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Abstract. We study the solution of linear systems resulting from the discretization of unsteady diffusion equa-
tions with stochastic coefficients. In particular, we focus on those linear systems that are obtained
using the so-called stochastic Galerkin finite element method (SGFEM). These linear systems are
usually very large with Kronecker product structure, and thus solving them can be both time- and
computer memory-consuming. Under certain assumptions, we show that the solution of such linear
systems can be approximated with a vector of low tensor rank. We then solve the linear systems
using low-rank preconditioned iterative solvers. Numerical experiments demonstrate that these low-
rank preconditioned solvers are effective, especially when the fluctuations in the random data are
not too large relative to their mean values.
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1. Introduction. Many problems in science and engineering are modeled using partial
differential equations (PDEs). One such important model is the diffusion equation which arises
in, for instance, fluid flow and transport of chemicals in heterogeneous porous media (see, e.g.,
[6], [22]), as well as in temperature prediction of biological bodies [29], etc. More often than
not, the diffusion equation is modeled deterministically. However, in the transport models
for groundwater flows, for example, it is only possible to measure the hydraulic conductivity
at a limited number of spatial locations; this leads to uncertainty in the groundwater flow
simulations [6]. Hence, it is reasonable to model the hydraulic conductivity as a random field.
This, in turn, implies that the solution to the resulting stochastic model is necessarily also a
random field. There is, therefore, the need to quantify the uncertainty in the solution of the
model.

Generally, in order to solve PDEs with stochastic inputs, three competing methods are
standard in the literature: the Monte Carlo method (MCM), the stochastic collocation method
(SCM), and the spectral stochastic Galerkin finite element method (SGFEM); see, e.g., [6],
[1], [2], [13], [11]. In contrast to the MCM and SCM (both of which are based on stochastic
sampling), the SGFEM is a nonsampling approach which transforms a PDE with uncertain
inputs into a large system of coupled deterministic PDEs. Despite the curse of dimensionality
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problem associated with the SGFEM, the beauty of the approach lies in, among other things,
the ease with which it lends itself to the computation of such quantities of interest as the
moments and the density of the solution.

In the past two decades, research on the solution of diffusion equations with random
inputs using the SGFEM has been focused mainly on developing solvers for steady-state
problems; see, e.g., [1], [8], [27], [10], [22], etc. Time-dependent problems have not yet received
adequate attention. A few attempts in this direction include [29], [19], [23], [30]. Unlike the
steady-state problem, the time-dependent model problem presents the additional challenge of
solving a large coupled linear system for each time step. As opposed to the literature above
on unsteady diffusion problems, the main aim of this paper is to tackle this dimensionality
problem using low-rank iterative solvers studied in [18] in the framework of parametrized
linear systems. The rest of the paper is organized as follows. In section 2, we give some basic
notions on which we shall rely in the rest of the paper. Next, we present our model problem
and provide an overview of its discretization in section 3. Since our approach is based on low-
rank approximation, we first show the existence of a low-rank approximation of the solution
to the stochastic Galerkin system in section 4 before proceeding to discuss our preconditioned
low-rank iterative solvers in section 5. In section 6, we present numerical results to illustrate
that, provided the standard deviation of the random input is relatively low, these low-rank
iterative solvers are effective especially with respect to the reduction of the computational
time and memory requirements of large-scale simulations. Finally, we draw some conclusions
in section 7 based on our findings in the paper.

2. Basic notions and definitions. Let the triplet (Q2, F,P) be a complete probability
space, where () is a sample space of events. Here, F denotes a o-algebra on 2 and is endowed
with an appropriate probability measure P. Moreover, let D C R? with d € {1,2,3} be a
bounded open set with Lipschitz boundary 9D.

Definition 2.1. A mapping k : D x Q — R is called a random field if for each fized x € D,
k(x,-) is a random variable with respect to (Q, F,P).

We denote the mean of k at a point x € D by k(x) := (k(x,-)) . The covariance of k at
x,y € D is given by

(2.1) Covi(x,y) := ((r(x,) = K(x))(5(y, ) = E(¥))) -

Note that the variance Var(k) = o2 of k at x € D is obtained if we set x = y in (2.1) and
the standard deviation of & is y/Var(k). Let L?(Q, F,P) denote the space of square-integrable
random fields defined on (2, F,P).

We shall also need the concepts of Kronecker products and vec(:) operators.

Definition 2.2. Let X = [x1,..., 2] € R™™ and Y € RP*9. Then

x11Y . a:le I
(2.2) X®Y = : : e R vec(X)=| : | e R™.

1Y ... TnmY T

It follows from (2.2) that the vec(:) operator essentially reshapes a matrix into a column
vector. In MATLAB notation, for example, we have vec(X)=reshape (X,n*m,1). More pre-
cisely, we consider the vec(-) operator as a vector space isomorphism vec : R"*™ — R™ and
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denote its inverse by vec™! : R" — R™*™, Kronecker product and vec(:) operators exhibit
the following properties (see, e.g., [7]):

(2.3) vec(AXB) = (BT ® A)vec(X),
(2.4) (A® B)(C® D) =AC ® BD.

Finally, we introduce the tensor rank of a vectorized matrix; see, e.g., [15].
Definition 2.3. Let X € R™™ qnd x = vec(X) € R™. Then the tensor rank of x is the
smallest k € Z+ such that

k
X = Zu, @ v,
i=1

where u;,v; € R™. In particular, the tensor rank of the vector x coincides with the rank of the
matriz X.

3. A model problem with stochastic inputs. In this section, we introduce and discretize
our model problem. More precisely, we consider the stochastic initial-boundary value problem:
find a random function u : D x Q x [0,7] — R such that, P-almost surely in €2, the following
parabolic equation holds:

8u(>;,tw,t) =V - (k(x,w)Vu(x,w,t)) + f(x) in D x Qx (0,7T],

u(x,w,t) =0, x€ 9D, weQ, te|0,T],
u(x,w,0) =0, x€D, weQ,

(3.1)

where, for ease of exposition, we limit our discussion to a sufficiently smooth, time-independent
deterministic source term, as well as Dirichlet boundary conditions. However, our discussion
naturally generalizes to other stochastic boundary conditions and stochastic time-dependent
source terms. In the model (3.1), we note here that x(x,w), and hence the solution u(x,w,t)
are random fields. We assume that the random input & is P-almost surely uniformly positive;
that is,

Ja,p suchthat 0 < a < f < +o0,

with
(3.2) a<k(x,w)<pf ae in DxQ.

To ensure regularity of the solution u with respect to the spatial variable x, we additionally
assume that r is globally Lipschitz in D x Q. The well-posedness of the model (3.1) then
follows from the classical Lax-Milgram lemma (see, e.g., [20]).

