′(i′,j′)

(8.10)

with the Kronecker delta δi1 as

δi1 =

{
1, if i = 1
0, if i �= 1

. (8.11)

Because cP′(1,j′) is already assigned as one educt particle in the source term, sym-
metry is lost and double counting avoided for particle-cell aggregation. Therefore,
the prefactor has to be changed from the usual 1/2 to unity. For bionanoparticle-
bionanoparticle aggregation symmetry is maintained and the prefactor remains at
1/2. Further use of the Kronecker delta has been made to define the summation lim-
its in the sink term. Here, the sum over i′ also depends on the species due to the
restriction that aggregation between two cells is not allowed. When i is chosen as 2
for KARPAS-299 or 3 for U-937 cells, the second educt particle inside the sum is auto-
matically specified as bionanoparticle(aggregate) with i′ = 1 and only the sum over
i′ = 1 has to be accounted for. Also, the lower bound of j′ is represented by δi′1, since
particles P1,0 do not exist physically and cP(1,0) = 0.
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8.3 Simulated targeting dynamics
The preferential aggregation of CD13 antibodies to different cell types presents the
main focus of this chapter. With a few changes in parameters, CD13 biofunction-
alised particles were also treated. The particle property parameters are summarised
in Table 8.2. The bionanoparticle concentration was chosen as c1 = 1012 particles/ml,
while the cell lines were each assigned ci=2,3 = 106 cells/ml, yielding ratios of 1:1
between the cell lines and 1:106 between cells and particles. The PBS medium was
treated as water with an elevated ionic strength of IM = 0.2 M and a temperature
of T = 310 K, matching that of the targeting experiments. Because the exact num-
ber of cellular CD13 receptors remains unknown for both cell types, it was estimated
in section 8.1.2.1 from the experiments presented in the previous chapter and from
literature. For KARPAS-299 cells 200 CD13 receptor domains per cell were set corre-
sponding to φP′′(2,j) = 0.9991 for mean domain radii of rrec = 25 nm. For U-937 cells
a surface fraction of φP′′(3,j) = 0.97 was assumed that resulted in 6912 CD13 recep-
tors. Given these receptor numbers, property space adaptations were performed with
Δ = [30, 200, 500]. All simulations were implemented in MATLAB and performed on
a personal computer (2.66 GHz, 2 GB RAM).

Table 8.2: Characteristic bionanoparticle and cell properties used in the simulations.

Particle species d [μm] ζ [mV] φP [-] cP [ml−1]
Antibody 0.01 -5 1 1012

Carrier 0.5 +40 1 1012

KARPAS-299 12 -12.6 0.9991 106

U-937 12 -11.9 0.97 106

8.3.1 Kernel evaluation

The aggregation rates used in the population balance model show a characteristic
distribution over state space. The distribution originates from variations in cluster
properties, which affect encounter frequency and efficiency. For perikinetic systems
the encounter frequency ωF

P′,P′′ only changes moderately with increasing aggregate
radius and remains nearly constant over all property space coordinates. The stick-
ing efficiency ωE

P′,P′′ , however, becomes crucial in expressing distributed aggregation
rates. As can be seen from Eqs. (8.1) and (8.2), the cellular surface fractions φP′′ and
(1− φP′′) as well as the stability ratios for unspecific Wunspec

P′,P′′ and specific Wspec
P′ ,P′′ ag-

gregation constitute the main influences. To study them in more detail, the rate dis-
tribution is representatively shown in Figure 8.3 for a property space that is confined
to Nmax

2 = 200 (φP′′(2,j) = 0.9991) receptors for KARPAS-299 cells and Nmax
3 = 300

(φP′′(3,j) = 0.9987) for U-937 cells.

In Figure 8.3(a) the interaction probability φP′′ is shown as matrix over all possible
combinations of particle aggregation processes. For every selected particle pair P′
and P′′, the collision probability of receptor-free surface φP′′ is indicated by colour
coding. The matrix is symmetric on its diagonal because P′ and P′′ may be ex-
changed. Dark blue areas indicate φP′′ = 0. Zero-probabilities occur for all kinds
of cell-cell aggregation which were excluded from the model, as well as for aggrega-
tion between particles yielding product particles which would exceed property space.
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(a) Patch encounter probability φP′′ . (b) Collision frequency aggregation rates ωF
P′,P′′

for pure DLVO interaction.

