

Supporting Information

Quantum Mechanics/Molecular Mechanics Study on the Photoreactions of Dark- and Light-Adapted States of a Blue-Light YtvA LOV Photoreceptor

Xue-Ping Chang, Yuan-Jun Gao, Wei-Hai Fang, Ganglong Cui,* and Walter Thiel*

anie_201703487_sm_miscellaneous_information.pdf

Contents

- 1. Computational Methods
 - 1.1 System Setup
 - 1.2 QM/MM Method
 - 1.2.1 Vertical Excitation Energies
 - 1.2.2 Geometric Parameters of Key Minima
- 2. Inter-Conversion Paths
- 3. Minimum-Energy Paths from AU, AD, and BU
- 4. Tables
- 5. Comparison with Previous Theoretical Work
- 6. References
- 7. Cartesian Coordinates of All Optimized Structures

1. <u>Computational Methods</u>

1.1 System Setup

The initial geometry was constructed from an X-ray structure of YtvA LOV domains (PDB ID: 2PR5, chain A). [1] In this structure, there are two main conformations with different orientations of the Cys62 residue, which are labeled as conf-A and conf-B in Fig. S1. Both are used in our work in order to study possible conformation-dependent spectroscopic properties and excited-state reactions.

The constructed system consisted of 102 amino acids, 252 crystal waters, and a flavin mononucleotide (FMN) cofactor. It was first solvated in an equilibrated water box with a radius of 35 Å (with its origin at the center of mass of the FMN cofactor). The protonation states of ionizable groups were determined using the PDB2PQR web server. [2] The system was then neutralized by adding nine sodium ions on the protein surface near negatively charged residues. A spherical quartic boundary potential was applied to the outer water molecules to prevent them from diffusing away. [3]

To maintain the proper protein structure in the initial MM minimizations, all non-hydrogen atoms of the protein and cofactor were restrained with harmonic potentials and only their hydrogen atoms and the water molecules were allowed to move. The solvated system was first relaxed by performing energy minimizations of 500 steps. Then, successive MD simulations of 15 ps were carried out to heat the system gradually to 300 K, while the force constants of the harmonic restraints to the protein were gradually reduced from 90 to 20 kcal \cdot mol⁻¹ \cdot Å⁻². Finally, all restraints were removed and a production NVT MD of 2 ns was run with a 1 fs time step (T=300K). [3]

2

In MM minimizations and MD simulations, the protein residues and the FMN cofactor were described with the CHARMM22 all-atom force field [4], and the water molecules were represented by the TIP3P [5] model.

Figure S1. Overview (left) and view (right) into the FMN binding pocket of the YtvA LOV domain (PDB code 2PR5). Shown are the two conformations of the cysteine residue, conf-A and conf-B.

Figure S2. Illustration of binding pocket (left) and selected QM region (right) employed in the QM/MM geometry optimizations.

1.2 QM/MM Method

The QM region in our QM/MM calculations consisted of lumiflavin and the thiol group of the Cys62 residue. The remaining atoms made up the MM region (see Fig. S2). The QM/MM partitioning involved cuts through two covalent bonds between the QM and the MM subsystems. To explore possible conformation-dependent effects, photochemical reactions were

initiated from both conformations (conf-A and conf-B) considering two different orientations of the H atom of the thiol group. Hence, a total of four conformers were studied (AU, AD, BU, and BD).