Next, to solve (3.1), one essentially seeks a weak solution in a finite-dimensional subspace
of a Hilbert space consisting of the tensor products of deterministic functions defined on the
spatial domain and random functions defined on the probability space. More precisely, the
idea is to first put the model in variational form before it is restricted to a finite-dimensional
subspace; see, e.g., [21], [22] for more details. Assuming the model is in its variational form,
we next proceed to review the discretization of (3.1) using the SGFEM.
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3.1. Overview of stochastic Galerkin finite element method. As we noted in section 1,
the discretization of PDEs with random coefficients using the classical SGFEM is standard
in the literature. Indeed, one usually follows a three-step procedure in this method; see, e.g.,
[29], [23], [22]. The randomness in the model is, first of all, represented with a finite number of
random variables via Karhunen—Loeve expansion (KLE) (which indeed decouples the random
and spatial dependencies in the random field, k). Next, we approximate the solution as a
finite-term expansion using basis orthogonal polynomials—the so-called generalized polyno-
mial chaos expansion (PCE). The final stage entails performing a Galerkin projection on the
set of polynomial basis functions. The above procedure transforms the stochastic problem
(3.1) to a system of (usually) large coupled deterministic diffusion equations, which can then
be solved with the appropriate methods for deterministic PDEs. In what follows, we briefly
review the three steps.

3.2. Karhunen—Loeve representation of stochastic inputs. Let xk : D x @ — R be a
random field with continuous covariance function Cy(x,y). Then x admits a proper orthogonal
decomposition (or KLE)

(3.3) k(X ,w) = R(X) + 0k Z Vi (%) & (w),
i=1
where o0, is the standard deviation of k. The random variables £ := {{,&2, ...} are centered,

normalized, and uncorrelated! (but not necessarily independent) with

1
O-H\/)\_i

and {\;, p;} is the set of eigenvalues and eigenfunctions corresponding to Cy(x,y). In other
words, the eigenpairs {\;, p;} solve the integral equations

i(w) = /D (3, w) — £(0))i(x) dx,

/ Cu(x%,¥7)pi(y) dy = Nigpi(x).
D

The eigenfunctions {¢;} form a complete orthogonal basis in L?(D). The eigenvalues {\;}
form a sequence of nonnegative real numbers decreasing to zero. In practice, the series (3.3)
is truncated after, say, IV terms based on the speed of decay of the eigenvalues since the series
converges in L?(D x ) due to

é%: /Q /D (k(x,w) — R(x))? dxdP(w).

However, one has to ensure that the truncated random field

"We also make the simplifying assumption that they are independent and that the density function is a
product of univariate terms.
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N
(3.4) kN (X, w) = R(X) + 0k Z Vi (x)& (w)
i=1

satisfies the positivity condition (3.2) so that the model (3.1) is still well-posed. In particular,
we assume throughout this paper that #(x) > 0 for all x € D. It should be noted, though, that
the truncated KLE (3.4) is a finite representation of k(x,w) with the minimal mean-square
error over all such finite representations.

For some random inputs, the covariance functions and eigenpairs can be computed explic-
itly. If they are not known a priori, then they can be approximated numerically; see, e.g., [11]
for details regarding the computation and convergence of KLE. We admit, however, that it
is not always easy to find the KLE of random fields; we restrict our discussion in this paper
essentially to problems for which the KLE is available.

3.3. Generalized polynomial chaos expansion. Generalized PCE is a means of represent-
ing a random field v € L?(Q, F,P) parametrically through a set of random variables. More
precisely, we have

(3.5) u(x,w,t) = Zuj(xat)l/fj (§(w)),
=0

where u;, the deterministic modes of the expansion, are given by

(ulx,w, 5(€))
(v2(9))

€ is a finite-dimensional random vector as in (3.4), and ¢; are multivariate orthogonal poly-
nomials satisfying

Wo(€)) =1, (¥;(€) =0, 7 >0, (W )ye(€)) = (¥3(€)) o,

Uj (X, t) =

with

(3.6) (W;(6)) = / b5(E(w)) dP(w)

we

(3.7) = ¥ (§)p(8) dE,

gell

where I and p are, respectively, the support and probability density of £&. The random vari-
ables are chosen such that their probability density coincides with the weight function of the
orthogonal polynomials used in the expansion, e.g., Hermite polynomials and Gaussian ran-
dom variables, Legendre polynomials and uniform random variables, Jacobi polynomials and
beta random variables, etc. Note that n-dimensional orthogonal polynomials are constructed
by taking n products of one-dimensional orthogonal polynomials.
By the Cameron—Martin theorem, the series (3.5) converges in the Hilbert space L?(€2, F,P);

see, e.g., [9]. Thus, as in the case of KLE, we truncate (3.5) after, say, P terms to obtain
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P—1
(3.8) ux,w,t) = )y uj(x,t)v;(E(w)),
j=0
where P is determined by the expression
Q k—1
1 , (N +Q)!
(3.9) P:1+Z—! (N—F]):TQ!.
k=1 j=0

In (3.9), @ is the highest degree of the orthogonal polynomial used to represent u. A detailed
discussion on how to choose @) (and hence P) can be found in, for instance, [22].

Observe from (3.3) and (3.5) that the expansions decouple the random fields into stochastic
and deterministic dependencies. Besides, the KLE in (3.3) is a special case of the PCE in
(3.5) with @ = 1.

3.4. Stochastic Galerkin approach. If we substitute the expressions (3.4) and (3.8) into
the model (3.1), we get

Pl oux,t) B2 N
gl TT/)Z = ; AV <<R(X) + o0k kZ:l \/Tkwk(x)gk> Vui(X,t)T/)i>
(3.10) +of(x).

Next, we project (3.10) onto the space spanned by the P polynomial chaos basis functions to
obtain, for 7 =0,1,..., P —1,

pP-1

(3.11) (v3) 20 = 2V a9V )+ {45) £
where

aij(x) = R(x) (Yith;) +JHZ\F ok (%) (Ertbinds)
(3.12) = R&(x) (¥7) 65 +JRZ VAkek (%) (Ebis) -

It should be noted that the system of P deterministic diffusion equations in (3.11) are coupled.
Designing a fast solver for such a large coupled system can be quite a challenge. This is the
main purpose of the remainder of this paper.

In practice, the quantity of interest is not the solution u of the model (3.1) itself; rather,
one is usually interested in some functional of u. Once the modes u;, ¢ = 0,1,..., P — 1,
have been computed, the intended quantities of interest, such as the moments and probability
density of the solution, can easily be deduced. For instance, the mean and the variance of the
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solution are, respectively, given explicitly by

P—1
<U(X,€,t)> = < u]‘(X, t)¢](€)>

(3.13) = Uj (X, t)(SOJ' = Up (X, t)

and

) 7t)2> - <U(X,£,t)>2

P—1P-1

— <Z wi (%, t)u;(x, t)¢i(€)¢j(€)> — up(x,t)
P

SN

(3.14) = 2 ui(x,6) (¥7(9))-

3.5. Spatial and time discretizations. In the spirit of [22], [23], we use classical finite
elements to discretize the spatial domain. Furthermore, we assume that each of the deter-
ministic coefficients u;, i = 0,1,..., P —1,1in (3.11) is discretized on the same mesh and with
an equal number of elements. More precisely, with J basis functions s;(x), each mode u; is
approximated as a linear combination of the form

J
ui(x,t) =~ Zuij(t)sj(x), i1=0,...,P—1
=1

After spatial discretization and some algebraic manipulations (see, e.g., [22]), one gets the
following system of ordinary differential equations:

du(t) al
(3.15) (Go® M) — § G ® K; | u(t) = go ® fo,
i=0

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/26/16 to 193.175.53.21. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