(c) Preferential aggregation rates ωP′,P′′ as func-
tion of property space coordinates P(i, j).

Figure 8.3: Kernel evaluation for bionanoparticle targeting. In (a) φP′′ = 1 for the bio-
nanoparticles; for KARPAS-299 and U-937 cells the surface fraction for unspecific inter-
action increases with increasing receptor coverage. In (b) rate deviations for pure DLVO
interaction result from changes in rG

P . In (c) total aggregation rates including specific bind-
ing energies Vsol

P′,P′′ show superimposed effects of receptor coverage and fractal aggregate
geometry. All rates are given in [m3/s].

The latter yields the triangular kinks. Since in our system gi = 1 indicates a negligi-
ble dependence of φP′′ on rG

P′ , the patch collision probability φP′′ only changes with
receptor coverage.

In a similar manner, Figure 8.3(b) shows the aggregation rates for pure DLVO
interaction. At IM = 0.2 M, the interaction energies are generally attractive and
Wunspec

P′,P′′ = Wspec
P′,P′′ = 1. Eq. (8.2) then collapses to PP′,P′′(φ) = 1/WP′,P′′ = 1 and

becomes independent of φP′′ , so that the aggregation rates exactly match the colli-
sion frequency ωP′,P′′ = ωF

P′,P′′ . For perikinetic systems, the aggregation rate remains
near 1.5 · 10−17 m3/s over the whole property space. As can be seen from Eq. (6.4),
it is subject to variations of aggregate radius rG

P . However due to the high size ratio
between antibodies and cells and their different fractal dimensions d f , only the radii
of antibody aggregates change noticeably, causing a characteristic distribution of the
collision frequency ωF

P′,P′′ in Figure 8.3(b).

For preferential interaction with non-zero solvation potentials the influences of φP′′
and rG

P are superimposed, as is illustrated in Figure 8.3(c). Because the stability ratios
are very sensitive regarding interaction energies and the patch collision probability
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(1− φP′′) is very low at the given antigen expression level, the rates are two orders of
magnitude smaller than for pure Brownian motion. The highest rates occur for com-
pletely uncovered cells, which feature a maximum probability for specific binding.
On these grounds, biological CD13 receptor-ligand interactions can be considered as
rate limited (RLCA). Please note that for the given model parameters of the solvation
potential the homoaggregation between antibodies remains negligible.

8.3.2 Bionanoparticle aggregation with cells

The aggregation dynamics of the preferential cell targeting by antibodies was sim-
ulated for a time-span of two hours. A 1:1 mixture of human tumour cells was
incubated with antibodies at T = 310 K. KARPAS-299 cells were simulated with
φP′′(2,j) = 0.9991 (Nmax

2 = 200) and U-937 cells with φP′′(3,j) = 0.97 (Nmax
3 = 6912).

The aggregation results are summarised in Figure 8.4.

In Figure 8.4(a) the sigmoid decrease of free antibodies coincides with the increase
of antibodies adsorbed either specifically or unspecifically on the cell surfaces. No
distinction of specific from unspecific aggregation can be made from the integral an-
tibody numbers. Due to the high concentration ratio of 106 antibodies per cell, low
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Figure 8.4: Simulated antibody targeting dynamics for antibody homoaggregates (· · · ),
KARPAS-299 cells ( ) and U-937 cells ( ) at r1 = 10 nm, rrec = 25 nm, φmin

P′′(2,j) = 0.9991,

φmin
P′′(3,j) = 0.97 and the potential parameters of Table 8.1 at T = 310 K. All rates are given in

