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Abstract

Development of an efficient method for simulating fixed-bed adsorption
dynamics using Ideal Adsorbed Solution Theory

by Héctor Octavio Rubiera Landa, MSc.

A fundamental task to design, optimize & operate adsorption-based separation processes
consists of correctly understanding and describing the physico-chemical principles gov-
erning them. Ongoing research efforts are directed along this line, as innovative adsorp-
tive materials and applications are discovered and state-of-the-art industrial processes
are developed and applied to cope with technically demanding separation & purification
operations of ever-increasing complexity. In this regard, Ideal Adsorbed Solution The-
ory (IAST) provides a simple—albeit powerful—alternative to describe multicomponent
adsorption equilibria from minimal input information. The principal outcome of this re-
search work is the development, demonstration & implementation of a solution approach
to solve the equations of IAST, possessing several advantageous features. Theoretical
and practical application of this approach are demonstrated by numerous calculation
examples. A detailed proof of concept on a high-performance liquid chromatography
experimental system is provided. Necessary details to embed IAST equilibrium calcula-
tions into dynamic simulations of fixed-bed adsorbers are given in a practical, simple &
useful manner.

Zusammenfassung Die Auslegung und Optimierung von adsorptiven Trennprozessen
erfordert Kenntnisse der zugrundeliegenden physikalisch-chemischen Grundlagen. Die
Theorie der idealen adsorbierten Lösung (IAS-Theorie) [ ‘Ideal Adsorbed Solution The-
ory’] bietet eine einfache Möglichkeit, aus Einzelstoffgleichgewichten die konkurrierende
Mehrkomponentenadsorption zu berechnen. Als Hauptergebnis dieser Dissertation wird
ein innovativer Lösungsansatz für die IAS-Theorie-Gleichungen abgeleitet, validiert und
verwendet. Zahlreiche Anwendungsbeispiele illustrieren sowohl theoretische als auch
praktische Aspekten. Anhand eines experimentell untersuchten Systems werden die en-
twickelten Berechnungsalgorithmen getestet und validiert. Diese Arbeit gibt weiterhin
Hinweise, die die Anwendung des obengennanten Gleichgewichtsmodells bei der Berech-
nung von Adsorbern unterstützen.



v

Sinopsis La comprensión correcta de los fenómenos fisicoquímicos involucrados en los
procesos de adsorción permiten utilizárseles para diseñar, optimizar y operar sistemas de
separación basados en los mismos. Los esfuerzos de investigación en esta área van en-
caminados en esta dirección, ya que actualmente se encuentran en desarrollo materiales
y procesos novedosos, capaces de atender los requerimientos de sistemas de separación y
purificación de cada vez mayor grado de dificultad y complejidad. El resultado principal
de este trabajo de investigación consiste en desarrollar, demostrar e implementar de
manera práctica un método eficaz y simple para resolver las ecuaciones de la llamada
“Teoría de la Solución Ideal Adsorbida” [del inglés: ‘Ideal Adsorbed Solution Theory’].
La aplicación de este novedoso método, así como sus propiedades matemáticas, se ilus-
tra a través de ejemplos detallados. El concepto propuesto es aplicado en su totalidad
y evaluado por medio de un sistema experimental de la cromatografía líquida de alta
resolución [del inglés: ‘High-Performance Liquid Chromatography’]. Esta disertación
contribuye adicionalmente a presentar los elementos necesarios para aplicar la Teoría
de la Solución Ideal Adsorbida en modelos sencillos de columnas de adsorción de lecho
empacado, utilizando el método numérico y algoritmos desarrollados.
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S entropy, [ J/K ] [Eq. (2.15), p. 24]
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[
m3 ] [Appendix A4, p. 168]

w arbitrary conserved variable [Eq. (6.14), p. 83]
wk scaled reciprocal ads. phase concentration, component k [Table 4.1, p. 53]
W matrix used in the calculation of [ I + φJ ]−1 [Table 4.1, p. 53]
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ζ integration variable [Eq. (3.16j), p. 38]
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κ parameter in num. interpolation formulæ [Eq. (7.8), p. 89]
λ arbitrary parameter, Euler’s theorem [Eq. (A3.1), Appendix A3, p. 166]
λ reciprocal of the phase ratio, φ [Eq. (7.24a), p. 96]
λUV wavelength in UV range of spectrum, [ nm ] [Eq. (9.5), p. 125]
µi chemical potential, component i, [ J/mol ] [Eq. (2.15), p. 24]
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µai chemical potential of i in ads. phase, [ J/mol ] [Eq. (2.16a), p. 24]
µ`,?i chemical potential at standard state, [ J/mol ] [Eq. (3.1), p. 32]
ν Courant number [Eq. (7.2), p. 87]
νi parameter for several isotherm models, component i [Table 2.2, p. 17]
ξ integration variable [Eq. (4.6), p. 47]
π spreading pressure, surface potential, [ N/m ] [Eq. (2.16d), p. 25]
Πi reduced spreading pressure, component i,

[
mol/m3

ads.
]
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[Eq. (3.9), p. 34]
Π[k] reduced potential, iteration k [Algorithms 3.1 & 3.2, pp. 41, 42]
σ scalar used to compute J

(
q(c)

)
[Table 4.1, p. 53]

φ phase ratio, [− ] [Eq. (6.5), p 81]
φ(r) flux limiter monitor function [Eq. (7.10a), p. 90]
ψk function that expresses dependency of c0

k w.r.t. c0
1 [Eq. (4.2), p. 46]

Ψ(ξ) solution along orbit Ψ at ξf for given c = (c1, . . . , cN )T [Fig. 4.1, p. 48]
Ω spatial domain along coordinate z [Eq. (7.4), p. 88]
Ωh discretized spatial domain [Eq. (7.4), p. 88]
Ωj cell, spatial partition j with j = 1, . . . , J [Eq. (7.4), p. 88]

Subscripts

ads. of adsorbent; pertaining to adsorbent
c column
feed of feed; pertaining to feed state
i component i
inj. injected; injection
j component j
k component k
m component m
n component n
sln. solution; liquid solution
solv. solvent
tot total

Superscripts
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I, II, . . . numbers of co-existing, distinct, homogeneous phases at equilibrium
a adsorbed phase; adsorbed phase property
abs. absolute
[k] iteration index k, k = 1, 2, . . . [Eq. (3.18a), p. 41]
` fluid phase property
m denotes a measured, invariant property of a solute [Eq. (2.26a), p. 28]
P total number of phases co-existing at equilibrium [Eq. (2.23), p. 28]
rel. relative
sat saturated; value at saturation
(?) particular value, particular solution [Section 4.1, p. 46]
∗ reference state [Section 3.1, p. 32]

Physical constants, miscellaneous characters & symbols

C8, C10, C11, C12, C13 octyl-, decyl-, undecyl-, dodecyl-, tridecylbenzene
gradPumpSys injection in HPLC equipment using the dual pump system

[Section 9.4, p. 123]
injLoopSys injection in HPLC equipment using built-in injection loop

& auto-sampler system [Section 9.4, p. 123]
Pek Péclet number of component k in EDM1D, [Eq. (6.10), p. 81]

R universal gas constant, 8.314
[ J

mol K

]
[Eq. (3.9), p. 34]

2F1[ (·, ·); ·; · ] hypergeometric function
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Chapter 1

Introduction & scope of work

“Publication is a self-invasion of privacy.”

– Marshall McLuhan

1.1 An important industrial technology: adsorption-based
separation processes

Adsorption is a physicochemical phenomenon of large importance and wide field of
application in the transformation industries. In its most simple form, it consists of

contacting a homogeneous fluid mixture with a porous material, traditionally possessing
large surface area and specific chemical characteristics—i.e., functionalities—allowing
a specific physico-chemical interaction to take place, which can be advantageously ex-
ploited. The origin and type of surface interactions determine if the process is reversible,
i.e., physisorption, or irreversible, i.e., chemisorption. The focus of this work is the first
type, where adsorbed molecules are not chemically modified—i.e., they have a weak, van
der Waals interaction with the adsorbing material; rather, it is applied to selectively iso-
late and recover selected compounds from a fluid mixture—i.e., separation operations.
Principles and mechanisms behind adsorption-based processes for separation & purifica-
tion are complex, and up to now—astonishingly—only partially understood. Scientists
and engineers make a continuing effort to investigate adsorption phenomena, which can
naturally lead to optimal design of relevant industrial-scale process operations. These
operations can roughly be grouped into three comprehensive categories [1–4]:

3
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1. adsorption operations;

2. chromatography &

3. ion-exchange operations.

Engineering thermodynamics plays a central role to understand, explain and later design
these operations [3, 5]. A general overview and description of adsorption-based separa-
tion processes can be consulted in [2, 4, 6–12] and numerous references listed therein.
An important separation process where adsorption principles need to be understood and
applied is preparative chromatography [4, 13–17]. This motivates the following
statement of general character:

9 The goal of separation science is to isolate target compounds from
homogeneous mixtures, in quantities that are attractive and with
a pre-determined quality specification.

Adsorption-based separation processes can fulfill this goal for a large number of homoge-
neous mixtures found in different fluid states of matter: gas, liquid or supercritical
fluid [2–4]. They become an attractive, economically-feasible alternative to conven-
tional, more energy-intensive separation processes such as distillation [3, 4]. Due to their
ability to achieve high separation resolution, by selectively interacting with the compo-
nents of a mixture under relatively mild conditions, this kind of processes may be in
some cases the only technologically viable alternative to handle particularly challenging
separation tasks. An important feature of most adsorption-based separation operations
is—in contrast to other separation techniques—their dynamic character. This feature
poses an additional challenge to describe and understand these processes in order to
design and operate them in an economically attractive way.

Fluid mixtures are typically placed in contact with a porous solid phase of large spe-
cific surface area or adsorptive capacity∗, thus providing the necessary physicochemical
interaction between the solid and target substances of interest in the mixture. These
interactions are particular for each substance, thus allowing compounds dissolved in the
homogeneous fluid mixture to be separated from each other. Furthermore, a particular
difficulty arises due to the fact that the description of these interactions depends on:

1. species that constitute the fluid phase;
∗An example of such are synthetically-manufactured zeolites, as well as other relevant microporous

solids.
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2. species and functionality of the solid phase; &

3. behavior of the different species once they have adsorbed.

This aspect of adsorption-based separation processes poses difficulties in their descrip-
tion, characterization and understanding. In contrast, generalizations and trends, clearly
observed when describing other simpler separation processes, are not possible for these
reasons. This additional challenge of adsorption-based separations has triggered, in
turn, a contemporary approach in the research of materials science that concentrates
its attention on developing tailor-made adsorbents by, for example, engineering spe-
cific porous structures and porous networks—cf. [18], as well as chemically modifying
the surface of porous materials with selected functional groups—just to mention two
of the currently explored alternatives in this ever-growing field of research [19–24]. All
these efforts are pursued with the goal of improving and optimizing industrially rele-
vant separations and discovering novel applications of adsorption principles. A good
example of this trend is the design of chiral stationary phases (CSPs) for preparative
liquid chromatography applications, which play a fundamental role in manufacturing
pharmaceutical and agrochemical products—see e.g., [25–27] and references therein. A
second important challenge, currently of high relevance, is the potential application of
adsorption technologies for carbon capture & storage (CCS), with significant research
effort being led by industrialized nations—see e.g., [28–31].

Porous adsorbents

Materials frequently encountered in adsorption-based processes possess, in general, a
large specific surface area with sufficiently high number of adsorption sites, where
molecules of adsorbing species are able to interact. A detailed discussion of these inter-
actions is outside the scope of this dissertation; however, it is important to mention that
substantial scientific and technical efforts are conducted in order to understand them,
as confirmed by the tremendous amount of literature on the topic [32, 33].

For engineering praxis of adsorption, tailor-made materials are frequently applied. Stan-
dard requirements for these materials are mainly, among others:

1. high adsorptive capacity in the form of—but, not restricted to—large specific surface
area or large number of micropores, mesopores & macropores, depending on the
application and type of molecules to separate;
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2. mechanical, chemical and thermal stability; &

3. capacity to interact specifically with either molecules of one type or groups of molecules
of the same kind in such a manner that it can be exploited for their separation or
purification.

An introductory overview of adsorbents can be found in [19]. Furthermore, the interested
reader is referred to [34]; therein, nanoporous materials for adsorption applications are
specifically addressed.

Table 1.1: Examples of relevant industrial applications of adsorption processes. Adapted
from [11, 12, 33, 35].

Application Adsorbent(s) used

Purification of air Zeolites, silica gel & activated alumina

Removal of radioactive nuclides from
exhaust gas

Activated carbon

Removal of organic components from
exhaust air

Activated carbon

Desulfurization Activated carbon

Purification of methane Zeolithic molecular sieves, silica gel &
activated aluminum oxide

Purification of hydrogen Zeolithic & carbon molecular sieves

Separation of alkane isomers Molecular sieves

Water purification Activated carbon

Separation of non-aqueous substances Zeolites, silica gel, activated aluminum
oxide, & molecular sieves

Separation of close-boiling liquid mixtures,
e.g., xylene isomers

Zeolites
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Adsorption chromatography

A process technology where principles of adsorption are extensively applied, primarily
to design and accomplish difficult separations, is chromatography. Two fundamental
physical phenomena govern this process [2, 4, 14, 36]:

1. Thermodynamic Equilibrium; &

2. Mass Transfer Kinetics.

A complete description of the process requires knowledge and understanding of both.
However, this work focuses on the first aspect due to the fact that in the chosen liquid
phase adsorption chromatography experimental system—described in detail in Part III
to illustrate proof of concept—this is the aspect of the process that needs to be primarily
understood in order to describe it [14, 37]. In this respect, a cornerstone idea of this
dissertation can be formulated as follows:

9 The dynamic behavior of highly efficient adsorption chromatog-
raphy from a liquid phase is fundamentally controlled by the thermo-
dynamic partition—i.e., equilibrium—established between porous sta-
tionary phase and adsorbable components contained in the fluid phase.
In this case, the chromatographic separation process is thermody-
namically controlled, and as such, governed by the functional
dependency of the adsorbed phase concentrations (i.e., loadings) w.r.t.
their fluid phase concentrations.

The reader will affirmatively discover in the subsequent chapters of this work well
founded arguments that support the statement above.

1.2 State of the art

While it has been 50 years (1965) since Myers & Prausnitz postulated Ideal Adsorbed
Solution Theory (IAST) [38]∗, it continues to be one of the most popular and widespread
predictive multicomponent adsorption equilibrium models, often serving to benchmark

∗[In order to get an idea of the impact brought about by this publication] According to the scien-
tific references’ portal Web of ScienceTM (Thomson ReutersTM) this article has been cited 1234 times!
[Consultation conducted on December 1 st, 2014.]
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alternative, more complex calculation methods—see e.g., Krishna et al. [39], Bartholdy
et al. [40], Swisher et al. [41] and the 50 th anniversary review by Walton & Sholl [42].
This fact is confirmed by the long list of articles devoted to the subject, with particular
emphasis on the solution of its constitutive equations. Recent publications [43, 44], for
example, address the possibility to calculate analytical solutions of the model equations,
in order to overcome calculation time overheads, and thus facilitating its implementation
in numerical codes for dynamic adsorber simulation. In this respect, IAST has also
become nowadays a standard option in commercial process simulation environments—
e.g., Aspen Plus R© [45]. Nevertheless, the continuing task of developing more efficient
tools and popularizing IAST at its most basic level is an ongoing effort that will continue
for the time to come. The present work should be situated in this context. It is on
one hand, a novel alternative contribution to improve algorithmic efficiency of IAST
calculations; on the other hand, it describes how IAST can be applied in a practical
context to predict competitive equilibria of compounds, which adsorbing alone, display
non-trivial adsorption isotherm courses.

1.3 Objectives & highlights of this work

This dissertation features the following Objectives:

1. Introduction, description, proof, & implementation of an efficient approach
for multicomponent adsorption equilibria prediction, applying IAST—cf. Chapter 4.

2. Development of analytical formulæ under IAST framework to calculate par-
tial derivatives of adsorbed phase concentrations w.r.t. corresponding fluid phase
concentrations at equilibrium, focusing on its application in the numerical simula-
tion of adsorber dynamics—cf. Chapter 7; &

3. Evaluation of IAST as a tool to describe the adsorption behavior of an experi-
mental system to illustrate proof of concept—cf. Chapter 10.

1.4 Sources of information

Books Several textbooks, monographies, compendia and doctoral theses were con-
sulted in order to acquire the necessary knowledge to develop the ideas presented in the
current dissertation. The list of references on the discussed topics is vast. Some of the
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classics to the topics, constituted the bases to develop the concepts in this research.
The following books are suggested to the reader as general, all-purpose introduction
to the topic. For Part I, Principles of adsorption and adsorption processes by D. M.
Ruthven [46] & Adsorption Analysis: Equilibria and Kinetics by D. D. Do [36]; for
Part II, Numerical solution of time-dependent advection-diffusion-reaction equations by
W. Hundsdorfer & Jan G. Verwer [47] and finally for Part III, Fundamentals of Prepar-
ative and Nonlinear Chromatography by G. Guiochon et al. [14].

Scientific articles A vast number of technical publications from peer-reviewed jour-
nals was consulted in order to reach the goals of this work. Although it is difficult to
categorize many of them, due to their degree of specialization on a particular topic, they
can be divided roughly into three main fields of knowledge: adsorption fundamentals
(thermodynamics & mass transfer), numerical methods (ODEs, PDEs, interpolation &
integration) and experimental techniques of liquid chromatography (HPLC & adsorp-
tion isotherm determination). Four articles merit special acknowledgement. The first
one is the milestone classic by Myers and Prausnitz, “Thermodynamics of Mixed-Gas
Adsorption” [38], which discusses application of solution thermodynamics to describe
an adsorbed phase, in an analogous way to the thermodynamic treatment applied in
vapor-liquid equilibria (VLE) [48, 49]. The second article is “Thermodynamics of Multi-
Solute Adsorption from Dilute Liquid Solutions” [50] by Radke & Prausnitz. Herein,
the natural extension of the concepts in [38] for the particular case of adsorbates found
in dilute liquid solutions is explained. The details of this extension will be presented
in Chapter 2 and its importance to liquid adsorption chromatography will be explained
in practice in Part III. The third one is “Adsorption Isotherm and Overloaded Elution
Profiles of Phenyldodecane on Porous Carbon in Liquid Chromatography” [51] by Diack
& Guiochon. The peculiar elution behavior of overloaded injections of this compound in
the system ACN/PGC is documented, whilst yielding insight into its complex adsorp-
tion mechanism. And finally, “Adsorption Isotherms and Overloaded Elution Profiles
of Phenyl-n-alkanes on Porous Carbon in Liquid Chromatography” [52] again by Di-
ack & Guiochon, this time discussing other phenyl-n-alkanes of the homologous series,
with different lengths in their alkyl chain, and thus providing a systematic explana-
tion of observed retention times and inflection points along the adsorption isotherm
courses. These articles provided the starting basis to develop the present dissertation.
Moreover—perhaps needless to stress, all articles listed under Bibliography, p. 195, are
relevant to different extent to each of the topics herein discussed, and certainly recom-
mended to the interested reader.
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Conference proceedings Three important topic-related international conferences—
attended by the author—provided valuable information. The first one is the Interna-
tional Conference on Fundamentals of Adsorption (FOA), organized by the International
Adsorption Society (IAS) and publishing its proceedings in the journal named Adsorp-
tion (Springer). The second is the International Symposium, Exhibition & Workshops
on Preparative and Process Chromatography, Ion Exchange, Adsorption Processes &
Related Separation Techniques (PREP). And finally, the International Symposium on
Preparative and Industrial Chromatography and Allied Techniques (SPICA).

Personal communications Important information was conveyed to the author in the
form of technical discussions with colleagues from the PCG research group and colleagues
from external institutions in Germany & Europe as well as other countries of the world
while attending high-profile seminars and conferences. These productive contributions,
focusing in particular on aspects of liquid chromatography, will be addressed in Part III.

1.5 Published results in peer-reviewed journals

As an important outcome of the partial results obtained in this work, three research
articles were published in peer-reviewed journals, thus contributing to the studied field
of research:

1. “A Method for Efficiently Solving the IAST Equations with an Application to Adsor-
ber Dynamics” [53] (main author);

2. “Use of Adsorbed Solution theory to model competitive and co-operative sorption on
elastic ion exchange resins” [54] (co-author); and

3. “Evaluating the application of discrete adsorption data to predict competitive equilib-
ria and fixed-bed dynamics using Ideal Adsorbed Solution Theory” [55] (main author).

Other technical contributions in the form of scientific posters and talks were presented
in the respective conferences & meetings attended∗.

∗Conference contributions are listed under “List of Publications” at the back of this thesis.
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1.6 Structure of this thesis

In accordance with the dissertation’s objectives listed in Section 1.3, this work consists
of eleven chapters, which are grouped into four thematic parts:

Part I: Some notions on adsorption & adsorption equilibria (Chapters 1 - 5)
Chapter 1 introduces the general topic of this work and provides preliminary defini-
tions and concepts necessary in aiding with subsequent chapter presentation. Chapter 2
discusses fundamentals of adsorption. Chapter 3 introduces Ideal Adsorbed Solution
Theory (IAST) and reports on different strategies commonly used for its solution. Chap-
ters 4 presents an efficient approach to solve IAST equations; application examples and
additional implementation details are discussed in Chapter 5.

Part II: Adsorber dynamics (Chapters 6 - 8) Chapter 6 presents a basic process
description of liquid adsorption chromatography, as well as details of common isothermal
models applied to understand & characterize it. Chapters 7 & 8 focus on applications
of the solution approach of Chapter 4, with emphasis on tubular fixed-bed adsorbers &
HPLC columns.

Part III: Experimental demonstration (Chapters 9 - 10) Chapters 9 & 10
summarize experimental measurement work conducted for practical demonstration and
validation of the tools presented in Chapters 4, 5, 6, & 7.

Part IV: Concluding remarks (Chapter 11) Chapter 11 outlines conclusions of
this dissertation and briefly suggests potential workscope along treated lines of research.

The following chapter 2 provides theoretical foundations of this work.
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Chapter 2

Adsorption isotherms &
thermodynamics

“First things first.”

– English proverb

Introduction

A discussion of liquid phase adsorption chromatography requires an exposition of
fundamental concepts of adsorption & tools that describe adsorption-based sep-

aration processes. Adsorption isotherms are therefore the central focus of this chapter.
Firstly, an overview of important definitions concerning adsorption phenomena and
technical systems is given. Afterwards, discussion continues on aspects of adsorption
thermodynamics to set the foundation upon which IAST relies, including the classical
context postulated by Gibbs [56], which continues to find application today [48, 49, 57].
Finally, a general review on solution thermodynamics of adsorption, presented by My-
ers [58] and more recently updated by Myers & Monson [59], is briefly introduced and
discussed. The definitions and concepts herein addressed are applied throughout the
rest of the thesis.

13
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2.1 Single component adsorption isotherm models

In a system consisting of two phases, an adsorbed phase, a, and fluid phase, `, a
temperature-dependent partition of solutes, i, indicates their distribution at equilib-
rium. A natural representation of this equilibrium partition is given by an equation
that relates adsorbed phase concentrations, qi, with corresponding fluid phase concen-
trations, ci:

qi = f(ci, T ). (2.1)

In order to systematically investigate such a system, temperature, T , is kept constant
and partition values, qi vs. ci, i.e., {q(1)

i , c
(1)
i }, {q

(2)
i , c

(2)
i }, etc., are measured after a

sufficiently long time∗. The ensemble of partition values constitute the adsorption
isotherms, which can be measured experimentally for single compounds or simultane-
ously for multiple ones, depending on the applied experimental technique(s)†. Figure 2.1
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Figure 2.1: Simple example for an adsorption isotherm. Circles (◦): measured equilibrium
(partition) points, {q(1)

i , c
(1)
i }, {q

(2)
i , c

(2)
i }, . . .. Dotted line(−−): fitted function, qi = f(ci), to

equilibrium points shown. The points were generated artificially with the Langmuir isotherm,
Equation (2.3a), p. 17 using parameters listed in Table A2, Appendix A2.1, p. 165.

illustrates this simple definition in graphical form for an adsorbate i, including quanti-
ties, qi/ci—these quotients become relevant in Chapter 3 to implement IAST.

∗Meaning that enough time should be given to the system to reach equilibrium. In principle, ∆ci → 0
and so ∆qi → 0 as t→∞.

†This is addressed in detail in Part III.
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2.1.1 Classification criteria

Due to the fact that molecular interactions at high concentrations are complex, a non-
linear dependency between equilibrium values in the adsorbed phase, qi, and fluid phase,
ci, can be established. Elaborate isotherm equations are therefore required for appro-
priate description over relevant concentration ranges. As a result, a plethora of models,
covering a wide spectrum of systems, whilst either justified theoretically or empirically,
are reported in the literature. See among many others [4, 7, 14, 36, 60] and the refer-
ences therein.
A general classification system introduced by the pioneering work of Brunauer et al. [61],
later extended by Giles et al. [62]—and most recently standardized by the IUPAC [63,
64]—is based on the shape taken by experimental data and fitted adsorption isotherm
courses, as illustrated with some examples in Figure 2.2.
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Figure 2.2: Examples of isotherm equations, based on the classification of Brunauer et
al. [61]. From left to right & top to bottom: Langmuir (Type I), Eq. (2.3a); BET (Type
II), Eq. (2.3i); Anti-Langmuir (Type III); Quadratic + Langmuir (Type IV), Eq. (2.3e); &
Quadratic (Type V), Eq. (2.3d). (−): q = f(c); (−−): dq/dc; (−·): q/c; & (··): linear limit,
applying h. Expressions for q/c, dq/dc and h are listed in Tables 2.3 & 3.3, p. 37. Parameters
used to generate these figures can be found in Appendix A2.1, p 165.

Additionally, adsorption equilibrium equations can roughly be grouped into five com-
prehensive categories, in accord with the applied principle used to define and generate
them [7, 36, 40]. These categories are listed in Table 2.1. It is important to highlight
that several well-known and applied equilibrium models are simple empirical equations,
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with sufficient parameters to fit observed experimental behavior. This approach works
well over measured concentration ranges, but difficulties can appear when equilibrium is
required outside these ranges. Table 2.2 lists important, well-known single component
adsorption isotherm model equations∗ Some of these models are addressed in Chap-
ters 5, 8, 9, & 10; the complete list is given to provide an additional guideline and useful
references to interested readers.

Table 2.1: Some principles applied to generate adsorption isotherm models.

Founding principle(s) Examples

1. Kinetics of adsorption & desorption Langmuir [65], BET [61, 66]

2. Potential Theory, volume filling in
micropores [7, 67, 68]

D-R [7, 67, 68], D-A [7]

3. Empirical (‘goodness of fit’) Redlich-Peterson [69], Tóth

4. Classical thermodynamics & EOS
approach [7, 14, 36, 70–72]

2D van der Waals EOS [7, 70],
Virial Mixture Coefficient
(VMC) method [72, 73]

5. Statistical thermodynamics, e.g., [74, 75] Quadratic [43]

A more detailed review of some of the adsorption isotherm models listed in Table 2.2 as
well as a discussion onmodel linearization & parametrization can be consulted in [60, 76].
These aspects become useful to perform model discrimination from experimentally ac-
quired equilibrium data. It is also important to highlight that some of the equations
listed in Table 2.2 are of the general form†:

q = f(ξ) := ξ ν ′(ξ)
ν(ξ) . (2.2)

This applies for example to the Langmuir, Bi-Langmuir, Quadratic, & Qua-
dratic plus Langmuir models, Equations (2.3a), (2.3b), (2.3d), and (2.3e) in Ta-
ble 2.2, respectively. Equation (2.2), together with the concept of increasing isotherm
—i.e., an isotherm equation, qi = f(ci), displaying arbitrary increasing values for in-
creasing arguments, ci, proves its usefulness with regards to the solution principle pre-
sented in Chapter 4.

∗The expressions are valid for the two fluid phases considered in this work, liquid and gas.
†This functional form is directly linked to statistical thermodynamics [14].
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Table 2.2: Selected single component adsorption isotherm equations, qi = f(ci). a b

Model Equation

Langmuir [65] qi = q sat
i

bici
1 + bici

(2.3a)

Bi-Langmuir [14] qi = q sat
i1

bi1ci
1 + bi1ci

+ q sat
i2

bi2ci
1 + bi2ci

(2.3b)

Freundlich [7, 14] qi = aic
1
νi
i (2.3c)

Quadratic [43] qi = q sat
i

ci [ bi1 + 2bi2ci ]
1 + bi1ci + bi2c2

i

(2.3d)

Quadratic plus
Langmuir [51, 52]

qi = q sat
i1

ci [ bi1 + 2bi2ci ]
1 + bi1ci + bi2c2

i

+ q sat
i2

bi3ci
1 + bi3ci

(2.3e)

O’Brien & Myers [77] qi = q sat
i

[
bici

1 + bici
+ σ2

i

bici (1− bici)
2 (1 + bici)3

]
(2.3f)

Tóth [78, 79] qi = q sat
i

bici

[ 1 + [ bici ]νi ]
1
νi

(2.3g)

Redlich-
Peterson [69, 80]

qi = aici
1 + bic

νi
i

(2.3h)

BET [14, 44, 66, 81, 82] qi = q sat
i

biSci
[ 1− biLci ] [ 1− biLci + biSci ] (2.3i)

Dubinin-Radushkevich
(D-R) [7, 68, 83, 84]

qi = q sat
i exp

[
−B2

i

(
ln
[
c sat
i

ci

])2
]
, Bi := RT

βiEi0
(2.3j)

UNILAN [79, 85] qi = q sat
i

2 ηi
ln
[
κi + ci exp [ ηi ]
κi + ci exp [−ηi ]

]
, ηi ≥ 0 (2.3k)

Sips (Langmuir-
Freundlich) [36, 86]

qi = q sat
i

[ bici ]
1
νi

1 + [ bici ]
1
νi

(2.3l)

Fractal BET [87] qi = −q sat
i

biS ln [ 1− biLci ]
biL [ 1− biLci + biSci ] (2.3m)

a.Parameter notation has been slightly modified in some of the model equations for convenience.
Consult the provided reference on each model for further details.

b.For the sake of convenience, fluid phase concentration is expressed as ci. For the gas phase, ci
should be replaced simply by partial pressure, pi, if perfect gas behavior is valid, or fugacity, fi,
otherwise.

2.1.2 Henry coefficient and selectivity

Let
qi = f(ci), i = 1, . . . , N, at constant T , (2.4)
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be a smooth, continuous function∗ representing the dependency of the adsorbed phase
concentration of a component i, qi, with respect to the fluid phase concentration, ci,
i.e., an adsorption isotherm model equation. The Henry coefficient for adsorption of
component i is thus defined as†

hi := lim
ci→0

qi
ci

= lim
ci→0

dqi
dci

= f(T ). (2.5)

Physically this means that at infinite dilution of an adsorbable component, i, the coef-
ficient represents a positively-valued and finite equilibrium partition of an amount of i,
established among the fluid and the adsorbed phase, hence

qi ≡ hi ci = f(ci) at constant T . (2.6)

This partition is from a practical point of view difficult to quantify experimentally for
certain systems. Often extrapolations from a physically attainable low concentration
region to the limit ci → 0 must be assumed, with their corresponding errors. An
extrapolation is justified if the gathered data behaves linearly in the measured low
concentration range. The limit given by (2.5) is also helpful to test adsorption isotherm
model equations for thermodynamic consistency [88, 89]. It will later be observed that
for practically relevant adsorption isotherm model equations, the Henry coefficient can
either take the value

hi = 0 (2.7)

e.g., the Dubinin-Radushkevich (D-R) isotherm, Equation (2.3j), Table 2.2, or

hi =∞, (2.8)

e.g., Freundlich isotherm, Equation (2.3c), Table 2.2, thus violating the thermodynamic
consistency requirement expressed by Equation (2.5)—i.e., positively-valued, finite [88,
89]. For these particular isotherms, strategies have been developed in order to alleviate
this drawback, as done for the D-R isotherm, Equation (2.3j) [83, 84, 90–92]. Table 2.3
lists expressions of the Henry coefficient for several isotherms. The Henry coefficient is an
important piece of information that allows understanding a limit behavior of adsorption

∗Formally, from the mathematical point of view, this function is C∞, i.e., infinitely differentiable.
†The term Henry coefficient is adopted in this work in order to remind the reader that it is actu-

ally a temperature-dependent term. Often the misleading designation «Henry constant» is frequently
encountered in the chemical engineering literature.
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equilibria. It plays a fundamental role in studying the dynamic behavior of certain fixed-
bed adsorbers—e.g., packed columns for analytical liquid adsorption chromatography∗.
Now, let the molar fractions at equilibrium of an adsorbable component, i, in a mixture
of N adsorbable components in a diphasic system, consisting of a bulk fluid phase and
the adsorbed phase be written as

yi := ci
c tot

and xi := qi
q tot

, i = 1, . . . , N, (2.9)

respectively. The selectivity, α, of component i with respect to component j in such a
system is defined as

α ij := yi / xi
yj / xj

, i, j = 1, . . . , N, i 6= j, (2.10)

thus indicating the degree of affinity or preference to concentrate of a particular com-
ponent with respect to any of the other adsorbable components in the two distinct
co-existing phases at equilibrium. This important parameter therefore allows to quickly
assess the separation performance of different adsorbents when put in contact with
mixtures of adsorbates of interest. Hence, for a given adsorbent, a quantified value of
α ij → 1 is to be in general interpreted as a difficult separation task, since the equilib-
rium partition of such a component under this situation does not vary significantly—this
naturally implies that there is no particular preference to concentrate in either phase
of the system. In contrast, values of α ij � 1 mean that the affinity of each component
i and j to bind with the applied stationary phase is quite different, thus indicating a
potentially undemanding separation task. Moreover, for diluted systems, the connection
with Henry coefficients, hi, hj , defined by Equation (2.5), is straightforward:

α ij = hj
hi
. (2.11)

The limit behavior expressed by Henry coefficient, Equation (2.5), and used to define
selectivity, Equation (2.10), allows only a limited description and understanding of ad-
sorption equilibria—i.e., under diluted conditions; it does not suffice to appropriately
describe equilibrium partitions covering wider concentration ranges, which are of prac-
tical interest for industrial-scale separations and their optimization.