LOW-RANK METHODS FOR STOCHASTIC GALERKIN SYSTEMS 629

where

uo(t)
(3.16) u(t) = : , with u;(t) e R/, i=0,1,..., P — 1.
UP_l(t)

RP*P are given by

The stochastic matrices G; €

(3.17) Go( k) = (i (vw(8)), Gilh k) = (& (€)dn(€)), i=1,...,N,

and the vectors gy and fy are defined via

(3.18) gﬁ%ﬂ%@»,Mﬂzéj@M@wk

Now, suppose we denote (normalized) univariate orthogonal polynomials by {¢x}. Then, re-
calling that {¢y} satisfy the three-term recurrence relation

Prr1(z) = (v — ap)or(7) — Brdr-1(z), = €R,

with ¢g = 1,¢_1 = 0, it turns out that

N
(3.19) Golj. k) = (Wj,vn) = [ [{@5:> o) H5 ik = Ojk,
i=1

and for k > 0, we have
Gi(j, k) = (&, )
N
€Z¢]7 ¢k H (b]” (ﬁkl

1=1,l#14

N
(320) = (<¢ji+17 ¢k2> + Ay, <¢]Z7 qbk > + 5)1 quz—la ¢k H quz) ¢kl

I1=1,l#i

Hence, Gy is a diagonal matrix, whereas for k£ > 0, the matrix G has at most three nonzero
elements per row. Moreover, for symmetric density functions p, the coefficients «; in the
recurrence relation vanish so that the matrices GG have a most two nonzeros per row; see,
e.g., [22]. The mass matrix M € R/*7 and the stiffness matrices K; € R’*7, i =0,1,..., N,
are given, respectively, by

(3.21) MGE) = [ )00 dx

(3.22) Ko(j, k) = /Dﬁ(x)Vsj(x)Vsk(x) dx,
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(3.23) Ki(j, k) = aﬁ\/A_i/D ©i(x)Vs;(x)Vsg(x) dx.

Observe, in particular, from (3.22) and (3.23) that the matrix K contains the mean informa-
tion of the random field x, whereas the matrices K;, ¢ > 0, capture the fluctuations therein.

For time discretization, we use implicit Euler to avoid stability issues. To this end, we set
tn =n1,n=0,1,... ,Npaz, With 7 = T /np4,. Moreover, we define the computed numerical
approximation u(t,) := u" so that (3.15) yields

u”? — un—l N " "

or, equivalently,

(3.25) Au™ = b",
where
(3.26) b" = (Go@ M)u" ' +71(go @ fp)",
and
N
A=GoaM+7Y Gk,
=0
N
=G0®(M+TK0)+TZGZ'®K¢
=1
~ N ~
(3.27) =G Ko+ )Y Giok,
=1

with f(() =M + 1K), f(l =7K;,i=1,...,N.

We note that the global stochastic Galerkin matrix A as defined in (3.27) is sparse in the
block sense, symmetric, and positive definite. Indeed, in practical applications such as flow
problems, the length N of the random vector £ is usually large due to the presence of small
correlation length in the covariance function of k. This, in turn, increases the value of P in
(3.9) (and hence the dimension of A) quite fast; see, e.g., [11]. This is a major drawback of
the SGFEM. In order to break the curse of dimensionality for this problem, we consider a
low-rank approximation to the solution of the linear system (3.25). We want to emphasize
that it is often impossible to compute the full solution to an SGFEM discretized problem, as
the matrix dimensions quickly become prohibitively large with respect to the discretization
parameters. The low-rank technique presented here needs to store only a small portion of the
vectors in comparison to the full problem, and we want to theoretically justify this approach
in the next section.
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4. Existence of low-rank solution of the stochastic Galerkin system. In what follows,
we focus our attention on the solution of the system (3.25) using low-rank iterative solvers.
First, however, following [4], we show, under certain conditions, that the solution of (3.27)
can be approximated with a vector of low tensor rank. To this end, for arbitrary A € R™*™
and b € R™, consider the following linear system:

(4.1) Ax =b.

Define, for k € N, the following quadrature points and weights:
(4.2) hse = 72 /VE,

(4.3) t; = 1og (exp(har) + /1 + exp(2jhar) )
(4.4) wj = het/ /1 + exp(—=2jhs).

Our point of departure is the following lemma from [15].

Lemma 4.1. Let the matriz A € R™*™ in (4.1) be symmetric and positive definite. Suppose
that the spectrum of A is contained in the strip A := [Amin, Amaz] C Ry, and let T' be the
interval [1,2X\min/Amae + 1]. Let k € N and j = —k,... k. Then the solution x = A~ 'b to
the system (4.1) can be approximated by

k
(4.5) X = — Z Qw‘j exp <— 25 A> b,

>\min

with the approrimation error

(46) =l < o2 exp ( — V) bl
T Amin ™
where |I'| is the length of I and the quadrature weights t;,w; are given by (4.3) and (4.4).

A sharper bound can, in fact, be obtained in (4.6) if A possesses some special Kronecker
product structure; see, e.g., [17]. Next, we recall the so-called Sherman—Morrison-Woodbury
formula (see, e.g., [14]), on which, together with Lemma 4.1, we shall rely to prove our main
result.

Lemma 4.2. Let X € R™™ be nonsingular, and let Y,Z € R™ ™, with m < n. Then
X +YZT is invertible if and only if I, + ZT X~'Y is invertible, with

(4.7) (X+YvZzhH)t=x"1-Xx"Yv(I,+2"Xx )1 zTx1.

We can now state our main result, which shows that the solution of the system (3.25)
can indeed be approximated with a vector of low tensor rank. For this purpose, we split the
matrix (3.27) as follows:

N
4.8 =Gy @ K G, ® K;.
(4.8) A 0®£ o+; ®
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Observe then from (3.17), (3.21), (3.22), and (3.27) that £ in (4.8) is symmetric and positive

definite. Furthermore, let the stochastic matrices G;, i = 1,..., N, be decomposed in low-rank
format:

(4.9) Gi=UVE, U, V; eRPX"i i=1,... N.

We illustrate the low-rank nature of these matrices in section 6. Since also the stiffness
matrices K;, i = 1,..., N, are symmetric, then each of them admits the factorization

(4.10) K; = LiD;LT = L;,LT, L;yL; eR7/ i=1,... N,

where L; := L;D;, i =1,...,N, with D; and L; (and hence I:Z) being, respectively, diagonal
and lower triangular matrices. The following result holds.