[m3/s].
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fractions follow even for absolute receptor saturation at the given receptor density.
An indication of the different kinetics for both modes of aggregation can be gained
from Figure 8.4(b). Here, the average amount jm

i of antibodies in each of the three
species is shown as function of time. For the antibody population only unspecific in-
teractions were assumed in the model. This results in nearly constant aggregation un-
til clusters contain about six antibodies on average after two hours. The aggregation
of antibodies can be completely eliminated (as all unspecific aggregation) by increas-
ing the zero-separation energies k0

hydr or the decay lengths λhydr for the unspecific
interaction potentials. In contrast to antibody homoaggregation, the antibody bind-
ing to KARPAS-299 and U-937 cells occurs faster due to additional specific binding. A
rapid increase of total bound antibodies is evident up to the complete saturation of all
cellular receptors. From then on, the amount of antibodies only increases moderately,
which is not clearly visible due to the logarithmic axis scaling. The amount of bound
antibodies on U-937 cells exceeds that on KARPAS-299 cells for all times because a
larger surface fraction is covered with receptors. This increases the probability of an
antibody-receptor collision and enhances the aggregation rate, as explained in sec-
tion 8.3.1. The saturation of receptors is confirmed by Figure 8.4(c), which displays
the change of the average patch-collision probability φ over time. At φ = 1, all re-
ceptors are saturated. With increasing receptor surface fraction, the saturation time
is increased. For KARPAS-299 saturation is reached after nearly 15 min, while for
U-937 cells it takes about two times longer. The variance σ2

i for all species is shown
in Figure 8.4(d) and quantifies the distribution of cells with regard to their coverage
j. As expected, the distribution broadens quicker for higher aggregation rates. For
antibody homoaggregates, the variance increases moderately due to slow unspecific
aggregation. In contrast, the distribution of cells along the number of bound parti-
cles becomes greater with increasing extent of specific binding, so that the variance
for U-937 cells exceeds that for KARPAS-299 cells. Once all receptors on a cell are
saturated, only much slower unspecific aggregation events remain. The distribution
narrows down considerably and asymptotically runs into that of the aggregated an-
tibodies.

The superposition of specific and unspecific aggregation can be illustrated by vari-
ation of interaction potential parameters. Here, the zero-distance potential energy of
unspecific binding k0

hydr was varied. For higher values of k0
hydr the unspecific stability

ratio Wunspec
P′,P′′ increases, reducing the unspecific sticking probability and aggregation

rates. The decreasing total amount of bound antibodies is clearly visible in Figure
8.5. A complete decoupling of the two aggregation modes is not possible when us-
ing the sticking probability PP′,P′′(φ) of Eq. (8.2) because it lumps both effects into a
single probability averaged over the whole cell surface. Information discriminating
between specific and unspecific binding is sacrificed to computational efficiency by
this approach.

If the antibody is replaced by a biologically functionalised carrier particle, as in-
tended in drug targeting, different effects on aggregation dynamics are expected.
First, the shielding factor gi may attain values beyond unity which would increase
the number of sterically blocked receptors per bound particle. Secondly, Brownian
motion is decelerated with increasing particle size. To assess the effects on the target-
ing dynamics, simulations were conducted for biofunctionalised radially symmetric
carriers with an assumed diameter of d1 = 500 nm and a ζ-potential of ζ1 = +40 mV.
The results are plotted in Figure 8.6 along with the antibody aggregation dynamics
of Figure 8.4(b) for comparison. In contrast to antibodies, the carrier particles do
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Figure 8.5: Simulated mean antibody
number per antibody homoaggregate
(· · · ), KARPAS-299 cell ( ) and U-
937 cell ( ) for varied unspecific
interactions: k0

hydr = 4.0 mN/m (thin

lines), k0
hydr = 6.0 mN/m (interme-

diate lines, from Figure 8.4(b)) and
k0

hydr = 12.0 mN/m (fat lines).
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Figure 8.6: Simulated preferential aggre-
gation of antibody-functionalised carrier
particles to KARPAS-299 cells ( ) and U-
937 cells ( ), as well as the mean car-
rier number in particle clusters (· · · ). Car-
rier particles with r1 = 250 nm and ζ1 =
+40 mV were selected at identical concen-
tration ratio of 106 particles per cell. All
other interaction parameters can be taken
from Table 8.1. The results are compared
to antibody aggregation of Figure 8.4(b)
(thin lines).