The QM region was described using the complete-active-space selfconsistent field (CASSCF) method. Two-state averaged and state-specific CASSCF calculations were carried out for singlet state (S₁) and for the singlet state (S_0) and triplet state (T_1) , respectively. All CASSCF computations made use of an active space of 10 electrons distributed over 8 molecular orbitals (see Fig. S3). Since the CASSCF approach does not treat dynamic correlation, the complete-active-space second-order perturbation (CASPT2) approach [6, 7] was applied to re-evaluate the energies of all optimized structures and paths. The MS-CASPT2 computations employed a larger active space of 12 electrons in 9 molecular orbitals (see Fig. S3). In addition, we used the Cholesky decomposition technique with unbiased auxiliary basis sets for accurate two-electron integral approximations [8] and the imaginary shift technique (0.2 au) to avoid intruder-state issues. [9] The ionization potential electron affinity shift was set to zero. [10, 11] According to our experience, the CASPT2 method without IPEA correction performs better for organic systems, as also shown by González and coworkers. [11]

The MM region was described by the all-atom CHARMM22 force field (protein residues and FMN cofactor) and the TIP3P model (water molecules). [5, 12, 13] The electrostatic embedding scheme [14] was adopted in QM/MM calculations. No cutoffs were imposed for nonbonding QM/MM interactions. Hydrogen link atoms were used at the QM/MM boundary in combination with the charge shift model. [15, 16]

4

In all QM/MM geometry optimizations, the QM atoms and all MM atoms within 12 Å from the center of mass of the FMN core chromophore were allowed to move. The other atoms were frozen after the 2 ns MD simulations (see above). To obtain detailed mechanistic information, minimum-energy reaction pathways in ground and excited states were computed using constrained geometry optimizations along selected reaction coordinates.

In addition, we employed the QM(UB3LYP)/MM method [17, 18] to study inter-conversion paths of the four conformers in the T₁ state (AU, AD, BD, and BU). Specifically, we optimized T₁ minimum-energy paths (MEPs) that connect either AU and AD or BU and BD, while the conversion between AU and BD was studied with the nudged elastic band (NEB) method. [19-21]

The QM(MS-CASPT2)/MM method was used to calculate vertical excitation energies and oscillator strengths at optimized QM/MM geometries.

The 6-31G* basis set [22, 23] was chosen for all QM(CASSCF)/MM and QM(UB3LYP)/MM calculations. The larger cc-pVTZ basis set [24] was employed for all QM(MS-CASPT2)/MM single-point calculations.

The following codes were used: QM/MM calculations, ChemShell3.5 package; [25] QM(CASSCF), GAUSSIAN09 package; [26] QM(MS-CASPT2), MOLCAS8.0 [27, 28]; MM DL_POLY module [29] as implemented in the ChemShell3.5. [25]

5

Figure S3. Active spaces used to obtain the CASSCF (top) and MS-CASPT2 (bottom) results (see text). Shown are the natural orbitals from CASSCF calculations.

1.2.1 Vertical Excitation Energies

Table S1. Vertical Excitation Energies (E_⊥, kcal/mol), Oscillator Strengths (f), and Singly Occupied Orbitals Involved in the $S_0 \rightarrow S_1$ ($^1\pi\pi^*$) Electronic Transition; Computed with the 5-Root State-Averaged QM(MS-CASPT2)/MM Method at the QM(CASSCF)/MM Optimized S₀ Minima.

	E	f	singly occupied orbitals
AU	63.7 (448.8 nm)	0.2879	
AD	63.5 (450.2 nm)	0.2839	
BU	63.7(448.8 nm)	0.3112	
BD	63.5 (450.2 nm)	0.3037	
INT	13.2 (2162.5 nm)	_	
Ρ	70.4 (406 nm)	0.2555	

1.2.2 Geometric Parameters of Key Minima

Table S2. Selected Key Geometric Parameters of Stationary Structures Optimized by the QM(CASSCF)/MM Method (Distances in Å and Angles in °).