∗These connections between adsorption theory and the aforementioned liquid adsorption chromatog-
raphy application are clarified in Part III.
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2.2 Multicomponent adsorption isotherm models

The description provided by single component adsorption equilibrium data and corre-
sponding fit of these data to an adsorption isotherm model equation, covered in Sec-
tion 2.1, is only useful to a certain extent. The crucial task in developing adsorption-
based separations consists of thoroughly understanding adsorption behavior of multiple
species, i.e., complex mixtures [14, 93]. It is necessary to recall that all adsorbable
species in a homogeneous mixture can potentially interact with adsorption sites of the
stationary phase and also among themselves once they have adsorbed, leading to com-
plex interactions. These interactions include among several others: a) competitive be-
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Figure 2.3: Simple competitive binary adsorption isotherms, q1 = f(c1, c2), q2 = f(c1, c2),
generated with the competitive Langmuir equation (2.14a) listed in Table 2.4, p. 23. Param-
eters used to generate the plots are listed in Table A3 of Appendix A2.2, p. 165.

havior for the adsorption sites; and b) cooperative behavior, where adsorption of one or
more species enhances adsorption of other components in the fluid mixture. These two
basic type of interactions amongst adsorbable species are often observed in experimental
systems and are in some cases only partially understood. Henceforth, a qualitative and
quantitative description of competitive adsorption of multiple species continues to be
a challenge to modern research. Already when a few chemically similar species in a
mixture are taken into account—for a particular system under investigation—requires
a substantially costly and time-consuming experimental effort [94, 95]. A second as-
pect of fundamental importance is the nature of the adsorbing material used. Surface
heterogeneity and the different theories behind it—see e.g., [96–98], aim at providing a
more detailed picture of adsorption mechanisms, trying to reconcile physical observa-
tions with applied models in a better fashion.
Recent advances in high-throughput screening (HTS) and high-throughput experimental
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platform design have become one important alternative aimed at tackling the cumber-
some task of experimentally measuring multicomponent, competitive adsorption equi-
libria; they are particularly useful in several biotechnological and biopharmaceutical
applications, as explained in [99–103]. This empirical approach seems to be increasing
in popularity in separation science overall. Nonetheless, the classical approach, whereby
thermodynamics’ principles are applied in order to predict multicomponent adsorption
based on single component adsorption equilibria, continues to be an important and
useful tool due to three factors:

1. it is of general validity;

2. it is simple to apply and usually not cost-demanding; &

3. a comprehensive amount of reported single component adsorption equilibrium data
on commercial adsorbents of industrial relevance is readily available—see e.g., [79];
in turn, this information can be employed to predict multicomponent behavior.

2.2.1 Classification criterium for multicomponent isotherms

A simple way to group multicomponent adsorption isotherm models reported in the
literature is by considering whether a given equation is expressed explicitly as a func-
tion of arguments c1, . . . , cN , or expressed by an implicit equation of more general
character. First practical attempts to provide explicit expressions for mixtures by ex-
tending the Langmuir model to several components can be traced back to the work
of Markham & Benton [104]. This model, together with other common examples for
explicit models, are listed in Table 2.4. Mathematically, in analogy to Equation (2.4)
for a single adsorbable component, a competitive multicomponent adsorption isotherm
model consisting of N adsorbable species is given in explicit form by

qi = f(c1, . . . , cN ), i = 1, . . . , N (2.13)

at constant temperature, T . For specific application in liquid chromatography—the
focus of Part III, explicit expressions exist for many systems—see e.g., [105, 106]. The
choice of applying either an explicit, algebraically simple equation, or an implicit model
to describe multicomponent adsorption equilibria is important from a practical point
of view, e.g., when the calculation of these equilibria have to be carried out millions of
times—cf. Chapter 7, p. 85. Quite often, however, serious limitations in the usage of
these explicit equations, such as those listed in Table 2.4, become evident when these
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Table 2.4: Examples of explicit—algebraically simple—competitive adsorption
isotherm models, given by an equation of the form qi = f(c1, . . . , cN ), for i =
1, . . . , N components.

Model Equation

Multicomponent
Langmuir [104]

qi = q sat
i

bici

1 +
N∑
j=1

bjcj

(2.14a)

Two component
bi-Langmuir [14, 107]

qi = q sat
i1

bi1ci
1 + b11c1 + b12c2

+

q sat
i2

bi2ci
1 + b21c1 + b22c2

, i = 1, 2
(2.14b)

Multicomponent
Tóth [14, 108]

qi = q sat bici[
1 +

[
N∑
j=1

bjcj

]νi ] 1
νi

(2.14c)

Multicomponent
Sips [4, 7, 36] a qi = q sat

i

bic
1
νi
i

1 +
N∑
j=1

bjc
1
νj

j

(2.14d)

a. Sometimes referred to as Loading Ratio Correlation, ‘LRC’ [7].

models are applied to describe actual measured mixture equilibrium data. Mixtures of
components, which adsorbing alone display complex adsorption courses, require either a
more sophisticated approach, or a mixture equation with sufficient number of parameters
for a satisfactory and useful description. Determining these parameters, in turn, requires
a careful and comprehensive experimental plan, which is quite often difficult to realize
for several reasons—e.g., costs, availability of materials, etc.

Table 2.5: Examples of non-explicit multicomponent adsorption models.

Model Reference(s)

Ideal Adsorbed Solution Theory (IAST) [38, 50]
Vacancy Solution Theory (VST) [109]
Real Adsorbed Solution Theory (RAST) [110, 111]
Spreading Pressure Dependent Equation (SPD) [112]
Predictive Read Adsorbed Solution Theory (PRAST) [113]
Multicomponent Potential Adsorption Theory (MPTA) [40, 114–116]
Segregated Ideal Adsorbed Solution Theory (SIAST) [41]
Generalized Predictive Adsorbed Solution Theory (GPAST) [117]

Table 2.5 lists several non-explicit multicomponent adsorption isotherm models that
have been developed, studied and implemented during the last 50 years, with IAST as
the pioneering work in this regard. Classical theories based on solution thermodynamics’
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principles are an important alternative for multicomponent adsorption calculation and
prediction.

2.3 Thermodynamics of an adsorbed phase

As stated in Section 2.2, equilibrium expressions of practical application can be gener-
ated with the appropriate conceptual framework [58].
A starting point of general character to analyze separation processes is the Fundamen-
tal Property Relation—see among many others [38, 46, 48, 57, 118], relating at
least seven thermodynamic variables, used to describe a homogeneous∗, bulk phase of
volume V in an open, well-defined, homogeneous system:

dU = T dS − p dV +
N∑
i=1

µi dni, (2.15)

whereby, U = f(T, S, p, V, µ1, . . . , µN , n1, . . . , nN ). This expression basically condenses
two universal postulates: the First Law and Second Law of Thermodynamics—see
among many others [4, 46, 48]. By adopting a Gibbsian view [56, 118] of a two dimen-
sional adsorbed phase, a, Equation (2.15) needs to be modified, since now a surface, A,
needs to be taken into account, in addition to volume, V a, so it is conveniently re-cast
as [98, 119]

dUa = T dSa − p dV a − π dA +
N∑
i=1

µai dnai . (2.16a)

Equivalent expressions to (2.16a)—also Fundamental Relations—can be written by ap-
plying the definitions of:

(Enthalpy) Ha = Ua + pV a + πA,

(Helmholtz free energy) Aa = Ua − TSa and

(Gibbs free energy) Ga = Ha − TSa = Ua + pV a − TSa + πA,

∗Meaning that the phase has the same physical composition & state of matter in all its constituent
parts [56].
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therefore arriving by differentiation at:

dHa = T dSa + V a dp+ Adπ +
N∑
i=1

µai dnai , (2.16b)

dAa = −Sa dT − p dV a − π dA +
N∑
i=1

µai dnai and (2.16c)

dGa = −Sa dT + V a dp+ A dπ +
N∑
i=1

µai dnai . (2.16d)

Hereby π dA should be understood, in the classical sense discussed, as a surface work
term, with state variable, π [46], having a clear physical definition [38, 50, 95, 118, 119]:

π ≡ γ0 − γ, (2.17)

where γ0 and γ represent surface tensions of the fluid film in contact with the adsor-
bent, before adsorbing and after desorbing, respectively, and given the term spreading
pressure [118].
In a broader sense, π is treated as a surface potential of the adsorbing material∗, inde-
pendent of the particular morphology it might possess. This is due to the fact that for
certain types of adsorbents, the concept of surface is rather ambiguous—e.g., zeolites
& microporous materials [58, 59, 119]. As a consequence, the Fundamental Relation
written for adsorbed phase, a, Equation (2.16), has general application to a wide class
of adsorbents and is employed to:

1. establish a relationship between surface potential, π and chemical potentials of ad-
sorbed species,

µai , i = 1, . . . , N ;

2. provide a general formulation, from which an ideal adsorbed solution can be de-
fined [36, 38].

∗Sometimes also referred to as surface energy. Already in the seminal papers by Hill [119–121], a
formal suggestion is made to refer to this term as a potential of the adsorbent, abandoning the—somehow
restrictive—concept of area.
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Figure 2.4: Conceptual picture of thermodynamics applied to adsorption [48, 56, 59], de-
picting two theoretical treatments used to describe phases a & ` under equilibrium—cf. Equa-
tion (2.23). (A): Gibbsian treatment with an inert adsorbent plus layers of adsorbed phase
and used in this work; (B): solution thermodynamics treatment, suited better for adsorbed
phases for which the concept of surface is ambiguous, e.g., zeolites, metal-organic frameworks
(MOFs), etc.

Derivation of Gibbs’ adsorption isotherm

The Fundamental Relation (2.16d), restricted to constant temperature, T , pressure, p,
and potential, π, can be integrated by applying Euler’s homogeneous function theorem—
refer to Appendix A3 for details, so that

Ga =
N∑
i=1

µai n
a
i . (2.18)

The total differential of Equation (2.18), dGa, is therefore

dGa =
N∑
i=1

µai dnai +
N∑
i=1

nai dµai (2.19)

to express differential changes in Gibbs’ energy of the adsorbed phase. Substracting
Eq. (2.19) from Equation (2.16d) yields the Gibbs-Duhem equation for the adsorbed
phase, thus establishing a central relationship between state property, π, and component
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properties, µai [46, 120]:

− Sa dT + V a dp+ A dπ =
N∑
i=1

nai dµai . (2.20)

Additionally, restricting to constant T and p holds:

− A dπ +
N∑
i=1

nai dµai = 0. (2.21)

Equation (2.21) is Gibbs’ adsorption isotherm; it plays a central role in adsorp-
tion thermodynamics, because it establishes a direct relationship between the surface
potential, π, and the chemical potentials of all species i in the adsorbed phase. Further
details of its application are provided in Chapter 3.

Phase rule for adsorption

In contrast to VLE, in order to fix the intensive state of an adsorbed phase—i.e., give a
complete description of the condition of a homogeneous phase and all its constituents, an
additional intensive variable, π, was taken into account in Fundamental Relations (2.16).
Therefore, the following phase rule applies [48, 59]

F = C−P + 3, (2.22)

whereby, F denotes the number of degrees of freedom—i.e., independent variables—that
fix the state of the system; C indicates the number of components and P represents the
number of phases at equilibrium, which for the two-phase systems considered in this
work means P = 2.

Conditions for equilibrium

By definition, a system consisting of two or more distinct phases is found at equilibrium
when [4, 48, 49, 56, 57, 118, 122]: a) it is found at constant temperature, T ; b) it is
found at constant pressure, p; and c) the chemical potential of each species i in any
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co-existing phase does not change and is the same. These conditions are expressed as:

T I = T II = · · · = TP−1 = µPi , i = 1, . . . , N, (2.23a)

pI = pII = · · · = pP−1 = pP and (2.23b)

µI
i = µII

i = · · · = µP−1
i = µPi , (2.23c)

for I, II, · · · , P co-existing phases at equilibrium. For analysis of adsorption-based sep-
arations, two distinct phases, fluid phase, `, and adsorbed phase, a, are typically iden-
tified, so that

µ`i = µai , i = 1, . . . , N (2.24)

at constant temperature, T , and constant pressure, p [46, 48, 118]. This is illustrated
schematically in Figure 2.4. Equation (2.24) is crucial to obtain working equations that
link the theoretical concepts presented above to application. This will be described in
more detail in Chapter 3 in order to derive the equations of IAST.

2.4 Adsorption from dilute liquid solutions

Special emphasis is given now to the case of adsorption from dilute liquid solutions,
because it is required to describe IAST as applied to liquid phase adsorption chro-
matography, the focus of discussion in Part III. Adsorption from dilute liquid solution
is a special case of adsorption of liquid adsorbates in mixtures∗. Following Radke &
Prausnitz [50], with ideas put forward earlier by Rowley & Innes [125–127], the Fun-
damental Relation, expressed in terms of Helmholtz free energy of adsorbed phase, Aa,
Equation (2.16c), is written as:

dAa = −Sa dT − pdV a − π dA + µsolv. dnsolv. +
N∑
i=1

µai dnai , (2.25)

with Aa = f(Sa, T, p, V a, π,A, µsolv., µ1, · · · , µN , nsolv., n
a
1, · · · , naN ). The fact that a

condensed phase—i.e., a liquid mixture—is put in contact with the adsorbent is taken
into account by quantifying the moles of solvent, nsolv., and each solute, nai . At constant
temperature, T , equivalently to Equation (2.21), holds

Adπ =
N∑
i=1

nmi dµai , (2.26a)

∗One important historical reference is e.g., Ostwald & de Izaguirre [123] and the book by
Kipling [124].
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where
nmi ≈ V sln.∆ci (2.26b)

is an invariant adsorbed phase molar amount∗, m, measured experimentally. This
basically means that a known mass of adsorbent is put in contact—i.e., immersed or
flooded—with a known volume of liquid solution and concentration of solutes; after equi-
librium is established, differences in bulk liquid concentrations, ∆ci, can be quantified,
providing an approximation of molar amounts of solutes, nmi , in the adsorbed phase.
In this way, further specification of location of a dividing surface between adsorbed and
bulk phases is conveniently avoided†. Due to the indirect character of nmi , an additional
relationship involving actual adsorbed quantities, nai , is established formally as [50]

nmi := nai −
ci
csolv.

nasolv.. (2.27)

Appendix A4 provides necessary details to understand Equation (2.27). In contrast
to adsorption of gases, now two condensed phases are put in contact under controlled
conditions to reach equilibrium. Even for the case of a single solute diluted in a solvent,
molecules of both substances have access to adsorption sites, with the solute prefer-
entially binding onto the solid matrix, and thus, displacing solvent molecules in the
process.
In the case of dilute liquid solutions, therefore, the solvent is treated as inert, which
means that Equation (2.26a) is in reality of approximate character only, in light of the
rigorous theoretical derivation discussed.

Considerations applicable to liquid adsorption chromatography It becomes
necessary to reconcile the concepts of solution thermodynamics described in the previous
sections with the adsorption equilibria measurement methods performed in liquid ad-
sorption chromatography—e.g, those obtained with an HPLC equipment, as explained
in Part III.
The papers of Wang et al. [129], Riedo & sz. Kováts [130], Eltekov et al. [131], Kaza-
kevich & McNair [132], Fornstedt [133], and Vajda & Guiochon [134] provide ample
information and bridge the gap between these equilibrium concepts and the intrinsi-
cally dynamic chromatographic techniques. The main outcome of the investigations of
these authors confirms that the thermodynamic framework discussed in this section can

∗Meaning that it is invariant w.r.t. the position of Gibbs’ dividing surface—cf. Figure 2.4.
†Consult the books by Kipling [124] & Rouquerol et al. [128] for a useful explanation about Gibbs’

dividing surface (GDS).
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be applied to liquid adsorption chromatography systems measured experimentally, as
explained in Part III of this work, under the considerations mentioned before.

Summary

While most of the adsorption equilibrium models presented in this chapter were orig-
inally developed to characterize adsorption from the gas phase, many of the models
can also be used for bulk liquids and dilute liquid solutions, with careful use and in-
terpretation of the constituent model parameters [14]. IAST, an application of solution
thermodynamics—cf. Table 2.5, is the only multicomponent adsorption equilibrium
model that uses exclusively information about adsorption equilibrium of individual
components in a thermodynamically consistent fashion. This is one of the main rea-
sons for its widespread application.
A possibility that has been explored for adsorption from a gaseous mixture is the applica-
tion of a two-dimensional equation of state (EOS)—see e.g., Hoory & Prausnitz [70],
Talu et al. [135] and Appel et al. [72].
In the particular case of liquid adsorption chromatography, well-established models to
describe non-ideality, commonly applied to other equilibrium tasks, e.g., VLE and LLE,
are emulated with model parameters being fitted to experimentally observed adsorption
equilibrium data in order to apply RAST. Examples of this empirical approach have
been documented in [136] and [111]. Other models, such as NRTL equation [137] and
Wilson equation [138], with minor modifications to fulfill thermodynamic consistency,
have also been implemented.



Chapter 3

Ideal Adsorbed Solution Theory∗

“. . .All theories have strengths and weaknesses . . . ”

– Sofie Bartholdy et al. in [40]

Introduction

Attention is now focused on Ideal Adsorbed Solution Theory (IAST) [38], a predic-
tive multicomponent adsorption equilibrium model, originally developed to treat

gas phase adsorption, which is thermodynamically consistent [38, 139], and later ex-
tended to address dilute liquid solutions [50]. Discussion of its derivation, starting from
basic equations of thermodynamics introduced in Chapter 2, follows in the next section.

∗Chapter Disclaimer. Partial contents of this chapter have been reported in: “A Method for
Efficiently Solving the IAST Equations with an Application to Adsorber Dynamics” [53]. The information
is presented as part of this dissertation and it is an original published contribution to the field in a peer-
reviewed journal. There is none whatsoever intention of self-plagiarism; the information serves rather as
complementary content to this dissertation. Furthermore, the publishing company has granted partial
reproduction of the contents in the article mentioned above. [License No.: 3743030164049, requested
and obtained on Nov. 6 th, 2015 from John Wiley & Sons, Inc. through Copyright Clearance Center.]
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3.1 Model description & assumptions made

Equilibrium between fluid & adsorbed phases The conditions for equilibrium
given by Equations (2.23), in particular

µ`i = µai , i = 1, . . . , N, (2.24)

are applied in order to establish a relationship between concentrations in the fluid phase,
`, and adsorbed phase, a. The chemical potential of species, i, in a dilute solution is
given by [4, 48, 50, 118]:

µ`i = g∗i (T ) + RT ln ci
c∗i
. (3.1)

Likewise, the chemical potential of component, i, in the adsorbed phase is written as [38]:

µai = g∗i (T ) + RT ln c0
i (T, π) + RT ln [ γai xi ] . (3.2)

The reference state applied, indicated by ∗, is the same for both phases. The second
summand in (3.2) contains hypothetical fluid phase concentrations, c0

i , at constant tem-
perature, T , and spreading pressure, π, of the mixture. xi is the molar fraction of species
i in the adsorbed phase. Substitution of (3.1) and (3.2) in condition (2.24) yields the
equilibrium expression

ci = c0
i (T, π) γai xi, i = 1, . . . , N, (3.3)

whereby γai = f(T, π, x1, · · · , xN ) are activity coefficients in the adsorbed phase that
describe deviations from ideal behavior [38, 122].

Definition of an ideal adsorbed phase Firstly, an equation applicable to the con-
cept of ideal adsorbed solution is obtained by taking (3.3) and allowing each adsorbed
phase activity coefficient, γai → 1, which produces an expression analogous to Raoult’s
law:

ci = c0
i (T, π)xi. (3.4)

Secondly, in an ideal adsorbed phase, molecules of all adsorbates i = 1, . . . , N , interact
with each other in such a way that they occupy the same surface area, a0

i , as if they
would have separately adsorbed and equilibrated alone with the same concentration at
the same temperature, T , and spreading pressure, π, of the considered mixture—an ex-
pression of the two-dimensional variant of Amagat’s law for volumes [38]. Henceforth
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holds:

a tot =
N∑
i=1

a0
i xi, (3.5)

where a tot represents the total area occupied by species, i = 1, . . . , N , in direct propor-
tion to their molar fractions in the adsorbed phase, xi—i.e., an ideal mixture. Table 3.1
summarizes the model assumptions taken into account in IAST.

Table 3.1: IAST competitive adsorption model assumptions.

No. Assumption

I Ideal mixing of the adsorbates within the adsorbent, i.e.,
excess energy of mixing of the adsorbates is zero.

II Ideal fluid phase.

In many real systems the description given above for an ideal solution does not apply, as
two neglected aspects play a fundamental role in competitive adsorption [14, 46]: a) ad-
sorbate-adsorbate interactions, crucial if multi-layer adsorption takes place—cf. BET
isotherm, Table 3.4, p. 38, Equation (2.3i); & b) adsorbent surface heterogeneities—see
e.g., [96, 98]. These aspects in turn, can lead to well-known, but complicated phenom-
ena, such as selectivity reversal and azeotropic behavior—see e.g., [140].

Surface potential, π Additional relations are required to complete the model due to
state variable, π. At equilibrium

π = π1(c0
1) != · · · != πN (c0

N ) (3.6)

holds, where each of the i = 1, . . . , N adsorbable components, i.e., adsorbates, exerts
a spreading pressure, πi, proportional to fictitious∗ fluid phase concentrations, c0

i , i.e.,
the concentration that would be required by an adsorbate alone to generate the surface
potential, π, possessed by the mixture. Further, hypothetical fluid phase concentrations,
c0
i , appearing in (3.4), need to be calculated to satisfy Equation (3.6). With the help of
Gibbs’ adsorption isotherm (2.21) for a single species i and equilibrium condition (2.24)

∗The term fictitious is used interchangeably with the term hypothetical.



Chapter 3 Ideal Adsorbed Solution Theory 34

written in differential form, dµai = dµ`i , holds:

− A dπi + nai RT d ln ci = 0. (3.7)

Introducing A ≡ A/V a and q0
i ≡ nai /V a to refer to the volume of adsorbent, V a, yields∗

−A dπ + RT
qi
ci

dci = 0, (3.8)

which upon integration, establishes the direct dependency of state variable πi w.r.t.
measurable single component equilibria, q0

i = f(c0
i ), by

Πi = f(c0
i ) ≡

A
RT

πi(c0
i ) =

c0
i∫

0

q0
i

s
ds, (3.9)

whereby, Πi, the reduced spreading pressure—reduced potential—is introduced for con-
venience. It has units

[
mol/m3

ads.
]
or [ mol/kg ads. ], following the applied definitions of

A and q0
i above. The adsorbed phase molar fractions, xi, fulfill the mass balance

N∑
i=1

xi =
N∑
i=1

ci
c0
i

= 1, (3.10)

thus completing the relationship between hypothetical fluid phase concentrations, c0
i

and surface potential, π. The total adsorbed concentration, q tot, is given by

q tot = f(c, c0) =
[
N∑
i=1

xi
q0
i

]−1

=
[
N∑
i=1

1
q0
i

ci
c0
i

]−1

, (3.11)

in accord with the description of an ideal adsorbed phase given by Equation (3.5). The
concentrations c0

i are therefore key variables in the calculation of this model. Ac-
cording to Equation (3.9), each c0

i should be such, that it builds-up the necessary surface
potential, π, in order to fulfill equilibrium condition (3.6). These quantities can become
quite large for low values of xi, i.e., c0

i � ci, which is in particular probable for less
adsorbed compounds, as exemplified by re-casting Equation (3.4) as

c0
i = ci

xi
, i = 1, . . . , N. (3.4′)

∗Under the assumption that V a is invariant throughout the adsorption process.
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Finally, adsorbed phase concentrations are calculated directly from Equation (3.11):

qi = f(c, c0) = q tot xi, i = 1, . . . , N. (3.12)

Table 3.2 summarizes the model equations of IAST.

Table 3.2: Summary of IAST equations [38, 50].

Description Equation

Raoult’s law (adsorption) ci = c tot yi = c0
i (T, π)xi (3.4)

Equilibrium condition Π ≡ Π1
!= · · · != ΠN (3.6)

Spreading pressure
Πi = f(c0

i ) ≡
A
RT

πi(c0
i ) =

c0
i∫

0

q0
i

s
ds (3.9)

Closure
N∑
i=1

xi =
N∑
i=1

ci
c0
i

= 1 (3.10)

Total adsorbed phase
concentration q tot =

[
N∑
i=1

xi
q0
i

]−1

=
[

N∑
i=1

1
q0
i

ci
c0
i

]−1

(3.11)

Adsorbed phase
concentration, component i

qi = q tot xi, i = 1, . . . , N (3.12)

3.2 Consistency of single component adsorption isotherms
& limit behavior of solutions

The input information provided to IAST needs to fulfill a consistency requirement; this
means basically that equations—i.e., models—describing single component adsorption
isotherms:

1. possess a well-established Henry limit as discussed in Section 2.1.2; &

2. may be integrated, at least in principle, for c0
i →∞, i = 1, . . . , N .

These two requirements become clear by inspection of the integral expression of Gibbs’
adsorption isotherm, Equation (3.9). In practice, data are difficult to gather close to the
lower bound of the theoretically available concentration range, [0,∞), while the upper
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bound is only a mathematical construct or aid, not related to the physical system, as
binding of adsorbates is in reality finite, and as such, bounded.
IAST equilibrium calculations are in particular prone to error for the lower concentra-
tion range, since, for general increasing isotherms, this is the region where changes in
equilibrium values and therefore in surface potential, Π, occur more suddenly, especially
for data with steep slopes at low concentration values, near the origin—cf. Table 2.3,
p. 20. This fact can also be observed in Figure 2.2, p. 15, by inspecting the behavior of
dqi/dci for several isotherm types.
A second aspect of physical consistency has to do with the limit behavior ofN -component
solutions. By assumption of existence of an IAST solution, q = f(c), whereby

q = [ q1, . . . , qN ]T ; qi = f(c1, . . . , cN ), i = 1, . . . , N,

let an arbitrarily chosen component cj → 0; consequently, qj → 0, i.e., j vanishes. When
this limit situation occurs, the (N −1)-component IAST equilibria should be recovered.

3.3 Methods of solution for IAST equations

3.3.1 Difficulties encountered when solving IAST equations

The main difficulty encountered stems from the fact that Gibbs’ adsorption isotherm,
Equation (3.9), has an upper limit of integration, c0

i , which is unknown. Furthermore,
the equations for the total adsorbed phase concentration, q tot, and the components’
concentrations, qi, have explicit expressions depending on c0

i . Even for known upper
integration limit, c0

i , Equation (3.9) provides the functional dependency

Π = Πi = f(c0
i ), (3.13)

whereas its inverse,
c0
i = f−1(Π), (3.14)

is actually what is required for the solution. These difficulties, which shall be addressed
again in Chapter 4, are summarized in the following items:

Item 1: Integration of Equation (3.9)—performed via an analytical expression for q0
i /c

0
i—

cf. Table 3.3—or via truncation of a series expansion; calculated numerically
otherwise.
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Item 2: Inversion of Πi = f(c0
i )—performed analytically when possible, numerically

otherwise.

Item 3: Initialization of the numerical method to solve specific nonlinear algebraic
equations, i.e., provide suitable starting guess values—in the case it may be
required by the applied numerical method.

Table 3.3: Expressions for quotients, q0
i /c

0
i , of selected isotherm models, cf. Table 2.2,

p. 17.

Isotherm Quotient

Langmuir [65] q sat
i

bi
1 + bic0

i

(3.15a)

Bi-Langmuir [14] q sat
i1

bi1
1 + bi1c0

i

+ q sat
i2

bi2
1 + bi2c0

i

(3.15b)

Freundlich [7, 14] ai c
0
i

1−νi
νi (3.15c)

Quadratic [43] q sat
i

bi1 + 2 bi2c0
i

1 + bi1c0
i + bi2c0

i
2 (3.15d)

Quadratic plus
Langmuir [51, 52]

q sat
i1

bi1 + 2 bi2c0
i

1 + bi1c0
i + bi2c0

i
2 + q sat

i2
bi3

1 + bi3c0
i

(3.15e)

O’Brien & Myers [77] q sat
i

[
bi

1 + bic0
i

+
σ2
i bi

(
1− bic0

i

)
2 (1 + bic0

i )
3

]
(3.15f)

Tóth [78, 79] q sat
i

bi[
1 + [ bic0

i ]νi
] 1
νi

(3.15g)

Redlich-Peterson [69, 80] ai

1 + bic0
i
νi (3.15h)

BET [14, 44, 66] q sat
i

biS
[ 1− biLc0

i ] [ 1− biLc0
i + biSc0

i ] (3.15i)

Sips [36, 86]
q sat
i

bi
1
νi c0

i

1−νi
νi

1 + [ bic0
i ]

1
νi

(3.15j)
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Table 3.4: Reduced potentials, Πi = f(c0
i ), obtained with Equation (3.9).

Model Result

Langmuir [65] Πi = q sat
i ln

[
1 + bic

0
i

]
(3.16a)

Bi-Langmuir [14] Πi = q sat
i1 ln

[
1 + bi1c

0
i

]
+ q sat

i2 ln
[

1 + bi2c
0
i

]
(3.16b)

Quadratic [43] Πi = q sat
i ln

[
1 + bi1c

0
i + bi2c

0
i

2
]

(3.16c)

Quadratic plus
Langmuir [51, 52]

Πi = q sat
i1 ln

[
1 + bi1c

0
i + bi2c

0
i

2
]

+ q sat
i2 ln

[
1 + bi3c

0
i

]
(3.16d)

O’Brien & Myers [77] Πi = q sat
i

[
ln
[

1 + bic
0
i

]
+ σ2

i bic
0
i

2 [ 1 + bic0
i ]2

]
(3.16e)

Tóth [78, 79] a

Πi = θi −
θi
νi

ln [ 1− θ νii ]−
∞∑
k=1

θkνi+1
i

kνi [ kνi + 1 ] ,

θi ≡
q0
i

q sat
i

, q0
i = f(c0

i ) (3.16f)

Redlich-
Peterson [69, 80] b

Πi = aic
0
i · 2F1

[
1 , 1

νi
, 1 + 1

νi
, −bic0

i
νi
]

(3.16g)

BET [14, 44, 66] Πi = −
q sat
i ln

[
1− biLc0

i

]
biL

+
q sat
i ln

[
1− biLc0

i + biSc
0
i

]
biL − biS

(3.16h)

Dubinin-Radushkevich
(D-R) [7, 83, 84, 92] c Πi = q sat

i exp
[
− 1

4B2
i

]
+ q sat

i

√
π

2Bi

[
erf
[ 1

2Bi

]
− erf

[
Bi ln

[
c sat
i

c0
i

]]]
(3.16i)

UNILAN [79] Πi = q sat
i

2ηi

ηi∫
−ηi

ln
[

1 +
(
c0
i

κi

)
exp ζ

]
dζ, ηi > 0 (3.16j)

Sips [36, 86] Πi = νi q
sat
i ln

[
1 +

[
bic

0
i

] 1
νi

]
(3.16k)

Fractal BET [87] d

Πi = q sat
i

biS
biL


ln
[

1− biLc0
i

]
ln

[
biL
(
1− biLc0

i + biSc
0
i

)
biS

]
+

Li 2
[
biLc

0
i

]
+ Li 2

[
[ biL − biS ]

[
biLc

0
i − 1

]
biS

]
 (3.16l)

a. q0
i = f(c0

i ) from isotherm expression, Eq. (2.3g).
b.Uses the 4-argument hypergeometric function 2F1[ (·, ·); ·; · ].
c. In the second summand of the r.h.s., π = 3.14 · · · .
d.Employs the single argument polygeometric function Li 2[·]. Computed with

Mathematica R© [141].

By inspection of the IAST equations a standard approach for their solution would be
as follows. Single component isotherm models, i.e., algebraic equations, are introduced
in Equation (3.9) that fit well to experimental measurements. IAST has the flexibility
that the best suitable single component adsorption isotherm model for each of the
independently measured experimental data sets should be used. It is necessary to keep
in mind though, that the IAST prediction is particularly sensitive to the accuracy of the
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equilibrium data in the low concentration region, because this defines the starting point
to build-up in spreading pressure—i.e., surface potential—by integration of (3.9). These
integrals can be computed either in closed form, as listed in Table 3.4, or approximated
numerically. In general, this procedure yields a nonlinear algebraic system.

3.3.2 Analytical solutions

Taylor series expansions of LeVan & Vermeulen [142] These authors developed
successive expansions to approximate the functional relationship Π = f(c1, c2); the
number of terms in the expansion determines the achievable computational accuracy.
These are cheap to evaluate and provide an analytical approximation qi = f(c1, c2), i =
1, 2 when the single component isotherms are either expressed by Langmuir (2.3a) or
Freundlich (2.3c) equations. They suggest the possibility to apply their technique to
any type of single component isotherm for which the explicit expression, c0

i = f−1(Π)
exists—cf. Item 1 & Item 2.

Padé approximants of Frey & Rodrigues [143] Two ideas to perform IAST cal-
culations are suggested by these authors. A Padé approximant can be used to represent
c0
i = f−1(Π). As a result, an explicit substitute representation, qi = f(c), i = 1, . . . , N ,
is obtained, as done by LeVan & Vermeulen [142]. The accuracy of the expression de-
pends on the kind of approximant employed. An important idea presented in this
publication is to fit the equivalent Padé representation directly to experimental equi-
librium data. One pitfall that can be quickly identified with this method is related to
the ability of the Padé approximation to represent the equilibrium data accurately over
sufficiently wide concentration ranges, as required for IAST calculations, in general—cf.
Equation (3.4′) and Section 3.2.

Solution for competitive binary mixtures with the Quadratic model [43] Ilić
et al. published an analytical solution where each single component adsorption isotherm
is expressed by the Quadratic isotherm model, Equation (2.3d); the problem in essence
solves a cubic polynomial, whose solution can be obtained using the ansatz devised by
Nickalls [144] via reformulation of the analytical formulæ of Cardano [145].

Solution for competitive binary mixtures of Tarafder et al. [44] A general
approach for binary mixtures of compounds exhibiting either BET (Equation (2.3i)),
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Langmuir (Equation (2.3a)) or Quadratic (Equation (2.3d)) isotherm courses was pro-
posed and demonstrated by these researchers.

It is interesting to observe that up to now, the task to obtain closed form solutions
to IAST equations has focused almost exclusively on competitive binary mixtures, i.e.,
N = 2. The general case with arbitrary, N ≥ 3, components seems at this point in-
tractable∗. Despite of this, closed form solutions for two components are a fundamental
tool for preliminary calculation and validation of solutions for IAST equations, partic-
ularly valuable to analyze errors of numerically obtained estimations—this is addressed
again in connection with the developed solution approach in Chapter 5.

3.3.3 Numerical solutions

Two widely applied strategies, designated as Case I and Case II—presented below
in detail—are described by Do [36] and were originally presented by Myers & Valen-
zuela [78, 79]. The strategy selection basically depends on whether c0

i can be expressed
as a function of Π or not—cf. Item 1 & Item 2, p. 36.
Recently Mangano et al. [146] have presented a detailed analysis of the convergence of
these general solution methods. Their contribution corrects possible shortfalls in provid-
ing adequate starting values to these Newton-type algorithms. Additional concepts
worth mentioning, which aim at speeding up IAST calculations, were also presented
recently by Santos et al. [147] and Santori et al. [148].

Case I The simplest calculation is performed in two steps:

1. Each equation, Π = f(c0
i ), i = 1, . . . , N , is integrated directly—cf. Item 1; Table 3.4

provides some examples of this result for several isotherm models.

2. Each of the equations Π = f(c0
i ) is now analytically inverted to provide explicit

functions in Π, i.e. c0
i = f−1(Π), i = 1, . . . , N—cf. Item 2.