not show any homoaggregation due to their high ζ-potential which keeps them elec-
trostatically stabilised even in PBS. Regarding the cells, particle binding is slower to
both KARPAS-299 and U-937 cells than antibody binding. One reason is the reduced
encounter frequency due to an increased particle radius, as follows from Eq. (6.4).
A second contribution is added by the steric shielding factor gi. In contrast to the
Brownian motion, which affects both cell lines equally, the steric shielding effect de-
viated between the cell lines due to its dependence on the respective receptor surface
fractions. Since KARPAS-299 cells only have very little receptor covered surface, the
steric shielding at uniform receptor distribution remains at g2 = 1. For U-937 cells,
the coverage increases by a shielding factor of g3 ≈ 3. Steric shielding causes a decel-
erated binding of carrier particles, which is indicated by the reduced slope in Figure
8.6, and a reduced maximum carrier number Nmax

3 at saturation. Please note, that the
radius of gyration of particle-cell aggregates rG

P′′ now increases slightly with the num-
ber of adsorbed carriers. This might cause a slight reduction of the steric shielding
factor g3 with increasing carrier number.

In summary, we have shown that the aggregation dynamics severely depends on
the antibody-to-cell ratio and the receptor expression on cellular surfaces. The first
determines the amount of collisions between antibodies and cells and, once a colli-
sion occurs, the second determines the probability of successful receptor-ligand in-
teractions. Given low receptor expression levels, the aggregation rates are about two
orders of magnitude lower than for the diffusion limited case, as discussed in sec-
tion 8.3.1. Binding of antibodies to cellular receptors can therefore be considered as
a rate limited process (RLCA). The high biological specificity in receptor-ligand in-
teractions, expressed by the interaction potentials, is thus dominated by the mixing
ratio and receptor density.
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8.3.3 Comparison to experimental data

The simulation results for the targeting of antibodies are compared to the experi-
mental data presented in Chapter 7. Since a direct quantification of antibody num-
bers from flow cytometric data via a calibration remains difficult, the comparison
is based on relative quantities only. They are obtained from the ratio of the mean
fluorescence intensity FL3m

AB(t) to the mean equilibrium intensity FL3m,eq
AB when all

antigens are saturated. As before, the fluorescence intensities are corrected by auto-
fluorescence FL3m,0

/ and IgG1 binding FL3m
IgG1(t), so that dimensionless dynamics

can be expressed by

(
jm
i (t)

jm,eq
i

)exp

AB

=
FL3m

AB(t)− FL3m
IgG1(t)− FL3m,0

/

FL3m,eq
AB − FL3m,eq

IgG1 − FL3m,0
/

(8.12)

with AB ∈ {CD13, CD33}. Due to this rescaling approach, experimental deviations
in the final mean number of bound antibodies jm,eq,exp

i,AB (t) are eliminated, so that differ-
ent absolute aggregation extents are no longer visible. For the comparison of exper-
imental dynamics with model predictions, this presents no drawback however. The
simulation results are rescaled as dimensionless fraction

(
jm
i (t)/jm

i (ttot)
)sim

AB . In the
following, the comparison is restricted to the targeting dynamics of CD13 antibodies
because hardly any interaction was detected for CD33 antibodies, indicating a poor
expression of the corresponding antigens. The rescaled aggregation dynamics from
simulations are plotted in Figure 8.7 along with the experimental data from section
7.4.

Given the model parameters applied in section 8.3.2, the aggregation dynamics of
CD13 antibodies on KARPAS-299 and U-937 cells could be simulated well. To retain
the focus on possible drug targeting applications, where the final transport to the cell
membrane is diffusive, perikinetic conditions were assumed for all simulations. In
Figure 8.7 the model predictions show a sigmoid increase of bound antibodies. When
all receptors are covered, a quasi-equilibrium state is reached, where only unspecific
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Figure 8.7: Comparison of simulated and experimental aggregation dynamics of CD13
antibodies with KARPAS-299 ( , ◦) and U-937 cells ( , •). Experimental data of eight
experiments is shown.
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aggregation persists as discussed in section 8.3.2. Deviations of aggregation dynamics
between KARPAS-299 and U-937 cells originate from the different levels of receptor
expression. For equal receptor numbers identical curves were obtained (data not
shown).