		Distance		А	ngle	Dihedral Angle
		N5-H	C4a-S	N5-H-S	H-N5-C4a	S-H-N5-C4a
	AU-S0	4.569	4.601	60.5	104.8	-96.5
	AU-S1	4.706	4.606	52.3	105.5	-99.3
	AU-T1	4.520	4.546	57.7	104.3	-98.1
	AD-S0	4.910	4.561	40.1	105.7	104.4

AD-S1	4.900	4.589	41.0	105.8	102.5
AD-T1	4.897	4.607	41.1	106.1	102.3
BU-S0	3.799	3.647	71.3	61.4	175.3
BU-S1	3.779	3.677	72.9	61.5	174.6
BU-T1	3.886	3.569	65.9	59.4	177.3
BD-S0	3.291	3.675	91.6	105.4	8.4
BD-S1	3.260	3.703	93.3	105.7	8.6
BD-T1	3.264	3.669	92.6	104.3	8.8
INT-S0	1.030	3.372	115.4	116.9	72.3
INT-S1	0.997	3.727	83.3	118.3	82.2
INT-T1	1.000	3.720	85.8	118.5	75.4
P-S0	0.997	1.928	67.8	114.1	33.9
P-S1	1.003	1.939	69.6	115.9	37.5
P-T1	0.998	1.906	70.7	114.4	33.3

2. Inter-Conversion Paths

Figure S4. QM(UB3LYP)/MM computed T_1 inter-conversion path with respect to the rotation along the H-C-S-H dihedral angle, which connects the AD and AU conformers.

Figure S5. QM(UB3LYP)/MM computed T_1 inter-conversion path with respect to the rotation along the H-C-S-H dihedral angle, which connects the BD and BU conformers.

Figure S6. QM(UB3LYP)/MM computed T₁ NEB path connecting AU and BD.

3. Minimum-Energy Paths from AU, AD, and BU

Figure S7. QM(MS-CASPT2//CASSCF)/MM computed minimum-energy reaction paths from AU along the N5-H distance in the S_0 , S_1 , and T_1 states.

Figure S8. QM(MS-CASPT2//CASSCF)/MM computed minimum-energy reaction paths of AD along the N5-H distance in the S_0 , S_1 , and T_1 states.

Figure S9. QM(MS-CASPT2//CASSCF)/MM computed minimum-energy reaction paths of BU along the N5-H distance in the S_0 , S_1 , and T_1 states.

4. Tables

Tables S3-S17 document the energies obtained in the reaction path calculations. The total QM/MM energy can be decomposed into a QM contribution that contains the electrostatic QM-MM interaction energy (denoted as CASSCF A.E. or MS-CASPT2 A.E.) and an MM contribution that contains the van-der-Waals QM-MM interaction energy (denoted as MM). These quantities are given as absolute energies (in Hartree). Also listed are the relative energies at the MS-CASPT2 level (ΔE , in kcal/mol) with respect to the lowest ground-state conformer AU-S0.

Table S3. Absolute Energies (A.E., Hartree), Relative Energies (Δ E, kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from AU-S1 (Reaction Coordinate: N5-H Distance). The Total QM/MM Energy Profiles are Plotted in Figure S7 (Red Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₁-min (4.706)				
Root1 (S ₀)	-3091.10440	-1308.65920		3.6
Root2 (S ₁)	-3091.00480	-1308.58177	-105.503029	52.2
Root3		-1308.55160		71.2
S ₁ (4.70)				
Root1 (S ₀)	-3091.10440	-1308.65916		3.7
Root2 (S ₁)	-3091.00480	-1308.58175	-105.50302	52.2
Root3		-1308.55157		71.2
S ₁ (4.60)			·	·
Root1 (S ₀)	-3091.10500	-1308.65914		3.7
Root2 (S ₁)	-3091.00400	-1308.58149	-105.50391	52.4
Root3		-1308.55070		71.7
S ₁ (4.40)			·	·
Root1 (S ₀)	-3091.10400	-1308.65820		4.3
Root2 (S ₁)	-3091.00220	-1308.58035	-105.50462	53.1
Root3		-1308.54992		72.2
S ₁ (4.20)				
Root1 (S ₀)	-3091.10060	-1308.65594		5.7
Root2 (S ₁)	-3090.99940	-1308.57871	-105.50489	54.2
Root3		-1308.54875		73.0
S ₁ (3.80)				
Root1 (S ₀)	-3091.09740	-1308.65263		7.8
Root2 (S ₁)	-3090.99480	-1308.57743	-105.50364	55.0
Root3		-1308.55019		72.1
S ₁ (3.40)				
Root1 (S ₀)	-3091.09810	-1308.64859		10.3
Root2 (S ₁)	-3090.99430	-1308.57080	-105.50070	59.1
Root3		-1308.53988		78.5
S ₁ (3.00)				
Root1 (S ₀)	-3091.09770	-1308.64609		11.9
Root2 (S ₁)	-3090.99390	-1308.56891	-105.49868	60.3
Root3		-1308.53740		80.1
S ₁ (2.60)				
Root1 (S ₀)	-3091.09730	-1308.64540		12.3
Root2 (S ₁)	-3090.99610	-1308.56927	-105.49678	60.1
Root3		-1308.53655		80.6