These expressions in turn, are substituted in Equation (3.10), yielding the nonlinear
algebraic equation

F (Π) :=
N∑
i=1

ci
c0
i

− 1 = 0, i = 1, . . . , N, (3.17)

∗This is most likely to change in the near future, as interest in IAST is perpetuated.
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which possesses the single unknown Π. An iterative procedure to treat Equation (3.17)
is given in detail in Algorithm 3.1, using the Newton-Raphson method—see e.g., [36,
149–152].

1: procedure IAST_case1(c = [c1, . . . , cN ]T ) . Get equilibrium values q = f(c)
2: Π[0] ← Π guess

3: while |Π[k+1] −Π[k]| ≤ εTol. do . Stopping criterium

4: ∆Π[k+1] ← − F(Π[k])
F ′(Π[k])

5: Π[k+1] ← ∆Π[k+1] + Π[k]

6: Π∗ ← Π[k+1]

7: end while
8: return Π∗ . Π∗ is the sought after root
9: c0,∗

i ← f(Π∗); i = 1, . . . , N
10: q0,∗

i ← f(c0,∗
i )

11: qi ←
[
N∑
i

1
q0,∗
i

ci

c0,∗
i

]−1 [
ci

c0,∗
i

]
; i = 1, . . . , N

12: q ← [q1, . . . , qN ]T

13: end procedure
Algorithm 3.1: IAST calculation for Case I; see among others [36, 78, 79].

Case II If integration & inversion are not available in closed form, a second iteration
loop has to be embedded in the computation given by Algorithm 3.1.

Π [k+1] = Π [k] − F [k]

F ′ [k] (3.18a)

where

F ′ ≡ dF
dΠ =

N∑
i=1

∂F
∂c0i

∂c0i
∂Π . (3.18b)

The terms ∂c0i /∂Π in Equation (3.18b) are computed with Gibbs adsorption isotherm,
Equation (3.9), written in differential form:

∂c0i
∂Π = c0

i

q0
i

. (3.18c)

In this case an outer iteration loop is required to estimate Π and an inner loop to
obtain c0

i (Π), as listed in Algorithm 3.2. So suitable starting values, Πguess & c0,guess,
are required for each of these iteration loops.
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1: procedure IAST_case2(c = [ c1, . . . , cN ]T ) . Get equilibrium values q = f(c)
2: Π[0] ← Π guess

3: while |Π[k+1] −Π[k]| ≤ εTol. do . Stopping criterium, outer loop
4: for i← 1, N do
5: c0

i
[0] ← c0, guess

i

6: while |c0
i

[`+1] − c0
i

[`]| ≤ εTol. do . Stopping criterium, inner loop

7: ∆c0
i

[`+1] ← − G(c0
i

[`])
G′(c0

i
[`])

8: c0
i

[`+1] ← ∆c0
i

[`+1] + c0
i

[`]

9: c0,∗
i ← c0

i
[`+1]

10: end while
11: return c0,∗

i

12: end for
13: c0,∗ ←

[
c0,∗

1 , . . . , c0,∗N

]T
14: ∆Π[k+1] ← −

F
(
Π[k](c0,∗)

)
F ′
(
Π[k](c0,∗)

)
15: Π[k+1] ← ∆Π[k+1] + Π[k]

16: Π∗ ← Π[k+1]

17: end while
18: return Π∗, c0,∗ . Π∗, c0,∗ are the sought after roots
19: q0,∗

i ← f(c0,∗
i ); i = 1, . . . , N

20: qi ←
[
N∑
i

1
q0,∗
i

ci

c0,∗
i

]−1 [
ci

c0,∗
i

]
; i = 1, . . . , N

21: q ← [ q1, . . . , qN ]T

22: end procedure
Algorithm 3.2: IAST calculation for Case II; see among others [36, 78, 79].

Method of O’Brien & Myers [77, 153] This is the last method to be addressed in
detail, since it is closely related to the solution method developed in Chapter 4. These
authors looked closely at Equation (3.6) and realized that it can be expressed as a series
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of equalities

Π1(c0
1) = Π2(c0

2), (3.19a)

Π2(c0
2) = Π3(c0

3), (3.19b)
...

ΠN−2(c0
N−2) = ΠN−1(c0

N−1), (3.19c)

providing N − 1 equations, whereby only fictitious concentrations, c0
i , i = 1, . . . , N ,

appear. Equation
N∑
i=1

ci
c0
i

= 1, (3.10)

completes system (3.19), so that it is properly determined—i.e., N equations for N
unknowns. This approach has significant and important advantages to other methods:

1. it conveniently exploits the structure of IAST equations by emphasizing that obtain-
ing c0 =

[
c0

1, . . . , c
0
N

]T is a key aspect to solve the problem, since the rest of IAST
equations, viz. Equation (3.11) & Equations (3.4), can be expressed as functions of
c0 only;

2. furthermore, equalities (3.19) can be re-cast as [153]

Π1(c0
1) = ΠN (c0

N ), (3.20a)

Π2(c0
2) = ΠN (c0

N ), (3.20b)
...

ΠN−1(c0
N−1) = ΠN (c0

N ), (3.20c)

significantly reducing the computational cost needed to solve the resulting nonlinear
algebraic system of equations via application of Newton-Raphson method, due to
the particular structure of (3.20).

Just as in other iterative methods presented before—cf. Algorithm 3.1 & 3.2, successful
calculation with this method relies on provision of suitable starting values, c0, guess, to
perform iterations. Moreover, this method presumes construction of (3.20), which means
that if integration— Item 1—of Equation (3.9) is not available in closed form, for any
of the single component adsorption isotherms involved, the method does not work.
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Summary

The derivation of the IAST model was explained, starting from the definition of an
ideal adsorbed solution and subsequently applying the equations of thermodynamics,
discussed in Sections 2.3 & 2.4. Several established solution strategies were outlined,
and most importantly, acknowledging three factors, viz. Item 1, Item 2 & Item 3,
p. 36, which are crucial to propose and implement a novel solution principle, the subject
addressed in depth in Chapter 4.

It is also important to mention some practical difficulties, encountered when IAST
is applied to gathered experimental data, including:

1. limited availability of equilibrium data in the low concentration range, i.e., c0
i → 0;

2. limited accuracy of measured data;

3. reliable extrapolations from measured data, beyond the highest measured equilibrium
value;

4. fitted adsorption isotherm equations to single component equilibria; &

5. existence of actual saturation limits or solubility limits for specific adsorbate/adsor-
bent systems—thus reinforcing the concept of fictitious (hypothetical) fluid phase
concentrations.

Dealing with these practical difficulties is essential for correct application of the model.
While the assumption of an ideally-behaved adsorbed phase seems rather restrictive,
it has been proven to work in many practical cases. One of the key reasons behind
this has to do with the fact that no actual restrictions are imposed on the shape of the
single component equilibria, q0

i = f(c0
i ). Moreover, an ideal adsorbed solution can be

considered a limit case for real adsorbed phases.



Chapter 4

Efficient approach to solve IAST
equations∗

“. . .Good. That’s what I wrote them [the papers] for, so people could use them.”

– Shivaji Sircar at FOA 11, Baltimore, MD, USA

Introduction

Model equations for IAST have been introduced and explained in detail in Chap-
ter 3. Standard, documented techniques for solving the model were explained

and discussed as well. Now attention is set on an efficient approach that can incorporate
a large number of single component isotherm models in a thermodynamically consistent
way. The method is accurate, robust, efficient, and easy to implement; its derivation
and justification, together with its mathematical features, are explained next.

∗Chapter Disclaimer. Partial contents of this chapter have been reported in: “A Method for
Efficiently Solving the IAST Equations with an Application to Adsorber Dynamics” [53]. The information
is presented as part of this dissertation and it is an original published contribution to the field in a peer-
reviewed journal. There is none whatsoever intention of self-plagiarism; the information serves rather as
complementary content to this dissertation. Furthermore, the publishing company has granted partial
reproduction of the contents in the article mentioned above. [License No.: 3743030164049, requested
and obtained on Nov. 6 th, 2015 from John Wiley & Sons, Inc. through Copyright Clearance Center.]

45
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4.1 Solution method

If a closer look is taken at the equilibrium condition given by Equation (3.6), it is easily
observed that it can be formulated as N − 1 equalities:

Π1(c0
1) = Π2(c0

2),

Π1(c0
1) = Π3(c0

3),
...

Π1(c0
1) = ΠN (c0

N ),

supplemented with
c1
c0

1
+ c2
c0

2
+ · · · + cN

c0
N

= 1

(4.1)

to yield a well determined system of size N in the c0 =
[
c0

1, . . . , c
0
N

]T unknowns.
This starting point was already documented by O’Brien & Myers for their calculation
method [153], as explained in Section 3.3.3, p. 40.
Now, it can be inferred further that if equalities in (4.1) hold true, then

c0
k = ψk(c0

1), k = 1, . . . , N (4.2)

also holds.

9 The solution principle, as expressed by the—simple—function ψk
in (4.2), is the core of this dissertation.

With help of Equation (4.2), implicit differentiation∗ can be applied directly to the N−1
equalities (4.1), so that

Π′k
(
c0
k(c0

1)
) d

dc0
1
c0
k(c0

1) = Π′1(c0
1), k = 1, . . . , N (4.3)

and the following decoupled, non-autonomous initial value problem (IVP)† can be for-
mulated

dc0
k

dc0
1

= Π′1(c0
1)

Π′k(c0
k)

= q0
1(c0

1)/c0
1

q0
k(c0

k)/c0
k

. (4.4a)

This initial value problem can be integrated with initial condition

c0
k(0) = 0, k = 1, . . . , N, (4.4b)

∗See among many others [154].
†See for example [155, 156], among many other standard texts on fundamentals of ODEs.
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which holds true and is physically correct, because when the adsorbent is clean—i.e., free
of adsorbable components, qk = 0, there are no changes in the interfacial tension of pure
fluid phase alone in contact with the adsorbent, and therefore no changes in spreading
pressure—surface potential, π, occur. This in turn means that the hypothetical fluid
phase concentrations, c0

i , must be zero; this reference state is clearly stated by the lower
limit of integral (3.9).
The solution principle (4.2) reduces the amount of problem unknowns by one, substan-
tially simplifying the problem to be solved by exploiting its structure.
It is important to underline that the choice of writing c0

1 as the independent variable
in (4.2) is completely arbitrary; the problem formulation is also valid when any of the
other c0

k, k 6= 1, is chosen as independent variable.
In order to carry out the integration of (4.4), it is only necessary that

dq0
i

dc0
i

(0) > 0 (4.5a)

is fulfilled for increasing single component adsorption isotherms, q0
i = f(c0

i ), with the
property

Πi(c0
i )→∞ for c0

i →∞, i = 1, . . . , N. (4.5b)

If a trivial, independent variable, ξ, is introduced to proceed with the integration of
initial value problem (4.4), so that

dc0
k

dξ = q0
1 / c

0
1

q0
k / c

0
k

, (4.6a)

c0
k(ξ = 0) = 0, k = 1, . . . , N, (4.6b)

a solution in the positive octant of an N-dimensional space, of coordinates c0
1, . . . , c

0
N ,

is computed. For k = 1—of course—this is trivial, as dc0
1/dξ = 1, and therefore c0

1 ≡ ξ.
The result obtained with (4.6) is just ψk(c0

1), Equation (4.2). It can be proven that
the solution in this space exists and is unique [53] for single component adsorption
isotherms that fulfill the condition (4.5a). To this matter, it is important to stress
once more, that certain single component adsorption isotherm equations do not provide
consistent expressions for the zero concentration limit requirement of condition (4.5a).
For these isotherm models the solution method does not work—cf. Table 2.3, p. 20.

Particular solutions, c0,? The integration of (4.4) yields an orbit that provides the
general solution of the form (4.2). In order to locate any required particular solution,
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Figure 4.1: Geometric representation of applied solution principle for N = 3 adsorbates.
Solution orbit, ψ(ξ), which projects towards the interior of the positive octant defined by
c0, cuts hypersurfaces Z—cf. Equation (4.7), transversely. Each hypersurface is uniquely de-
fined by input fluid phase concentrations c. Component 1: octylbenzene (C8); component
2: decylbenzene (C10); & component 3: undecylbenzene (C11). Input fluid phase concen-
trations: c = {50, 50, 50}[ mM ]. Fictitious fluid phase concentrations at equilibrium: c0 =
{236.05, 144.97, 112.80}[ mM ]. Exerted reduced spreading pressure: Π = 829.48 [ mmol/l ads. ].
Adsorbed phase concentrations at equilibrium: q = {61.49, 100.13, 128.69}[ mM ]. Applied
single component isotherm parameters are listed in Table A4, Appendix A8, p 174.

c0,?
i (c0,?

1 ), for fluid phase concentrations, c? = [ c?1, · · · , c?N ]T—given as input informa-
tion of the equilibrium calculation, integration proceeds up to the point where closure
condition (3.10) is fulfilled; at that point, orbit (4.6) cuts transversely the N -dimensional
hypersurface defined as

Z(?) :=
[
N∑
i=1

c?i
c0
i

− 1
]

= f(c0
1, . . . , c

0
N , c

?
1, . . . , c

?
N ), (4.7)

and the integration stops—this hypersurface lives in the positive octant, c0
i > 0, ∀i.

The inclusion of (4.7) in computations is done with the aid of piecewise-defined function
‘cut’, leading to the autonomous IVP

dc0
k

dξ = cut q
0
1 / c

0
1

q0
k / c

0
k

, (4.8a)

c0
k(0) = 0, k = 1, . . . , N, (4.8b)
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with

cut := f(c0
1, · · · , c0

N , c
?
1, · · · , c?N ) =


1,
[

N∏
j=1

c0
j

] [
N∑
i=1

c?i
c0
i

− 1
]
> 0,

0, otherwise.

(4.8c)

Stationary values—sought solution, c0,?, are subsequently applied in Equations (3.11)
& (3.12) to obtain q? at equilibrium.

9 Advantages of this approach become clear when looking at the
simplicity of IVP formulation (4.8); difficulties in computing solutions
described by Item 1, Item 2 & Item 3, p. 36, are satisfactorily over-
come.

4.2 Physical interpretation of the solution approach

Integration of IVP (4.8) from c0
i (0), i = 2, . . . , N to a positive, finite value c0,?

i = ψi(ξ) is
equivalently represented by integration of the area under the curve of q0

i /c
0
i = f(c0

i ); this
integral is simply Πi = f(c0

i )—cf. Equation (3.9), p. 34. Expressions for these reduced
surface potentials are listed in Table 3.4 for typical isotherm models. This is illustrated
in Figure 4.2. Moving along the solution orbit, Ψ(ξ), is analogous to simultaneously
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Figure 4.2: Representation of build-up in reduced surface potential, i.e., spreading pressure,
Π for particular given liquid phase concentrations, c?i = {0.5, 1.5} [ mol/l ], applying IAST
with single component Langmuir isotherms, Equation (2.3a). Spreading pressure value, Π =
1.5041 [ mol/l ads. ] was obtained directly with Equation (3.16a), Table 3.4, p. 38. Parameters
used to generate the plots are listed in Table A3, Appendix A2.2, p. 165.
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increasing/decreasing the reduced potential values, Πi, i = 1, . . . , N , thus moving from
one equilibrium point to the next. This, in turn, translates to changes in adsorbed
phase concentration values, qi, expressed by Equation (3.12). This is congruent with
the expected physical behavior when the adsorbed phase is considered ideal.

4.3 Jacobian of q under IAST framework

For various purposes it is beneficial to compute derivatives of adsorption isotherms, q =
f(c), with respect to arguments, c, efficiently—cf. Section 6.4, Kvaalen et al. [157, 158]
and Rhee et al. [159, 160]. In the case of competitive adsorbed phase concentrations,

qi = f(c1, . . . , cN ), i = 1, . . . , N,

the matrix of partial derivatives of q(c), i.e., Jacobian matrix J
(
q(c)

)
of size N ×N , is

defined as

J
(
q(c)

)
:=


∂q1
∂c1

· · · ∂q1
∂cN... . . . ...

∂qN
∂c1

· · · ∂qN
∂cN

 . (4.9)

For implementation, it is of significant advantage to compute these derivatives directly,
preferably with explicit, analytical formulæ that can yield accurate results. In the case
of some multicomponent adsorption models this is trivial. For example, the multicom-
ponent Langmuir isotherm,

qi = f(c) = q sat
i

bi ci

1 +
N∑
k=1

bk ck

, i = 1, . . . N (2.14a)
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—Table 2.4, p. 23, has the following Jacobian for N adsorbates:

J
(
q(c)

)
=



i = j,
∂qi
∂cj

=
q sat
i bi

[
1 +

N∑
k=1

bk ck

]
− bi q sat

i bi ci[
1 +

N∑
k=1

bk ck

]2 ,

i 6= j,
∂qi
∂cj

= − q sat
i bj bi ci[

1 +
N∑
k=1

bk ck

]2 ; i = 1, . . . , N, and j = 1, . . . , N.

(4.10)

When closed form expressions such as (4.10) are not available, J
(
q(c)

)
must be approx-

imated numerically; this usually results in costly algorithms from the computational
point of view—see e.g., Tolsma & Barton [161]. Henceforth, two crucial reasons to try
to obtain closed form expressions for J

(
q(c)

)
are a) accuracy; and b) computational

cost —thus motivating their attainment.
The fact that single component isotherms considered, q0

i = f(c0
i ), fulfill conditions (4.5a)

& (4.5b) and have a representation of the form given by Equation (2.2), p. 16, gives
way to explicit, analytical formulæ for this Jacobian, written in compact form as [53]

J
(
q(c)

)
≡ [ I + J2 ] diag

[
q tot
c0
i

]
, (4.11a)

with I + J2 expressed by objects—i.e., simple vector and matrix products, so that

I + J2 :=
(
I −

[
xwT

] ) (
I −

[
WxeT

] )
− σ

[
xeT

]
; (4.11b)

and thus yielding the working formula∗:

J
(
q(c)

)
=
[ (

I −
[
xwT

] ) (
I −

[
WxeT

] )
− σ

[
xeT

] ]
diag

[
q tot
c0
i

]
, (4.11c)

given in terms of a rank-2 perturbation of the identity matrix, I. Equivalently holds

J
(
q(c)

)
=

I + [x, y]

 fT

−eT

 diag
(
qi
ci

)
(4.11d)

∗By the term working formula it is meant to emphasize that this expression is directly applicable in
computations.
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after a suitable factorization. Table 4.1 lists objects’ definitions used throughout ex-
pressions (4.11). These are computed with c = [ c1, . . . , cN ]T and the corresponding
c0 =

[
c0

1, . . . , c
0
N

]T at equilibrium.
It should be acknowledged that fictitious fluid phase concentrations, c0, can be com-
puted with any of the IAST calculation methods described before—cf. Section 3.3, p. 36,
as well as the IVP approach described in Section 4.1.

Justification of Jacobian formula (4.11).

The validity of J (q), Equation (4.11), was prepared by Flockerzi [162] and follows
below∗.

Table 4.1: Definitions of objects required for computation of J (q); k = 1, . . . , N .

Object Expression

Scaled reciprocal adsorbed
phase concentrations

wk := q tot

q0
k

, w = col(wk), W = diag(wk) (4.12a)

Column vector of adsorbed
phase mole fractions

xk := ck
c0
k

, x = col(xk), X = diag(xk) (4.12b)

Column vector of fluid
phase mole fractions

yk := qk
c0
k

, y = col(yk), Y = diag(yk) (4.12c)

Scalar σ σ :=
N∑
k=1

wk ck q tot
d

dc0
k

1
q0
k

(4.12d)

Row vector of ones of size
1×N

eT = ( 1, · · · , 1 ) (4.12e)

Row vector fT fT :=
[
wTWx− σ

]
eT − wT (4.12f)

Proposition 4.3.1. Under the frame of IAST, Equation (4.11) is a valid representation
of J

(
q(c)

)
.

Proof. Let the following substitutions apply in order to simplify the notation: Qi ≡ qi;
q ≡ q tot; xi ≡ ci; Xi ≡ c0

i ; and zi ≡ xi/Xi. Further, the proof will be completed in
stepwise fashion, thus clearly illustrating some supplementary features.

∗In this proof standard column vector & matrix notations are used, unless otherwise specified.
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Step 1 Equation (3.12) in p. 35, is written in vector form, so that


Q1
...
QN

 = q


z1
...
zN

 , z ≡


x1/X1

...
xN/XN

 ∴ Q = qz. (4.13a)

Hereby, the following expression, obtained by re-writing the scalar (3.11), becomes
significantly useful throughout this proof:

1
q
≡
(

1
q0

1
z1 + · · · + 1

q0
N

zN

)
=
(
W̃1z1 + · · · + W̃NzN

)
= W̃ T z, (4.13b)

whereby reciprocals W̃i ≡ 1/q0
i have been introduced for a more compact notation.

An expression for the Jacobian, J (Q), is obtained by application of the Chain Rule
to (4.13a), yielding

J (Q) = z [ ∂zq zx + ∂Xq Xx ] + qzx. (4.13c)

Step 2 Now, appropriate expressions for each of the terms in Equation (4.13c) need
to be addressed. The partial derivatives ∂zq and ∂Xq are given by

∂zq = −q2
(

1
q0

1
, · · · , 1

q0
N

)
= −q2

(
W̃1, · · · , W̃N

)
= −q2W̃ T and (4.13d)

∂Xq = −q2
(
z1

( 1
q0

1

)′
, · · · , zN

(
1
q0
N

)′)
= −q2

(
z1W̃

′
1, · · · , zNW̃ ′N

)
, (4.13e)

respectively. In deriving expressions (4.13d) & (4.13e), it is only necessary to keep in
mind that q0

i = f(Xi), ∀ i.
Recalling the solution approach, proposed in Section 4.1, zi are functions of Xi and
‘parameters’ x1, · · · , xN , so that

zi = f
(
xi, Xi(x1, . . . , xN )

)
, i = 1, . . . , N. (4.13f)

Step 2a In Equation (4.13c), the Jacobian zx is required, so this is computed first for
each component i. For example, for component 1 holds z1 = f ( x1, X1(x1, . . . , xN ) );
since, z1 = x1/X1, then

z1x1 ≡
∂z1
∂x1

= X1 − x1X
′
1

X2
1

= 1
X1
− z1
X1

∂X1
∂x1

.
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Therefore,

zx =



1
X1

0 · · · 0

0 . . . ...

... . . . 0

0 0 1
XN


−



z1
X1

∂X1
∂x1

z1
X1

∂X1
∂x2

· · · z1
X1

∂X1
∂xN

z2
X2

∂X2
∂x1

z2
X2

∂X2
∂x2

· · · z2
X2

∂X2
∂xN

...
...

...

zN
XN

∂XN

∂x1

zN
XN

∂XN

∂x2
· · · zN

XN

∂XN

∂xN


,

whereby factorizing its rightmost matrix leads to the compact form

zx = diag
( 1
Xi

)
− diag

(
zi
Xi

)
Xx, i = 1, . . . , N. (4.13g)

Step 2b In order to compute the Jacobian Xx in Equation (4.13c) and (4.13g), it is
necessary to turn now to the original system of equations to solve, expressed in terms
of generating functions, vk, k = 1, . . . , N—see Appendix A6 for details on these
functions. The system of equations to consider is therefore

v1(X1)− v2(X2) = 0, v1(X1)− v3(X3) = 0, · · ·

v1(X1)− vN (XN ) = 0,
x1
X1

+ · · · + xN
XN
− 1 = 0.

(4.13h)

Differentiating (4.13h) with respect to parameters x yields

v′1(X1)(X1)x − v′2(X2)(X2)x = 0, v′1(X1)(X1)x − v′3(X3)(X3)x = 0, · · ·

v′1(X1)(X1)x − v′N (XN )(XN )x = 0,
1
X1
− x1(X1)x1

X2
1

− x2(X2)x1

X2
2

− · · · = 0, −x1(X1)x2

X2
1

+ 1
X2
− x2(X2)x2

X2
2

− · · · = 0, · · ·

− · · · + 1
XN
− xN (XN )xN

X2
N

= 0,

(4.13i)
with column vectors (Xk)x ≡ [ (Xk)x1 , · · · , (Xk)xN ]T , k = 1, . . . , N . From the struc-
ture of (4.13i), it is easy to observe that re-arranging terms allows a factorization of the
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form:
v′1(X1) −v′2(X2) 0 0 · · ·
v′1(X1) 0 −v′3(X3) 0 · · ·
· · · · · · · · · · · · · · ·
x1
X2

1

x2
X2

2

x3
X2

3

x4
X2

4
· · ·

Xx =


0 0 · · · · · · · · ·
0 0 · · · · · · · · ·
· · · · · · · · · · · · · · ·
1
X1

1
X2

· · · · · · · · ·

 . (4.13j)

Whilst (4.13j) may seem cumbersome, it can be re-written in a very simple and useful
manner, because a representation of the Jacobian Xx is sought at equilibrium; in other
words, holds:

v1
!= v2, v1

!= v3, · · · , v1
!= vN , (4.13k)

which, together with the fact that (4.13j) is rank-deficient, gives way to factorization

Xx = 1
µ


1
v′1...
1
v′N


( 1
X1

, · · · , 1
XN

)
. (4.13l)

In light of property

q0
k = f(ξ) = ξ

v′k(ξ)
vk(ξ)

= 1
W̃k

, (2.2)

p. 16—repeated here for completeness, a useful computation results:

pk = 1
Xkv

′
k

= W̃k

vk
, (4.13m)

obtained simply by re-arranging terms. The scalar µ in Equation (4.13l) is defined as

µ :=
N∑
i=1

xi
X2
i v
′
i

=
N∑
i=1

xi
Xi

1
Xiv′i

=
N∑
i=1

zi
Xiv′i

=
N∑
i=1

zipi. (4.13n)

With the help of the pk in (4.13m), the object

α := 1
pT z


z1p1
...

zNpN

 (4.13o)
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can be defined; each αk is expressed as

αk = zk∑
j pjzj/pk

= zk∑
j
W̃j

vj
zj/

W̃k
vk

= zkW̃k∑
j W̃jzj

= 1
W̃ T z

W̃kzk = q W̃kzk, (4.13p)

herewith effectively canceling the vk!

Step 2c With the help of (4.13o), it is possible to re-write Equation (4.13g) as:

zx = diag
( 1
Xi

)
− α

( 1
X1

, · · · , 1
XN

)
= diag

( 1
Xi

)
− α diag

( 1
Xi

)
eT

= diag
( 1
Xi

) [
I − αeT

]
;

(4.13q)

and as it becomes evident from (4.13p), zx is now given in terms of Xi and xi only!

Step 3 With the computational details explained throughout Step 2, it is now possible
to substitute suitable terms in (4.13c). With the help of (4.13d), (4.13e) and (4.13q)
holds

q−2J (Q) = −z
[
W̃ T zx +

(
z1W̃

′
1, · · · , zNW̃ ′N

)
Xx

]
+ W̃ T z zx

= W̃ T z

(
I − 1

W̃ T z
zW̃ T

)
zx − z

(
z1W̃

′
1, · · · , zNW̃ ′N

)
Xx

= W̃ T z

(
I − 1

W̃ T z
zW̃ T

)
diag

( 1
Xi

) [
I − αeT

]
− z

(
z1W̃

′
1, · · · , zNW̃ ′N

)
Xx.

(4.13r)

Step 3a In order to conveniently handle the terms W̃ ′1, · · · , W̃ ′N in (4.13r), the scalar

β :=
N∑
i=1

αi
[
W̃ ′iXi

]
=
∑N
i=1

[
ziW̃

′
iXipi

]
pT z

= 1
µ

N∑
i=1

[
ziW̃

′
iXipi

]
(4.13s)

is defined by application of (4.13n). Since it can be established that

diag
( 1
Xi

)
βzeT = z

(
z1W̃

′
1, · · · , zNW̃ ′N

)
Xx, (4.13t)
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Equation (4.13r) becomes

q−2J (Q) = −z
[
W̃ T zx +

(
z1W̃

′
1, · · · , zNW̃ ′N

)
Xx

]
+ W̃ T z zx

= W̃ T z

(
I − 1

W̃ T z
zW̃ T

)
zx − z

(
z1W̃

′
1, · · · , zNW̃ ′N

)
Xx

= W̃ T z

(
I − 1

W̃ T z
zW̃ T

)
diag

( 1
Xi

) [
I − αeT

]
− diag

( 1
Xi

)
βzeT .

(4.13u)

Step 3b Finally, Equation (4.13u) can be re-arranged to arrive at the form of Equa-
tion (4.11). With (4.13b) the W̃ T z term is substituted by q, so that

q−2J (Q) = 1
q

(
I − q zW̃ T

)
diag

( 1
Xi

) [
I − αeT

]
− diag

( 1
Xi

)
βzeT ; (4.13v)

solving for J , factorizing diag
(

1
Xi

)
and re-arranging yields

J (Q) =
[ [

I − q zW̃ T
] [

I − αeT
]
− qβzeT

]
diag

[
q

Xi

]
. (4.13w)

Finally, to write (4.13w) in terms of the scaled objects listed in Table 4.1, substitutions:
wT ≡ qW̃ T , σ ≡ qβ and Wx ≡ α are applied, so that

J =
[ [

I − xwT
] [

I −WxeT
]
− σxeT

]
diag

[
q tot
c0
i

]
. (4.11)

This completes the proof.

The particular structure of (4.11) is not arbitrary; it is specifically designed to ad-
dress potential computational issues and therefore warrants certain degree of robustness,
needed for its later application. Moreover, this is an essential feature if the calculation
of J (q) is embedded in fixed-bed adsorber calculations—cf. Section 7.7, p. 96.
The scalar object

σ :=
N∑
k=1

wk ck q tot
d

dc0
k

1
q0
k

(4.12d)

is of fundamental importance when computing the Jacobian J (q) with Equation (4.11);
it contains

d
dc0
k

1
q0
k

, k = 1, . . . , N, (4.14)
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i.e., derivatives of the reciprocals of single component isotherms, q0
i = f(c0

i ), which are
easily obtained in closed form∗. Table 4.2 lists some examples of them.

Table 4.2: Selected expressions of the derivatives of reciprocals of adsorbed phase con-
centrations, d

(
1/q0

k

)
/dc0

k. For physically relevant c0
i ∈ [0,∞), the expressions always

yield a negative σ.

Isotherm Expression a

Langmuir d
dc0
i

1
q0
i

= − 1
q sat
i bi c0

i
2 (4.15a)

Quadratic d
dc0
i

1
q0
i

= −bi1 + 4 bi2 c0
i + bi1 bi2 c

0
i

2

q sat
i c0

i
2 [ bi1 + 2 bi2 c0

i ]2
(4.15b)

Quadratic +
Langmuir

d
dc0
i

1
q0
i

= −

q sat
i1

[
1 + bi3c

0
i

]2 [
bi1 + 4bi2c0

i + bi1bi2c
0
i

2
]

+

q sat
i2 bi3

[
1 + bi1c

0
i + bi2c

0
i

2
]2

[
q sat
i1 c0

i

[
bi1 + 2bi2c0

i

] [
1 + bi3c

0
i

]
+

q sat
i2 bi3c

0
i

[
1 + bi1c

0
i + bi2c

0
i

2
] ]2

(4.15c)

Redlich-Peterson d
dc0
i

1
q0
i

= −1 + bi [−1 + νi ] c0
i
νi

ai c0
i

2 (4.15d)

a.Verified with Mathematica R© [141].

∗It is usually a good idea to verify these expressions with a CAS, e.g., Mathematica R© [141].
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Summary

Two central contributions have been presented in detail in this chapter:

1. A method to solve the equations of IAST, developed for generally increasing single
component adsorption isotherms, possessing a positive and finite initial slope—cf.
Equation (4.5). Many isotherm models fulfill this requirement—see Table 2.2; the
method does not work when it is not fulfilled. However, additional manipulations
of single component isotherm expressions can be applied in some cases to alleviate
this minor pitfall—e.g., as suggested by Seidel & Gelbin [163] for extrapolation from
experimentally acquired data of organic solutes dissolved in water, adsorbed by ac-
tivated carbon; and Linders [84] & Linders et al. [92], whereby a repair to Dubinin-
Radushkevich, Equation (2.3j), and Dubinin-Astakhov equations is proposed and
applied to obtain formal Henry limit values for these isotherms at the origin.
A crucial feature of the method consists of illustrating and succintly explaining the
relationship amongst all problem variables involved—i.e., concentrations, thus pro-
viding some insight to their physical meaning; this is possible due to the generation
of a complete solution—orbit—for prescribed fluid phase concentration ranges. Par-
ticular solutions are thereafter sought along this computed functional dependency.
In this sense, the complete solution may be calculated ‘once and for all’ to be later
embedded in applications, e.g., fixed-bed adsorber calculations—cf. Chapters 6 & 7.
The method is a) fast; b) robust; c) accurate; and d) easy to implement.
These aspects are illustrated in detail by practical examples and benchmarking
against other well-established calculation methods in Chapter 5.

2. Analytical formulæ to obtain directly Jacobian of adsorbed phase concentrations,
J (q), using hypothetical fluid phase concentrations, c0, in turn obtained by solving
the IAST equilibrium problem a priori.
These formulæ have several important applications; two of them are addressed in
Chapters 6 and 8.



Chapter 5

Practical aspects of the proposed
solution approach∗

“The purpose of computing is insight, not numbers.”

– Richard Hamming

Introduction

Advantageous features of the solution method [53] introduced in Chapter 4 are now
discussed in detail through several examples, thus illustrating the potential of the

solution approach and its elemental features, as well as conveying insight concerning its
practical implementation.

5.1 Simplicity of implementation

The calculation of adsorption equilibria becomes a simple, straightforward task by means
of problem re-formulation into an IVP, as already explained in Chapter 4. The IVP

∗Chapter Disclaimer. Partial contents of this chapter have been reported in: “A Method for
Efficiently Solving the IAST Equations with an Application to Adsorber Dynamics” [53]. The information
is presented as part of this dissertation and it is an original published contribution to the field in a peer-
reviewed journal. There is none whatsoever intention of self-plagiarism; the information serves rather as
complementary content to this dissertation. Furthermore, the publishing company has granted partial
reproduction of the contents in the article mentioned above. [License No.: 3743030164049, requested
and obtained on Nov. 6 th, 2015 from John Wiley & Sons, Inc. through Copyright Clearance Center.]
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possesses an analytical solution for specific types of single-component isotherm models,
q0
i = f(c0

i ), and number of adsorbable components, N . In the general case, however,
the integration of Equation (4.4) cannot be computed in closed form and therefore
should be performed numerically. This is not an issue, however, as the current state of
the art in numerical solution of ODEs allows for an uncomplicated implementation in
practical terms, with flexible user-defined specification of solution accuracy [156, 164–
166]. Table 3.3, p. 37, provides already a list of quotients q0

i /c
0
i for some isotherm

models, required to implement the method.