Theorem 4.3. Let A denote a matriz of Kronecker product structure as in (3.27). Assume
that the spectrum of L in (4.8) is contained in the strip A := [Apmin, Amaz] C Ry, and let T' be
the interval [1,2Xmaz/Amin + 1. Let Gi, i = 1,..., N, have the low-rank representation (4.9)
with r = Z;VZI rj, and let K;,i=1,...,N, be given by the decomposition (4.10). Suppose
further that U = [U; @ Ly,...,Ux ® Ly] and V = [Vi ® Ly, ..., VN ® Ly|. For all time steps
n > 2, let the tensor rank of b™ < {, where { < JP. Then, for k € N, the solution u" of
(3.25) can be approzimated by a vector u™ of the form

k

(4.11) =— 2w <exp (Go) ® exp <— ftj K’0>> b — UV,

=k >\mm min

where the vector Y € R7" is the solution of
(4.12) Iy, +VIL' )y =vTL b,

and tj, w; are the quadrature weights and points as given by (4.3) and (4.4). The corresponding
approximation error is given by

mwn

~n OS 1 n
(4.13) [[u" — "]z < L exp <— - W\/E) IT||[b™ — UY||2-
T A\ ™

Moreover, the tensor rank of @™ in (4.11) is at most
(i) 2k+1)-(r+1)ifn=1 and
(i) 2k+1)-(r+4¢) ifn>2.
Proof. Observe first from (2.4), (4.9), and (4.10) that we have the low-rank representation

N N N
(4.14) Z G; ® K, = Z(UZVZT) & (ZZL;‘F) = Z(UZ ® EZ)(‘/ZT & L;‘F) =yuvT,
i=1 i=1 i=1

Hence, from Lemma 4.2, (4.8), and (4.14), we note that

At =+uvDy = Uy, + VT U)WV L,
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so that

(4.15) W =Ab"eu' =L |b"—UUy, +VILU)tVT L
=y

Now, by definition, the matrix £ = Gy ® Kj is symmetric and positive definite. Thus, using
the fact that

exp(—BL) = exp(—B(Go @ Ky))
= exp(Go ® (—BKp))
= exp(Go) ® exp(—BKy),
where 3 := 2t;/A\nin, together with (4.15) and Lemma 4.1, immediately yields (4.11) and
(4.13).

To show (i), it suffices to show that the tensor rank of b! — U) is at most r + 1. Now,
note that

(4.16) rank(vec ™ (b — UY)) < rank(vec ™ (b')) 4 rank(vec™ (~UY)).

From (3.26), we see that bl = 7(go®fy), since 1° = 0 and the source term f is time-
independent. But then, since the orthogonal polynomials {1;} satisfy

g0(j) = (1) = {1’ 7=0

0 otherwise,
it follows from (3.18) that vec™!(go ® fy) € R/*F is a matrix of rank 1. Hence, b' is a vector
of tensor rank 1. Next, following arguments similar to those in the proof of Theorem 1 in [4],
we show that the tensor rank of U) is r, which, together with (4.16), completes the proof of
(i). Now, let ), denote J - r; elements of ), and observe from (2.3) that

UY=[U,®Ly,...,Uy ®LN]Y
= [U1 ® L1, ...,Un ® Ly]vec (vec ()

- Zvec <L vec™ yrl)UT>

(4.17) = Z Zvec <1~L”Yf;) ,

where Y, := vec™!()),,)UL. Applying (2.3) again to (4.17), we obtain

N
(4.18) vy = ZZ i ® Lij)vec(1) ZZ ij @
=1 j=1 =1 =1
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But then, by assumption the r; sum up to r. Hence, the tensor rank of UY is r.

Finally, to prove the assertion (ii), suppose that, for n > 2, the tensor rank of b™ is at
most ¢ < JP. Since the tensor rank of U) is r, it trivially follows from the previous argument
and the definition of b™ in (3.26) that (ii) holds with ¢ > 1. [ ]

Remark 1. Note that Gy is just a P x P identity matrix if we work with orthonormal basis
polynomials {1;}. Hence, in this special case, (4.11) reduces to

k
" =— Z 20, <Ip ® exp (— /\2tj I~(0>> [b" —UY).

Ao .
p mun min

Remark 2. The assumption in Theorem 4.3 that, for all n > 2, the tensor rank of the
right-hand side b™ is at most ¢, where 1 < ¢ < JP, is justified by the fact that the tensor
rank tends to grow as the time step n increases. In practical computations, the tensor rank
of u"™! is truncated with respect to its singular value decay to ensure that the tensor rank of
b is kept under control. The singular value decay of the right-hand sides and final solution
(reshaped as J x P matrices) are numerically illustrated in section 6.

Remark 3. We note here that Theorem 4.3 provides theoretical evidence for the existence
of low-rank approximation to the solution of (3.25) as JP — oo.

5. Computing low-rank approximations. Although the stochastic Galerkin matrix A in
(3.27) is block sparse, symmetric, and positive definite, it is generally ill-conditioned with
respect to stochastic and spatial discretization parameters,? e.g., the finite element mesh size,
the length N of the random vector &, or the total degree, @), of the multivariate stochastic
basis polynomials {t;} [22]. Hence, a natural iterative solver for the system is a precondi-
tioned conjugate gradient (CG) method [22, 27]. Nevertheless, the choice of an “appropriate”
preconditioner is of utmost concern in this regard. In dealing with steady problems with
relatively small o, many authors use the so-called mean-based preconditioner proposed origi-
nally in [12]. Ullmann in [27] points out that the mean-based preconditioner does not take into
account all the information contained in 4 and thus proposes and analyzes an optimal pre-
conditioner based on an approach discussed in [28]. In what follows, we call this the Ullmann
preconditioner.

The relative efficiency and optimality of the two preconditioners above notwithstanding, a
major issue in solving (3.25) is evident. More precisely, for each time step n, one has to solve
an enormous elliptic system. Due to the coupled nature of the systems, this exercise can be
both computer memory- and time-consuming. To mitigate this problem, we propose solving
(3.25) with the two preconditioners mentioned in the previous paragraph, together with the
low-rank CG method proposed in [18] in the framework of parameterized steady problems.
First, however, we introduce the preconditioners.

5.1. Preconditioning.

5.1.1. Mean-based preconditioner. The mean-based preconditioner is given by

2There are, however, no conditioning issues with respect to stochastic parameters from uniform distributions
and Legendre polynomial chaos.
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(5.1) Mo =Gy ® Ko.

Now, observe that this is just the matrix £ in Theorem 4.3 and that Gy is a diagonal matrix
due to the orthogonality of the stochastic basis functions {%} Hence, My is a block diagonal
matrix. Moreover, by definition, Ky = M 47Ky, so that K is symmetric and positive definite
since M and K are both symmetric and positive definite from (3.21) and (3.22). So, My is
positive definite and Mgl = Gal®f(0_1, where Ggl(j,j) = 1/Gy(j,7) > 0. The preconditioner
then entails the approximate action of P uncoupled copies of IN(O_

5.1.2. Ullmann preconditioner. This preconditioner is of the form

N T
(5.2) M= MG 2K,

=G

The Ullmann preconditioner (5.2) can be thought of as a “perturbed” version of M since

trace( K] Ko) ~
5.3 M =Gy Ko+ ——=—=2G; @ K.
(5:3) ! Lj\z/l—o’ Ztrace(KTKo) °
=My

It is inspired by the first part of the following result obtained by Van Loan and Pitsianis.
Lemma 5.1 (see [28]). Suppose m = mima, n = ning, and X € R™*". [f R € R™2*"2 jg
fixed, then the matriz L € R™*™ defined by

trace(ngR) . o
ma t=1L1....,my, J=1,...,N1,

(54) Li,j =
minimizes || X — L ® R||p where XZT] =X((i —D)ma+1:img,(j — 1)na + 1 : jng). Likewise,
if L € R™M*™ 4s fixed, then the matrix R € R™2*"2 defined by

. R trace(XZjL) . o
() 27].—m, t=1,...,Mg, 7 =1,...,N9,

minimizes || X — L ® R||r where XZT] =X(i:ma:m,j:ng:n).