Generally, a satisfactory agreement is achieved with the experimental data. The
rescaled values plotted in Figure 8.7 are independent of the absolute expression level
and show scattering that may still be considered as acceptable for biological systems.
However, in the experimental data deviations between KARPAS-299 and U-937 cells
were not observed. This could either result from methodological uncertainties or
from closely matching receptor expression levels. While the latter cannot be evalu-
ated in an exact manner due to the lacking quantification of absolute antibody num-
bers, several possible sources of error can be identified from the applied methods.
Apart from variabilities in mixing, hydrodynamic conditions and flow cytometry -
all discussed previously in section 5.2 - some additional sources of error associated
with biological samples have to be considered. Biological variability might influence
the expression of CD13 or C33 antigens on both cell lines, although the cultivation
conditions were kept constant in all experiments. The effect of fluctuating receptor
expression can be estimated from the variations of simulated KARPAS-299 and U-
937 dynamics, even though it evades an absolute quantification. Furthermore, the
necessity to remove free and loosely bound antibodies from the suspension before
measurement, requires sample purification steps which include dilution and centri-
fugation. The processing of the samples probably induces additional error into the
measured data.

Facing a multitude of possible errors, the introduction of some stochasticity into the
model might seem beneficial. It could provide some insight into the sensitivity of the
model regarding fluctuations of various input parameters, for instance the number of
receptors expressed on the cell surfaces. However, an influence of stochastic fluctua-
tions beyond the initial condition is expected to remain negligible for the considered
many-body-systems. Thus the population balance model as applied throughout this
thesis was selected to remain purely deterministic without the intention of incor-
porating any spatial or temporal fluctuations. Some variabilities might be reduced
by increased model detail. For instance fluctuations regarding the homogeneity of
mixing, could be considered by coupling the population balance to fluid mechanical
simulations. This would retain the deterministic character of the model, but cause a
tremendous increase in model complexity that is expected to impede a quick numeri-
cal solution. The application of alternative modelling techniques, like Brownian or
molecular dynamics simulations, might present a further approach of increasing the
model detail. These methods could deliver valuable geometric and hydrodynamic
information during the aggregation process. However, simulations would be limited
to rather small population ensembles. The establishment of adequate combinations
of simulation approaches is an area of ongoing research. Such approaches could ob-
tain detailed aggregation rates from microscale simulations and use them in meso- or
macroscale population balance models for large particle ensembles.
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8.4 Summary
As an essential step in the targeted delivery of drugs by means of cellular uptake
by endocytosis, the preferential aggregation of antibodies or antibody-functionalised
carrier particles to different human tumour cell lines was investigated by a trivariate
population balance model. By neglecting intercellular aggregation in accordance with
experiments and by defining an adaptive grid with maximum resolution in areas with
high particle or cell densities based on an heuristic approach, the discrete property
space was considerably reduced without the need to apply any global approxima-
tion method. The rates for bionanoparticle-bionanoparticle and bionanoparticle-cell
aggregation are directly linked to the property space coordinates by deterministic
models from colloidal sciences which were adapted to biological interactions. While
the encounter frequency is described by the nearly constant Smoluchowski kernel
for Brownian motion, the sticking efficiency is modelled by a kernel considering in-
homogeneous surface patches. Here, a decisive influence is attributed to the patch
encounter probability and the interaction potential energies within the stability ratio.

Given a cell specific receptor density as input parameter, the preferential aggrega-
tion of bionanoparticles to U-937 cells in mixture with KARPAS-299 cells was suc-
cessfully simulated. In the model, unspecific and biologically specific aggregation
modes are superimposed. During receptor coverage the distribution of adsorbed bio-
nanoparticles per cell broadens considerably. After all receptors are saturated only
unspecific aggregation remains and a quasi-equilibrium with a narrow distribution
is obtained. The high bionanoparticle-to-cell concentration ratio and purely attrac-
tive interaction potentials are outmatched by the low probability of bionanoparticle-
receptor collisions, so that biologically specific aggregation has to be considered as
rate limited process.