Predicting competitive equilibria with Redlich-Peterson single compo-
nent isotherms

A well-known adsorption isotherm is the one proposed by Redlich & Peterson [69], cf.
Table 2.2, p. 17—repeated here for completeness:

q0
i = f(c0

i ) = ai c
0
i

1 + bi c0
i
νi , i = 1, . . . , N. (2.3h)

Despite of the simplicity of (2.3h)—i.e., three adjustable empirical parameters only,
it possesses a non-trivial expression for reduced potential, Π, as listed in Table 3.4,
Equation (3.16g), p. 38, whereby the hypergeometric function∗, 2F1 [ ·, ·, ·, · ], is used.
Alternatively, a closed-form formula presented in [80]

Π(c0
i ) = ai/νi

bi
1/νi

[
π

sin(π/νi)
+
∞∑
m=1

(−1)m ζi
m−(1/νi)

m− (1/νi)

]
, (5.1)

with 1
νi
/∈ N, π = 3.14 · · · , ζi := 1

bi c0
i
νi < 1, can be applied to obtain Π†.

The solution orbit, i.e., ξ 7→ Ψ(ξ), defining the equilibrium relation, c0
2 = ψ2(c0

1), is
∗See among others Abramowitz & Stegun [145] for a formal definition.
†This solution should be applied carefully, since c0

i ∈
(

1/b1/νi
i ,∞

)
must be considered for the series

in formula (5.1) to converge.
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obtained directly with (2.3h), by integrating IVP

dc0
1

dξ = 1, (5.2a)

dc0
2

dξ = a1
a2

[
1 + b2 c

0
2
ν2
]

[
1 + b1 c0

1
ν1
] , (5.2b)

c0
i (0) = 0, i = 1, 2, (5.2c)

in accord with the solution principle described in Section 4.1, in particular Equa-
tion (4.6), p. 47. Figure 5.1 illustrates the solution orbit, c0

2 = ψ2(ξ), obtained by
numerical integration of (5.2), applying in this particular example the single component
equilibria parameters reported by Seidel et al. [167] and listed in Table 5.1.

Table 5.1: Single component adsorption isotherm
parameters for Redlich-Peterson model—cf.
Eq. (2.3h), p. 17—of two organic solutes in
H2O/activated carbon system at 20 ◦C, as
reported by Seidel et al. [167].

Compound Parameters

ai bi νi

[ l/g ] [ l/mmol ]νi [− ]

phenol (component 1) 524 329 0.78
indol (component 2) 2378 1128 0.86

The particular form of the computed orbit is influenced by the r.h.s. of ODE system (5.2)
and applied parameters. The orbit computation—i.e., integration—stops at equilibrium
values: c0,?

1 = 16.9305 [ mmol/l ], c0,?
2 = 2.2679 [ mmol/l ], corresponding to input fluid

phase concentration values: c?1 = 2.0 [ mmol/l ], c?2 = 2.0 [ mmol/l ]. These values yielded
a reduced spreading pressure at equilibrium, Π? = 11.8771 [ mmol/g ads. ], which was
independently verified by the above mentioned alternatives to compute its value, viz.
a) applying formula (5.1); b) numerical integration of the corresponding q0

i /c
0
i up to

obtained integration limits, c0,?
i ; and c) applying formula (3.16g) from corresponding

single component isotherm information—cf. Table 5.1. All three calculations yielded
an identical result. The same exercise may be conducted for any value lying along
c0

2 = ψ2(ξ), in order to obtain corresponding reduced potential values at equilibrium.
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Figure 5.1: Solution orbit, ψ2(ξ), obtained by integration of the IVP (5.2), applying pa-
rameters in Table 5.1. The computation was performed with the general-purpose numerical
integrator ode15s in Matlab R© [168], at user-defined error tolerance values: RelTol = 10−7

& AbsTol = 10−8, and selecting numerical differentiation formulæ (NDF) as integration algo-
rithm.

5.2 Efficiency

The application of any calculation method for IAST demands computational efficiency.
One common criterium of efficiency dictates that calculations should be performed as
fast as possible, with minimal computational effort—e.g., storage, number of elementary
processor operations, etc.

IAST equilibria prediction for a system with five compounds

A direct measure of computational efficiency is the time required to compute equilib-
rium values. This was verified by solving a five component problem documented by
Moon & Tien [169] and O’Brien & Myers [153], which has become a benchmark to
test published IAST calculation methods [53, 146, 169]∗. Single component adsorption
equilibria are described by isotherm equation (2.3f)—Table 2.2, p. 17, which possesses
explicit reduced spreading pressure expression (3.16e)—Table 3.4, p. 38, obtained by
integration of quotient (3.15h)—Table 3.3, p. 37. The applied parameters are listed in
Table 5.2.

∗The ten component problem of the same series originally published by Moon & Tien [169] has been
throughly addressed as a benchmark task by several authors, including: O’Brien & Myers [153], Rubiera
Landa et al. [53] and Mangano et al. [146].
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Table 5.2: Single component adsorption
isotherm parameters for O’Brien & Myers
model—cf. Eq. (2.3f), p. 17—of five com-
ponents, as reported by O’Brien & My-
ers [153].

Compound Parameters

q sat
i bi σi

[ mol/kg ]
[

kPa−1 ] [− ]

Component 1 5.0 0.01 1.2
Component 2 2.0 0.006 1.1
Component 3 3.0 0.0009 0.8
Component 4 7.0 0.1 0.9
Component 5 2.0 0.06 1.0

Figure 5.2 illustrates individual orbits, ψk(ξ), k = 1, . . . , 5, obtained with the proposed
approach, stopping the integration at fictitious partial pressures, p0,? = {0.0255, 6.4513,
2.7253, 0.0009, 0.6452} ×105 [ kPa ], in equilibrium with prescribed gas phase molar
fractions, y? = {60, 60, 60, 90, 30} at p? = 300 [ kPa ]. The resulting adsorbed phase con-
centrations at equilibrium are: q? = {0.1424, 0.0006, 0.0013, 5.9154, 0.002860} [ mol/kg ].
Reduced surface potential build-up is also illustrated, stopping at equilibrium, Π? =
16.5233 [ mol/kg ads. ].

In order to compare efficiency as described above, the task was also computed with Al-
gorithm 3.2 and FastIAS [153]. Resulting calculation times are listed in Table 5.3. In all
cases where the new solution approach was applied, the results were correct at least to
one decimal; accuracy improved as the tolerance specification became more stringent, at
a higher computational cost, as listed in the results. It can therefore be concluded that
several ODE integrators available in commercial software packages, as the one herein
employed, should provide adequate results, which is an aspect of robutstness discussed
in Section 5.4 below.
This example also illustrates the ability of the IVP approach to handle competitive
multicomponent IAST equilibrium predictions easily, with any arbitrary number of
adsorbable components, N . Two possibilities to improve efficiency further include:
a) storing the computed orbit in the form of an interpolant that may be cheap to evalu-
ate—for example a polynomial function or a B-spline representation—and then seeking
for particular solutions with a root-bracketing technique, such as Brent’s method or
other [149, 151, 170, 171]; & b) attempt an implementation of an ODE solver in vector-
ized form—see e.g., Shampine [172].
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Figure 5.2: Solution, Ψ(ξ), for five component problem. (−): component 2; (−−): com-
ponent 3; (− ·): component 4; & (· ·): component 5. The computation was performed with
the general-purpose numerical integrator ode45 in Matlab R© [168], at user-defined error tol-
erance values: RelTol = 10−7 & AbsTol = 10−8—cf. Appendix A1 for software details. This
method employs the adaptive time-stepping Runge-Kutta 4(5) pair developed by Dormand &
Prince [173].

5.3 Accuracy

As has been mentioned above, the solution approach provides a direct accuracy control
through the specification of a suitable ODE integrator. Error control specifications
are usually available in common state of the art integrators∗, such as those provided by
Mathematica R© [141] and Matlab R© [168]. A simple comparison between equilibrium
calculations, performed with available analytical solution methods briefly discussed in
Chapter 4 and the same calculations using the proposed solution approach, serves three
key purposes: a) validation of the adsorption equilibrium calculations; b) evaluation
of the attainable values of accuracy, according to numerical integrator specifications;
& c) Test for limit cases, e.g., behavior of the solution when the concentration of an
arbitrary component in the mixture vanishes, ci → 0—cf. Section 3.2.

∗Consult e.g., Gear [174] and Hairer et al. [164, 166] for information about error control in ODE
numerical integration.



Chapter 5 Practical aspects of the approach 67

Table 5.3: Computational performance of different IAST calculation methods for five com-
pound task.

Calculation method Tolerance a Statistics b c Execution time d

Steps / Evaluations [ s ]

IVP w/ ode23 default 30 / 91 0.09
stringent 373 / 1120 0.12
very stringent 35860 / 107581 9.99

IVP w/ ode45 default 21 / 127 0.02
stringent 73 / 439 0.05
very stringent 1036 / 6217 0.48

IVP w/ ode15s default 47 / 114 0.05
stringent 156 / 243 0.11
very stringent 1110 / 2296 0.64

Algorithm 3.2 εTol. = 10−10 n/a 0.17
O’Brien & Myers (FastIAS) e εTol. = 10−4 n/a 0.02
a.Tolerance values, absolute (absTol) / relative (relTol): ‘default’: 10−3/10−6; ‘stringent’:

10−7/10−8; & ‘very stringent’: 10−13/10−13.
b.Refers to number of computed steps yielded as output of the integration and number of r.h.s.
function evaluations required.

c. n/a: “not applicable” for this method.
d.Refer to Appendix A1, p. 163 for specifics about the software applied in these calculations.
e.Using FastIAS [153]; implementation by Do [36].

Comparing IVP approach against analytical solution of Ilić et al. [43]

An analytical solution for a binary competitive case where single component adsorption
isotherms are given by the Quadratic model—cf. Equation (2.3d) in Table 2.2, p. 17—
was published by Ilić et al. [43], as summarized in Section 3.3.2, p. 39. By definition of
error terms

eabs.
c := |qi − q̂i| and erel.

c := qi − q̂i
qi

, (5.3)

on the adsorbed phase concentration values at equilibrium, qi, i = 1, . . . , N , an as-
sessment of the computational accuracy can be attained for the approach explained in
Chapter 4 by comparing with this analytical solution. Table 5.4 provides applied single
component isotherm parameters.

Figure 5.3 illustrates the obtained equilibria and the effect of inflection points of individ-
ual isotherms on competitive equilibria predictions applying IAST. The corresponding
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Table 5.4: Single component adsorp-
tion isotherm parameters for Quadratic
model—cf. Eq. (2.3d), p. 17—of two
components. Values are similar to
those reported by Ilić et al. [43], but
modified slightly to enhance the ef-
fect of the inflection point along each
isotherm course, as displayed in Fig-
ure 5.3.

Compound Parameters

q sat
i bi1 bi2

[ g/l ] [ l/g ]
[

l2/g2 ]
Component 1 0.5 0.2 1.0
Component 2 0.5 0.3 3.0
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Figure 5.3: Adsorbed phase concentrations, q1 = f(c1, c2), q2 = f(c1, c2), obtained with
IAST employing single component Quadratic isotherms. Parameters listed in Table 5.4.

Jacobian functions, J (q), are depicted in Figure 5.4. The inflection points of single com-
ponent equilibria produce the shapes observed, and differ to those introduced previously
in Figure 4.3, p. 52, whereby the binary competitive Langmuir equation was applied∗.
In order to verify the validity and solution behavior, an independent calculation of J (q)
via direct numerical differentiation of adsorbed phase concentrations, q = f(c)—cf. Fig-
ure 5.3, was performed; the analytical solution displayed in Figure 5.4 was recovered as
the calculation grid was refined, and thus, validating Jacobian formulæ (4.11).
Table 5.5 documents values of maximum errors incurred, as defined by formulas (5.3).
These calculations of qi at equilibrium were performed on an equidistant grid of 50× 50

∗Appendix A5 demonstrates that this explicit multicomponent equation is equivalent to IAST—cf.
Equation (A5.4).
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values, spanning concentration ranges, ci ∈
[
1010 · eps, 1

]
[ g/l ]∗.

Table 5.5: Maximum absolute & relative errors—Equation (5.3)—computed with the
IVP solution approach and other standard methods. Calculations performed with Mat-
lab R©; see Appendix A1 for software details.

Calculation method Errors on q1 Errors on q2 Execution time a

eabs.
c erel.

c eabs.
c erel.

c

[ g/l ] [− ] [ g/l ] [− ] [ s ]

Analytical b n/a n/a n/a n/a 0.00004
IVP w/ ode23 3.3× 10−7 3.4× 10−7 1.4× 10−6 4.3× 10−6 0.0124
IVP w/ ode45 1.5× 10−7 1.6× 10−7 1.1× 10−5 1.3× 10−5 0.0085
IVP w/ ode15s 3.6× 10−6 3.7× 10−6 3.9× 10−4 2.6× 10−4 0.0292
Algorithm 3.2 1.1× 10−8 1.1× 10−8 2.5× 10−6 3.4× 10−6 0.0004
O’Brien & Myers c 1.0× 10−12 6.4× 10−12 8.8× 10−11 3.4× 10−6 0.0005

a.Average execution time of a single equilibrium calculation.
b.Reported by Ilić et al. [43].
c.Using FastIAS [153]; implementation by Do [36].

As can be concluded from these results, the attainable accuracy strongly depends on
the type of integration technique, proportionally to the execution time; typically, the
more sophisticated the integrator, the longer it takes to compute. The three tested
integrators yielded comparable results under mildly stringent tolerance specifications of
absTol = 10−5 and relTol = 10−7, thus proving that the IVP approach reproduces the
analytical calculation accurately, with reasonable execution times.

∗eps = 2.2204× 10−16 refers to the machine epsilon of the employed workstation.
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5.4 Robustness

A principal feature of the IVP solution approach is its independence from a suitable
provision of guess values, c0,guess, in contrast to initializing iteration loops when solving
IAST tasks in their standard algebraic form, i.e., with the methods of Chapter 3.

IAST equilibria prediction for binary mixture of adsorbates using Qua-
dratic plus Langmuir single component isotherms

As explained previously in Chapter 2, explicit multicomponent equations, while desir-
able, are often not available. Such is the case when complex behavior, displayed in the
form of inflections along the isotherm courses, is observed—a experimental system pos-
sessing these characteristics is addressed in detail in Part III.
A single component isotherm equation, capable to describe these inflections is the Qua-
dratic plus Langmuir model (2.3e), listed in Table 2.2, p. 17. Equipped with this single
component information, and application of the IVP approach holds

dc0
1

dξ = 1, (5.4a)

dc0
2

dξ =
q sat

11
b11 + 2b12c

0
1

1 + b11c0
1 + b12c0

1
2 + q sat

12
b13

1 + b13c0
1

q sat
21

b21 + 2b22c
0
2

1 + b21c0
2 + b22c0

2
2 + q sat

22
b23

1 + b23c0
2

, (5.4b)

c0
i (0) = 0, i = 1, 2. (5.4c)

A solution orbit, illustrated in Figure 5.5, is easily obtained by application of parame-
ters listed in Table A4 of Appendix A8, p. 174, for compounds, phenyl-n-octane (C8),
component 1, and phenyl-n-decane (C10), component 2. To the extent of the author’s
knowledge, there is no analytical solution for this example. However, a reference so-
lution to compare with can be generated by computing with very stringent tolerances’
specification, using the IVP approach and selecting the higher-order ODE integration
method. The solution displayed in Figure 5.5 and computed with less stringent toler-
ances matches this reference solution. Additional evidence of correct solution behavior
is observed when computing the orbit in the limit ξ → 0, for which

c0
2 ≈

h1
h2
ξ = h1

h2
c0

1 (5.5)
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Figure 5.5: Solution orbit, ψ2(ξ), obtained by integration of the IVP (5.4), applying pa-
rameters in Table A4 of Appendix A8, p. 174. Component 1: octylbenzene (C8); component
2: decylbenzene (C10). The computation was performed with the general-purpose numerical
integrator ode15s in Matlab R© [168], at user-defined error tolerance values: RelTol = 10−7

& AbsTol = 10−8, and selecting numerical differentiation formulæ (NDF) as integration algo-
rithm.

from inspection of IVP (5.4). The solution orbit converges to Equation 5.5, as also
illustrated in the figure for very low concentrations. Figure 5.6 illustrates computed
competitive isotherms, whereas Figure 5.7 displays the Jacobian approximations, anal-
ogous to the example applying Langmuir isotherms, Figure 4.3, p. 52 and Figure 5.4 for
the Quadratic isotherms’ example for comparison. Once more, the occurrence of inflec-
tion points in the individual isotherms determines the shape of these functions, which
translates into particular dynamics of adsorption processes where competitive equilibria
are described by these type of isotherms. This is addressed in detail in Part II.
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Summary

Four fundamental aspects: a) simplicity; b) efficiency; c) accuracy; & d) ro-
bustness, for the IVP solution principle presented in Chapter 4, were explained and
illustrated by means of examples—relevant to the context of this work, viz. isotherms
with inflection points along their functional relationships.
The method was successfully validated for typically encountered single component ad-
sorption isotherm equations, demonstrating flexibility and ample range of application.

Advantages & disadvantages of the solution approach While the proposed so-
lution principle—with naturally extended Jacobian formulæ—is not universal, i.e., does
not work for every single component adsorption isotherm model, it constitutes a reliable
computation tool for IAST, designed for incorporating IAST equilibria into dynamic
modeling of a class of adsorption-based operations, which will be the topic of Part II.
Two important disadvantages to keep in mind are: a) calculation times are similar to
those of numerical quadrature approximations, comparable to Algorithm 3.2, p. 42; and
b) inability to use directly single component isotherm equations that are not well-defined
at the origin to estimate multicomponent equilibria. Despite of these shortcomings, ev-
ery commonly encountered aspect discussed in Section 3.3.1, p. 36, is dealt with in a
sound and advantageous manner. Moreover, it should be kept in mind that input in-
formation to the solution approach, the fluid phase concentrations, c = [ c1, . . . , cN ]T ,
should follow the physically correct property, c ≥ 0, i.e., positive, finite. This as-
pect will be addressed again when implementing the IVP solution approach to compute
fixed-bed adsorber dynamics in Part II.
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Adsorber dynamics
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Chapter 6

Dynamic modeling of packed-bed
adsorbers∗

“Science is a differential equation. Religion is a boundary condition.”

– Alan Turing

Introduction

Many adsorption-based separation operations consist of tubular columns packed
with adsorbents in order to process fluid mixtures. A classical—i.e., determin-

istic—mathematical description for a class of fixed-bed adsorbers, used in liquid chro-
matography, is presented in this chapter†. This description consists of partial differential
equations (PDEs), requiring the application of suitable numerical techniques to obtain
their solution. While the discussion of this chapter is centered primarily around liq-
uid chromatography, due to the experimental demonstration presented in Part III, it is
nonetheless useful for other adsorption-based separation processes as well. Knowledge
of adsorption equilibria is an essential ingredient to describe the dynamic behavior of

∗Chapter Disclaimer: Partial contents of this chapter have been reported in: “A Method for
Efficiently Solving the IAST Equations with an Application to Adsorber Dynamics” [53]. The information
is presented as part of this dissertation and it is an original published contribution to the field in a peer-
reviewed journal. There is none whatsoever intention of self-plagiarism; the information serves rather as
complementary content to this dissertation. Furthermore, the publishing company has granted partial
reproduction of the contents in the article mentioned above. [License No.: 3743030164049, requested
and obtained on Nov. 6 th, 2015 from John Wiley & Sons, Inc. through Copyright Clearance Center.]

†Other modeling approaches such as e.g., stochastic models [175], are not considered.
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Chapter 6 Column dynamics 78

fixed bed adsorbers. Throughout Part I, IAST has been discussed and a novel solution
approach for its constitutive equations was introduced in Chapters 4 and 5. Along this
line of thought, it is desired to incorporate IAST equilibrium calculations into models
that describe the intrinsic dynamic behavior of fixed-bed adsorption columns. Before
addressing this topic, an appropriate mathematical model to describe fixed-bed adsorp-
tion from the liquid phase is discussed next.

6.1 Overview of one-dimensional models

Mathematical models used to describe adsorption-based packed column processes, in-
cluding liquid adsorption chromatography columns—e.g., HPLC columns, can be roughly
classified into two comprehensive families [2, 4, 13, 14, 46, 176]:

1. Models that account exclusively for adsorption thermodynamics, for example:
a) ideal model—a.k.a. (local) Equilibrium Theory [4, 14, 46]; & b) equilibrium-dis-
persive model [14, 46, 176].

2. Models that account for both thermodynamics & mass-transfer kinetics,
among others: a) lumped-kinetic models [14, 46]; b) lumped-pore model [14, 46];
c) General Rate Model (GRM) [4, 14, 177–180]; & d) under consideration of addi-
tional mechanisms, such as kinetics of adsorption/desorption or chemical reactions,
the versatile model of Berninger et al. (VERSE-LC model) [181, 182].

In HPLC of readily soluble, small molecules and packed columns with small parti-
cle sizes, mass-transfer effects are usually fast. This is typically confirmed in practice
by measuring plate numbers—i.e., equivalent, theoretical number of separation stages,
N plate, i, i = 1, . . . , N , of investigated substances. A high plate number is as a rule an
indication of fast mass-transfer kinetics of the column packing and usually translates
to high separation efficiency in the column. In this particular situation, applying the
family of equilibrium-based models is justified. Mass-transfer effects, on the other hand,
usually become relevant in systems with large particle sizes and specific diffusion and
adsorption mechanisms—see e.g., [183] among many others. A good example of such
systems is competitive adsorption of bulky protein molecules in columns packed with
ion-exchange resins, where, in addition, steric hindrance needs to be accounted for—see
e.g., [184, 185] and references listed therein.
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6.2 Macroscopic mass balance equation

A time-dependent macroscopic mass balance performed on a column packed with porous
particles where adsorption occurs and without chemical reaction is written as [2, 4, 14,
186]

∂
[
εc
]

∂t
+ ∂

∂t

[
[ 1− ε ] q

]
+
∂
[
uεc

]
∂z

= ∂

∂z

[
DL

∂
[
εc
]

∂z

]
. (6.1)

Equation (6.1) is a second order parabolic PDE, thus requiring two boundary conditions
and an initial condition to be completely described [186]. Typical boundary conditions
were given by Danckwerts [187]—thus defining particular solutions of (6.1).

Model assumptions considered Without sacrificing the description of salient fea-
tures of the model, given by Equation (6.1), Table 6.1 lists general assumptions com-
monly encountered in modeling of fixed-bed adsorption columns—see e.g., Wankat [2].

The mass balance equation (6.1) is simplified by the application of the model assump-
tions listed in Table 6.1 to

ε
∂c

∂t
+ (1− ε) ∂q

∂t
+ ε

∂ [uc]
∂z

= ε
∂

∂z

[
D app

∂c

∂z

]
. (6.2)

Moreover, by application of assumptions V, VI & VII, Equation (6.2) becomes

ε
∂c

∂t
+ (1− ε) ∂q

∂t
+ εu

∂c

∂z
= ε

∂

∂z

[
D app

∂c

∂z

]
(6.3)

for constant velocity, u. In Sections 6.4 & 6.3, two equilibrium-based models are de-
scribed in detail, whereby Equation (6.3) is the starting point for their derivation.

6.3 Equilibrium-Dispersive Model

Application of assumptions listed in Table 6.1 leads to a frequently applied model, viz.
the simple, one parameter, one-dimensional Equilibrium Dispersive Model (EDM1D) [4,
14, 46, 176]:

∂c

∂t
+ φ

∂q

∂t
+ u

∂c

∂z
= D app

∂2c

∂z2 , (6.4a)
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Table 6.1: Assumptions made to implement equilibrium-based models, as applied in
modeling liquid chromatography.

No. Assumption

I
Isothermal process operation conditions—i.e., T remains constant. As a result,
the energy balance equation is omitted, as heat transfer mechanisms, e.g.,
conduction & convection inside the packed bed, as well as heat generation by
adsorption, are neglected.

II
Adsorption isotherms, q = f(c)—cf. Chapter 2, p. 13, suffice to describe equilibria
of adsorbates; pressure effects on equilibria are neglected.

III
Inert, chemically-stable and non-degradable porous particles without chemical
reaction.

IV
Fully-reversible, physisorption mechanism, i.e., no chemisorption.

V
Incompressible mobile—fluid—phase; the mobile phase percolates through the
bed at a constant velocity and viscosity.

VI
Rigid porous particles of uniform size, dp, are considered; neither swelling nor
shrinkage of porous particles occur, i.e., total bed porosity, ε, is therefore assumed
constant—see e.g., [54, 188–193] among others, for models considering these
effects.

VII
Non-deformable, uniform pore structure of the particles, which translates to
constant total porosity, ε, intraparticle porosity, εp & interparticle porosity, εe,
with uniformly packed column—i.e., neither channeling nor fingering within
porous media take place.

VIII
Neither axial nor radial variations in the total porosity are displayed, i.e.,
ε 6= f(z, r) homogeneously packed porous media—see e.g., [194] for
radially-distributed HPLC column modeling.

IX
Kinetics of adsorption & desorption are fast.

with Danckwerts’ boundary conditions [187]

(inlet:) u c(t, z = 0)−D app
∂c

∂z z=0
= u c in(t), (6.4b)

(outlet:) ∂c

∂z z=L
= 0 , (6.4c)

and initial condition
c0 = c(t = 0, z). (6.4d)

Equations (6.4) are written compactly with vector variables

c = (c1, . . . , cN )T , c in = (c1, in, . . . , cN, in)T , q = (q1, . . . , qN )T
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to express liquid phase concentrations, inlet—i.e., injected—concentrations and ad-
sorbed phase concentrations, respectively. The parameter

φ := 1− ε
ε

, (6.5)

is the phase ratio, i.e., the column volume occupied by the solid phase with respect to
the column volume occupied by the liquid phase, which accounts for the “bulk” inter-
particle volume plus the intraparticle volume, so that the following expression relating
the interparticle voidage, εe, and intraparticle porosity, εp, to total porosity, ε, in the
fixed-bed can be written [4, 14]:

ε = εe + εp [ 1− εe ] . (6.6)

The mobile phase velocity is defined as:

u := Q

εAc
= 4Q
επd2

c
, (6.7)

where Q is the volumetric flow rate and Ac is the cross-sectional area of the column. All
the effects causing band profile diffusion are lumped together onto apparent diffusion
coefficients,

D app = diag (D app,1, . . . , D app,N ) . (6.8)

These apparent diffusion coefficients can be estimated by means of a suitable correlation—
Chung & Wen [195], Guiochon & Lin [196]—or directly estimated from experimental
measurements—Meyer [197]. Since they are directly related to mass-transfer kinetics’
effects, they are functions of the mobile phase velocity, u, and the plate number, N plate,k:

D app,k = 1
2

uLc
N plate,k

, k = 1, . . . , N. (6.9)

Quite often an apparent Péclet number [186], defined as the ratio of convective trans-
port, uLc, to diffusive transport, D app, along spatial coordinate, z, is introduced to be
able to compare among systems. In accord with Equation (6.9),

Pek := uLc
D app,k

= 2N plate,k. (6.10)

Values of this parameter indicate if the system is convection-dominated [4, 198, 199].
This is also closely related to numerical methods applied to solve model equations (6.4),
as will be explained in Chapter 7.
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For the term ∂q(c)/∂t in Equation (6.4a) holds

∂qi(c)
∂t

=
N∑
k=1

∂qi
∂ck

∂ck
∂t

, i = 1, . . . , N (6.11)

by applying the Chain Rule, since adsorption equilibrium prevails. Details to employ
IAST in the dynamic column modeling are given in Chapter 7, Section 7.7. The expres-
sions ∂qi/∂ci are simply the Jacobian elements discussed in Section 4.3, p. 50, under
the frame of IAST.

6.4 Ideal model: local Equilibrium Theory

The hypothetical situation of an infinite mass transfer rate, i.e., h plate → 0, is now
considered—cf. Assumption IX, Table 6.1. In this way, process dynamics are gov-
erned exclusively by adsorption equilibria, i.e., it entirely becomes thermodynami-
cally controlled; therefore, the following mass balance holds:

∂c

∂t
+ φ

∂q(c)
∂t

+ u
∂c

∂z
= 0. (6.12)

Equation (6.12) is simplified with Equation (6.11), as explained before. The partial
derivatives in (6.11) are just elements of the Jacobian matrix, J

(
q(c)

)
, already discussed

in Section 4.3, in particular Equation (4.9), p. 50. As a result, Equation (6.12) is written
formally as

[ I + φJ ] ∂c
∂t

+ u
∂c

∂z
= 0. (6.13)

The elegance and usefulness of Equation (6.13) lies in the fact that it is a system of
N first order, quasilinear equations, whose solution in the time-space plane∗ can be
determined by applying the Method of Characteristics (MOC)—see e.g., [159,
160, 200]†. Abundant literature where this approach is applied and discussed in the
context of liquid chromatography is available, among many others, [159, 160, 200, 203–
209]. However, with this approach, only a few fully analytical solutions have been
developed and reported.

∗This is often regarded as ‘distance-time’ plane in the literature; it is simply the space defined by
the Cartesian product [0, L]× [0, t) where the solution of c(t, z) lives.

†Some historical references on this topic include the works of Wilson [201] and DeVault [202].
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Hyperbolic conservation law

Equation (6.13) belongs to a larger class of equations known in the physical sciences as
conservation laws. The following proof confirms this statement.

Proposition 6.4.1. Equation (6.12) can be written in conservation form—see among
others [159, 210–213].

Proof. Take Equation (6.12) and introduce the conservation variable

w := c+ φ q, with flux defined as f ≡ uc. (6.14)

Equation (6.12) can therefore be written as

∂w

∂t
+ ∂f

∂z
= 0. (6.15)

Further, if ∂q/∂c exists, for smooth q = f(c), then ∂q/∂t = (∂q/∂c) (∂c/∂t) holds for
equilibrium-based models—cf. Equation (6.11). Under these considerations and using
conservation variable, w,

∂

∂t
[ c+ φ q ] + ∂f

∂z
= 0. (6.16)

Equations (6.12) and (6.16) are equivalent.

With this proof it is also possible to write Equation (6.13) as:

∂c

∂t
= [ I + φJ ]−1 (−u) ∂c

∂z
. (6.17)

This mathematical feature of the equations of chromatography lead naturally to methods
commonly applied in the numerical approximation of hyperbolic conservation laws, in
general [213, 214].
The Equilibrium-Dispersive Model (EDM1D) (6.4) can also be written in conservation
form. As explained in Chapter 7, numerical methods applied for computing solutions of
hyperbolic conservation laws may be applied in some cases to solve convection-diffusion
equations of the type expressed by this model.
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Summary

A brief overview of standard models applied in one-dimensional modeling of packed bed
adsorbers was presented and explained. Special emphasis was set on equilibrium-based
models, which, despite of their simplicity, can be applied under appropriate assumptions
to a number of technically relevant processes, e.g.,

1. liquid chromatography under dilute conditions; &

2. gas chromatography of dilute gases without significant changes in local gas velocity,
i.e., negligible sorption effect & pressure drop along the fixed-bed.

Analytical solutions are unfortunately limited to simple cases only. Henceforth, Chap-
ter 7 provides necessary details to solve numerically the equilibrium-based models con-
sidered in this work, emphasizing the framework of IAST.



Chapter 7

Numerical simulation of
packed-bed adsorber models∗

“(. . . ). It is not necessary to study this routine in detail in order to understand
the major point: building efficient reliable programs, even for simple tasks,
requires careful engineering combined with computer understanding.”

– David Kahaner, Cleve Moler & Stephen Nash in [149]

Introduction

The equilibrium-dispersive model, introduced in Section 6.3, has an analytical so-
lution only for simple boundary conditions, adsorption isotherms—e.g., linear

and Langmuir isotherm—to represent adsorption equilibria and number of adsorbable
components, N [14, 46]. The general case, Equation (6.4), consisting of Danckwerts’
boundary conditions and competitive local equilibrium model—e.g., IAST, for arbitrary

∗Chapter Disclaimer: Partial contents of this chapter have been reported in: “A Method for
Efficiently Solving the IAST Equations with an Application to Adsorber Dynamics” [53]. The information
is presented as part of this dissertation and it is an original published contribution to the field in a peer-
reviewed journal. There is none whatsoever intention of self-plagiarism; the information serves rather as
complementary content to this dissertation. Furthermore, the publishing company has granted partial
reproduction of the contents in the article mentioned above. [License No.: 3743030164049, requested
and obtained on Nov. 6 th, 2015 from John Wiley & Sons, Inc. through Copyright Clearance Center.]
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number of adsorbable components, N , requires a reliable numerical approximation∗, as
closed form solutions are limited.

7.1 Numerical methods for equilibrium-based models

There are several approaches to numerically solve second order, parabolic PDEs—
cf. [215–218], such as the equilibrium-dispersive model in one dimension, Equation (6.4).
Two domains, spatial, z, and temporal, t, may be discretized, so two widely applied
strategies arise. The first alternative, full discretization, consists of partitioning
both domains. The kind of partition is defined by the numerical method itself. In the
second strategy, only one of the domains is discretized, while the remaining one is given
a continuous treatment; it is therefore given the name method of lines†. An ODE
system arises after its application. Figure 7.2 illustrates the discretization approach.
Development of numerical methods to solve PDEs has considerably gained relevance
in the last 40 years. In the framework of method of lines, three well-known kinds of
discretization are traditionally applied, viz. finite differences (FD), finite elements (FE)
and finite volume methods (FV)—see e.g., [14, 196, 217]. Consequently, a wide palette
of numerical techniques have been developed and are readily available. A fundamental
premise to consider when selecting a discretization method is the following:

9 Liquid chromatography is governed by laws of conservation (mass,
energy & momentum). Therefore, numerical schemes used to simulate
this process should mimic applicable conservation principles.

With this idea in mind, a sound choice of numerical discretizations can be undertaken,
in the hope that they possess the following—desirable—monotonicity properties [47]:
a) positivity; b) total-variation-diminishing satisfying; and c) maximum-prin-
ciple satisfying. In this work, two conservative schemes that are monotone are ad-
dressed. First, a classical numerical scheme, of wide application in liquid chromatogra-
phy, is explained. Secondly, a third order upwind-biased scheme is explained.

∗An important assumption is made in this case, inasmuch as solutions obtained by applying the
numerical scheme approximate & converge to actual PDE solution. Rigorous proofs are up to this date
difficult and in general not available [14, 46].