Van Loan and Pitsianis further show that the matrices L defined in (5.4) and R defined in
(5.5) are symmetric and positive definite, provided X and R or L, respectively, are symmetric
and positive definite.

Now if we set X = A and R = Kj in (3.27), it follows from (5.4) that the matrix G in (5.2)
minimizes ||A — G ® Ko||p. More interestingly, M inherits the sparsity pattern, symmetry,
and positive definiteness of the Galerkin matrix A. Besides, unlike My, it makes use of all the
information in A. Unfortunately, by reason of its construction, M loses the block diagonal
structure enjoyed by My, which makes it more expensive to invert than the latter.
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5.2. A preconditioned iterative solver. Having presented the preconditioners, we proceed
in this section to discuss the low-rank preconditioned conjugate gradient (LRPCG) method
[18]. The basic idea behind the LRPCG is that the iterates in the algorithm are truncated
based on the decay of their singular values. Thus, at each iteration, the iterates are put in
low-rank format (cf. (4.9)). The truncation, no doubt, introduces further error in the solution.
However, the truncation tolerance can be so tightened that the error becomes negligible. More
importantly, the computer memory required to store the matrices is reduced, thereby enabling
large-scale computations.

First, we present LRPCG in Algorithm 1.

Algorithm 1 Low-rank preconditioned conjugate gradient method.

Input: Matrix functions A, M : R7*F — R/*P right-hand side B® € R7*" in low-rank
format. Truncation operator 7 w.r.t. relative accuracy &,;.
Output: Matrix u” € R/* fulfilling ||A(u") — B"||r < tol.
ug =0, Ry = B", Zy = M~ (Ro), Py = Zo, Qo = A(Ry),
Y9 = <P0,Q0>, k=0.
while ||Ry||r > tol do
Wg = <Rk,Pk> /ﬁk
Uiy = up +wphy, w7 (up,)
Rpy1 = B" — A(u}l ), Optionally : Rgy1 < T (Rg+1)
Zjp1 = M (Ryy1)
Brr1 = — (Zry1, Qr) /O

Poy1 = Zyq + Bi P, Pry1 < T (Pry1)
Qr+1 = A(Pry1), Optionally : Qrt1 <+ T (Qr+1)
Vrt1 = (P, Qr)
k=k+1
end while
u" =ujp

We point out a few things regarding the implementation of LRPCG with respect to the
solution of (3.25). Note that, in Algorithm 1, all vectors in R7*¥ (cf. (3.16)) are reshaped
into R/*F matrices by the vec™! operator. Now, recall that for each fixed time step n =
1,2, ..., ynae, We need to solve an elliptic system using the LRPCG algorithm. In particular,
for each solve, we need to evaluate A(X), where X := uj or Pj. For this purpose, we set

N
(5.6) Avec(X) = (Z G ® K> vee(X),
=0

where X € R7*P is of low rank, say, k:

X=0VT, UeR™, veR* kL«<.JP,
U:[ul,...,uk], VE[Ul,...,Uk],
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so that, using (2.3), one gets

k
(5.7) vec(X) = vec (Z ujva> Z vec u] Z v @ uj.
i=1

Hence, we have

N &k
(5.8) = Z Z(Gi'l)j) ® (Ku;) € R7P,

and we then have to reshape (5.8) to have
(5.9) A(X) = vec ! (Avec(X)) € R7*P.

Moreover, in order to apply either of the two preconditioners to the residual matrices Ry,
that is, M~!(Ry), we have to ensure that Ry are in low-rank format as in (5.7), so we can
obtain expressions similar to those in (5.8) and (5.9), since M~! := ./\/li_l,z' = 0,1, have
the same size and Kronecker product structure as A. The right-hand side of (3.25), that
is, b? = (Go®@ M)u™ ! + 7 (go ® fy), is also reshaped such that B" := vec~!(b") € R/*F,
Finally, the iterates uj; are truncated in every iteration by the truncation operator 7 based on
the decay of their singular values. In what follows, we describe how the truncation operation
works, as well as how to exploit the low-rank format of the matrices to compute the inner
products in Algorithm 1.

5.3. Truncation operator and matrix inner products. We start this section by assuming
that the matrix of interest X is represented by two low-rank factors U and V, i.e., X = UV,
Our iterative procedure starts with a low-rank decomposition of the right-hand side, but the
ranks of the low-rank factors increase either via the low-rank matrix vector products or vector
recurrences. For this purpose, it is necessary to find new low-rank approximations U and V
that approximate the old product UV7 ~ UV7 using a small truncation tolerance.

Kressner and Tobler discuss in [17] that one can obtain the new low-rank representation
by performing skinny QR factorizations of both matrices, i.e., U = Q, R, and V = Q,R,. We
then note that X = Q,R,RTQ! and a singular value decomposition (SVD) [14] of R, Rl =
BYCT allows us to compute a representation of lower rank. Depending on the truncation
tolerance, we can drop small singular values in . The new low-rank factors are then obtained
via

V=QB(1:k) and U=Q,C(,1:k)%(1:k1:k).

Here, the truncation rank &’ < k is chosen such that the singular values s, satisfy

\/siurl ot 82 < trunctol\/m,
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where trunctol is the truncation tolerance. This leads to X ~ UVT, where we have used
MATLAB notation. An alternative approach that we used, which due to some internal han-
dling within MATLAB typically produces fast results, exploits the MATLAB function svds
to directly compute a truncated SVD of UVT &~ BXCT (see also [25]). Again, we drop small
singular values in ¥ to obtain V and U. The computation of the truncated SVD is typically
done via a procedure based on a Krylov subspace method where we require multiplication
with the matrix UVT. It is easy to see that we can perform this multiplication using the
matrix factored form. This approach proved advantageous in terms of the time needed for the
truncation. Alternative ways to compute the truncated SVD are possible and can be found in
[16, 3, 24]. The cost of computing the truncation depends, for example in the truncated SVD
approach, on the cost of multiplying with the matrix UV”. Assuming that U € R/**_ then
every iteration of an iterative procedure to compute the truncated SVD needs O(Jk) flops to
compute the multiplication with U and analogously O(Pk) for the multiplication with V7.
Additionally, we have to ensure that the inner products within the iterative solver are
computed efficiently. Due to the properties of the trace operator,® we are in luck, as

T
trace (UXV};) (Ung) = trace VgVX U;Uy
—_—— —— —— ——
Large Large Small  Small

allows us to compute the trace of small matrices rather than of those from the full model.
Having discussed the low-rank solver, we proceed to the next section to investigate its
performance in conjunction with the preconditioners.