Simulated targeting dynamics are compared to the validation experiments for IgG1,
CD13 and CD33 antibody aggregation presented in Chapter 7. Since the receptor ex-
pression on the cell surfaces vary between the experiments and the quantification of
adsorbed antibody numbers remains difficult, the comparison is performed on the
basis of data that was appropriately scaled. The agreement is very good, considering
several possible sources of error and the variability of biological systems. The results
confirm the feasibility to target tumour cells with antibody-labelled bionanoparticles
for selective drug delivery applications.





Chapter 9
Conclusions and outlook
In this thesis the selective targeting of human tumour cells by bionanoparticles was
investigated with special emphasis on the dynamic aggregation behaviour. This pro-
cess represents the essential first step in a series of transport limitations facing the
cellular uptake of drug carrier particles. The underlying phenomena are strongly
related to directed self-assembly processes in multi-component colloid systems. To
establish adequate scientific methods, the specific interaction and heteroaggregation
of multiple colloid constituents was studied in physical particulate systems first.
Experimental methods primarily included flow cytometry and diverse microscopic
techniques, while simulations are based on population balance equations with kernel
models rooting in classical colloid science. Both approaches were then transferred
to biological systems, achieving a more rigorous description of cellular targeting dy-
namics and efficiency which could prove valuable in future optimisation efforts with
respect to drug delivery.

Experiments for physical particle systems investigated predominant heteroaggre-
gation phenomena in binary and ternary particle mixtures in well defined environ-
ments by means of flow cytometry. Several variations of important experimental
parameters, influencing the encounter frequency and sticking efficiency, were per-
formed that compare well with benchmarks set by theoretical considerations and
by literature. This validates flow cytometry as convenient and reliable tool to track
multi-dimensional distributions of cluster composition. Dosage experiments in ter-
nary particle mixtures demonstrated the high sensitivity of flow cytometric measure-
ments and their versatile applicability. As a second experimental technique colloidal
probe microscopy was employed to determine the pairwise particle interactions. Its
potential to explain the macroscale aggregation behaviour by particle interactions on
the microscale was demonstrated.

Regarding the aggregation process, the work focused on the predominant electro-
static de- and restabilisation phenomena which are strongly affected by the particle
mixing ratio and the ionic strength of the dispersion medium. The dominant he-
teroaggregation phenomena in binary particle mixtures were reconstructed by popu-
lation balance simulations. Two internal coordinates represented the particle species.
They characterised the cluster composition and generated a property-discrete state
space that was efficiently reduced to an adaptive grid by a semi-heuristic approach.
The aggregation rates were modelled by two competing deterministic kernel concepts
under consideration of Brownian motion and DLVO theory. The kernel for patchy-
particles accounts for the heterogeneous surface structure of aggregated clusters98,
while a charge-balance kernel calculates the interaction potential between two clus-
ters on the basis of a mean electrostatic charge. Both models were successfully tested
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against experimental findings for variations of the particle mixing ratio. Although
slight deviations to experimental data persist, it was shown that colloidal approaches
originating from single species systems can be transferred to describe heteroaggrega-
tion in multi-species particle systems. Measurements of the ζ-potential confirm the
trends resulting from the simulations.

In the next step, flow cytometric methods were applied to biological systems. The
preferential aggregation of antibodies to U-937 cells in mixture with KARPAS-299
cells was studied in a perikinetic environment. Two-dimensional distributions were
recorded from which the aggregation dynamics of viable cells were gained separately
for each cell type by appropriate gating. For each cell type, CD13 and CD33 ad-
sorption followed classical saturation behaviour towards a steady-state equilibrium
coverage. The saturation curve depended on the different extent of receptor surface
expression on KARPAS-299 and U-937 cells. This quantity was subject to consider-
able variation between the individual experiments and had a strong influence on the
reproducibility of the studies. Nevertheless, the results confirmed that cells which
exhibit selective expression of a corresponding antigen protein can be specifically tar-
geted by antibody-functionalised drug carrier particles.