†This second method is popular in chemical engineering due to its ease of implementation; see e.g.,
Schiesser [219] and Saucez et al. [220].
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7.2 Conservative Finite Difference scheme (FD)

Rouchon et al. [211, 212] applied the scheme of Godunov—see e.g., [213, 214]—to solve
the hyperbolic conservation law expressed by the equilibrium model (6.15)∗. The dif-
ferentials in time and space of conservation law (6.15) are approximated by simple first
order finite differences, so that

u
cnj+1 − cnj

∆x +
v(c)nj − v(c)n−1

j

∆t = 0, (7.1)

with discrete conserved variables, v(c)nj ≡ cnj +φ qnj . Further, since local equilibrium pre-
vails, qnj = f(cnj ). Figure 7.1 geometrically represents the computational molecule [221]
of Equation (7.1). Since the scheme is only first order accurate, its discretization error,

Figure 7.1: Computational molecule used in conservative finite differences.

in the form of numerical dispersion, is proportional to the refinement—i.e., number of
grid points, J—of spatial coordinate, x. This numerical dispersion—the leading term of
the error in the approximation (7.1) of mathematical model, Equation (6.4a), p. 79—can

be efficiently adapted to the apparent axial diffusion term, D app
∂2c

∂x2 , of equilibrium-
dispersive model (6.4) by adjustment of ∆x.
The finite difference scheme (7.1) is stable for Courant number [14, 221]:

ν > 1. (7.2)

∗The discretization is often referred to as Rouchon algorithm in the liquid chromatography commu-
nity.
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7.3 Finite Volume Method (FVM)

Application of the finite volume method to solve the PDEs of the packed column model,
Equation (6.4), yields the exact conservation form formulation—see e.g., [213, 214]:

∫
Ωj

∂

∂t
w(x, t) dx+

( (
f(w)

)
j+ 1

2
−
(
f(w)

)
j− 1

2

)
= 0. (7.3)

w(x, t) is a conserved variable—cf. proof given in Section 6.4. The flux function
(
f(w)

)
j+ 1

2
is evaluated at the corresponding coordinate of the cell boundary, ∂Ωj+ 1

2
. The dis-

cretized spatial domain, Ωh, approximates Ω and consists of non-overlapping, equidistant
cells, Ωj , so that

Ω ≈ Ωh ≡
J⋃
j=1

Ωj = {Ω1, · · · , Ωj−1,Ωj ,Ωj+1, · · · , ΩJ } . (7.4)

The Ωj are numbered in ascending order, in the direction of flow, i.e., ‘from left to right’,
as shown schematically in Figure 7.2. A key ingredient of Equation (7.3) is precisely

Figure 7.2: Graphical illustration of the discretized spatial domain, partitioned into equidis-
tant grid cells of size ∆z. Arrows indicate flow direction, i.e., ‘from left to right’. [Shown for
illustration only; actual physical dimensions vary!]

the evaluation of the flux functions,
(
f(w)

)
j+ 1

2
, albeit computed state variables—i.e.,

unknowns, are located at cell centers, xj , of the grid cells, Ωj
∗. This is referred to as

cell-centered discretization, as shown in Figure 7.2, and is the one used in this work—a
vertex-centered formulation may be defined as well [47]. A further noteworthy aspect of
the method is contained in the first term of Equation (7.3), as it indicates the integral of
the conserved state variable over cell domain, Ωj . In its simplest form, this term may be
represented by the average value of w(x, t) over the interval ]xj− 1

2
, xj+ 1

2
[≡ Ωj . In order

to apply Equation (7.3), flux functions
(
f(w)

)
j+ 1

2
need an approximation, which defines

∗Equation (7.3) is exact; it is simply the integral form equivalent of Equation (6.4).
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the implemented FV technique. This reconstruction step [47, 213, 214] is performed
with information of cell averages, w, at each grid cell, Ωj , and is explained next.

7.4 Spatial discretization

There are many alternatives to approximate flux functions
(
f(w)

)
j− 1

2
and

(
f(w)

)
j+ 1

2
in

Equation 7.3. In order to simplify the notation in what follows, let

fj− 1
2
≡
(
f(w)

)
j− 1

2
and fj+ 1

2
≡
(
f(w)

)
j+ 1

2
. (7.5)

The simplest way—and perhaps best-known, approximates values at the cell faces,
∂Ωj+ 1

2
, by upwinding values of fj , which are evaluated at cell averages, wj , so that

f̂j+ 1
2

= fj . (7.6)

It is therefore known as upwind scheme (UDS)—see e.g., LeVeque [213] and Toro [214].
A more sophisticated possibility to compute fj+ 1

2
would include values of several adja-

cent cells around Ωj , by means of a compact stencil

Sj := { · · · , fj−1, fj , fj+1, · · · } . (7.7)

In this way, a higher order interpolation formula can be applied on Sj to provide a higher
order approximation, f̂j+ 1

2
to flux functions, fj+ 1

2
. In essence it is consequently expected

that including more state variables, i.e., extending the stencil (7.7), should improve this
approximation. Generally speaking, the success of the FV technique depends upon two
main factors: a) the amount of cells, J , used in the discretization; b) the degree and
type of approximation—e.g., interpolation—applied to compute f̂j+ 1

2
. In order to obtain

a useful FV approximation for this work, a third order, upwind-biased scheme,
reported by Koren, et al. [222, 223], with numerical flux functions approximated by the
interpolation formula

f̂j+ 1
2

= fj + 1 + κ

4 (fj+1 − fj) + 1− κ
4 (fj − fj−1) , (7.8)

was implemented, tested and validated against two numerical techniques: a) upwind
scheme—cf. Equation (7.6) & b) orthogonal collocation on finite elements (OCFE)—see
e.g., [198, 199, 224]. The parameter κ in Equation (7.8) is assigned a value in the interval
[−1, 1]. The value κ = 1

3 is optimal, providing the desired high order interpolation
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polynomial on the three-valued stencil

Sj = {fj−1, fj , fj+1} (7.9)

for smooth parts of the solution; see Figure 7.3. However, in the presence of discontinu-

Figure 7.3: Graphical illustration of the applied stencil, Sj , partitioned into equidistant grid
cells, Ωj , of size ∆z.

ities of the computed solution as it is evolved in time, suppression of spurious, physically
unrealistic oscillations that may eventually appear can be accomplished using a flux lim-
iter technique—see e.g. [213, 214] for details. A flux limitermonitor function, φ(r), keeps
the scheme monotone. An abundance of flux monitor formulæ have been published—see
e.g., Kemm [225] and references therein.
The flux monitor expression used in this work, proposed by Koren et al. [222, 223] is:

φ(r) = max
[

0,min
[

2r,min
[ 1

3 + 2
3r, 2

] ] ]
, (7.10a)

satisfying the monotonicity domain of Sweby [226]; in principle this monitor function
should be able to: a) guarantee 3 rd order accurate spatial approximation to sought-after
solutions; & b) resolve different types of discontinuities that may appear in the computed
solution with high resolution. Figure 7.4 illustrates the monitor function (7.10a), thus
explaining graphically the internal operation of this higher-order scheme. The flux

r

-4 -3 -2 -1 0 1 2 3 4

φ
(r
)

0

0.5

1

1.5

2

Figure 7.4: Flux limiter monitor function, φ(r), expressed by Equation (7.10a).
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function approximations are

f̂j+ 1
2

= fj + 1
2φ
(
rj+ 1

2

)
(fj − fj−1) , (7.10b)

whereby the limiter function (7.10a) is evaluated for arguments rj+ 1
2
defined as

rj+ 1
2

:= fj+1 − fj + εd
fj − fj−1 + εd

, (7.10c)

applying a small positive constant, εd, to avoid divisions by zero when the computation
is performed [222, 223].

Treatment of boundary conditions

Due to the employed stencil (7.9), a strategy of adding ghost cells at the inlet, and
outlet was applied [47, 213].

Inlet BC In order to compute flux f̂ 1
2
, the inlet boundary condition, Equation (6.4b),

p. 80, is applied directly; the value w in is then extrapolated to the leftmost ghost cell
variable, w̄0, in order to obtain f̂ 3

2
with Equation (7.10b).

Outlet BC For the flux f̂J+ 1
2
the linear extrapolation formula

f̂J+ 1
2

= f̂J + 1
2
[
f̂J − f̂J−1

]
(7.11)

was employed.

Figure 7.5 illustrates the applied BC treatment∗. An example illustrating the imple-
mentation of this spatial discretization is given in Appendix A7.

∗The adopted BC treatment proved to be stable for every numerical simulation & considered oper-
ational scenarios—i.e., process conditions. For multicolumn implementation, different formulæ to treat
the boundaries may be necessary.
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Figure 7.5: Graphical illustration of applied stencil, Sj , at z = 0 and z = L, including
leftmost and rightmost ghost cells, viz. 0 and J + 1, added to the discretized domain to
implement inlet and outlet boundary conditions.

7.5 Time integration

As mentioned before—cf. Section 7.1, application of the method of lines to Equa-
tion (7.3) yields approximation

∫
Ωj

∂

∂t
w(x, t) dx ≈ (∆x)j

d
dt w̄j(t) (7.12)

for its leftmost term; in conjuction with numerical flux functions, f̂j+ 1
2
, Equation (7.10b),

leads to semi-discrete form

(∆x)j
d
dt w̄j(t) +

(
f̂j+ 1

2
− f̂j− 1

2

)
= 0, (7.13)

written formally as

d
dt w̄j(t) = − 1

(∆x)j

(
f̂j+ 1

2
− f̂j− 1

2

)
, j = 1, . . . , J. (7.14)

Equation (7.14) provides the necessary FV approximation to the sought solution.

Strong-Stability-Preserving Runge-Kutta Methods

Equation (7.14) is a system of coupled ODEs of size J , which in theory can be integrated
by any appropriate method, as long as certain stability requirements are guaranteed—
see e.g., [164, 166]. However, as mentioned at the start of the chapter, not only stability
is critical, but also properties: a) Positivity; b) Boundedness; & c) TVD prop-
erty—in one dimension. The applied limited κ-scheme for the spatial domain dis-
cretization already warrants these properties under certain conditions [222, 223]. When
evolving the solution of ODE system (7.14) in time, t, an integration method should
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be applied that also fulfills these properties—see Hundsdorfer & Verwer [47]. Enforc-
ing positivity—i.e., non-negativity, for example, is difficult to realize for standard ODE
methods readily found in commercial codes [227].
A strong stability preserving Runge-Kutta method (SSP-RK) is designed specifically to
enforce the required monotonicity properties listed above. Among the one-step integra-
tion methods of this class, popularized by Shu and co-workers [228–230], the explicit,
one-step third order method (SSP-RK3)

u(1) = un + ∆t L(un), (7.15a)

u(2) = 3
4u

n + 1
4u

(1) + 1
4∆t L(u(1)), (7.15b)

un+1 = 1
3u

n + 2
3u

(2) + 2
3∆t L(u(2)). (7.15c)

is a suitable choice for the tasks at hand. A SSP-RK method is in essence a convex
combination of Euler steps. This means that (7.15) is stable under CFL condition∗

ν := ∆t
∆x |f

′(w)| ; ν ≤ 1, (7.16)

therefore restricting somehow the performance of integration scheme (7.15), in compari-
son to e.g., adaptive time-stepping methods, often popular in commercial, technical com-
puting software packages [165, 231, 232]. Nonetheless, the main goal is to preserve the
TVD property—i.e., ensuring solution positivity, together with highly accurate solution
approximations of equilibrium-dispersive model (6.4). The selection of this particular
time discretization should become clear in Section 8.1, p. 102; therein, a comparison
between a classical Runge-Kutta scheme and the SSP-RK method to compute a partic-
ular solution is discussed in detail. Moreover, Appendix A7 provides a simple example,
whereby application of spatial discretization discussed in Section 7.4 yields an ODE
system after implementing the method of lines—cf. Section 7.1; these ODEs can be in-
tegrated explicitly with time discretization (7.15).
Special emphasis has been given in this section to application of spatial discretiza-
tions and time-marching schemes that preserve non-negativity of computed solutions
for dynamic fixed-bed adsorber models. This is an additional constraint, essential to
incorporate IAST equilibria predictions into corresponding numerical schemes, as the
equilibrium model requires input information c ≥ 0.

∗Courant-Friedrichs-Lewy condition; see e.g. [210, 213, 214] & abundant references therein listed.
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7.6 Application of limited κ-scheme to obtain solution ap-
proximations of EDM1D

In analogous manner to Koren et al. [222, 223], convection-dominated problems∗, with
moderately high to high Péclet numbers, can also be treated with the κ-scheme described
in Section 7.4. For diffusion operator

∂

∂z

(
D app

∂w

∂z

)
, (7.17)

a central difference can be defined on stencil (7.7) as well. Assuming constant D app,
yields

∂

∂z

(
D app

∂w

∂z

)
≈ D app

1
∆z

((
∂w

∂z

)
j+ 1

2

−
(
∂w

∂z

)
j− 1

2

)
. (7.18)

The differentials
(
∂w

∂z

)
j+ 1

2

and
(
∂w

∂z

)
j− 1

2

are, in addition, approximated by simple

backward differences, so(
∂w

∂z

)
j+ 1

2

≈ w̄j+1 − w̄j
∆z and

(
∂w

∂z

)
j− 1

2

≈ w̄j − w̄j−1
∆z , (7.19)

providing finally the desired approximation(
D app

∂2w

∂z2

)
j

≈ D app
w̄j+1 − 2w̄j + w̄j−1

∆z2 , (7.20)

which is also congruent with stencil (7.9). For computation of the advective fluxes,
the procedure already outlined in Section 7.4 is applied. If diffusion is significant or
dominant, a strategy that may deal with each term separately is encouraged for the
purpose of numerical efficiency and stability—see e.g., Hundsdorfer & Verwer [47]. A
reason for this is that stability condition (7.16) seriously constraints the allowable time
step size of the explicit integration scheme (7.15), rendering it inefficient. Hereby, the
class of IMEX (implicit-explicit) integration methods are an applied alternative when
diffusion becomes dominant—see e.g., [47].

∗By this term it is meant a convection-diffusion equation, whereby convection is the dominant
transport mechanism—i.e., small diffusion coefficients.
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Treatment of boundary conditions (BCs) for diffusive terms

In this case one-sided second order finite difference approximations are applied∗.

Inlet BC For this boundary holds(
D app

∂2w

∂z2

)
1
2

≈ D app
−8w in + 9w̄1 − w̄2

3∆x . (7.21)

Outlet BC The equation(
D app

∂2w

∂z2

)
J+ 1

2

≈ D app
8w̄J+1 − 9w̄J + w̄J−1

3∆x (7.22)

is applied. Hereby, w̄J+1 stands for the state variable of the rightmost ghost cell, ΩJ+1,
as shown in Figure 7.5.

∗Other approximations to these derivatives are possible; since the formula for the approximation at
the interior—Equation (7.20)—is at most second order accurate, a second order approximation at the
boundaries is justified as well.
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7.7 Incorporating IAST equilibria into equilibrium-based
fixed-bed adsorber models

Hyperbolicity of dynamic model equations

An equilibrium-based model can be written as [53]:

∂c

∂t
= [ I + φJ ]−1 (−u) ∂c

∂z
. (6.17)

Recall the formulation to calculate the Jacobian discussed in Chapter 4. Due to the
properties of the computation of J , the natural question remains open, whether or not it
may be possible to compute directly the inverse shown on the r.h.s. of Equation (6.17).
Its accompanying matrix, [ I + φJ ]−1, should be such that hyperbolicity of (6.17) is
not lost∗. The following proof, developed by Flockerzi [162], analyzes this fundamental
requirement to solve (6.17).

Proposition 7.7.1. The matrix [ I + φJ ]−1 is hyperbolic with N real distinct eigen-
values for strictly increasing q0

k, k = 1, . . . , N .

Table 7.1: Definitions of additional objects applied to compute K(λ).

Object Expression

Diagonal matrix D = D(λ) D = diag(dk), dk := q tot

λ c0
k + q tot

(7.23a)

Matrix H = H(λ) H := DxfT −DW xeT (7.23b)

Scalar h1 = h1(λ) h1 := 1 + tr [H ] (7.23c)

Scalar h2 = h2(λ) h2 := det [ I +H ] (7.23d)

Matrix K2 = K2(λ) K2 := 1
h2

[
h1 H −H2 ] (7.23e)

Proof. Let
λ ≡ 1

φ
(7.24a)

—i.e., the reciprocal of column model parameter φ in Equation (6.5), employing the
substitutions: xi ≡ ci and Xi ≡ c0

i . With additional objects defined in Table 7.1 and
∗The phenomenon of loss of hyperbolicity, i.e., degeneracy, is up to date not completely understood;

it is an active research area of PDEs. See e.g., Keyfitz & Kranzer [233] and Keyfitz [234].
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Jacobian representation (4.11), p. 51, holds

[λI + J ]−1 = [ I + φJ ]−1 = 1
φ
K
( 1
φ

)
= λK (λ) , (7.24b)

obtained with the Sherman-Morrison-Woodbury formula—see e.g., Hager [235] and
Golub & Van Loan [236]. The matrix K is therewith defined as

K(λ) := diag
(
c0
i

q tot

)[
I −K2(λ)

]
diag

(
q tot

λ c0
i + q tot

)
, i = 1, . . . , N, (7.24c)

with K2 given by Equation (7.23e), listed in Table 7.1.

Real eigenvalues / Symmetrization The starting point consists of

λI + J (q) = D−1(λ)
(
I +H(λ)

)
∆ = D−1(λ) ∆ +H(0) ∆, (7.24d)

with objects
∆ = diag(δk); δk := q tot

c0
k

. (7.24e)

H(0) in (7.24d) above can be factorized as:

H(0) ∆ = X
(
(eTW 2x− σ)eT − wT

)
∆−WxeT ∆ (7.24f)

= X
(
(eTW 2x− σ)eeT − ewT − weT

)
∆

=
(
X∆−1)1/2[ (∆X)1/2 ((eTW 2x− σ)eeT − ewT − weT

) (
∆X

)1/2 ]
×
(
X∆−1)−1/2

.

Since Equation (7.24f) is similar to a symmetric matrix, it possesses N real eigenvalues
with N linearly independent eigenvectors.

Positive eigenvalues It is important to acknowledge that λI + J (q) needs to be
invertible, which in turn implies that J (q) has only positive eigenvalues, since, per
definition (7.24a), λ ≥ 0. A direct consequence of this fact, following (7.24f), is a
nonzero determinant, det ( I +H(λ) ). Introducing

fTD = (wTWx− σ)dT − wTD = (eTW 2x− σ)dT − dTW,
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with the auxiliary notation, d ≡ col (dk),

det
(
I +H

)
= det

[
1− eTDWx −eTDx
fTDWx 1 + fTDx

]
(7.24g)

= 1− eTDWx+ fTDx− eTDWx · fTDx+ eTDx · fTDWx

= 1− dTWx+ dT
[
(eTW 2x− σ) I −W

][
x+ (dTx)Wx− (dTWx)x

]
= 1− dTWx+ dT

[
(eTW 2x) I −W

][
x+ (dTx)Wx− (dTWx)x

]
− σ dTx

= 1− 2dTWx+ eTW 2x · dTx− dTx · dTW 2x+ (dTWx)2 − σ dTx

=
(
1− dTWx

)2 + dTx
(
eT − dT

)
W 2x− σ dTx

is obtained. Each of the summands in the last line of Equation (7.24g) is positive, since

σ :=
N∑
k=1

wk ck q tot
d

dc0
k

1
q0
k

, (4.12d)

for required strictly increasing single component isotherms, q0
i = f(c0

i ), is always nega-
tive—cf. selected examples considered in Table 4.2, p. 59.

This completes the proof.

An outstanding feature of formula (7.24c) consists of its direct application to dynamic
model (6.17), thus additionally avoiding the intermediate computation of J

(
q(c)

)
. Just

as in the case of Jacobian, J—explained in Section 4.3, p. 50, only c0 at equilibrium,
for prescribed c, are needed. A simple application of the objects in Table 7.1 and that
should clarify the calculation workflow is presented in Algorithm 7.1.

Applying K(λ) in EDM1D

The application of K(λ) also holds for equilibrium-dispersive model (6.4). Henceforth,
Equation (7.24c) is used directly with this model, so that

∂c

∂t
= [ I + φJ ]−1

[
−u ∂c

∂z
+D app

∂2c

∂z2

]

= λK(λ)
[
−u ∂c

∂z
+D app

∂2c

∂z2

]
,

(7.25)
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1: procedure Use_K(c = [c1, . . . , cN ]T , λ) . Compute K given c, λ
2: procedure IAST_Calc(c = [c1, . . . , cN ]T ) . Obtain c0,∗ at equilibrium
3: end procedure
4: λ∗ ← λ

5: q0,∗
i ← f(c0,∗

i ); i = 1, . . . , N

6: q∗tot ←
[
N∑
i

ci

q0,∗
i c0,∗

i

]−1

7: K∗2 ← D∗, H∗, h∗1, h
∗
2 ← q∗tot, c

0,∗
i , λ∗ . Evaluate objects in Table 7.1

8: K∗ ← c0,∗
i , q∗tot, K

∗
2 , λ

∗

9: [ I + φJ ]−1 ← λ∗, K∗

10: end procedure
Algorithm 7.1: Application of K(λ), using objects listed in Table 7.1 with fictitious fluid
phase concentrations, c0, obtained a priori from any of the IAST solution methods explained
in Chapters 3 and 4.

holds. Application of the method of lines yields finally the ODE system [53]

dc̄(t)j
dt =

( [
I + φJ

]−1
)
j


− 1

∆z
(
f̂j+ 1

2
− f̂j− 1

2

)

+D app
c̄j+1 − 2c̄j + c̄j−1

∆z2



=
(
λK(λ)

)
j


− 1

∆z
(
f̂j+ 1

2
− f̂j− 1

2

)

+D app
c̄j+1 − 2c̄j + c̄j−1

∆z2

 , j = 1, · · · , J,

(7.26)

which approximates the solution of (7.25). Numerical fluxes, expressed in this case as
f̂j+ 1

2
≡ uĉj+ 1

2
, are calculated with Equation (7.10b), as explained previously.
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Summary

In this chapter two numerical techniques: a) finite difference method (FD); & b) finite
volume method (FVM) were presented in detail, with an emphasis on their practical
application to approximate solutions of fixed-bed adsorber models applicable to liquid
chromatography.
Due to the nature of PDEs that describe these dynamic models, numerical methods of
solution that fulfill mathematical properties, which are naturally compatible with the
physics of modeled variables—i.e., concentrations, were selected.
A way to embed IAST as local equilibrium model was developed and discussed, exploit-
ing the structure of equilibrium-based model equations and properties of J

(
q(c)

)
—cf.

Chapter 4—by introduction of K(λ), thus realizing a flexible and computationally
efficient simulation tool.



Chapter 8

Dynamic simulations∗

“. . . do we use a low-order method on a fine mesh
or a high-order method on a coarse mesh? . . . ”

– Eleuterio Toro

Introduction

A theoretical prediction of dynamic behavior of fixed-bed adsorbers in one dimension
can now be performed with the numerical simulation tools developed in Chap-

ter 7. Firstly, details concerning performance of these tools are addressed; more specific
computation tasks, similar to those required for Part III are explained afterwards. A
discussion of some of these results follows, serving as basis for the evaluation of experi-
mentally acquired data, which will be presented in Chapter 10.

∗Chapter Disclaimer. Partial contents of this chapter have been reported in: “A Method for
Efficiently Solving the IAST Equations with an Application to Adsorber Dynamics” [53]. The information
is presented as part of this dissertation and it is an original published contribution to the field in a peer-
reviewed journal. There is none whatsoever intention of self-plagiarism; the information serves rather as
complementary content to this dissertation. Furthermore, the publishing company has granted partial
reproduction of the contents in the article mentioned above. [License No.: 3743030164049, requested
and obtained on Nov. 6 th, 2015 from John Wiley & Sons, Inc. through Copyright Clearance Center.]

101
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8.1 Relevant aspects of applied numerical discretizations
for selected fixed-bed column models

Convergence to analytical solution of a step change in concentration of
a single adsorbate

A simple validation and verification of the numerical tools developed for column mod-
els (6.4), p. 79 and (6.12), p. 82 is now considered. Convergence is an important prop-
erty to ensure that computed results approximate the sought-after solutions correctly.
This property can be demonstrated by considering the applied discretization scheme
to approximate solutions to an equilibrium-based model, whereby a single component
possessing a linear isotherm, defines local adsorption equilibrium:

qi = hi ci. (2.6)

A simple analytical solution is available to compare with the numerical approximations.
This task is equivalent to solving the linear advection equation with constant velocity,
a∗,

wt + awz = 0. (8.1)

By identifying
w ≡ ci and a ≡ u

1 + φ hi
, (8.2)

the single component linear chromatography equation

∂ci
∂t

= − u

1 + φ hi

∂ci
∂z

, (8.3)

is recovered, in analogy to Equation (6.17), p. 83. Figure 8.1 illustrates the concentration
breakthrough curve that results when a step change in the inlet concentration, c in(t),
is effected on an initially clean, column—i.e., free of adsorbate. This is defined by
boundary and initial conditions

ci, in(t) = ci(t, z = 0) = ci, feed, t ≥ 0 and (8.4a)

ci0 = ci(t = 0, z) = 0. (8.4b)

∗Despite of the apparent simplicity of Equation (8.1), it is a classical benchmark for the class of
numerical schemes herein considered.
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Both analytical solution and numerical approximations are displayed in this figure. The
approximations were computed with the method of lines, applying the limited third
order upwind-biased spatial discretization described in Section 7.4. The resulting ODE
system is listed in Appendix A7, p. 173.
A refinement of the spatial grid, i.e., increasing the number of cells, J , causes the numer-
ical approximation to converge progressively to the analytical solution, thus confirming
the behavior expected from the applied spatial discretization—consult Koren [222] and
Hundsdorfer et al. [223] for details. Additional tests with different types of inlet bound-
ary condition values yielded similar results as those illustrated with this simple example,
thus confirming an acceptable performance of this numerical approximation and its ad-
equacy to approximate solutions to the investigated equilibrium-based models. Values
between J = 200 and J = 800 cells were found to be adequate for the applied numerical
approximations.
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Figure 8.1: Convergence to analytical solution of the ideal model for a step change in
concentration from 0 to c feed = 5.712 [ mM ] at the inlet boundary given by Equation (8.4),
using the third order upwind-biased scheme on coarse grids with equidistant number of cells,
J . (−): J = 50; (−−): J = 100; (−·): J = 200; (··): J = 500; (−): J = 1000. Applied ODE
integration method: 3 rd order SSP-RK scheme (7.15) of Section 7.5, p. 93.

Numerical integration schemes

In the application of the method of lines discussed above, the time integration was as-
sumed to be computed exactly∗. The temporal approximation to the resulting ODE
system should therefore guarantee at least the same order of accuracy as the applied

∗Therefore the term lines: continuous.
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discretization along axial coordinate, z, thus contributing only with minimal errors to
the overall approximation. Here, however, caution is recommended. General purpose,
‘out-of-the-box’ integration packages can cause numerical difficulties. This is clearly il-
lustrated in Figure 8.2. Herein, an example of instability known as ringing is displayed—
refer to Hairer et al. [164, 166] for details. This type of phenomenon pollutes the com-
puted approximation, but may be conveniently avoided by application of a SSP-RK
integration scheme such as (7.15), as discussed previously, in order to preserve the phys-
ically correct bounds of the solution. This is achieved at expense of longer computation
times, since no adaptive time-stepping was performed when this integration scheme was
applied.
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Figure 8.2: Illustration of the ringing phenomenon, observed for the approximation (−):
J = 1000, displayed in Figure 8.1. Applied ODE integration method: ode45, Dormand
& Prince [173], at default error tolerances. Due to this numerical instability, the solution
becomes unbounded, potentially leading to a solution blow-up.

When IAST equilibrium calculations are applied to model fixed-bed dynamics, using the
approach developed in Chapter 4, the considerations discussed above should be taken
into account in order to approximate the solutions correctly.
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8.2 Performance of proposed IAST approach in dynamic
column simulations

Elution profiles of narrow rectangular plug injections

A common calculation task of numerical modeling for liquid chromatography consists
of reproducing small volume injections of mixtures of solutes, which in the case of
competitive adsorption behavior between them, produce elution profiles that differ from
standard, gaussian-like peaks, observed when adsorption competition is absent. The
former situation is often encountered when the concentrations of solutes in the injected
mixtures are high or when the injected volumes are large—i.e., column overloading [14].
In order to simulate these injections, the boundary condition at the inlet

ci, in(t) =

ci, inj., 0 ≤ t ≤ ti, inj.,

0, t inj. ≤ t,
i = 1, . . . , N (8.5)

is commonly applied to provide an approximation of actual injection profiles.
Figure 8.3 illustrates results of numerical simulations for a liquid chromatography col-
umn, whereby the inlet condition (8.5) was applied in EDM1D (6.4), p. 79, with initial
condition c0 = c(t = 0, z) = 0 [ mmol/l ]. This numerical solution was obtained with
the third order upwind-biased scheme described in Section 7.4, p. 89, using IAST to
model competitive equilibria between the solutes. An approximation to the equilibrium
model solution is also depicted in the figure for comparison. This approximation was
obtained with the same numerical scheme by assigning D app,k → 0

[
cm2/min.

]
—cf.

Equation (6.9).
Due to strong competitive effects, a significant displacement of the less-adsorbed com-
pound, C8, whose peak apex substantially exceeds the injected concentration values,
ci, inj. = 80 [ mmol/l ], can be observed, as predicted by IAST equilibria. The trailing
edge of the more-adsorbed compound, C10, displays the characteristic desorption curve
observed under the presence of inflection points along its single component isotherm
course. The numerical scheme approximates the solutions satisfactorily on coarse spa-
tial grids, as evidenced by the excellent resolution of the trailing edges of both C8 and
C10 peaks.
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Comparison of calculations obtained with different numerical schemes

A useful comparison of the computational performance of the numerical schemes pre-
sented in Chapter 7 is obtained when a) the dynamic model—i.e., Equation (6.4) &
b) the embedded equilibrium model—i.e., IAST Equations, Table 3.2, p. 35, are bench-
marked simultaneously.
For this purpose, a column dynamics task is solved with the two discretizations dis-
cussed in detail before to approximate EDM1D solutions: a) Finite Difference scheme,
Section 7.2, p. 87; & b) Finite Volume Method, Section 7.3, p. 88, using K(λ) presented
in Section 7.7, p. 96.

Figure 8.4 illustrates elution profiles computed with both discretization schemes. The
more pronounced smearing of the elution profiles computed with FD scheme is to be
expected, since this type of discretization is only first order accurate [213, 214]. This
yielded the depicted shock layers, which, despite of numerical dispersion, are estimated
to elute at their corresponding breakthrough times correctly. This is the expected be-
havior of conservative schemes [47, 213].
On the other hand, the higher order discretization provides a more accurate approxima-
tion, with less numerical diffusion. Due to its inherent nonlinearity, it was observed that
in most of the analyzed calculations the scheme was more computationally demanding,
as documented by the recorded average calculation times listed in Table 8.1.
All in all, this example provides, once more, comparable numerical results for two rad-
ically different solution strategies, therefore demonstrating that the proposed IVP ap-
proach, in particular application of Equation (7.24c), p. 97, computes IAST solutions
correctly, thus validating it.

Table 8.1: Calculation times obtained for numerical simulations apply-
ing FD scheme and FVM discretization, applying IAST as competitive
equilibrium model.

Num. scheme / IAST solution method Execution time a

[ s ]

FD, Section 7.2 / modified FastIAS [153] b 164
FVM, Section 7.3 / modified FastIAS [153] b 3473
FVM, Section 7.3 / IVP approach c, Chapter 4 63307
a.Values were obtained by computing num. approximations w/

Matlab R© [168]—cf. Appendix A1.
b.Computed w/ implementation by Do [36].
c.Computed w/ ode45 at default error tolerances.
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It is important to highlight some features of the applied schemes that explain the num-
bers reported in Table 8.1. Firstly, in the case of the applied FD scheme, the IAST
equilibrium values, i.e., adsorbed phase concentrations at equilibrium, q = f(c), are
applied directly into the computation—recall Equation (7.1), p. 87. In contrast, the FV
discretization with the method of lines yields an ODE system of size J , which is sub-
sequently integrated in time. The matrix K(λ) then operates on the r.h.s. of this ODE
system, cf. Equation (7.26), p. 99. This matrix requires the IAST solution approach to
generate the required values of c0 at equilibrium for its computation. As a result, the
r.h.s. of ODE system (7.26) is intrinsically nonlinear. Further, the calculation of the
solution in time, t, is more costly due to internal function evaluations of the applied
numerical integrator. For example, applying the SSP-RK method (7.15) requires the
calculation of two internal stages, u(1), u(2), in order to advance the solution one time
step as explained before. Therefore, it can be stated in general, that improvements in so-
lution accuracy come at the cost of performing a larger number of function evaluations,
which in this particular example translate into longer calculation times, as documented
in Table 8.1.
Secondly, the difference in calculation times for column dynamics among the numerical
schemes is expected from the computational performance already documented for dif-
ferent IAST solution approaches—cf. Table 5.5 of Section 5.3, p. 70—used to obtain the
IAST equilibrium values. These equilibrium calculations represent a significant amount
of the overall computational cost.
Lastly, recalling Chapter 3, it is important to keep in mind that in this example, it
has been possible to compute IAST solutions with modified FastIAS because the single
component Quadratic plus Langmuir isotherms possess an analytical formula for Π—cf.
Equation (3.16d) in Table 3.4, p. 38. In the case this is not fulfilled, and this IAST
solution method can not be applied, longer calculation times as reported in Table 8.1,
should be expected.

One important reason that motivates computing the solution approximations with the
best attainable accuracy—i.e., with the higher order scheme—is that, for problems with
complex adsorption equilibria, features of the computed elution profiles, such as the
appearance of shock layers, are easier to identify and analyze. This likely occurs when
inflections along the isotherm courses are present.



Chapter 8 Dynamic simulations 109

T
im

e
 ,

 [
 m

in
. 

]

0
5

1
0

1
5

2
0

Concentration , [ mM ]

0123456789

3
.2

3
.6

4

0123456789

4
4

.4
4

.8

012345

1
2

.5
1

3
1

3
.5

1
4

012345

1
5

1
6

1
7

0

0
.5

1

1
.5

2

2
.5

3

A
B

C
D

E

F
ig
ur
e
8.
4:

N
um

er
ic
al

ap
pr
ox
im

at
io
ns

to
E
D
M
1D

fo
r
a
w
id
e,

re
ct
an

gu
la
r
in
j.
pl
ug

of
a
m
ix
tu
re

of
de

cy
lb
en

ze
ne

(C
10
)
&

un
de

cy
lb
en

-
ze
ne

(C
11
).
t i
,

in
j.

=
10

[m
in
.]
,w

ith
co
nc
en
tr
at
io
ns
c C

10
,

in
j.

=
5.

4[
m

M
]&

c C
11
,

in
j.

=
5.

0[
m

M
].

(−
·):

lim
ite

d
3rd

or
de

r
up

w
in
d-
bi
as
ed

di
sc
re
tiz

at
io
n,

IA
ST

co
m
pu

te
d
nu

m
er
ic
al
ly

w
/
m
od

ifi
ed

Fa
st
IA

S;
(−
−
):

FD
sc
he

m
e,
IA

ST
co
m
pu

te
d
nu

m
er
ic
al
ly

w
/
m
od

ifi
ed

Fa
st
IA

S;
&

(−
):

lim
ite

d
3rd

or
de

r
up

w
in
d-
bi
as
ed

di
sc
re
tiz

at
io
n,

IA
ST

co
m
pu

te
d
nu

m
er
ic
al
ly

w
/
IV

P
ap

pr
oa
ch
.
C
al
cu
la
tio

n
tim

es
re
qu

ire
d
fo
r

ea
ch

si
m
ul
at
io
n
ar
e
lis
te
d
in

Ta
bl
e
8.
1.