6. Numerical experiments. To demonstrate the performance of the approach presented
in this paper, we consider the two-dimensional (2D) version of our model problem (3.1), which
was studied in, for instance, [22]. More precisely, we choose f = 1 and D = [~1,1]%. The
random input k is characterized by the covariance function

(6.1) Ce(x,y) = o2 exp (_ \9616—?41‘ _ ‘x2€_ y2‘> V(x,y) € D.
1 2

The eigenpairs (Aj, ;) of the KL expansion of x are given explicitly in [13]. In the
simulations, we set the correlation lengths /1 = ¢ = 1 and the mean of the random field
k = 1. Note that, as already reported in the literature, e.g, [22], decreasing the correlation
lengths slows down the decay of the eigenvalues in the KLE of x, and therefore more random
variables are then required to sufficiently capture the randomness in the model. In other
words, the resulting effect is an increase in the parameter /N. The reverse is the case when the
correlation lengths are increased.

Next, we investigate the behavior of the solvers for different values of the discretization
parameters J, N, Q, 0,,. Moreover, we choose { = {¢1,...,&n} such that & ~ U[-1,1], and
{¢;} are N-dimensional Legendre polynomials with support in [~1,1]¥. We perform spatial
discretization using ()1 finite elements. Moreover, all the numerical experiments are performed

3Recall that (X,Y) = vec (X)” vec (V) = trace (X"Y).
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stochastic matrix G, solution with sigma=0.01
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Figure 1. Singular value decay of the stochastic matriz G1 (left) and the right-hand sides at different time
steps T € {0.125,0.25,0.5}, as well as the final solution at T =1 (right), with J = 6080, N =5,Q = 3, 0. =
0.01, and tol = 1078.

on an Ubuntu Linux machine with 2GB RAM using MATLAB 7.14 together with a MATLAB
version of HSL MI20 [5] based on the classical AMG method as described in [26]. We implement
each of the two preconditioners My and M using one V-cycle of AMG with symmetric Gauss—
Seidel (SGS) smoothing to approximately invert K. We remark here that we apply the method
as a black box in each experiment and the setup of the approximation to K only needs to
be performed once. Also, no parallelism is exploited at any stage of all the simulations. In
the considered examples, the linear systems are solved for time 7' = 1 and 16 time steps.
All figures are obtained with the mean-based preconditioner Mg. Unless otherwise stated, all
iterations for all solvers herein are terminated when the relative residual error, measured in
the Euclidean norm, is reduced to tol = 10~*. We remark here that the stopping iteration
tolerance tol should be chosen such that the truncation tolerance trunctol < tol; otherwise,
one would be essentially iterating on the “noise” from the low-rank truncations, as it were.

First, in Figures 1, 2, and 3, we illustrate, for the 2D model problem, the singular value
decay of the stochastic matrix G, as well as those of the right-hand sides at different time steps
and the final solution at T" = 1. In these figures, we see that the decay is slow. Nevertheless,
the matrix G is rank deficient, which justifies its low-rank representation in Theorem 4.3.
We note here that the singular values of the stochastic matrices GG} are indeed the same since
the matrices are permutations of one another and, hence, their ranks are equal. In particular,
their rank is roughly P/2 for all k > 0. However, as already pointed out, Gy is diagonal and
of full rank P.

Next, as an illustration of the results of Theorem 4.3, observe first from Figure 1 that the
rank of the matrices Gy, (represented here by G1) is 32, while P = 56. Now, recall from the
theorem that the rank of the low-rank solution is determined mainly by those of the stochastic

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 08/26/16 to 193.175.53.21. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

640 P. BENNER, A. ONWUNTA, AND M. STOLL

solution with sigma=0.1 solution with sigma=0.5
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singular values
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Figure 2. Singular value decay of the right-hand sides at different time steps T € {0.125,0.25,0.5}, as well
as the final solution at T = 1, with o = 0.1 (left) and with . = 0.5 (right) using J = 6080, N =5, Q = 3,
and tol = 1078,

matrices G}, regardless of the dimension of the stiffness matrices K. More precisely, we have
from the figure and the theorem that r = Z;Vzl r; = 5 xrank(G1) = 5 x 32 = 160. Thus, with
the truncation tolerance trunctol = 10710, for example, we see from Figure 1 that the tensor
ranks of the right-hand sides b™ are at most £, where ¢ = 20. Hence, one can approximate
the solution to the linear systems with a solution vector whose tensor rank at each time step
equals (160 + ¢)(2k + 1) < 180(2k + 1), where k € N. So, it turns out that the result of the
theorem is particularly important if the size of the stiffness matrices K, increases; that is,
J — oo, while P is kept constant. As for the right-hand sides, the decays at all the respective
time steps (e.g., T'= 0.125,0.25,0.5) are quite similar. Thus, we truncate the right-hand sides
with the same truncation tolerance. Figures 1 and 2, in particular, illustrate that, keeping
other parameters fixed, increasing the variance of k slows down the decay of the singular
values of both the right-hand sides and the final solution.

Tables 1, 2, 3, 4, and 5 report further the results of the simulations of the model. Here,
the linear systems are solved using the LRPCG algorithm, as well as using the standard
preconditioned CG method, which we have denoted as full model (FM), that is, without low-
rank truncation. As benchmarks to compare the performance of the solution methods, we
report the total iteration counts, the total CPU times, memory requirements (in kilobytes),
the ranks of the truncated solutions, and the relative error from the LRPCG solution with
respect to the FM solution, measured in the Euclidean norm. By the memory requirement
of a low-rank solution X = UV’ we mean the sum of the two separate computer memories
occupied by its factors U and V7', since X is computed and stored in this format, unlike the
solution from FM.

In Tables 1, 2, and 5, we show results for varying P, J, and o, respectively, while keeping
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stochastic matrix G, solution with sigma=0.3
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Figure 3. Singular value decay of the stochastic matriz G1 (left) and the right-hand sides at different time
stepst € {0.125,0.25,0.5}, as well as the final solution att =T (right), with J = 6080, N =6, Q =4, o, = 0.3,
and tol = 1078,

other parameters constant. In all the tables reported in this paper, the second and third
columns show the outputs from the LRPCG, while the last two are from FM (using just the
MATLAB command pcg). Also in the second and third columns, the quantities in brackets
are outputs computed with the corresponding truncation tolerance. Note that in Tables 1 and
4, we have specifically used the tuple of parameters (N, @, P). Thus, (5,3,56), for example,
implies that N =5, @ = 3, and P = 56 (cf. (3.9)). The results in all the tables are intended
to give insights regarding the capabilities of the solvers.