Finally trivariate population balance simulations were presented for the investiga-
tion of preferential aggregation of bionanoparticles to different human tumour cell
lines. The corresponding state space was reduced to a two-dimensional adaptive
grid, using a similar approach as for particle systems. The aggregation rates are di-
rectly linked to the property space coordinates by deterministic models from colloidal
sciences. These were adapted to biological interactions and describe receptor proteins
as inhomogeneous surface patches. Assuming a cell specific receptor density as input
parameter, the preferential aggregation of bionanoparticles to U-937 cells in mixture
with KARPAS-299 cells could be simulated successfully. In the model, unspecific and
biologically specific aggregation modes are superimposed. High bionanoparticle to
cell mixing ratios and purely attractive interaction potentials were outmatched by
the low probability of bionanoparticle-receptor encounters. Therefore biologically
specific aggregation has to be considered as rate limited process at low receptor ex-
pression levels.

Outlook

The investigations presented within this thesis leave ample room for further activi-
ties. The characterisation of single particle interactions on the microscale by col-
loidal probe microscopy demands follow-up investigations. The measured interac-
tions would provide a solid basis to draw the final conclusions regarding their effect
on macroscale aggregation. Colloidal probe microscopy could also be extended to
biological samples to quantify the interaction potentials between ligands and recep-
tors. This knowledge might in future enhance the in silico design of colloidal sur-
face properties that yield a desired aggregation pattern and establish directed self-
assembly as bottom-up fabrication method for nanodevices.

Regarding experiments by flow cytometry, a precise distinction of cluster compo-
sition at high signal intensities and the calibration of fluorescence intensity signals
remain challenging. Furthermore, morphological aspects of complex clusters eluded
flow cytometric detection. Structural analysis has only recently been addressed in
flow cytometers that are equipped with a high speed camera and can generate snap-
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shots of the passing particles. Structural analysis in experiments could be comple-
mented by simulation approaches, either by population balance equations or other
methods that yield more detailed geometric information, like Brownian dynamics.
These models would predict aggregation rates from first principles that can either
be used within a population balance framework or in a comparison to determinis-
tic results. Also, the hydrodynamic conditions could be extended from perikinetic
to orthokinetic regimes, thereby meeting an important requirement for many tech-
nical applications. Recent studies have shown that the aggregate structure may be
subject to additional dynamic effects under the influence of hydrodynamic shear, like
restructuring and breakage5.

With respect to preferential aggregation in biological systems, the investigations
provide a systematic basis for follow-up investigations of cellular carrier uptake by
endocytosis. To achieve the long-term aim of optimal in vivo drug targeting several
intermediate steps are proposed. Once the adsorption of antibody functionalised car-
rier particles to specific cells in model cell mixtures has been accomplished, perhaps
even with an exact quantification of carrier numbers, the remaining transport limi-
tations facing cellular uptake, like endocytosis and intracellular digestion, have to be
tackled in well defined environments. Adding a model drug that generates an in-
direct but unambiguous cellular response, could present a feasible route to validate
successful and selective drug administration. Although these kinds of studies are not
new to the field of drug targeting, usually originating from biomedical initiatives, a
systematic analysis of the essential process parameters in simple model systems is ad-
visable. More intricate interactions of a drug within a living organism include absorp-
tion, distribution, metabolism and excretion processes. These are usually addressed
in the framework of pharmacokinetics and -dynamics, which is already heavily sup-
ported by commercial software packages.

The population balance model developed in this thesis would also a be suitable
basis to model other technical applications not involving drug targeting. By adding
breakage events into the balance equation, dynamic equilibria could be predicted.
This requires first principle models to describe the dynamics of breakage events.
Some preliminary work on breakage kernels in population balance approaches can
be found in the literature for single-species particle systems2,3. A possible applica-
tion is the prediction of affinity binding constants in sorption processes. These are not
only desireable in biological membrane adsorption processes but also in affinity chro-
matography, both applications representing purification applications up to industrial
scales.





Bibliography
[1] B.D. Anderson, T. Nakamura, S.J. Russel, and K.-W. Peng. High CD46 recep-

tor density determines preferential killing of tumor cells by oncolytic measles
virus. Cancer Res., 64(14):4919–4926, 2004.
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[3] M.U. Bäbler, M. Morbidelli, and J. Baldyga. Modelling the breakup of solid
aggregates in turbulent flows. J. Fluid Mech., 612:261–289, 2008.