A
pp

lie
d
is
ot
he

rm
an

d
si
m
ul
at
io
n
pa

ra
m
et
er
s
ar
e
lis
te
d
in

A
pp

en
di
x
A
8,

Ta
bl
es

A
4,

p.
17
4

&
A
5,

p.
17
5,

re
sp
ec
tiv

el
y,

(A
):

re
su
lti
ng

co
m
pe

tit
iv
e
el
ut
io
n
pr
ofi

le
s;

(B
):

br
ea
kt
hr
ou

gh
of

le
ss
-a
ds
or
be

d
C1

0,
di
sp
la
ce
d
by

C1
1;

(C
):

br
ea
kt
hr
ou

gh
of

C1
1;

(D
):

si
m
ul
ta
ne

ou
s,

co
he

re
nt

de
so
rp
tio

n
of

C1
0
&

C1
1;

&
(E

):
de

so
rp
tio

n
of

th
e
m
or
e-
re
ta
in
ed

C1
1,

al
on

e.



Chapter 8 Dynamic simulations 110

8.3 Simulation of chromatographic cycles

A typical task in adsorption-based separation processes consists of computing the so-
called chromatographic cycle, which consists basically of two steps:

1. an adsorption step from an initial, uniform equilibrium state at every point of the
column, i.e., c0 = c(t = 0, z), to a feed state, which is attained by supplying the
column with a solution of the adsorbates with concentrations ci, feed until a new
equilibrium condition is reached; &

2. a desorption step, whereby, the column, which was equilibrated completely with feed
concentrations, ci, feed, is subsequently brought back to the initial state concentrations—
those prevailing in the column before the adsorption step was effected—thus the name
‘cycle’.

Henceforth, the cycle is modeled by applying two step changes in the feed concentrations
of the system at the inlet boundary, z = 0. If the ideal model—Section 6.4, p. 82—is ap-
plied with this simple boundary condition, and a solution can be computed analytically,
a particularly useful tool for optimization of adsorption-based separations is obtained∗.
The task can also be computed numerically with the schemes presented in Chap-
ter 7. Moreover, approximate solutions of the ideal model may be obtained by setting
D app,k → 0 in EDM1D, as shown in the examples of Section 8.2.
An important advantage of operating the adsorption process cyclically is that it offers
the opportunity to investigate adsorption equilibria from dynamic operation as will be
demonstrated in Chapter 10.

Chromatographic cycle of a pre-loaded column

Figure 8.5 illustrates simulation results of a cycle obtained for a pre-loaded column,
whereby a binary case with C10 and C11 is considered. Four equilibrium points are
identified with lowercase letters: ‘a’, ‘b’, ‘c’ and ‘d’. Breakthrough shock layers and
smooth trailing edges connect these equilibrium points. The shape of these transitions
is completely defined by adsorption equilibria, q = f(c), and thus, a direct consequence
of applying single component adsorption isotherms with inflection points along their
courses to compute competitive equilibria with IAST for this particular example. The

∗Refer to the sources listed in Section 6.4.
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figure also reveals the excellent approximation obtained by performing the calculation
with the higher order discretization. For comparison, as before, solutions of EDM1D
computed with the FD scheme are also given. The higher order discretization resolves
features of the solution on a coarse grid that are difficult to see with the FD scheme
solution at low plate numbers, caused by numerical dispersion. This can be clearly
observed at the intermediate plateau, ‘d’, that appears during the desorption step—
figure inset ‘D’. This confirms once more that the higher order scheme can be used
advantageously to obtain approximations for the ideal model (6.12).

Chromatographic cycle of a fully regenerated column

The more frequently encountered case in liquid chromatography, wherein a stationary
phase is completely equilibrated with a solution of known concentration and regenerated
afterwards with pure solvent, is illustrated in Figure 8.6. This is expressed by an initial
state c0 = c(t = 0, z) = 0.

Numerical approximations for different values of column efficiency, computed by varying
the apparent diffusion coefficient, D app,k, are illustrated for comparison. At the applied
feed concentrations, ci, feed, a particularly strong displacement is predicted by IAST, even
for the case with the largest apparent diffusion coefficient, corresponding toN plate = 200.
Competitive adsorption equilibria calculated with IAST, at the considered concentration
ranges, i.e., ci, feed = 15 [ mM ], are responsible for the magnitude of this displacement.
The trailing edges of the elution profiles reveal an incipient reversal in the elution order
from the feed state concentration up to a value of ≈ 5 [ mM ].
While the smallest applied diffusion coefficient is not particularly close to the limit
case, D app,k → 0, which corresponds to an ideal, local equilibrium model solution, the
computation with this value provides already a good approximation of this limit case.

Complete chromatographic cycles, as described above, will be further explored in Chap-
ter 10 in order to estimate multicomponent equilibria calculations from experimental
measurements by its application.



Chapter 8 Dynamic simulations 113

T
im

e
, 

[ 
m

in
. 

]

0
2

4
6

8
1

0
1

2

Concentration, [ mM ]

05

1
0

1
5

2
0

2
5

3
0

3
5

2
.3

2
.4

2
.5

2
.6

05

1
0

1
5

2
0

2
5

3
0

3
5

6
6

.5
7

8

1
0

1
2

1
4

1
6

7
.5

8
8

.5
9

012345

1
0

1
1

1
2

0

0
.5

1

1
.5

2

2
.5

3

A
B

C D

E

F
ig
ur
e
8.
6:

Ill
us
tr
at
io
n
of

a
ch
ro
m
at
og
ra
ph

ic
cy
cl
e
w
ith

an
in
iti
al
ly

cl
ea
n
co
lu
m
n
ca
lc
ul
at
ed

w
ith

E
D
M
1D

.I
ni
tia

ls
ta
te
:
c 0

(t
,z

)
=

0
&
q 0

(t
,z

)=
0.

Fe
ed

st
at
e:
c i
,

fe
ed

=
15

[m
M

].
A
pp

lie
d
pl
at
e
nu

m
be

rs
:
(−

):
N

pl
at

e
=

10
00

;(
−
):
N

pl
at

e
=

50
0;

(−
·):

N
pl

at
e

=
30

0;
&

(··
):

N
pl

at
e

=
20

0.
E
m
pl
oy
ed

si
m
ul
at
io
n
pa

ra
m
et
er
s
ar
e
lis
te
d
in

Ta
bl
e
A
5
of

A
pp

en
di
x
A
8,

p.
17
5.

A
pp

lie
d
is
ot
he

rm
pa

ra
m
et
er
s
ar
e
lis
te
d

in
Ta

bl
e
A
14
,p

.1
87
.



Chapter 8 Dynamic simulations 114

Summary

A suitable strategy to approximate solutions of the ideal model and the equilibrium-
dispersive model (EDM1D) for multiple competing adsorbates under IAST, exemplified
by typical liquid chromatography tasks, was validated and its computational perfor-
mance was tested. The applied numerical tools offer the following advantages: a) ac-
curacy; b) robustness; and c) efficiency. Moreover, the approximations can be per-
formed on coarse grids, which makes them particularly efficient, reducing computational
cost. As a bonus—albeit not implemented, parallelization of the algorithm should be
straightforward, which could help to overcome minor pitfalls of possible computational
performance due to stringent, high accuracy calculation requirements imposed in the
equilibrium calculation—cf. Section 5.3, p. 66.
Throughout this chapter a variety of calculation methods have been proposed:

1. two strategies to solve the PDEs of fixed-bed equilibrium-based adsorber models,
which can be extended easily to handle more detailed models, such as those mentioned
in Section 6.1, p. 78; &

2. strategies that allow the application of IAST to describe competitive adsorption
phenomena inside the column which are advantageous and that exploit the solution
approach explained in Chapters 4 and 5.

These methods have illustrated the potential of the IVP approach to incorporate IAST
equilibrium calculations in simple dynamic column models as well as relevant aspects
to be considered for a reliable implementation.
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Chapter 9

Adsorption equilibria of
alkylbenzenes in the
acetonitrile/PGC system

“The devil is in the detail.”

– English proverb

Introduction

In order to apply and verify the tools described in Part I & II, an experimental system
from liquid phase adsorption chromatography was investigated in detail. Firstly,

a description of the system is provided. Secondly, a detailed account of performed
experimental procedures is given. Lastly, the obtained single component adsorption
equilibria, necessary as input information for IAST implementation, are presented.

117
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9.1 System description

The experimental system that has been investigated for a proof of the concepts pre-
sented in Parts I & II, consists of phenyl-n-alkanes—i.e., benzyl rings with attached
alkyl chains, as illustrated in Figure 9.1. These compounds dissolved in acetonitrile ad-
sorb onto porous graphitic carbon (PGC) stationary phases. High purity, HPLC-grade
quality acetonitrile (ACN) was used as solvent to prepare solutions of phenyl-n-alkanes
and employed as mobile phase for carry-through, displacement & column regeneration
in the HPLC apparatus. In this system, reported and investigated by Diack & Guio-
chon [51, 52], complex adsorption behavior of phenyl-n-alkanes is documented. In their
work, elution profiles of overloaded injections of a homologous series of these com-
pounds were recorded, viz. phenyl-n-octane (octylbenzene, ‘C8’), phenyl-n-decane (de-
cylbenzene, ‘C10’), phenyl-n-undecane (undecylbenzene, ‘C11’), phenyl-n-dodecane (do-
decylbenzene, ‘C12’), and phenyl-n-tridecane (tridecylbenzene, ‘C13’). They observed an
atypical behavior of the elution bands while progressively increasing injected concentra-
tions and volumes—i.e., column overloading. Single component adsorption isotherms
were recorded for each compound using Frontal Analysis (FA). Fitted parameters to
the measured adsorption equilibrium data, using the Quadratic plus Langmuir isotherm
model—cf. Equation (2.3e), p. 17, were estimated. The system is particularly interesting
because the adsorption isotherm courses of these compounds exhibit inflection points
at certain temperatures and concentration ranges. These inflection points demand a
careful and methodical approach to estimate and describe the adsorption equilibria.

Figure 9.1: Structural formulas of decylbenzene (C10) [237] & undecylbenzene (C11) [238].

Origin & nature of inflection points The effect of inflection points along adsorp-
tion isotherm courses in overloaded elution profiles has been analyzed both theoretically—
see e.g., [239]—and experimentally, in connection with complex liquid phase adsorption
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mechanisms observed in specific RPLC systems—see e.g., [37, 76, 240–244]∗. Already
in the earlier publication of Brunauer et al. [61] a rational explanation is provided
for Type III behavior—cf. Chapter 2, Section 2.1.1, p. 15. Therein, predominantly
stronger cohesive forces between molecules of adsorbate, organized in layers above a
monolayer in contact with the adsorbent surface, are attributed for cooperative behav-
ior in the experimental systems they analyzed. A delicate balance between adhesive
& cohesive forces is therefore, in principle, responsible for observed behavior. It seems
plausible that this idea applies to the alkylbenzenes/ACN/PGC system of this study
as well, as pointed out by Diack & Guiochon [52], since interactions of alkyl chains of
neighboring adsorbed molecules seem to favor cooperative behavior. The orientation
of the benzyl ring for homologous alkylbenzenes, albeit with shorter alkyl chains and
branches, was investigated for analytical concentrations using a methanol/water mobile
phase on HypercarbTM column by De Matteis et al. [246, 247]. Their findings aimed at
establishing a relationship between retention behavior and structural & steric confor-
mations of adsorbed alkylbenzene molecules. Length of alkyl chain seems to determine
preferred conformations, which translated to particular retention mechanisms. They
supported their experimental findings with molecular simulation studies.
All in all, the more relevant and challenging task of estimating adsorption equilibrium
of multicomponent mixtures of phenyl-n-alkanes in the ACN/PGC system becomes par-
ticularly difficult using an explicit isotherm equation—cf. Table 2.4, p. 23, in contrast to
e.g., a simpler system, consisting only of compounds characterized by Langmuir adsorp-
tion isotherms—extensively studied and well understood, whereby adsorbate-adsorbate
interactions are not taken into account.
The prediction of competitive adsorption equilibria is quite demanding when single com-
ponent isotherms already display inflection points along their courses—see e.g., [76]. An
possibility to tackle this task consists of applying a thermodynamically consistent
principle that employs exclusively measured single component adsorption isotherms,
such as IAST, whilst assessing its suitability to describe the adsorption system of inter-
est.

As explained in Chapters 3 and 4, input information for IAST are adsorption isotherms
of each compound obtained individually in the selected fluid/adsorbent system, AC-
N/PGC, at the same investigated temperature, T , for which the behavior of the mixture
needs to be described. The following sections provide technical details pertaining the
acquisition of this information for the experimental system described above.

∗Strictly speaking, adsorption on PGC, should be neither categorized as reversed phase, nor as
normal phase, though it displays reversed-phase behavior [245].
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9.2 Equipment description & technical assembly details

High-performance liquid chromatography device

An Agilent 1260 Infinity analytical instrument, purchased from Agilent Technologies,
was used to perform the measurements. Table 9.1 lists its constituent modules & cor-
responding part numbers for reference, whilst Figure 9.2 illustrates its setup; actual
pictures of the equipment are documented in Appendix A9. Further, this device is
controlled automatically and programmed with the equipment manufacturer’s software
ChemStation and its maintenance software utilities [248].

Table 9.1: Modules of Agilent 1260 Infinity HPLC equipment. Pictures of
these modules are displayed in Figure A1, Appendix A9, p. 176.

Module (manufacturer’s ID-tag)
Id., Fig. 9.2 &
Fig. A1, p. 176

Degasser (1260 Degasser) B

Dual pump module (1260 Bin Pump) C

Sample injection module (1260 ALS) D

Column compartment & oven (1260 TCC) E

Multiple wavelength UV detector (1260 MWD VL) F

Refractive index (RI) detector module (1260 RID) G

Analytical-scale fraction collector J

Flow rate meter

A volumetric flow rate meter from DURATEC∗ was installed downstream the HPLC
station in order to precisely measure the flow rate delivered by the HPLC pumping
module. Small deviations of around 1.5 - 2.0 % were observed between selected volu-
metric flow rate set-point and actual recorded values. Monitoring of the volumetric flow
rate is essential for precise adsorption equilibrium determination using FA [14, 94]—cf.
Equation (9.7). Calibration sheet(s) for this device can be found in Appendix A9.

∗DURATEC Analysentechnik GmbH. Rheinauer Strasse 4, D-68766 Hockenheim, Germany.
http://www.duratec.de.
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Figure 9.2: Schematic representation of employed equipment setup. Pictures of the mea-
surement devices are displayed in Figure A1, Appendix A9, p. 176. Refer to Figure 9.4 for
a picture of the employed HPLC column. (−): physical tubing connections; (··): I/O and
e-control signals.

9.3 Applied materials & methods

Chemicals∗

HPLC-grade acetonitrile was purchased from VWR/BDH Prolabo† to prepare injected
solutions and samples, as well as mobile phase for the HPLC measurements. Investi-
gated chemical compounds were purchased from Tokyo Chemical Industry Co., Ltd.
(TCI Deutschland GmbH), and Sigma-Aldrich R©, with a purity specification of 97 %—
as measured by the manufacturer. Table 9.2 lists the CAS Registry Numbers—‘CAS
numbers’—of applied chemicals for easy identification.
While specification of purity of purchased chemicals is high—97 %, small discrepancies
in elution behavior amongst chemicals’ suppliers were noticed. Figure 9.3 illustrates this
point for undecylbenzene (C11). Under the same operating conditions—temperature, T ,
volumetric flow rate, Q, PGC stationary phase, and HPLC-grade solvent, the recorded

∗Names of companies & commercial brands are mentioned for the sole purpose of clarity in the
exposition and proper documentation of the conducted academic, non-commercial research study.

†Product designation: «Acetonitril HiPerSolv CHROMANORM R©, gradient grade für die HPLC ».
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Table 9.2: CAS Registry Numbers of applied chemicals to facilitate their identifi-
cation; molecular weights & densities.

Chemical compound CAS Registry No. Molecular weight Density b

[ g/mol ] [ g/ml ]

acetonitrile (ACN) a 75-05-8 41.05 0.7820
octylbenzene (C8) 2189-60-8 190.32 0.8560
decylbenzene (C10) 104-72-3 218.38 0.8575
undecylbenzene (C11) 6742-54-7 232.40 0.8550
dodecylbenzene (C12) 123-01-3 246.43 0.8555
tridecylbenzene (C13) 123-02-4 260.46 0.8845
a.HPLC-grade quality.
b.Measured at 20 ◦C.

elution profiles vary. The explanation behind this lies most likely in potential impu-
rities of the chemicals. Precaution was taken to work every experimental run with
compounds from the same manufacturer to avoid this problem. This is certainly critical
when determining adsorption equilibria for a particular substance. Best practice is to
use analytical standards, although these may not be readily available commercially for
some compounds∗.
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Figure 9.3: Comparison of injections of undecylbenzene (C11) supplied by two different
vendors: (−): TCI (Tokyo Chemical Industry Co., Ltd.); (− −): Acros Organics (Thermo
Fisher Scientific), employing in both sets a 30×4.6 [ mm ] HypercarbTM column, under identical
HPLC operating conditions. Injected volumes, VC11, inj.: 1, 3, 5 [µl ] (left); 100, 300, 500 [µl ]
(right). Volumetric flowrate Q = 1.0 [ ml/min. ]. Temperature, T = 323 K. Signals were
recorded at λUV = 254 [ nm ].

∗At the time these measurements were conducted, only the analytical standard for decylbenzene
(C10) was available for purchase in the market. The author decided to proceed with the ‘impure’
chemicals herein documented anyhow, without further purification steps.
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Stationary phase

A porous graphitic carbon (PGC) HPLC column of dimensions Lc = 50 [ mm ] and di-
ameter dc = 4.6 [ mm ]—commercialized under the name HypercarbTM∗—was acquired
for the measurements. Specific details related to the retention mechanisms and struc-
tural characteristics of this stationary phase can be consulted from the manufacturer in
Pereira [249]. An extensive literature exists on applications of PGC as stationary phase
in liquid chromatography, see among many others [245–247, 250–254]. Appendix A9
contains a copy of the manufacturer’s certificate for the column used in this study,
while Figure 9.4 presents a picture of this column.

Figure 9.4: Picture of a HypercarbTM column of dimensions Lc = 50 [ mm ] and diameter
dc = 4.6 [ mm ] used in the experimental study. The corresponding certificate of the employed
column can be consulted in Appendix A9.2, p. 177.

9.4 Preliminary measurement procedures & preparation

Estimation of plant dead times, td

Two types of dead time can be identified in the equipment, depending on the operation
mode required for a particular measurement. The operation modes have been identified
as follows:

1. injLoopSys. This is the standard operation mode of the HPLC instrument, where
the sample injection is performed by the automatic sampler module of the device—
cf. Table 9.1. This mode was applied in Section 9.5 for single compound injections
of different concentrations and also in Section 10.2, p. 144 to perform analysis of
∗A brand of Thermo Fisher Scientific, Inc.
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samples obtained by fraction collection. In this mode the dead volume, Vd, injLoopSys,
yields the dead time

td, injLoopSys = Vd, injLoopSys
Q

, (9.1)

whereby Q denotes the average volumetric flow rate.

2. gradPumpSys. Measurement of the dead time of the system when operating through
the gradient pump operation for sample injection was verified with an step change
in concentration effected by switching to channel B at a fixed time and recording
the response. The automatic sampler module is bypassed when the equipment is
operated in this manner. As a bonus, one can determine the hydrodynamic dispersion
of the internal capillaries of the instrument alone, since the column is removed from
the system for this measurement. The actual dispersion observed in the recorded
chromatograms is, therefore, a lumped or combined effect of all dispersion sources in
the system, e.g., capillaries, internal connectors, junctions, and valves. This operation
mode was employed for Frontal Analysis measurements described in Section 9.6. Its
corresponding dead time is

td, gradPumpSys = Vd, gradPumpSys
Q

. (9.2)

Estimation of total porosity, ε

This parameter is important to: a) quantify reported experimental results; & b) apply
this value in the numerical simulations of EDM1D, cf. Chapter 6. A simple procedure
was used for its quantification, see e.g., Meyer [197]. Two measurements of a non-
adsorbable chemical compound, compatible with the solvent/adsorbent system at hand,
are required. A small volume of a few microliters of a sufficiently small molecule of a
non-retained chemical is injected with the installed HPLC column, recording the eluted
peak time, t′0; the column is afterwards removed and a second injection is performed
to estimate the deadtime of the injection loop system, from this second recorded peak,
td, injLoopSys. Applying the following expression

ε = Qt0
Vc

with t′0 = t0 + td, injLoopSys, (9.3)

the total porosity, ε, is obtained—recall Equation (6.6), p. 81. The employed hold-
up time, t0, is corrected with td, injLoopSys. For the applied HypercarbTM column, total
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porosity was estimated to be ε = 0.745, which falls within manufacturer’s specification—
consult Pereira [249]. Further details on estimation of this parameter for the employed
column can be consulted in the work of Kusian [255].

Calibration curves to quantify concentrations of alkylbenzenes

Two types of calibration curves were prepared to conduct analysis of recorded
chromatograms—see Meyer [197] for further details:

1. Peak areas operating in the injLoopSys mode—displayed in Figure 9.5. The resulting
linear calibration factors

kC10 = 153.9
[ mAU · s

mM

]
and kC11 = 148.1

[ mAU · s
mM

]
(9.4)

were obtained from the linear regressions displayed in Figure 9.5 for decylbenzene
(C10) and undecylbenzene (C11), respectively. These factors were applied to analyze
the samples of the different solutions employed. The factors are valid for injected
volumes of 1 [µl ] and λUV = 220 [ nm ]. They were also used to analyze the collected
fractions of overloading experiments described in Chapter 10.

2. Application of direct detector signal calibration, whereby

λUV = { 220; 225; 230; 235; 240; 245; 250; 254 } [ nm ] (9.5)

were the recorded absorption wavelengths; these were selected by considering the
recorded UV spectra of the two alkylbenzenes, in the range λUV ∈ [ 190, 400 ] [ nm ],
documented in Appendix A11. The corresponding calibration points were obtained
from FA measurements explained in Section 9.6.

Estimation of column plate, N plate & column axial dispersion, D ax from a
non-retained compound

The efficiency of the employed HypercarbTM column was verified also by Kusian [255]
under analytical conditions with distilled water (H2O)∗ as a non-retained molecule, in

∗Generated with a milliQ R© instrument available in the laboratory.
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Figure 9.5: Calibration curves for collected fractions’ analysis at λUV = 220 [ nm ] for decyl-
benzene (C10) & undecylbenzene (C11). Plotted values are listed in Table A6, Appendix A10.1,
p. 179, from solutions of various concentrations of C10 & C11 in ACN, documented in Table A7
in Appendix A10, p. 180.

analogy to the description provided with the column’s certificate—documented in Ap-
pendix A9.2, p. 177. The resulting plate number measurements of this non-retained
analyte are documented in Appendix A10.2, p. 181.

9.5 Preliminary injections of single compounds

In analogous manner to Diack & Guiochon [51, 52], elution profiles were recorded em-
ploying a commercial PGC stationary phase, confirming the behavior observed and
documented by these researchers for the alkylbenzenes/ACN/PGC system. A series
of elution profiles with increasing injection volumes, Vi, inj., for each compound is pre-
sented in Figure 9.6. The trailing portion of the elution profiles of these injections were
used to establish approximate concentration ranges where the inflection points along
the isotherm courses are located. This range lies roughly between 0− 5 [ mM ] for both
compounds. This preliminary information was useful to organize the Frontal Analysis
program execution, discussed in Section 9.6.

Verification of elution profiles & injected amounts A useful equation to evaluate
the elution profiles is:

ni, inj. = ci, inj. V inj., where V inj. ≡ VinjLoopSys, (9.6a)
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Figure 9.6: Elution profiles of injections of investigated alkylbenzenes, C10 and C11. Dis-
played injected volumes, V inj.: 50, 100 & 200 [µl ] of prepared solutions with concentrations,
ci, inj.: 20.06 [ mM ] & 20.02 [ mM ], respectively—cf. Table A7 in Appendix A10, p. 180.

whereby,the injected concentrations, ci, inj. are known. Alternatively, since mass is con-
served in the process,

Q

t2∫
t1

ci, inj.(t) dt← ni, inj. = Q

t2∫
t1

c(t, z = L) dt. (9.6b)

Hereby, Q denotes an average value of the recorded volumetric flowrate—cf. Section 9.2.
Equation (9.6b) is simply a mass balance over any component i in the column. Com-
parison of (9.6a) and (9.6b) was frequently applied to verify the validity and accuracy
of the reported experimental results.

9.6 Frontal Analysis of single compounds

Several techniques are available to determine adsorption isotherms. Classical, well-
known techniques are thoroughly described and documented in books and technical
publications [14, 94, 128, 256, 257]. Mainly, techniques can be classified in two groups:
static & dynamic—see e.g., [258]. These designations refer to the type of experimen-
tal procedure used to obtain adsorption equilibrium information.
In static methods, a known concentration of an adsorbable substance is put in contact
with a fixed amount of solid stationary phase [128]. Mass transport from mobile phase
to solid phase will occur under controlled experimental conditions, i.e., temperature and
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pressure, in order for the—closed—system to attain thermodynamic equilibrium. Driv-
ing force for this mass transfer is the difference in chemical potential between the two
phases [2, 46]. After a sufficiently long time, a mass balance is calculated in order to de-
termine concentrations in both phases. The procedure is repeated for different amounts
of substance in the fluid phase, i.e., solute concentrations. Each of these provides an
adsorption equilibrium point, which is subsequently marked in a q vs. c diagram, thus
providing complete equilibrium information at constant temperature, T , within the in-
vestigated concentration range. Static methods are usually very time-consuming, but
provide adequate accuracy.
Dynamic methods, on the other hand, are standard practice of semi-preparative &
preparative scale liquid-phase adsorption chromatography [14, 94]. It can be unarguably
stated that they are the workhorse to quantify adsorption equilibrium for these types
of separation processes. Additional information can be obtained from these techniques,
e.g., mass transfer mechanism information, elution profile behavior and process condi-
tions themselves. Frontal Analysis (FA) belongs to the class of dynamic measurement
methods—see e.g., [14, 129, 259]. Specific aspects addressing FA method accuracy, com-
pared to other dynamic methods, are discussed in [260]. A thorough review of the tech-
nique for both single component and competitive mixture isotherm measurement can be
found in [94]. Many interesting examples of its application have been documented—see
e.g., Lisec [261].

Advantages & disadvantages of FA technique

Just like any other experimental technique for adsorption equilibria measurement, FA
displays attractive features, whilst suffering of some drawbacks as well; these are listed
in Table 9.3.

Table 9.3: Frontal Analysis (FA) technique: advantages & disadvantages.

Advantages Disadvantages

1. accurate; applicable on low-efficiency
columns;

2. requires only simple mass
balances—capacity equations;

3. provides detector calibration directly; &

4. applicable to simultaneous competitive
equilibria measurement, too.

1. additional control & monitoring of
volumetric flow rate needed;

2. prone to error propagation in stepwise,
staircase modality; &

3. requires large amounts of investigated
chemicals—i.e., costly; time-consuming.
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Despite of the listed disadvantages, the technique is well-established and it is ideally
suited to gain thorough insight of adsorption behavior of the investigated experimental
system.

Method description and working equations

A solution of an adsorbable compound∗, i, of known concentration, ci, feed, is injected to
an initially clean—i.e., non-loaded—column, packed with the adsorbent of interest and
kept at a constant temperature, T , in order to effect a step change in concentration of
the fluid phase flowing through the column. The concentration is thus kept constant
at the inlet. After a determined amount of time, this concentration value is registered
at the column outlet by the instrument’s detector. This is typically observed as a
sharp, sigmoid-like curve in the signal. An indication that the stationary phase has
reached completely an equilibrium concentration, c(II)

i , corresponding to the injected
concentration, ci, feed, occurs when the detector signal remains constant, i.e., the step
change concentration has been attained and thus marks the point in time at which it is in
equilibrium with its corresponding adsorbed phase concentration. In general, these step
changes in concentration are applied for any starting value at equilibrium, c(I)

i . In this
way, it becomes possible to progressively introduce step changes in the concentration, as
illustrated in Figure 9.7. The uptake of compound i by the stationary phase is therefore
obtained from a mass balance for the column, referred to as capacity equation:

∆ni = n
(II)
i − n(I)

i = Q

∆c(I·II)
i ( t2 − t1 )−

t2∫
t1

ci(t) dt

 , (9.7a)

whereby ∆ni represents the amount of solute adsorbed by the stationary phase when
a concentration step change of the fluid phase, ∆c(I·II)

i ≡ c
(II)
i − c(I)

i , is exerted on the
column. The lower integration limit is set by

t1 = t
(I·II)
step + td, gradPumpSys + t0; t2 > t1, (9.7b)

taking into account the dead volume of the instrument when injecting the solution using
the gradient pump modality described before—cf. Equation (9.2). The upper limit, t2,
is selected by noticing the point in time when the recorded concentration signal is
stable, and does not vary as a result of the effected step change. The adsorbed phase

∗This compound is often referred to as eluate or solute in the chromatography jargon.



Chapter 9 Adsorption equilibria of phenyl-n-alkanes 130

concentration at equilibrium is calculated with

∆qi = q
(II)
i − q(I)

i = ∆ni
(1− ε)Vc

, therefore, q
(II)
i = q

(I)
i + ∆qi. (9.7c)

The set of equilibrium values obtained from subsequent application of several concen-
tration steps are then plotted in a q vs. c diagram—i.e., the adsorption isotherm curve
qi = f(ci).
A slightly different approach also applied to evaluate the FA concentration steps is the
so-called ‘equal-area’ method [14, 176]. Since time of injection and solution concentra-
tion are known, a mass balance for compound i can be established also in the form:

t b,iQ∆ci = εVc∆ci + (1− ε)Vc∆qi, (9.8a)

whereby, ∆qi = q
(II)
i − q(I)

i and ∆ci = c
(II)
i − c(I)

i , yielding

q
(II)
i = q

(I)
i + t b,iQ− εVc

(1− ε)Vc

[
c

(II)
i − c(I)

i

]
. (9.8b)

The breakthrough time, t b,i, signalizes the concentration change from c
(I)
i to c(II)

i . It
is determined by equalizing graphically the two areas around the applied concentration
step generated by a vertical line drawn at t b,i that cuts through the step curve. This
also defines in a precise way the amount of solute i adsorbed by the column from (9.8b).
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Figure 9.7: Illustration of a typical FA elution profile for decylbenzene (C10). (−·): post-
processed steps via sigmoidal function (9.9a), in order to evaluate adsorptive capacity with
Equation (9.7). The resulting equilibrium values are listed in Table A11, Appendix A10,
p. 184.
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The results of the ‘equal-area’ method, Equation (9.8) and the ‘capacity’ method, Equa-
tion 9.7 are therefore equivalent, since they are based on a mass balance of adsorbate i in
the column, using the recorded elution concentration profile that results from bringing
the system from an initial state of equilibrium, (I), to a new one, (II).

Post-processing of experimental elution profiles from FA measurements

Data post-processing operations typically applied to the raw data include: a) re-scaling;
b) baseline offset correction; c) drift correction; d) noise filtering; and e) smoothing. An
explanation for these terms, as well as further technical details regarding signal post-
processing can be consulted in e.g., Felinger [262] and Meyer [197].
An alternative to post-process the recorded signals and compute the adsorptive capaci-
ties of FA measurements is achieved by fitting the elution profiles of the concentration
steps to appropriate step functions. In this way, the experimental noise in the measured
signals is eliminated and a smooth, accurate representation of the concentration steps is
achieved. For this purpose, the five-parameter formula

y = f(x) = d0 + d1 − d0[
1 + exp

[
d2 [ x− d3 ]

] ]d4
, (9.9a)

with lower asymptote, d1 and upper asymptote, d0, was employed to fit each step change
of the FA concentration profile. Formula (9.9a) possesses, in turn, the indefinite integral

y =
∫
f(x) dx = 1

d2d4

[
1 + exp [ d2 [ x− d3 ] ]

]−d4 ·
d0d2d4

[
1 + exp [d2 (x− d3)]

]d4

x

+ [ d0 − d1 ]
[
1 + exp [d2 (x− d3)]

]d4

2F1

[
d4, d4, 1 + d4,− exp

[
d2 [ x− d3 ]

] ]


+ C , (9.9b)

which was applied to evaluate adsorptive capacities from Equation (9.7)—Guiochon et
al. [14]. Figure 9.7 illustrates an example of a fitted step function using formula (9.9a).



Chapter 9 Adsorption equilibria of phenyl-n-alkanes 132

Resulting single component adsorption isotherms of decylbenzene (C10)
and undecylbenzene (C11) at 323 K (50 ◦C)

Application of the post-processing tools and evaluation of the FA results with the ca-
pacity method described previously, using formulas (9.9), yielded single component ad-
sorption isotherms, q0

i = f(c0
i ), i = 1, 2, for decylbenzene (C10) and undecylbenzene

(C11) as illustrated in Figures 9.8 and 9.9. Additionally, the resulting quotients q0
i /c

0
i

are also displayed in order to apply IAST—cf. Chapter 3; these are particularly useful
to confirm the presence of inflections points in the isotherm courses and estimate with
accuracy the concentration values at which these occur.
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Figure 9.8: (A): adsorption isotherms of decylbenzene (C10) dissolved in ACN at 323.15 K
(50 ◦C), measured with a 50 × 4.6 [ mm ] HypercarbTMcolumn—cf. Appendix A9.2. (�): 24
pts. in conc. range 0 − 20 [ mM ], Table A9, p. 182; (5): 5 pts in conc. range 0 − 20 [ mM ];
(4): 20 pts. in conc. range 0 − 5 [ mM ], Table A10, p. 183. (B): corresponding quotients,
q0
i /c

0
i , obtained from equilibrium points illustrated in (A).
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Figure 9.9: (A): adsorption isotherms of undecylbenzene (C11) dissolved in ACN at 323.15 K
(50 ◦C), measured with a 50 × 4.6 [ mm ] HypercarbTMcolumn—cf. Appendix A9.2. (�): 24
pts. in conc. range 0 − 20 [ mM ], Table A9, p. 182; (5): 5 pts in conc. range 0 − 20 [ mM ];
(4): 20 pts. in conc. range 0 − 5 [ mM ], Table A10, p. 183. (B): corresponding quotients,
q0
i /c

0
i , obtained from equilibrium points illustrated in (A).