A major general observation from Tables 1, 2, 3, and 5 is that for a relatively small variance
(that is, o, < 0.2) and independently of the preconditioner used, the low-rank approach
LRPCG clearly performs better than the conventional method FM in terms of both CPU
times and memory requirements, while maintaining fairly the same iteration counts as FM.
From Tables 2 and 3, the efficiency as J — oo of the LRPCG compared to FM with respect
to CPU times and memory reduction is particularly noteworthy. For instance, if J = 24448
and trunctol = 107, we see that the low-rank approach reduces the computational time by
roughly 10 times and memory required to store the solution by 4 times, while maintaining the
same iteration counts with FM. In fact, this observation further corroborates the theoretical
implication of Theorem 4.3 that the low-rank approach is of particular interest if the size of
the stiffness matrices K} gets arbitrarily large; FM deteriorates in this case, as it suddenly
struggles to cope with the increased computational complexity. Note in particular from Table 3
that with FM, MATLAB indeed fails with J = 392704 and P = 210, as the size of the global
stochastic Galerkin matrix A at each time step is now increased to more than 82 million degrees
of freedom. Yet, the LRPCG handles this task in about 200 minutes with trunctol = 1079,
that is, roughly 13 minutes per time step. In this case, however, we are not able to report the
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Table 1
Simulation results showing relative errors, total CPU times (in seconds), ranks of truncated solutions,
memory (in KB), and total number of iterations from preconditioned low-rank solvers (second and third columns)

compared with those from standard preconditioned CG (last two columns) for o = 0.01, J = 6080, and various
tuples (N, Q, P).

Time steps=16 | Mo + LRPCG | M; + LRPCG | My + FM | M; + FM
Truncation tol 107%(1079) 107*(107%)

Par= (3,3,20)

Ranks 6 (8) 6 (10)

Memory 381 3 (524.2) 285 9 (571.9) 950 950
#iter 32 (32) 32 (32) 32 32
Total CPU time |  20.4 (21.9) 20.7 (21.1) 119.4 123.6
Rel error 8.0e-5 (8.9e-6) 2.4e-4 (1.1e-6)

Par= (5,3,56)

Ranks 9 (12) 9 (16)

Memory 527 3 (814.9) 431 4 (910.8) 2660 2660
#iter 32 (32) 32 (32) 32 32
Total CPU time 52.4 (58.0) 54.7 (58.8) 197.0 195.1
Rel error 2.2e-4 (1.2e-5) 4.0e-4 (4.1e-6)

Par= (4,4,70)

Ranks 8 (10) 8 (13)

Memory 480 5 (672.6) 384 4 (768.7) 3325 3325
#iter 33 (32) 32 (33) 32 32
Total CPU time |  54.5 (52.7) 54.5 ( 57.3) 208.5 208.3
Rel error 8.0e-5 (1.3e-5) 3.3e-4 (3.8e-6)

Par= (6,3,84)

Ranks 9 (14) 10 (18)

Memory 577 9 (866.8) | 481.6 (1059.4) 3990 3990
#iter 32 (32) 32 (32) 32 32
Total CPU time | 139.6 (133.1) 112.5 (156.1) 228.1 229.9
Rel error 3.0e-4 (1.3e-5) 4.4e-4 (4.3e-6)

relative error, unlike in the other tables, because the solution from FM terminates with “out
of memory,” which we have denoted as “OoM.” On the other hand, if J is relatively small
and P is varied as in Table 4, then FM does better than LRPCG in terms of CPU time only.
Although reported only for the case o, = 0.01 in Table 2, we also observed a similar trend as
0y is varied and a small J is kept constant. But then, in practical applications one is usually
more interested in large-scale simulations in which case (J and P are large and) LRPCG will
naturally be a preferred option. Another key observation evident from all the tables is that
decreasing the truncation tolerance generally reduces the relative error but, as expected, at
the cost of comparatively more computational time and memory requirements.

Regarding the preconditioners, we note that, compared to the Ullmann preconditioner
M, the mean-based preconditioner Mg generally yields lower ranks of the low-rank solution,
less CPU time, and fewer memory requirements for small truncation tolerance. However, both
of them maintain relatively equal iteration counts either with LRPCG or FM.

Notwithstanding the advantages enjoyed by LRPCG as outlined above, its performance is
adversely affected by increase in the standard deviation o, of the input data. This observation
is also true of FM, albeit to a lesser degree. It is indeed evident from Table 5 that both
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Table 2
Simulation results showing relative errors, total CPU times (in seconds), ranks of truncated solutions,
memory (in KB), and total number of iterations from preconditioned low-rank solvers (second and third columns)
compared with those from standard preconditioned CG (last two columns) for N =6, Q = 3 (i.e., P = 84), 0, =
0.01, and various J.

Time steps=16 | Mo + LRPCG | M; + LRPCG | My + FM | M; + FM
Truncation tol 107%(1079) 1074(107%)

J = 368

Ranks 0 (14) 0 (17)

Memory 42 4 (68.1) 42 7 (77.7) 241.5 241.5
Ftiter 32 (32) 32 (32) 32 32
Total CPU time 35.0 (41.1) 45.9 (43.5) 10.2 14.2
Rel error 3.0e-4 (1.2e-5) 4.2e-4 (6.0e-6)

J = 1504

Ranks 9 (14) 0 (17)

Memory 148 8 (223.3) 124 1 (260.5) 987 987
Ftiter 32 (32) 32 (33) 32 32
Total CPU time 64.8 (66.5) 69.7 (70.0) 21.8 27.2
Rel error 3.0e-4 (1.2e-5) 4.4e-4 (6. Oe 6)

J = 6080

Ranks 9 (14) 10 (18)

Memory 577 9 (866.8) | 481.6 (1059.4) 3990 3990
#iter 32 (32) 32 (32) 32 32
Total CPU time | 139.6 (133.1) 112.5 (156.1) 228.1 229.9
Rel error 3.0e-4 (1.3e-5) 4.4e-4 (4.3e-6)

J = 24448

Ranks 9 (14) 0 (18)

Memory 2299 9 (3449.8) 1916 5 (4216.4) 16044 16044
#iter 32 (32) 32 (32) 32 32
Total CPU time 352.0 (426.7) 347.8 (419.4) 3769.4 3853.4
Rel error 3.0e-4 (1.3e-5) 4.5e-4 (4.3e-6)

LRPCG and FM exhibit deteriorating performance as o, increases, regardless of which of the
two preconditioners (that is, My or Mj) is used. Accordingly, the decay of singular values
of the solution matrices becomes slower and slower, as demonstrated earlier by Figures 1, 2,
and 3. Furthermore, as we can see from Table 5, even though relatively high variance limits
the performance of both considered preconditioners, Mg tends to be more adversely affected
by the increase than M in terms of both iteration counts and CPU time. This is perhaps
explained by the fact that, unlike M, the mean-based preconditioner Mj is block diagonal;
thus, as o, increases, we see from (3.22), (3.23), and (3.27) that the off-diagonal blocks of the
global stochastic Galerkin matrix A become more significant and they are not represented in
the preconditioner. Here, we note, in particular, that the deteriorating performance of Mg as
variance increases confirms a similar observation made in an earlier study [22] by Powell and
Elman in which CG was preconditioned with Mg but without low-rank truncations. Due to
this drawback, we remark here that we have done most of our computations using relatively
small values of variance. In particular, we used o, = 0.01 to obtain the results in Tables 1, 2, 3,
and 4. We also did further experiments with o, € {0.1,0.2} and trunctol = 10~% and made
similar observations in the performance of LRPCG and FM.
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Table 3
Simulation results showing total CPU times (in seconds), ranks of truncated solutions, memory (in KB),
and total number of iterations using low-rank preconditioned CG for J = 392704, N =6, Q = 4 (i.e., P = 210),
and various oy.