[4] R.C. Ball, D.A. Weitz, T.A. Witten, and F. Leyvraz. Universal kinetics in reacion-
limited aggregation. Phys. Rev. Lett., 58(3):274–277, 1987.

[5] V. Becker, E. Schlauch, M. Behr, and H. Briesen. Restructuring of colloidal ag-
gregates in shear flows and limitations of the free-draining approximation. J.
Colloid Interface Sci., 339(2):362–372, 2009.

[6] H.C. Berg and E.M. Purcell. Physics of chemoreception. Biophys. J., 20:193–219,
1977.

[7] G. Binnig, C.F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett.,
56(9):930–933, 1986.

[8] M. Borkovec and G. Papastavrou. Interactions between solid surfaces with ad-
sorbed polyelectrolytes of opposite charge. Curr. Opinion Colloid Interface Sci.,
13:429–437, 2008.

[9] M.S. Bowen, M.L. Broide, and R.J. Cohen. Determination of cluster size distri-
butions using an optical pulse particle-size analyser. J. Colloid Interface Sci., 105
(2):605–616, 1985.

[10] M.S. Bowen, M.L. Broide, and R.J. Cohen. Temporal evolution of the cluster
size distribution during brownian coagulation. J. Colloid Interface Sci., 105(2):
617–627, 1985.

[11] H. Briesen. Modelling of suspension crystallization processes with complex particle
characterization. Habilitation thesis, RWTH Aachen, March 2008.

[12] H.-J. Butt. Measuring electrostatic, van der waals, and hydration forces in elec-
trolyte solutions with an atomic force microscope. Biophys. J., 60:1438–1444,
1991.

[13] H.-J. Butt, M. Jaschke, and W. Ducker. Measuring surface forces in aqueous
electrolyte solution with the atomic force microscope. Bioelectrochem. Bioener-
get., 38:191–201, 1995.



138 Bibliography

[14] H.-J. Butt, B. Cappella, and M. Kappl. Force measurements with the atomic
force microscope: Technique, interpretation and applications. Surf. Sci. Rep., 59:
1–152, 2005.

[15] P. Carmeliet and R.K. Jain. Angiogenesis in cancer and other diseases. Nature,
407:249–257, 2000.

[16] M. Cerbelaud, A. Videcoq, P. Abélard, C. Pagnoux, F. Rossignol, and R. Fer-
rando. Heteroaggregation between Al2O3 submicrometer particles and SiO2
nanoparticles: Experiment and simulation. Langmuir, 24(7):3001–3008, 2008.

[17] J.A. Champion and S. Mitragotri. Role of target geometry in phagocytosis.
PNAS, 103(13):4930–4934, 2006.

[18] D.L. Chapman. A contribution to the theory of electrocapillarity. Phil. Mag., 25
(6):475–481, 1913.

[19] D.A. Christian, A. Tian, W.G. Ellenbroek, I. Leventhal, K. Rajagopal, P.A. Jan-
mey, A.J. Liu, T. Baumgart, and D.E. Discher. Spotted vesicles, stripped micelles
and janus assemblies induced by ligand binding. Nature Mat., 8:843–849, 2009.

[20] L.A. Chtcheglova, J. Waschke, L. Wildling, D. Drenckhahn, and P. Hinterdorfer.
Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys.
J., 93:L11–L13, 2007.

[21] P.N. Dean, C.B. Bagwell, T. Lindmo, R.F. Murphy, and G.C. Salzman. Data file
standard for flow cytometry. Cytometry, 11:323–332, 1990.

[22] P. Debye and F. Bueche. The dielectric constant of polystyrene solutions. J. Phys.
Colloidal Chem., 55(2):235–238, 1951.

[23] B. Derjagiun and L. Landau. Theory of the stability of strongly charged lyopho-
bic sols and of the adhesion of strongly charged particles in solutions of elec-
trolytes. Acta Physicochimica URSS, 14(6):633–662, 1941.

[24] B. Derjaguin. Untersuchungen über die Reibung und Adhäsion, IV. Kolloid.-Z.,
69(2):155–164, 1934.
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[97] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen.
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