Chapter 9 Adsorption equilibria of phenyl-n-alkanes 135

Effect of temperature∗

Figure 9.10, illustrates the effect of temperature on the elution of peaks of C10 and C11.
Breakthrough times were shortened as temperature was increased. This is the expected
behavior, since preference to adsorb is favored at lower temperatures, resulting in longer
peak retention times, as shown in the figure.
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Figure 9.10: Injections of decylbenzene (C10) and undecylbenzene (C11) at different tem-
peratures. (−): 323 K (50 ◦C); (−−): 333 K (60 ◦C); & (− ·): 343 K (70 ◦C). Injected volumes,
Vi, inj.: 50 [µl ] and 200 [µl ] of solutions with concentration ci, inj. = 20 [ mM ].

The adsorption equilibria of the alkylbenzenes was quantified by measuring single com-
ponent FA at three different temperatures: 323.15 K (50 ◦C), 333.15 K (60 ◦C) and
343.15 K (70 ◦C). The results are illustrated in Figures 9.11 and 9.12 for measurements
in the ranges 0−20 [ mM ] and 0−5 [ mM ], respectively. These measurements helped to
verify the reasoning given in Section 9.1, regarding origin of inflections along isotherm
functions, since it can be observed that the inflection points become less pronounced
as temperature is increased. Further calorimetric studies were not pursued, as it was
sufficient for the experimental implementation and demonstration of this study to work
with enough gathered data at 323.15 K (50 ◦C). At this temperature, the effect of the
inflection points was clearly observed in the performed measurements, at a flow rate set
point of Q = 1.0 [ ml/min. ].

∗Preliminary results of this section were presented at the PREP Conference in 2013—cf. Appendix 7.
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Figure 9.11: Decylbenzene & undecylbenzene adsorption equilibria measured by FA at 323 K
( �,� ), 333 K ( 4,4 ) & 343 K ( 5,5 ). Plotted data points are reported in Table A12,
Appendix A10.4, p. 185.
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9.7 Fitting of measured adsorption isotherms to Quadratic
plus Langmuir model

Evaluation of the single component FA runs produced the adsorption isotherms, i.e.,
equilibrium points, illustrated in Figure 9.8 for decylbenzene (C10) and Figure 9.9 for
undecylbenzene (C11).
These equilibrium points were fitted to the five-parameter Quadratic plus Langmuir
isotherm

qi = q sat
i1

ci [ bi1 + 2bi2ci ]
1 + bi1ci + bi2c2

i

+ q sat
i2

bi3ci
1 + bi3ci

, i = C10, C11, (2.3e)

in analogous manner to the work of Diack & Guiochon [51, 52]. This model is capable
of describing the observed presence of two inflection points along the courses, under
certain parameter value constellations.
Parameter values were obtained by using the optimization toolboxes and Curve Fitting

Tool available in Matlab R© [168]—see Appendix A1, p. 163, for further software de-
tails. Special attention was set on the qualitative behavior of model (2.3e) with the
obtained parameter values for the q0

i /c
0
i functions illustrated in Figures 9.8 and 9.9,

as this is essential for applying IAST. From elution profiles of peaks of small injected
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Figure 9.13: Elution profiles to estimate Henry coefficients, hi, of investigated alkylbenzenes
in ACN/PGC system from peak times under analytical conditions. Temperature T = 323 K.
Volumetric flow rate set-point: 1.0 [ ml/min. ].

volumes, V inj., it was possible to establish experimentally Henry limit values, hi, for
each alkylbenzene, as illustrated in Figure 9.13. In the linear region of the adsorption
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isotherms—i.e., Henry region, Equation (2.5), p. 18—holds

tp,i ≈ tR,i = t0 [ 1 + φ hi ] or hi = 1
φ

[
tR,i
t0
− 1

]
= ε

1− ε

[
tR,i
t0
− 1

]
, (9.10)

thus obtaining the values hC10 = 13.8 and hC11 = 24.6 after correcting for the instru-
ment’s dead time, which was found to be td, injLoopSys = 0.057 [ min. ]. These Henry
limit values may be applied to establish constraints on the values of the parameters
of the applied isotherm equation under analytical conditions, because in accord with
Equation (2.12g)—Table 2.3, p. 20,

hi = q sat
i1 bi1 + q sat

i2 bi3. (2.12g)

Furthermore, the theoretical saturation limit for the Quadratic plus Langmuir model

q∞i = 2q sat
i1 + q sat

i2 , (9.11)

was employed. A simple starting guess value for q∞i may be obtained from a Langmuirian
fit to the gathered FA data points. The values q∞C10 = 370 [ mM ] and q∞C11 = 267 [ mM ]
were applied. Positively-valued equation parameters were also enforced. Firstly, on
the grounds of physical definition, saturation capacities, q sat

i1 & q sat
i2 , are positive and

finite. Secondly, the constraint, bi1, bi2, bi3 ≥ 0 was employed for convenience. Zeros
in the denominators of these terms in Equation (2.3e), produced by assuming negative
parameter values, could limit its range of applicability. For IAST, single component
isotherms should be available, in principle, in the entire concentration range c0

i ∈ [0,∞),
cf. Section 3.2, p. 35.

Quadratic plus Langmuir isotherm parameters obtained from FA mea-
surements at 323 K

Figures 9.14 and 9.15 illustrate the resulting single component isotherm fits and the
experimental points obtained by FA for comparison for decylbenzene (C10) and unde-
cylbenzene (C11), respectively.

The estimated parameter values are listed in Table A14 of Appendix A10.5, p. 187.
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Figure 9.14: Adsorption isotherms of decylbenzene (C10), described by the Quadratic plus
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Chapter 9 Adsorption equilibria of phenyl-n-alkanes 140

c
i

0
 , [ mM ]

0 5 10 15 20 25

q
i0
 ,

 [
 m

M
 ]

0

50

100

150

200

250

0 0.25 0.5 0.75 1
0

5

10

15

20

c
i

0
 , [ mM ]

0 5 10 15 20 25

q
i0
 /

 c
i0
 ,

 [
 -

 ]

5

10

15

20

25

30

0 1 2 3 4
18

22

26

30

A

B

Figure 9.15: Adsorption isotherms of undecylbenzene (C11), described by the Quadratic
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Summary

In this chapter a experimental system consisting of alkylbenzenes dissolved in acetoni-
trile, adsorbing onto a commercial porous graphitic carbon (PGC) stationary phase was
introduced and described briefly. Hereby selected adsorbates featured inflection points
along their adsorption isotherm courses in the solvent/adsorbent system chosen. The
adsorption isotherms of selected compounds were measured with the classical experi-
mental procedure of Frontal Analysis (FA). Therefore, the main piece of information
required to implement IAST calculations—i.e., single component adsorption isotherms,
q0
i = f(c0

i ), was obtained.
Parameter values for the Quadratic plus Langmuir single component isotherm were es-
timated from FA results for the investigated alkylbenzenes, viz. C10 and C11. These
values are listed in Table A14.
Further application of the experimental results herein reported will be presented in
Chapter 10.

Addendum: Practical recommendations

The following important items should be taken into account to perform adsorption
equilibria measurements, using the methods explained throughout this chapter:

� For compounds displaying inflection points along the adsorption equilibrium courses,
a precise and numerous collection of data points is strongly recommended, particu-
larly at concentration values where these inflections occur—wheresoever & whensoever
feasible.

� Variations in physical properties amongst stationary phases, even in the case of ma-
terials supplied by the same manufacturer, should be expected. An example was
presented whereby two of the Hypercarb columns employed in this study, differing
from each other only in their column length, Lc, exhibited different values of to-
tal porosity, ε, albeit estimated values were found to be within the manufacturer’s
specification [249].

� The same applies to purchased chemicals; an example was illustrated in Figure 9.3,
whereby different elution behavior of undecylbenzene from two different suppliers was
observed for the same type of measurement, hardware and HPLC operation condi-
tions. In practice however, these chemicals may be difficult to obtain commercially
as high purity analytical standards.
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Chapter 10

Predicting competitive elution
behavior of alkylbenzenes in the
acetonitrile/PGC system

“In theory there is no difference between theory and practice. In practice there
is.”

– Yogi Berra

Introduction

In this chapter the ability of IAST to describe mixtures of the experimental system,
presented in detail considering the adsorption of the single compounds in Chapter 9, is
tested. Firstly, a series of overloaded injections of mixtures of the same alkylbenzenes,
C10 and C11, are performed and analyzed. Since individual adsorption isotherm infor-
mation has been acquired previously, it can be applied directly in a second step together
with a simple fixed-bed column model to predict competitive adsorption dynamics using
IAST. Lastly, the obtained predictions can be compared to corresponding experimental
elution profiles.

143
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10.1 Applied methodology

A simple workflow is implemented in order to assess the ability of IAST to reproduce
measured binary, competitive elution profiles of the experimental system described in
Chapter 9—Section 9.1, p. 118, under overloaded conditions. It consists of a series
of steps, required to test IAST or any other multicomponent prediction model with
actual measured data from an adsorption-based separation unit, regardless of its size,
i.e., it is applicable to lab-scale HPLC columns, as well as large packed columns used for
industrial adsorption, following the model assumptions for the process listed in Table 6.1,
Section 6.2, p. 79.
This methodology consists of the following steps, which brings together concepts,
tools and information presented throughout the previous chapters:

1. obtain single component isotherms with an accurate measurement method—cf. Chap-
ter 9, Section 9.6, p. 127;

2. measure competitive multicomponent elution profiles—this chapter, Section 10.2;

3. apply IAST using the estimated single component isotherms with the solution ap-
proach of Chapter 4 in conjuction with a suitable dynamic fixed-bed adsorber model,
described in Chapters 6 and 7; &

4. assess the capability of IAST to predict the measured multicomponent profiles by
comparison of experimental results and theoretical predictions— as will be explained
in Section 10.3.

10.2 Overloaded injections of binary mixtures of alkylben-
zenes

Several overloaded injections of binary mixtures of decylbenzene (C10) and undecylben-
zene (C11) in solutions of various concentrations were fed to the column described in
Section 9.2, p. 120.

Preliminary measurements to understand system behavior

A set of three preliminary injections was performed with a solution of equimolar concen-
tration of 20 [ mM ] C10: 20 [ mM ] C11—consult Table A7, p. 180 for details regarding
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the preparation of this solution. Large injection volumes of Vi, inj. = 5 [ ml ] were applied
to the system for equimolar injections of 5, 10 and 15 [ mM ] using the gradPumpSys
mode, explained in Section 9.4, p. 123. These injections can not be performed with the
standard injLoopSys mode because the built-in injection loop has a maximum capacity
of 1000 [µl ]. The recorded elution profiles are illustrated in Figure 10.1.
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Figure 10.1: Total detector responses for overloaded injections of equimolar mixtures of C10
and C11 recorded at λUV = 235 [ nm ]. (A): 5 [ mM ]; (B): 10 [ mM ]; & (C): 15 [ mM ]. Experi-
mental conditions: T = 323 K; Q = 1.0 [ ml/min. ] (setpoint). Measurements performed with
the HypercarbTM column described in Section 9.3, p. 121. Concentration profiles predicted
by numerical simulation are shown for comparison. (−): C10; (−): C11. Single component
isotherm parameters applied in numerical simulations are listed in Table A14, Appendix A10.5,
p. 187.

In these preliminary experiments, a sharp step in the signal was registered, in particular
for the 15 [ mM ] injections. The large injected volume allows a full equilibration of
the stationary phase in the column, as can be observed from the plateau of the signal
at the highest recorded values, which lasts approximately 2.5 [ min. ]. Afterwards, the
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column was regenerated with pure ACN, thus performing complete cycles in all three
measurements—in analogous way as done for the numerical simulations in Section 8.3,
p. 110.

Individual signal reconstruction by fraction collection & analysis

A commonly applied alternative to identify the signals of individual compounds under
overloaded conditions, as those depicted in Figure 10.1, consists of recording these at dif-
ferent wavelengths, λUV. This usually works well to isolate each signal if the absorption
responses of the solutes are substantially different; a good example of a system where
this was exploited was investigated by Lisec [136]. In the case of the alkylbenzenes/ACN
system adsorbing on PGC, as might be inferred from observation of the molecular struc-
tures of C10 and C11—Figure 9.1, p. 118, the adsorption responses are rather similar
in the available UV range 200 − 400 [ nm ] recorded by the HPLC detector. This fact
was confirmed by measuring the UV spectra, which are documented in Figures A5, A6
and A7 of Appendix A11, p. 188, so the possibility to obtain individual elution profiles
under competitive conditions by analyzing the profiles at different wavelengths alone,
can not be applied for this system.
An alternative to deal with this problem consists of collecting continuously a series of
fractions during elution, throughout the time span of the measurement and subsequently
analyze the collected fractions, in order to quantify the concentrations of each adsor-
bate. With the resulting concentration values, consequently, it is possible to reconstruct
the corresponding elution profiles of each compound. Since the elution bands display
fast changes in the concentration, particularly at the time when the breakthrough shock
layers elute, fractions should be collected as quickly and precisely as possible, e.g., with
a programmable fraction collector.

Table 10.1: Details of the preparation of employed solutions for mixture experiments and
number of fractions, Nfr., collected for each measurement. Solutions prepared with volumetric
flasks of 250 [ ml ] for precise dilution; a standard, adjustable air displacement micropipette
(Rainin Instrument, LLC; Mettler-Toledo, LLC); and chemicals listed in Table 9.2, p. 122.

Case Applied volumes No. fractions, Nfr. Fraction size
[µl ] C10 : [µl ] C11 : [ ml ] sln. [ min. ]

Case 1 320 [µl ] : 340 [µl ] : 250 [ ml ] 100 0.2
Case 2 320 [µl ] : 680 [µl ] : 250 [ ml ] 100 0.1
Case 3 640 [µl ] : 340 [µl ] : 250 [ ml ] 100 0.1

A second set of measurements, identified as Case 1, Case 2 and Case 3, was executed,
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whereby a large number of samples were collected for further analysis. These measure-
ments are explained in Table 10.1. Details of each of the overloaded injections are
provided in Table 10.2, including measured concentrations of the fed solutions, ci, feed.
The molar balances calculated with

ni, out
!= ni, inj. (10.1a)

where

ni, out ≡ ni |z=L = Q

∞∫
0

ci(t, z = L) dt and (10.1b)

ni, inj. = Qci, feed tinj., i = 1, 2, (10.1c)

were used in order to verify the accuracy of the reconstructed elution profiles.

Table 10.2: Molar balance verification of reconstructed elution profiles from collected frac-
tions of decylbenzene (C10) and undecylbenzene (C11), i.e., ni, out

!= ni, inj., Equations (10.1).

Case Flow rate Feed conc. Inj. time Inj. amount Eluted amount
Q ci, feed t inj. ni, inj. ni, out

C10 C11 C10 C11 C10 C11
[ ml/min. ] [ mM ] [ mM ] [ min. ] [ mmol ] [ mmol ] [ mmol ] [ mmol ]

Case 1 0.99 5.4 5.0 10 0.0532 0.0493 0.0528 0.0490
Case 2 0.99 5.4 10.8 5 0.0267 0.0535 0.0263 0.0529
Case 3 0.99 10.7 5.2 5 0.0530 0.0257 0.0525 0.0253

Figure 10.2 illustrates the recorded detector signals together with the reconstructed
individual elution profiles of the compounds. The large number of fractions proved
adequate to obtain this information, in particular for the correct identification of sharp
breakthrough layers. For the feed state plateaux and desorption portions of the elution
profiles a sufficient number of fractions was collected, yielding accurate reconstructions.

10.3 Analysis of experimental & simulation profiles

Predictions of elution profiles were computed with the equilibrium-dispersive model (6.4),
applying IAST to obtain required competitive, multicomponent equilibria. These pre-
dictions were solved numerically with the third order upwind-biased discretization and
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Figure 10.2: Measured elution profiles of overloaded injections for Case 1, Case 2 & Case
3. (−·): recorded response at λUV = 235 [ nm ]. (�): C10 fractions; (◦): C11 fractions.
Concentration values for all fractions are listed in Tables A15, p. 189 (Case 1), A16, p. 190
(Case 2) & A17, p. 191 (Case 3).
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integrated with the SSP-RK method, explained in Chapter 7. The obtained profiles are
illustrated in Figure 10.3 for Case 1 and Figure 10.4 for Cases 2 and 3.
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Figure 10.3: Estimated elution profiles of overloaded injections, computed with the 3 rd

order upwind-biased scheme described in Section 7.4 & integrated numerically with SSP-RK
method (7.15). Numerical simulation parameters are listed in Table A18, p. 193. Applied
adsorption isotherm parameters are listed in Table A14, p. 187. Symbols: experimental elution
profiles, reconstructed from collected fractions. (�): decylbenzene (C10); (◦): undecylbenzene
(C11).

Since minor discrepancies between computed dynamic profiles and reconstructed profiles
from collected fractions can be observed, a detailed quantification becomes necessary
to perform a comparison between experimental and predicted profiles. This analysis
was performed by considering a) mass balance calculations; & b) breakthrough times of
adsorption step shock layers of both alkylbenzenes.

Estimation of competitive equilibria from adsorption-desorption cycles
of overloaded experimental profiles

Adsorbed phase concentrations for binary mixtures, qi = f(c1, c2), i = 1, 2, can be
obtained directly from experimental—i.e., measured—elution profiles by calculation of
individual capacities. This is an analogous procedure to applying Equations (9.7), p. 129
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Figure 10.4: Estimated elution profiles of overloaded injections, computed with the 3 rd

order upwind-biased scheme described in Section 7.4 & integrated numerically with SSP-RK
method (7.15). Simulation and applied adsorption isotherm parameters are listed in Ta-
bles A18, p. 193 & A14, p. 187, respectively. Symbols: experimental elution profiles, recon-
structed from collected fractions. (�): decylbenzene (C10); (◦): undecylbenzene (C11).

for a single adsorbate. The amounts of moles adsorbed are obtained from

n1 = Q

 c1, feed tcut −
tcut∫
0

c1(t, z = L) dt− c1, feed t0



−Q

 t2∫
tcut

c1(t, z = L) dt− c1, feed (t2 − tcut)

 (10.2a)
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for the less-adsorbed decylbenzene (C10, compound 1) and

n2 = Q

 c2, feed t2 −
t2∫

0

c2(t, z = L) dt− c2, feed t0

 (10.2b)

for the more-adsorbed undecylbenzene (C11, compound 2). Adsorbed phase concentra-
tions are given subsequently by

q1 = n1
( 1− ε )Vc

and q2 = n2
( 1− ε )Vc

. (10.2c)

Figure 10.5 provides a graphical explanation of Equations (10.2). Since the adsorption
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Figure 10.5: Graphical explanation of capacity equations for an adsorption step, Equa-
tions (10.2), for competitive binary adsorption, exemplified for the the dynamic simulation
result of Case 1. (a): hold-up time, t0; (b): tcut; & (c): t2.

process is reversible and mass is conserved, adsorbate amounts ni may be also calculated
from the desorption step with:

ni = Q

 t2,des.∫
t1,des.

ci(t, z = L) dt− ci, feed t0

 , i = C10,C11, (10.3)

whereby, t1,des. indicates the time at which a step change is effected, going from the
fed solution concentration value, ci, feed, back to the initial concentration of i—the value
prevailing before the application of the adsorption step. The upper limit, t2,des., is se-
lected by detecting the point in time when the column has been regenerated completely,
i.e., the chromatographic cycle has been completed.
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Table 10.3 lists adsorbed phase concentrations obtained by applying the capacity equa-
tions (10.2) & (10.3) to: a) experimentally recorded, reconstructed, elution profiles;
b) numerically simulated elution profiles; & c) direct prediction of IAST equilibria,
q = f(c), from given liquid phase concentrations, ci, feed, alone—without dynamic ex-
periments. Slight discrepancies between concentration values, qi, of experimental ad-
sorption and desorption steps are attributed to small errors in the fraction collection
analyses and small experimental measurement errors, in general.
The predicted adsorbed phase concentration values, obtained by dynamic simulation
and by direct application of IAST at the feed concentrations, ci, feed, for the three cases,
are practically identical. The small deviations between these values originated from
numerical integration of the simulation profiles.
Calculation of relative errors by

erel.
i = qi − q̂i

qi
× 100 %, i = C10,C11, (10.4)

for the predicted values of adsorbed phase concentrations, q̂i, obtained with the simu-
lations, yielded the results reported in Table 10.4. These differences are not negligible,
which means that IAST was unable to predict the behavior of the experimental system
with high accuracy at the investigated solution concentrations and experimental condi-
tions. The qualitative behavior was well reproduced and it is of value as a preliminary
estimation. Given the fact that a complete study of competitive equilibria in the alkyl-
benzenes/ACN/PGC system was outside of the scope of this work, it is not possible to
state further conclusions regarding the suitability of IAST to completely describe the
system.

Values of selectivity at equilibrium

Values of selectivity were obtained directly from the computed concentrations at equi-
librium, using Equation (2.10), p. 19. These values are listed in Table 10.5. Although
small differences in obtained values suggest a dependence in concentration, they vary
in an estimated range of 1.49 − 1.56, roughly 1.5, which confirms that separations at
these concentration ranges for the investigated substances are feasible in the ACN/PGC
system at the reported operating conditions with the employed PGC commercial sta-
tionary phase.
The values obtained by the equilibrium and dynamic simulation predict a slightly more
difficult separation task. Therefore, these results indicate once more that IAST was not
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able to estimate the system’s behavior satisfactorily. Further optimization of the chro-
matographic separation was not further pursued, as the selected operating conditions
permitted already the analysis of competitive equilibria in the alkylbenzenes/ACN/PGC
system.

Comparison of breakthrough times during adsorption step

Table 10.6 lists breakthrough times, t b,i, obtained from experimental and numerical
simulation profiles. The reconstructed elution profiles were fit to sigmoidal functions in
order to estimate t b,i more precisely. The calculated values of breakthrough times were
found to be in accord with the tendencies observed for adsorbed phase concentration
values estimated by capacity equations and reported in Table 10.3.
The retention times of decylbenzene (C10) are overestimated, whereas times of undecyl-
benzene (C11) are underestimated. As discussed before, these differences suggest that
IAST is unable to predict the retention behavior with high accuracy, albeit provid-
ing a good qualitative description of competitive elution behavior among the measured
alkylbenzenes.
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Table 10.4: Calculation of relative errors,
erel.
i , in predicted equilibrium values reported
in Table 10.3, using Equation (10.4).

Case Ads. step Des. step

erel.
C10 erel.

C11 erel.
C10 erel.

C11

% % % %

Case 1 −2.62 7.27 −6.22 6.33
Case 2 −8.38 6.93 −11.58 5.84
Case 3 −15.01 3.28 −18.42 −1.10

Table 10.5: Computed selectivity values at equilibrium, αij , obtained from experi-
mental, reconstructed elution profiles, predicted elution profiles and direct application
of IAST from feed concentration values, ci, feed, alone. Values at equilibrium taken
from Table 10.3, using Equation (2.10), p. 19.

Case Experimental Dyn. Simulation IAST, directly

Ads. step Des. step Ads. step Des. step

Case 1 1.49 1.52 1.34 1.34 1.36
Case 2 1.51 1.53 1.29 1.29 1.29
Case 3 1.56 1.54 1.31 1.31 1.31

Table 10.6: Breakthrough times, t b,i, of adsorption step shock layers for ex-
perimental, reconstructed elution profiles and predictions computed by numeri-
cal simulations of EDM1D applying IAST in describing competitive adsorption
equilibria.

Case Experimental Dyn. Simulation w/ IAST

decylbenzene undecylbenzene decylbenzene undecylbenzene
tb,C10 tb,C11 tb,C10 tb,C11

[ min. ] [ min. ] [ min. ] [ min. ]

Case 1 3.50 4.47 3.64 4.25
Case 2 3.10 3.56 3.16 3.36
Case 3 2.93 3.75 3.19 3.68
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Summary

Competitive equilibria, q = f(c) of overloaded injections of binary mixtures of C10 and
C11 at three different concentration values were determined from capacity equations.
The reconstructed dynamic profiles from these measurements were compared to numer-
ical approximations computed with EDM1D, employing IAST to describe competitive
adsorption equilibria. In turn, IAST was solved with the IVP approach described in
Chapter 4, using the formulation described in Chapter 7. In order to assess the adequacy
of IAST, equilibrium values from the predicted simulation profiles were calculated using
once again the capacity equations. Finally, direct competitive equilibrium values were
obtained from IAST alone, at liquid phase concentration values, ci, feed, corresponding
to each measured case. This complete set of results has been listed in Table 10.3.

Although only three equilibrium points are probably not sufficient to assess the suitabil-
ity of IAST to describe completely the alkylbenzenes/ACN/PGC system, the dynamic
predictions were able to reproduce the elution behavior of the three cases with relatively
good accuracy. Unavoidable experimental measurement errors contribute to some ex-
tent to the discrepancies observed in the listed equilibrium values. It was found that
IAST overestimated the equilibrium values of decylbenzene (C10) and underestimated
the values of undecylbenzene (C11). Nonetheless, the methodology described at the
beginning of this chapter was implemented successfully.

An activity coefficient model—cf. Chapter 3—might help to repair the discrepancies
described, by providing a more accurate description of the adsorbed phase. In turn,
additional experiments to reliably apply an activity coefficient model would become
necessary, thus substantially increasing the experimental complexity—see e.g., [122].
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Concluding remarks
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Chapter 11

Conclusion

“In the future, everyone will be famous for 15 minutes.”

– Andy Warhol

The principal objective of this dissertation has been to develop a method for application
of the Ideal Adsorbed Solution Theory (IAST). Important properties of a solution ap-
proach for IAST, including its flexibility to be applied with a large number of common
single component adsorption isotherm equations, were analyzed.
A natural extension of the solution method was investigated, giving as a result, direct
formulæ for the Jacobian matrix of adsorbed phase concentrations, J (q). These expres-
sions can find direct and efficient application in numerical simulation of simple fixed-bed
adsorber models.
Lastly, in order to apply the theoretically developed approach and computationally
efficient calculation tools, a challenging experimental two-component system of liquid
chromatography, wherein the adsorbates feature inflection points along their adsorption
isotherm courses, was measured and analyzed.
In the first part of the experimental work, single component adsorption isotherms for
two compounds were measured. IAST can be applied with this information to predict
the competitive isotherms. Several binary mixture column effluent measurements of
the same compounds were performed. Finally, a comparison between experiments and
numerical simulations obtained by applying IAST and a standard fixed-bed model, was
completed.
The main contribution of this work concentrated on IAST and the development of a
new solution approach for its constitutive equations, rather than critically evaluating
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the general suitability of IAST to describe competitive equilibria of the investigated
experimental system. This task would require substantially more experimental work
and analysis. In the following, the main outcome and conclusions of the performed
investigation is provided in detail.

Key results of this investigation

Part I: Adsorption equilibria

This starting part of the work introduced basic concepts, including the theoretical basis
for IAST and relevant details for its implementation. The two main highlights of this
part are:

1. A new method to solve the equations of IAST was developed, implemented and vali-
dated. From this part of the investigation the following is concluded:

(a) The method can be applied with a broad number of technically relevant single
component adsorption isotherms. In practical cases, IAST provides preliminary
insight for process understanding and conceptual design.

(b) The tools described in Chapter 4 allow for a robust, straightforward implemen-
tation of IAST as an attractive competitive equilibria model.

2. In collaboration with others, formulæ were developed that express analytically the
Jacobian, J

(
q(c)

)
, in the context of IAST, provided that the vector of fictitious

liquid phase concentrations, c0, is known a priori as explained in Chapter 4. Several
important applications for these expressions exist—see e.g., Kvaalen & Tondeur [157]
and Kvaalen et al. [158].

Part II: Adsorber dynamics

1. An application of formulæ for the Jacobian, J
(
q(c)

)
, derived in Part I, was illustrated

for equilibrium-based, fixed-bed adsorber dynamics. A specific matrix K(λ) was
derived to be directly applied in these dynamic models, thus providing an accurate,
efficient and easy to implement tool.

2. A strategy to embed IAST equilibrium calculations—applicable also to other type of
competitive adsorption equilibria models—was explained and illustrated; particular
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emphasis was set upon mathematical properties of implemented numerical methods
for simulation, as described in Chapter 7.

3. Several examples that illustrate the use of these numerical methods were given, in
particular addressing systems where adsorbates possess inflection points along their
courses, the subject of the experimental study described in Part III.

Part III: Experimental demonstration performing a High-Performance
Liquid Chromatography investigation

1. A detailed experimental study to understand competitive equilibria of compounds
that display inflection points along their courses was conducted; practical recom-
mendations for the measurement of such type of systems were discussed.

2. Suitability of IAST with a simple, equilibrium-based, fixed-bed dynamic model to
describe the measured experimental system was tested by using the solution methods
of Parts I & II. The results were interpreted and discussed. The outcome of this part
of the study seems to suggest that IAST is unable to predict the observed system
behavior with high accuracy; it rather provides useful preliminary calculations, per-
haps of interest for first design of this type of systems.
Implementation of a more detailed competitive equilibria model, going beyond IAST,
should take into account two aspects:

(a) complexity of the experimental program needed to satisfactorily parametrize the
model; &

(b) increased effort to perform numerical computations.

The first aspect is particularly challenging and, as mentioned before, up to date
no unified model nor theory has been developed that can comprehensively describe
nonideal behavior of compounds in an adsorbed phase. The second aspect is easily
overcome and is nowadays becoming less important, inasmuch as computer perfor-
mance is constantly improving, with complex calculation tasks everly being solved
faster.
As mentioned in Chapter 1, robotic platforms are gaining in importance to pro-
vide an approach that may better suit the needs of adsorption equipment designers,
whilst assisting researchers to validate potential candidate models and hypotheses.
Molecular simulation studies are in this respect gaining in popularity as well and are
expected to play a role of increasing importance in the future.
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Final comments

As the reader can conclude now, this field of research remains to be exciting, vivid &
dynamic, with significant challenges to be addressed—mentioned earlier in Chapter 1.
Despite of the complexity of the selected experimental system, this investigation has
illustrated a systematic application of an elegant multicomponent adsorption equilibria
model, characterized by its simplicity and capability to describe complex processes by
applying fundamental thermodynamic knowledge.

Suggestions and recommendations for future studies

Going beyond IAST A natural extension of IAST is e.g., Real Adsorbed Solution
Theory (RAST) [110, 111], as well as the more sophisticated approaches listed in Ta-
ble 2.5, Chapter 2. The application of different energy excess models to obtain activity
coefficients that properly describe the non-ideality of the adsorbed phase continues to
be of interest to the research and industrial communities, since up to now, there seems
to be no unified approach to provide activity coefficients for the adsorbed phase, which
should be dependent on the surface potential, π.

Treatment of fluid phase as nonideal An even more ambitious approach, albeit
necessary, includes also treating eventually the fluid-phase—gas or liquid—as non-ideal,
for which well-established methods for their description are available; see e.g., [4, 48, 57].
This is an important area, since, for example, a second fluid phase could originate at
specific process conditions as recently reported by Wegmann & Kerkhof [263].
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A1 Applied software

Mathematica

The CAS Mathematica R© [141] was used to verify and symbolically calculate & ma-
nipulate when required.

Matlab

Table A1 lists details of the Matlab [168] PSE used to perform a major portion of
numerical calculations presented in this dissertation.
It is important to stress that Matlab is adequate for script prototyping & debugging and
by no means should be thought of as a substitute for true scientific computing languages
such as C++ or Fortran—this might change in the future, since this PSE has now an
important focus for improved running performance on computer systems with parallel
architecture, including GPU-based computing clusters. The books by Higham [264]
and Quarteroni et al. [152] are recommended to the reader for a quick introduction to
Matlab.
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Table A1: List of Matlab toolboxes used for calcu-
lations. a

Toolbox Version

MATLAB 8.4
Simulink 8.4
Bioinformatics Toolbox 4.5
Control System Toolbox 9.8
Curve Fitting Toolbox 3.5
Global Optimization Toolbox 3.3
Image Processing Toolbox 9.1
MATLAB Coder 2.7
MATLAB Compiler 5.2
Neural Network Toolbox 8.2.1
Optimization Toolbox 7.1
Parallel Computing Toolbox 6.5
Partial Differential Equation Toolbox 1.5
Robust Control Toolbox 5.2
Signal Processing Toolbox 6.22
SimBiology 5.1
Simulink Coder 8.7
Simulink Control Design 4.1
Stateflow 8.4
Statistics Toolbox 9.1
Symbolic Math Toolbox 6.1
System Identification Toolbox 9.1

a.Matlab Version: 8.4.0.150421 (R2014b); License No.:
137842.
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A2 Parameters applied in figures of Part I

A2.1 Parameters of Figure 2.2

Table A2: Parameters used to generate the adsorption isotherms, qi = f(ci), illustrated
in Figure 2.2.

Isotherm model Parameter values

Langmuir (Type I) [65] q sat
i = 1 [ mol/l ]; bi = 1 [ l/mol ]

BET (Type II) [66] q sat
i = 1.0 [ mol/l ]; biS = 0.6 [ l/mol ]; biL = 0.12 [ l/mol ]

Anti-Langmuir (Type III) q sat
i = 1 [ mol/l ]; bi = 1.5 [ l/mol ]

Quadratic + Langmuir
(Type IV) [51, 52]

q sat
i1 = 100 [ mM ]; bi1 = 0.4

[
mM−1 ]; bi2 = 0.3

[
l2/mol2

]
;

q sat
i2 = 7 [ mM ]; bi3 = 5

[
mM−1 ]

Quadratic (Type V) [43] q sat
i = 0.5 [ mol/l ]; bi1 = 0.2 [ l/mol ]; bi2 = 1

[
l2/mol2

]

A2.2 Parameters of Figures 2.3 & 4.3.

Table A3: Parameters used to generate the adsorption isotherms, qi = f(ci), illustrated
in Figure 2.3.

Isotherm model Parameter values

Competitive Langmuir [104] q sat
1 = 1 [ mol/l ]; b1 = 1 [ l/mol ];
q sat

2 = 1 [ mol/l ]; b2 = 2 [ l/mol ]
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A3 Euler’s Theorem for homogeneous functions∗

In order to complete the formalism introduced in Section 2.3, it is necessary to demon-
strate that Gibbs’ free energy for adsorbed phase, Ga, is homogeneous of order n = 1.

Proposition 1. The integral form of Fundamental Relation (2.16d) is valid, insofar
as Ga is homogeneous of order n = 1 in the arguments T , π, n1, . . . , nN .