Time steps =16 Mo + LRPCG My + LRPCG Mo or M1 + FM
Trunc tol 107%(1079) 1074(1079)

o, = 0.001

Ranks 1 (10) 2 (12)

Memory 3060.6 (49114.25) | 6139.2 (49114.25)

Hiter 4 (32) 32 (32)

Total CPU time 2680.7 (4775.5) 3335.4 (4944.9) OoM
on =001

Ranks 9 (12) 10 (18)

Memory 36835.7 (55253.5) | 30696.4 (67532.1)

Hiter 32 (32) 32 (32)

Total CPU time 4157.3 (5149.9) 4115.3 (5249.8) OoM
o, = 0.1

Ranks 0 (47) 20 (52)

Memory 89019.6 (174969.5) | 82880.3 (171899.9)

H#iter 49 (49) 1 (48)

Total CPU time | 8354.5 (12419.0) | 8069.3 ( 11801.0) OoM

Table 4

Simulation results showing relative errors, total CPU times (in seconds), ranks of truncated solutions,
memory (in KB), and total number of iterations from preconditioned low-rank solvers (second and third columns)
compared with those from standard preconditioned CG (last two columns) for o = 0.01, J = 1504, and various
tuples (N, Q, P).

Downloaded 08/26/16 to 193.175.53.21. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

Time steps = 16 Moy + LRPCG | M; + LRPCG | Mo + FM | M; + FM
Truncation tol 107%(1079) 107*(107%)

Par= (3,3,20)

Ranks 6 (8) 6 (10)

Memory 95. 25 (130.9) 71.4 (142.9) 235 235
#iter 32 (32) 32 (32) 32 32
Total CPU time |  19.4 (17.0) 19.9 (18.1) 12.7 15.3
Rel error 8.0e-5 (8.7e-6) 2.4e-4 (1.0e-6)

Par= (5,3,56)

Ranks 9 (12) 9 (16)

Memory 134 1 (207.2) 109 7 (243.8) 658 658
#iter 33 (32) 32 (33) 32 32
Total CPU time |  63.8 ( 69.4) 69.2 (69.5) 20.0 23.6
Rel error 2.2e-4 (1.2e-5) 3.9e-4 (4.1e-6)

Finally, to demonstrate the behavior of the first two moments (that is, the mean and the
variance; cf. (3.13) and (3.14)) of the solution from the MATLAB solver pcg and the low-rank
solver, we have included Figures 4, 5, 6, and 7. In Figures 4 and 5, we see that the low-rank
truncations do not increase the moments. The same explanation holds for Figures 6 and 7.
However, in both cases, it is observed that an increase in variance of the random input yields
a similar effect on the solution variance.
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Table 5
Simulation results showing relative errors, total CPU times (in seconds), ranks of truncated solutions, mem-
ory (in KB), and total number of iterations from preconditioned low-rank solvers (second and third columns)
compared with those from standard preconditioned CG (last two columns) for J = 6,080, N = 6, Q =
3 (i-e., P = 84), and various oy.

Time steps = 16 My + LRPCG | M; + LRPCG | My + FM | M; + FM
Truncation tol 107%(1079) 107*(107%)

o, = 0.001

Ranks 1 (13) 2 (12)

Memory 48.2 (770.5) 96.3 (770.5) 3990 3990
Fiter 23 (32) 32 (32) 32 32
Total CPU time 120.2 (112.5) 136.6 (122.5) 222.4 224.9
Rel error 1.0e-3 (6.1e-7) 2.4e-4 (3.3e-6)

o, = 0.01

Ranks 9 (14) 10 (18)

Memory 577 9 (866.8) 481.6 (1059.4) 3990 3990
#iter 32 (32) 32 (32) 32 32
Total CPU time | 139.6 (133.1) 112.5 (156.1) 228.1 229.9
Rel error 3.0e-4 (1.3e-5) 4.4e-4 (4.3e-6)

o, =0.1

Ranks 27 (54) 21 (55)

Memory 2070 7 (2744.9) 1348.4 (2696.8) 3990 3990
#iter 49 (49) 48 (48) 49 48
Total CPU time |  206.0 (275.7) 196.4 (283.7) 342.6 352.6
Rel error 8.7e-4 (1.1e-4) 9.0e-4 (2.1e-4)

o, = 0.2

Ranks 46 (73) 49 (77)

Memory 3033 8 (3804.3) 2985 7 (3804.3) 3990 3990
#iter 65 (72) 65 (64) 65 64
Total CPU time |  200.6 (353.8) 218.6 (286.0) 508.9 524.9
Rel error 1.3e-4 (3.2e-4) 9.3e-4 (2.9¢-6)

o, =0.3

Ranks 1(84) 84 (84)

Memory (5393.5) (5700.6) | 6308.5 (5778.8) 3990 3990
Hiter 102 (242) 90 (108) 83 80
Total CPU time 911.6 (5478.7) 750.6 (1251.9) 590.1 835.1
Rel error 1.0e-3 (2.8e-4) 9.5e-4 (3.7e-4)

7. Conclusions and outlook. The use of classical spectral SGFEM in discretizing linear
PDEs with uncertain inputs is standard in the literature. For it to compete favorably with
other approaches like the MCM and SCM in solving time-dependent problems, efficient solvers
with appropriate preconditioners have to be developed to solve the resulting large-dimensional
coupled linear system. With a view to reducing the computational time and memory require-
ments of the solution of such arbitrarily large linear systems, we have provided a theoretical
basis for a low-rank solver to achieve these goals. More precisely, we solved the linear systems
(3.25) using a low-rank CG iterative solver, together with two different preconditioners. In
general, the combination of each of the preconditioners and the low-rank iterative solver seems
quite promising for large-scale simulation of models whose random input data have compara-
tively low variance, as it reduces the computer memory and computational time required to
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full model mean full medel variance

Figure 4. The mean (left) and variance (right) of the solution from the FM with J = 6080, N =5, Q = 3,
and o, = 0.01.

trunc mean trunc variance

Figure 5. The mean (left) and variance (right) of the low-rank (truncated) solution with J = 6080, N =
5, Q =3, 0. = 0.01, and trunctol = 10°5. The relative error of the truncated solution with respect to the FM
solution is 8.7 x 1076,

solve the stochastic Galerkin linear system compared to the conventional method. Although
the low-rank approach introduces further error in the simulation due to the low-rank trunca-
tions, the relative tolerance of the truncation operator can be so tightened that the error will
become negligible. Most importantly, even though the low-rank truncation does not come free
of charge it enables the solution of unsteady UQ problems that would otherwise be intractable.

We would like to point out here that the low-rank approach discussed in this paper is not
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full model mean full model variance

Figure 6. The mean (left) and variance (right) of the solution from the FM with J = 6080, N =5, Q = 3,
and o, = 0.1.

trunc mean trunc variance

Figure 7. The mean (left) and variance (right) of the low-rank (truncated) solution with J = 6080, N =
5, Q =3, 0x = 0.1, and trunctol = 107, The relative error of the truncated solution with respect to the FM
solution is 8.0 x 107°.

only applicable to time-dependent problems, but also one can apply it to stationary problems.
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