Proof. Let λ be an arbitrary parameter such that

Ga = f(λT, λπ, λn1, . . . , λnN ) != λnf(T, π, n1, . . . , nN )

= λf(T, π, n1, . . . , nN ). (A3.1)

Differentiation of Equation (A3.1) with respect to λ, by application of the Chain Rule,
yields for its leftmost term:

∂f

∂(λT )
∂(λT )
∂λ

+ ∂f

∂(λπ)
∂(λπ)
∂λ

+ ∂f

∂(λn1)
∂(λn1)
∂λ

+ · · · + ∂f

∂(λnN )
∂(λnN )
∂λ

, (A3.2)

which further simplifies to

∂f

∂(λT )T + ∂f

∂(λπ)π + ∂f

∂(λn1)n1 + · · ·+ ∂f

∂(λnN )nN . (A3.3)

Now, specifying λ = 1, Equation (A3.3) becomes

∂f

∂T
T + ∂f

∂π
π + ∂f

∂n1
n1 + · · ·+ ∂f

∂nN
nN . (A3.4)

On the other hand, the total differential of Ga = f(T, π, n1, · · · , nN ) is given by

dGa = ∂f

∂T
dT + ∂f

∂π
dπ + ∂f

∂n1
dn1 + · · ·+ ∂f

∂nN
dnN . (A3.5)

A term-by-term comparison of the right-hand side of (A3.5) with Fundamental Relation

dGa = −Sa dT + Adπ +
N∑
i=1

µai dnai (2.16d)

—p. 25, permits a direct identification of

− Sa ≡ ∂f

∂T
; A ≡ ∂f

∂π
; µa1 ≡

∂f

∂n1
; · · · ; µaN ≡

∂f

∂nN
. (A3.6)

∗Consult e.g., [265] for a formal definition of the theorem.
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Henceforth, substitution of these terms in Equation (A3.4) yields

− SaT + Aπ + µa1n
a
1 + · · ·+ µaNn

a
N = Ga. (A3.7)

Now, restricting Equation (2.16d) to constant temperature, T , and spreading pressure,
π, holds

µa1n
a
1 + · · ·+ µaNn

a
N =

N∑
i=1

µai n
a
i = Ga, (A3.8)

thus recovering Equation (2.18).
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A4 Algebraic expressions for invariant adsorption

The goal is to express experimentally measured quantities as functions of adsorbed
quantities, a, to obtain invariant adsorbed molar quantities, nci—i.e., independent of
the location of Gibbs’ dividing surface. This is done to correctly account for surface
potential, π, in Gibbs’ adsorption isotherm, Equation (2.26a). The following mass
balance equation can be written [50]:

V sln.∆ci = n tot
i − ciV sln., (A4.1)

where the total volume of liquid solution is

V sln. =
N∑
i=1

n tot
i v̄i + n tot

solv. v̄solv., (A4.2)

expressed with the partial molar volumes, v̄i & v̄solv., of solutes i & solvent, respectively.
It is therefore assumed that the liquid bulk mixture behaves ideally, which is a reasonable
assumption under dilute conditions. With

n tot
i = nai + n`i and n tot

solv. = nasolv. + n`solv. (A4.3)

holds
V sln.∆ci =

(
nai + n`i

)
− ciV sln.. (A4.4)

Substituting (A4.3) into (A4.2) and inserting this result in (A4.4) leads to

ciV sln. = ci

[
N∑
i=1

(
nai + n`i

)
v̄i +

(
nasolv. + n`solv.

)
v̄solv.

]

= ci

[
N∑
i=1

nai v̄i +
N∑
i=1

n`i v̄i + nasolv. v̄solv. + n`solv. v̄solv.

]

where a simple factorization yields

= ci

[
N∑
i=1

nai v̄i + nasolv. v̄solv.

]
+ ci

[
N∑
i=1

n`i v̄i + n`solv. v̄solv.

]
. (A4.5)

If it is assumed that ci can be written as

ci ≡
n`i

N∑
i=1

n`i v̄i + n`solv. v̄solv.

; (A4.6)
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then, upon substitution in Equation (A4.4), yields the invariant amount nci define as

V sln.∆ci = nai − ci

[
N∑
i=1

nai v̄i + nasolv. v̄solv.

]
=: nci, (A4.7)

which is written only in terms of the adsorbed phase moles of solutes i & solvent and
the final—i.e., measured—ci. Finally,

nmi ≈ V sln.∆ci = nci. (A4.8)

Now, nmi is defined formally as:

nmi := nai −
ci
csolv.

nasolv.. (2.27)

This result is easily proven from the restricted Gibbs-Duhem form for the bulk liquid
phase:

N∑
i=1

ci dµai + csolv. dµasolv. = 0, (A4.9)

so that

dµasolv. = −
N∑
i=1

ci
csolv.

dµai (A4.10)

and substituting this result in Equation (2.26a) to arrive at

Adπ =
N∑
i=1

nai dµai + nasolv. dµasolv. =
N∑
i=1

nai dµai + nasolv.

[
−

N∑
i=1

ci
csolv.

dµai

]

=
N∑
i=1

[
nai −

ci
csolv.

nasolv.

]
︸ ︷︷ ︸

=: nmi

dµai . (A4.11)

This completes the definition of nmi . �
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A5 Analytical solution of binary competitive Langmuir
isotherm

Let q sat = q sat
1 = q sat

2 = 1 [ mol/l ], with substitutions Xi ≡ c0
i and xi ≡ ci to simplify

the notation; henceforth,

q0
i = f(Xi) = biXi

1 + biXi
, i = 1, 2. (A5.1)

Substitution of (A5.1) in Equation (3.9) and applying equilibrium condition (3.6) yields

X1∫
0

b1
1 + b1ξ

dξ =
X2∫
0

b2
1 + b2ξ

dξ. (A5.2)

Upon integration,

ln [ 1 + b1X1 ] = ln [ 1 + b2X2 ] ∴ 1 + b1X1 = 1 + b2X2, (A5.3)

thus obtaining the simple orbit X2 = f(X1) = b1
b2
X1. (A5.4)

Substitution in
x1
X1

+ x2
X2

= 1 yields x1
X1

+ x2
b1
b2
X1

= 1; (A5.5)

solving for X1

X1 = f(x1, x2) = x1 + b2
b1
x2, (A5.6)

and likewise subtituting in (A5.4)

X2 = f(x1, x2) = b1
b2
x1 + x2. (A5.7)

From the total adsorbed concentration, Equation (3.11),

q tot =
[

x1
X1q0

1
+ x2
X2q0

2

]−1
; substituting (A5.6) & (A5.7) produces

= 1
x1[

x1 + b2
b1
x2
] [

b1X1
1+b1X1

] + x2[
b1
b2
x1 + x2

] [
b2X2

1+b2X2

] . (A5.8)
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Alternatively holds

q0
1 = b1X1

1 + b1X1
=

b1
[
x1 + b2

b1
x2
]

1 + b1
[
x1 + b2

b1
x2
] = b1x1 + b2x2

1 + b1x1 + b2x2
(A5.9)

and ‘symmetrically’

q0
2 = b2X2

1 + b2X2
=

b2
[
b1
b2
x1 + x2

]
1 + b2

[
b1
b2
x1 + x2

] = b1x1 + b2x2
1 + b1x1 + b2x2

. (A5.10)

Substitutions yield x1
X1q0

1
= b1x1

(b1x1 + b2x2)
[

b1x1 + b2x2
1 + b1x1 + b2x2

] , and (A5.11)

x2
X2q0

2
= b2x2

(b1x1 + b2x2)
[

b1x1 + b2x2
1 + b1x1 + b2x2

] .
Upon summation of terms in (A5.11)

x1
X1q0

1
+ x2
X2q0

2
= b1x1 + b2x2

(b1x1 + b2x2)
[

b1x1 + b2x2
1 + b1x1 + b2x2

] = 1
b1x1 + b2x2

1 + b1x1 + b2x2

(A5.12)

is obtained, so that 1
q tot

= 1 + b1x1 + b2x2
b1x1 + b2x2

∴ q tot = b1x1 + b2x2
1 + b1x1 + b2x2

, (A5.13)

thus leading to individual adsorbed phase concentrations

q1 = q tot
x1
X1

= b1x1 + b2x2
1 + b1x1 + b2x2

x1
b1x1 + b2x2

b1

= b1x1
1 + b1x1 + b2x2

, (A5.14)

q2 = q tot
x2
X2

= b1x1 + b2x2
1 + b1x1 + b2x2

x2
b1x1 + b2x2

b2

= b2x2
1 + b1x1 + b2x2

. (A5.15)

This simple algebraic exercise proves that: a) binary competitive Langmuir model is
thermodynamically consistent; and b) its IAST counterpart is, in this particular case,
equivalent.

�
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A6 The generating functions vk.

An important mathematical construct that helps to develop the solution principle ex-
plained in Chapter 4 consists of exploiting the form of generalized, increasing
isotherms

q0
k = f(ξ) = ξ

v′k(ξ)
vk(ξ)

. (2.2)

The original system, Equation 4.1, p. 46, can be formulated in terms of vk as follows.
From the integral form of Gibbs’ adsorption isotherm, Equation (3.9), p. 34, and us-
ing (2.2) above,

Πk = f(ξ) =
∫ ξ v′k(ξ)

vk(ξ)
dξ, with the usual substitution, u = vk(ξ),

=
∫ ξ du

u
= ln vk(ξ), k = 1, . . . , N. (A6.1)

It is clear therefore that vk play an analogous role of ‘spreading pressures’, where Π
maps to v; in simpler words, if the sought solution, c0, holds for Π-equalities, it does for
v-equalities, too. Therefore, the equivalent system

v1(X1)− v2(X2) = 0,

v1(X1)− v3(X3) = 0,
...

v1(X1)− vN (XN ) = 0,
x1
X1

+ · · · + xN
XN
− 1 = 0,

(4.13h)

can be written; and—very importantly—in analogy to Πk in Equation (3.6),

v1
!= v2

!= · · · != vN at equilibrium. (A6.2)

�
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A7 Implementation example for limited κ-scheme

Application of the method of lines with the spatial discretization discussed in Section 7.4,
p. 89, yields the following ODE system for the linear advection equation (8.1), p. 102:

d
dtw1(t) = −1

h
u
(
w 3

2
− w 1

2

)
, (A7.1)

d
dtw2(t) = −1

h
u
(
w 5

2
− w 3

2

)
,

...
d
dtwJ−1(t) = −1

h
u
(
wJ− 1

2
− wJ− 3

2

)
,

d
dtwJ(t) = −1

h
u
(
wJ+ 1

2
− wJ− 1

2

)
,

with equally-spaced interval h := ∆x. The numerical flux at the inlet is expressed with
the boundary condition

w 1
2

= w in(t). (A7.2a)

The numerical fluxes for the interior cells, j = 2, · · · , J − 1, are computed with

w 3
2

= 1
2 (w1 + w2) ,

w 5
2

= w2 + 1
2φ
(
r 5

2

)
(w2 − w1) ,

...

wJ−1+ 1
2

= wJ−1 + 1
2φ
(
rJ−1+ 1

2

)
(wJ−1 − wJ−2)

(A7.2b)

with flux function monitor, φ(r) (7.10a) and its argument given by

rj+ 1
2

= wj+1 − wj + εd
wj − wj−1 + εd

, j = 2, . . . , J − 1. (A7.2c)

The numerical flux at the outlet is obtained with

wJ+ 1
2

= wJ + 1
2 (wJ − wJ−1) . (A7.2d)

The integration of ODE system (A7.1) can be performed directly with e.g., the SSP-RK
method described in Section 7.5, p. 92.

�
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A8 Parameters for examples of Chapter 8

A8.1 Parameters for the Quadratic plus Langmuir isotherm reported
by Diack & Guiochon

Table A4: Single component adsorption isotherm parameters for Quadratic plus
Langmuir model—cf. Eq. (2.3e), p. 17—of five phenyl-n-alkanes in ACN/PGC
system at 323.15 K (50 ◦C) reported by Diack & Guiochon [51, 52].

Compound Parameters

q sat
i1 bi2 bi1 q sat

i2 bi3[
mmol

l

] [
mmol

l

] [
L

mmol

] [
L2

mmol2

] [
L

mmol

]

octylbenzene (C8) 219.4 2.5 0.030 0.0006 0.51
decylbenzene (C10) 147.2 6.0 0.087 0.010 1.69
undecylbenzene (C11) 122.4 17.0 0.103 0.032 1.78
dodecylbenzene (C12) 24.450 0.149 0.238 0.059 26.790
tridecylbenzene (C13) 102.9 7.0 0.363 0.309 4.66

A8.2 Process parameters and operation conditions
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A9 Supplementary information: laboratory equipment

A9.1 Agilent 1260 HPLC station

Figure A1: Agilent 1260 HPLC station used for experimental investigation of Part III.
Components and part numbers: A: liquids & solvents; B: degasser (G1322A); C: dual pump
module (G1312C); D: sampler & injection loop (G1329B); E: column compartment & oven
(G1316A); F: multiple wavelength detector (G1365D); G: refractive index detector & waste
outlet (G1362A); H: flowmeter; and HypercarbTM column (I). Courtesy of Physicochemical
Fundamentals Group, MPI Magdeburg.
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A9.2 Copy of manufacturer’s certificate for HypercarbTM column

Figure A2: Calibration certificate for employed HypercarbTM column. [Part No.: 35005-
054630. Column No.: 10010661.]. Courtesy of Physicochemical Fundamentals Group, MPI
Magdeburg.

A9.3 Copy of manufacturer’s certificate for DURATEC flowmeter
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A10 Some experimental results for Chapter 9

A10.1 Calibration curves for sample analysis

Table A6: Values of the peak areas for 1 [µl ] injections at
λUV = 220 [ nm ] for listed concentrations of alkylbenzenes,
represented graphically in Figure 9.5.

decylbenzene (C10) undecylbenzene (C11)

Peak area Concentration Peak area Concentration
[ mAU · s ] [ mM ] [ mAU · s ] [ mM ]

28.95 0.20 – –
38.30 0.31 – –
66.16 0.47 44.07 0.44
108.01 0.78 90.15 0.74
229.50 1.57 198.33 1.47
458.32 3.13 413.27 2.94
685.42 4.70 583.39 4.42
1161.90 7.83 1028.53 7.36
1841.72 12.54 1650.03 11.78
2421.83 16.14 2343.46 16.05
3033.73 20.06 2902.08 20.02
3353.00 22.09 3315.69 22.08
3638.65 25.072 3457.44 25.03
4106.50 28.049 4065.17 28.12
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A10.2 Plate number and van Deemter curve for HypercarbTM column

Table A8: Estimation of plate number, N plate, and axial diffusion coefficient, D ax, for
Hypercarb column.

Flow rate
set-point

Avg.
flow rate

Linear
velocity

Peak
maxima

Plate
number

Plate
height

Diffusion
coefficient

Q u tpeak N plate h plate D ax

[ ml/min. ] [ ml/min. ] ·10−4 [ m/s ] [ min. ] [− ] ·10−5 [ m ] ·10−12 [m2/s
]

0.2 0.197 2.64 3.397 1812 2.759 2.01
0.4 0.391 5.25 1.704 2836 1.763 1.63
0.5 0.487 6.53 1.371 3123 1.601 1.67
0.6 0.586 7.81 1.152 3220 1.553 1.88
0.8 0.768 10.35 0.874 3333 1.5 2.33
1.0 0.9762 13.1 0.69 3219 1.553 3.16

A fit to van Deemter equation [266]

h plate = f(u) = A

u
+Bu+D (A10.1)

yields the curve of the data in Table A8 with resulting parameters as illustrated in
Figure A4.

Q
avg.
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f
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1
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2.8

Figure A4: Estimated van Deemter curve for employed HypercarbTM column, using the
data points listed in Table A8, measured by Kusian [255]. Obtained parameters for Equa-
tion (A10.1): A = 0.4603; B = 0.8469; & D = 0.2550.
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A10.3 FA results of decylbenzene and undecylbenzene at 323 K

Concentration range 0− 20 [ mM ]

Table A9: Frontal Analysis result for decylben-
zene (C10) & undecylbenzene (C11) at 323.15 K
(50 ◦C). 20 [ mM ] solutions prepared with the
chemicals’ amounts listed in Table A7. A graphi-
cal illustration of listed values is depicted in Fig-
ures 9.8 and 9.9.

decylbenzene (C10) undecylbenzene (C11)

c q c q

[ mM ] [ mM ] [ mM ] [ mM ]

0.12 2.33 0.12 3.48
0.32 5.48 0.33 7.98
0.52 8.52 0.53 11.96
0.72 11.45 0.73 16.40
0.92 14.51 0.93 20.67
1.11 17.48 1.13 24.82
1.31 20.56 1.33 28.98
1.50 23.54 1.53 33.14
1.71 26.71 1.73 37.57
1.90 29.78 1.93 41.91
2.19 34.19 2.99 63.38
2.59 40.26 3.41 72.95
2.98 46.39 3.80 80.11
3.38 52.36 5.00 100.57
3.77 58.09 6.99 127.59
4.97 75.75 9.02 149.10
6.95 102.27 11.02 165.45
8.96 126.24 13.06 178.65
10.95 147.91 15.07 189.35
12.98 167.55 17.08 198.33
15.02 185.16 19.06 206.70
17.08 201.80 20.03 210.54
19.14 216.50 - -
20.15 223.37 - -
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Concentration range 0− 5 [ mM ]

Table A10: Frontal Analysis result for phenyl-
n-decane (C10) & phenyl-n-undecane (C11) at
323.15 K (50 ◦C). 5 [ mM ] solutions prepared with
the chemicals’ amounts listed in Table A7.

decylbenzene (C10) undecylbenzene (C11)

c q c q

[ mM ] [ mM ] [ mM ] [ mM ]

0.26 3.65 0.25 5.26
0.52 7.3 0.48 10.1
0.78 10.53 0.73 15.02
1.04 13.7 9.98 19.98
1.25 16.31 1.21 24.53
1.49 19.39 1.46 29.64
1.73 22.43 1.7 34.67
1.98 25.59 1.94 39.68
2.23 28.78 2.18 44.69
2.47 31.87 2.42 49.66
2.71 34.93 2.66 54.45
2.96 38.06 2.91 59.2
3.21 41.24 3.14 63.9
3.45 44.29 3.38 68.41
3.69 47.32 3.62 72.84
3.94 50.36 3.86 77.16
4.18 53.4 4.1 81.32
4.42 56.36 4.34 85.32
4.67 59.24 4.57 89.21
4.91 62.15 4.81 92.98
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Concentration range 0− 20 [ mM ], five equilibrium points only

Table A11: Frontal Analysis result for phenyl-
n-decane (C10) & phenyl-n-undecane (C11) at
323.15 K (50 ◦C). 5 [ mM ] solutions prepared with
the chemicals’ amounts listed in Table A7.

decylbenzene (C10) undecylbenzene (C11)

c q c q

[ mM ] [ mM ] [ mM ] [ mM ]

4.11 68.88 3.97 83.97
8.20 123.71 7.96 138.34
11.98 165.52 11.97 172.48
16.01 200.31 15.97 193.85
20.00 229.19 19.95 208.92

A10.4 FA results of decylbenzene and undecylbenzene at different
temperatures
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A10.5 Estimated single component isotherm parameters of Quadratic
plus Langmuir model from FA results

Table A14: Single component adsorption isotherm parameters for Quadratic plus
Langmuir model—Eq. (2.3e), p. 17—estimated for investigated alkylbenzenes in
ACN/PGC system at 323.15 K (50 ◦C).

Compound Parameters

q sat
i1 bi1 bi2 q sat

i2 bi3[
mmol

l

] [
L

mmol

] [
L2

mmol2

] [
mmol

l

] [
L

mmol

]

decylbenzene (C10) 186.6 0.07415 0.003983 1.328 4.43
undecylbenzene (C11) 121.4 0.1311 0.02027 4.667 2.226
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A11 UV spectral curves for decylbenzene (C10) and unde-
cylbenzene (C11) dissolved in ACN

The following figures document the UV response of an Agilent MWD detector, similar
to the one installed in the employed HPLC instrument.
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Figure A5: UV spectra of peak apex of investigated alkylbenzenes (C10 & C11), recorded
with an Agilent 1100 HPLC station.
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Figure A6: UV spectra of an analytical peak of C10 dissolved in ACN. V inj. = 1 [µl ].
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Figure A7: UV spectra of a analytical peak of C11 dissolved in ACN. V inj. = 1 [µl ].
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A12 Collected fractions’ data employed in Chapter 10

Table A15: Collected fractions to reconstruct elution profiles for Case 1. Fraction
collector used: ‘FoxyJr.’—cf. Section 9.2. Fraction size: 0.2 [ min. ]. Applied calibration
factors (9.4) as reported in Section 9.4, p. 125.

Time decylbenzene (C10) undecylbenzene (C11) Time decylbenzene (C10) undecylbenzene (C11)

[ min. ] [ mAU · s ] [ mM ] [ mAU · s ] [ mM ] [ min. ] [ mAU · s ] [ mM ] [ mAU · s ] [ mM ]

7.5 0 0 0 0 17.5 833.3 5.4143 711.1 4.8017
7.7 0 0 0 0 17.7 834.2 5.4203 715.0 4.8279
7.9 0 0 0 0 17.9 830.4 5.3955 720.5 4.8652
8.1 0 0 0 0 18.1 833.3 5.4143 740.5 4.9997
8.3 0 0 0 0 18.3 821.6 5.3386 718.6 4.8521
8.5 0 0 0 0 18.5 796.2 5.1737 710.9 4.8003
8.7 0 0 0 0 18.7 826.4 5.3694 747.1 5.0446
8.9 0 0 0 0 18.9 827.4 5.3761 744.5 5.0273
9.1 0 0 0 0 19.1 798.1 5.1858 719.0 4.8548
9.3 0 0 0 0 19.3 813.9 5.2883 726.1 4.9031
9.5 0 0 0 0 19.5 807.3 5.2454 732.5 4.9459
9.7 0 0 0 0 19.7 760.3 4.9399 709.7 4.7920
9.9 0 0 0 0 19.9 688.3 4.4722 679.9 4.5906

10.1 0 0 0 0 20.1 639.6 4.1560 667.8 4.5091
10.3 0 0 0 0 20.3 540.4 3.5115 618.8 4.1780
10.5 0 0 0 0 20.5 460.5 2.9922 592.6 4.0013
10.7 95.3 0.6191 0 0 20.7 388.1 2.5219 564.1 3.8088
10.9 348.2 2.2626 0 0 20.9 306.1 1.9892 531.8 3.5908
11.1 749.4 4.8696 0 0 21.1 220.0 1.4298 512.2 3.4583
11.3 1004.3 6.5258 0 0 21.3 149.8 0.9735 481.0 3.2478
11.5 1076.0 6.9915 0 0 21.5 96.0 0.6238 472.4 3.1899
11.7 1067.0 6.9332 41.1 0.2774 21.7 53.4 0.3471 467.5 3.1568
11.9 1018.1 6.6156 310.7 2.0976 21.9 29.7 0.1930 428.7 2.8946
12.1 850.5 5.5262 536.3 3.6211 22.1 0 0 446.0 3.0118
12.3 831.5 5.4029 666.8 4.5023 22.3 0 0 399.0 2.6944
12.5 805.2 5.2320 712.3 4.8093 22.5 0 0 386.3 2.6082
12.7 767.8 4.9888 698.2 4.7141 22.7 0 0 306.0 2.0665
12.9 814.4 5.2917 743.4 5.0198 22.9 0 0 240.8 1.6256
13.1 799.7 5.1965 729.4 4.9252 23.1 0 0 136.1 0.9191
13.3 799.8 5.1972 740.3 4.9984 23.3 0 0 73.6 0.4968
13.5 813.7 5.2870 739.0 4.9901 23.5 0 0 42.8 0.2891
13.7 815.9 5.3017 741.2 5.0046 23.7 0 0 0 0
13.9 824.1 5.3546 750.9 5.0701 23.9 0 0 0 0
14.1 820.6 5.3319 751.2 5.0722 24.1 0 0 0 0
14.3 825.9 5.3667 752.5 5.0812 24.3 0 0 0 0
14.5 827.8 5.3788 770.7 5.2040 24.5 0 0 0 0
14.7 844.8 5.4893 759.5 5.1281 24.7 0 0 0 0
14.9 839.5 5.4551 766.3 5.1743 24.9 0 0 0 0
15.1 842.0 5.4712 756.3 5.1067 25.1 0 0 0 0
15.3 848.7 5.5148 750.0 5.0639 25.3 0 0 0 0
15.5 856.6 5.5657 757.0 5.1115 25.5 0 0 0 0
15.7 874.1 5.6796 763.6 5.1557 25.7 0 0 0 0
15.9 871.1 5.6602 754.3 5.0929 25.9 0 0 0 0
16.1 858.0 5.5751 742.9 5.0163 26.1 0 0 0 0
16.3 834.3 5.4210 715.7 4.8328 26.3 0 0 0 0
16.5 861.1 5.5952 735.6 4.9666 26.5 0 0 0 0
16.7 859.8 5.5865 717.6 4.8452 26.7 0 0 0 0
16.9 834.8 5.4243 709.8 4.7927 26.9 0 0 0 0
17.1 850.1 5.5235 729.6 4.9266 27.1 0 0 0 0
17.3 845.6 5.4947 722.6 4.8790 27.3 0 0 0 0
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Table A16: Collected fractions to reconstruct elution profiles for Case 2. Fraction collec-
tor used: Agilent Technologies G1364C—cf. Section 9.2. Fraction size: 0.1 [ min. ]. Applied
calibration factors (9.4) as reported in Section 9.4, p. 125.

Time decylbenzene (C10) undecylbenzene (C11) Time decylbenzene (C10) undecylbenzene (C11)

[ min. ] [ mAU · s ] [ mM ] [ mAU · s ] [ mM ] [ min. ] [ mAU · s ] [ mM ] [ mAU · s ] [ mM ]

10.05 0 0 0 0 15.06 380.7 2.4737 1052.6 7.1074
10.16 0 0 0 0 15.15 342.8 2.2274 977.9 6.6030
10.26 0 0 0 0 15.25 311.7 2.0253 954.1 6.4423
10.35 0 0 0 0 15.35 284.4 1.8480 921.1 6.2194
10.45 0 0 0 0 15.45 256.9 1.6693 901.6 6.0878
10.55 251.9 1.6368 0 0 15.55 238.9 1.5523 873.1 5.8953
10.65 1579.2 10.2612 0 0 15.65 210.8 1.3697 859.0 5.8001
10.75 1782.1 11.5796 0 0 15.75 184.2 1.1969 819.6 5.5341
10.86 1753.3 11.3925 0 0 15.85 159.8 1.0383 800.7 5.4065
10.96 1757.4 11.4191 0 0 15.96 134.0 0.8707 776.0 5.2397
11.07 1298.4 8.4366 771.2 5.2073 16.07 107.6 0.6992 743.1 5.0176
11.16 844.5 5.4873 1522.7 10.2816 16.16 88.3 0.5737 732.1 4.9433
11.25 836.0 5.4321 1576.6 10.6455 16.25 71.4 0.4639 732.4 4.9453
11.35 826.9 5.3730 1585.6 10.7063 16.37 57.6 0.3743 715.1 4.8285
11.45 813.1 5.2833 1559.7 10.5314 16.45 41.6 0.2703 671.1 4.5314
11.55 845.3 5.4925 1605.1 10.8379 16.55 32.6 0.2118 657.3 4.4382
11.65 843.0 5.4776 1628.0 10.9926 16.66 24.0 0.1559 639.9 4.3207
11.75 832.2 5.4074 1584.1 10.6962 16.75 0 0 623.7 4.2113
11.85 837.3 5.4405 1621.5 10.9487 16.85 0 0 613.5 4.1425
11.96 833.2 5.4139 1612.8 10.8899 16.95 0 0 599.1 4.0452
12.07 827.8 5.3788 1582.8 10.6874 17.06 0 0 597.1 4.0317
12.15 823.3 5.3496 1577.7 10.6529 17.15 0 0 553.5 3.7373
12.25 813.4 5.2853 1563.1 10.5544 17.25 0 0 537.5 3.6293
12.35 818.6 5.3190 1592.1 10.7502 17.35 0 0 496.6 3.3531
12.45 824.2 5.3554 1604.8 10.8359 17.46 0 0 475.7 3.2120
12.55 830.2 5.3944 1596.9 10.7826 17.56 0 0 425.0 2.8697
12.65 827.0 5.3736 1590.1 10.7367 17.66 0 0 411.9 2.7812
12.75 837.9 5.4444 1586.8 10.7144 17.75 0 0 352.6 2.3808
12.85 843.3 5.4795 1632.5 11.0230 17.85 0 0 317.9 2.1465
12.95 848.5 5.5133 1619.1 10.9325 17.96 0 0 262.5 1.7725
13.06 855.7 5.5601 1630.2 11.0074 18.06 0 0 176.6 1.1924
13.16 850.8 5.5283 1608.3 10.8596 18.15 0 0 77.5 0.5233
13.25 838.7 5.4496 1613.4 10.8940 18.25 0 0 44.8 0.3025
13.35 831.2 5.4009 1597.5 10.7866 18.35 0 0 29.5 0.1992
13.45 837.7 5.4431 1614.4 10.9007 18.46 0 0 26.6 0.1796
13.55 857.5 5.5718 1633.7 11.0311 18.55 0 0 20.7 0.1398
13.65 833.9 5.4185 1590.8 10.7414 18.66 0 0 0
13.75 817.8 5.3138 1564.7 10.5652 18.75 0 0 0 0
13.85 810.5 5.2664 1557.2 10.5145 18.85 0 0 0 0
13.96 756.2 4.9136 1481.4 10.0027 18.95 0 0 0 0
14.06 744.0 4.8343 1475.9 9.9656 19.06 0 0 0 0
14.16 706.6 4.5913 1440.5 9.7265 19.15 0 0 0 0
14.25 660.3 4.2904 1376.4 9.2937 19.25 0 0 0 0
14.35 628.0 4.0806 1320.9 8.9190 19.35 0 0 0 0
14.45 591.1 3.8408 1292.3 8.7259 19.46 0 0 0 0
14.55 544.3 3.5367 1208.3 8.1587 19.56 0 0 0 0
14.65 504.8 3.2801 1170.0 7.9001 19.66 0 0 0 0
14.75 482.4 3.1345 1167.4 7.8825 19.75 0 0 0 0
14.85 439.5 2.8558 1117.2 7.5436 19.85 0 0 0 0
14.96 411.8 2.6758 1082.6 7.3099 19.96 0 0 0 0
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Table A17: Collected fractions to reconstruct elution profiles for Case 3. Fraction collec-
tor used: Agilent Technologies G1364C—cf. Section 9.2. Fraction size: 0.1 [ min. ]. Applied
calibration factors (9.4) as reported in Section 9.4, p. 125.

Time decylbenzene (C10) undecylbenzene (C11) Time decylbenzene (C10) undecylbenzene (C11)

[ min. ] [ mAU · s ] [ mM ] [ mAU · s ] [ mM ] [ min. ] [ mAU · s ] [ mM ] [ mAU · s ] [ mM ]

10.05 0 0 0 0 15.06 831.8 5.4048 504.1 3.4038
10.16 0 0 0 0 15.15 748.3 4.8622 468.1 3.1607
10.25 0 0 0 0 15.25 723.3 4.6998 476.3 3.2161
10.35 83.1 0.5400 0 0 15.35 682.8 4.4366 461.0 3.1128
10.45 1589.9 10.3307 0 0 15.45 601.1 3.9058 439.3 2.9662
10.55 2260.7 14.6894 0 0 15.55 553.2 3.5945 433.1 2.9244
10.65 2202.3 14.3099 0 0 15.65 523.3 3.4003 439.7 2.9689
10.75 2179.6 14.1624 0 0 15.75 453.0 2.9435 416.3 2.8109
10.85 2231.8 14.5016 0 0 15.85 392.2 2.5484 394.6 2.6644
10.96 2245.6 14.5913 0 0 15.95 346.4 2.2508 388.0 2.6199
11.07 2206.1 14.3346 0 0 16.06 301.3 1.9578 392.9 2.6529
11.15 2171.3 14.1085 0 0 16.15 248.2 1.6127 376.3 2.5409
11.25 1924.5 12.5049 379.7 2.5638 16.25 190.1 1.2352 362.4 2.4470
11.35 1655.0 10.7537 754.6 5.0952 16.37 154.5 1.0039 375.3 2.5341
11.45 1751.7 11.3821 822.0 5.5503 16.45 112.2 0.7290 365.2 2.4659
11.55 1681.2 10.9240 787.8 5.3194 16.55 74.9 0.4867 348.4 2.3525
11.65 1678.9 10.9090 794.6 5.3653 16.66 56.5 0.3671 359.8 2.4294
11.75 1656.7 10.7648 777.6 5.2505 16.75 40.6 0.2638 339.6 2.2930
11.86 1642.8 10.6745 772.6 5.2167 16.85 32.6 0.2118 350.2 2.3646
11.96 1607.3 10.4438 752.3 5.0797 16.95 23.5 0.1527 333.7 2.2532
12.07 1619.2 10.5211 760.3 5.1337 17.06 16.1 0.1046 358.3 2.4193
12.15 1633.9 10.6166 765.5 5.1688 17.15 11.5 0.0747 324.8 2.1931
12.25 1649.3 10.7167 789.2 5.3288 17.25 8.8 0.0572 315.8 2.1323
12.35 1663.0 10.8057 789.9 5.3336 17.35 8.3 0.0539 306.3 2.0682
12.45 1579.8 10.2651 741.3 5.0054 17.45 7.0 0.0455 300.0 2.0257
12.55 1688.3 10.9701 795.0 5.3680 17.55 0 0 280.4 1.8933
12.65 1612.0 10.4743 753.0 5.0844 17.65 0 0 255.3 1.7238
12.75 1631.3 10.5997 754.3 5.0932 17.75 0 0 216.0 1.4585
12.85 1688.1 10.9688 792.3 5.3498 17.85 0 0 169.4 1.1438
12.95 1636.5 10.6335 767.2 5.1803 17.95 0 0 106.1 0.7164
13.06 1648.9 10.7141 780.5 5.2701 18.06 0 0 48.9 0.3302
13.15 1664.5 10.8155 790.0 5.3342 18.15 0 0 31.3 0.2113
13.25 1640.1 10.6569 768.1 5.1864 18.25 0 0 23.4 0.1580
13.35 1631.0 10.5978 764.7 5.1634 18.35 0 0 17.7 0.1195
13.45 1635.7 10.6283 767.0 5.1789 18.45 0 0 0 0
13.55 1676.3 10.8921 790.5 5.3376 18.55 0 0 0 0
13.65 1627.0 10.5718 759.9 5.1310 18.66 0 0 0 0
13.75 1602.7 10.4139 754.3 5.0932 18.75 0 0 0 0
13.86 1533.2 9.9623 732.2 4.9440 18.85 0 0 0 0
13.95 1544.8 10.0377 739.6 4.9939 18.95 0 0 0 0
14.06 1496.1 9.7212 727.0 4.9088 19.06 0 0 0 0
14.15 1452.6 9.4386 709.4 4.7900 19.15 0 0 0 0
14.25 1350.4 8.7745 664.8 4.4889 19.25 0 0 0 0
14.35 1299.7 8.4451 655.3 4.4247 19.35 0 0 0 0
14.45 1210.7 7.8668 627.2 4.2350 19.45 0 0 0 0
14.55 1145.6 7.4438 599.0 4.0446 19.55 0 0 0 0
14.65 1097.3 7.1300 588.2 3.9716 19.65 0 0 0 0
14.75 1025.6 6.6641 564.8 3.8136 19.75 0 0 0 0
14.85 957.5 6.2216 546.2 3.6880 19.85 0 0 0 0
14.95 875.5 5.6888 516.1 3.4848 19.95 0 0 0 0
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A13 Parameters for numerical simulations of Chapter 10
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