S ₁ (2.20)				
Root1 (S ₀)	-3091.09040	-1308.64363		13.4
Root2 (S ₁)	-3090.99360	-1308.57015	-105.49695	59.5
Root3		-1308.53808		79.7
S ₁ (1.80)				
Root1 (S ₀)	-3091.07500	-1308.63660		17.8
Root2 (S ₁)	-3090.98200	-1308.56545	-105.49611	62.5
Root3		-1308.53405		82.2
S ₁ (1.60)		·	· · · · · · · · · · · · · · · · · · ·	
Root1 (S ₀)	-3091.06880	-1308.63580		18.3
Root2 (S ₁)	-3090.97490	-1308.56056	-105.50117	65.5
Root3		-1308.53692		80.4
S ₁ (1.50)		·		
Root1 (S ₀)	-3091.05730	-1308.62959		22.2
Root2 (S ₁)	-3090.96710	-1308.55684	-105.50131	67.9
Root3		-1308.53719		80.2
S ₁ (1.40)		·	· · · · · · · · · · · · · · · · · · ·	
Root1 (S ₀)	-3091.04500	-1308.62191		27.0
Root2 (S ₁)	-3090.95850	-1308.55135	-105.50140	71.3
Root3		-1308.54639		74.4
S ₁ (1.30)				
Root1 (S ₀)	-3091.03120	-1308.61578		30.9
Root2 (S ₁)	-3090.95110	-1308.56463	-105.50117	63.0
Root3		-1308.54800		73.4
S ₁ (1.20)				
Root1 (S ₀)	-3091.01710	-1308.60902		35.1
Root2 (S ₁)	-3090.94710	-1308.57653	-105.50027	55.5
Root3		-1308.53833		79.5
S ₁ (1.10)				
Root1 (S ₀)	-3091.00720	-1308.60194		39.6
Root2 (S ₁)	-3090.94770	-1308.59124	-105.49857	46.3
Root3		-1308.54742		73.8
S ₁ (1.00)				
Root1 (S ₀)	-3091.06940	-1308.62198		27.0
Root2 (S ₁)	-3091.06540	-1308.61778	-105.50200	29.6
Root3		-1308.55220	-	70.8

Table S4. Absolute Energies (A.E., Hartree), Relative Energies (Δ E, kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from AU-T1 (Reaction Coordinate: N5-H Distance).The Corresponding Energy Profiles are Plotted in Figure S7 (Blue Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
T₁-min (4.520)				
Root1 (T ₁)	-3091.04080	-1308.58753		48.6
Root2		-1308.56233	-105.50746	64.4
Root3		-1308.54523		75.2
T ₁ (4.50)		·	·	·
Root1 (T ₁)	-3091.04090	-1308.58722		48.8
Root2		-1308.56206	-105.50746	64.6
Root3		-1308.54506		75.3
T ₁ (4.40)		·	·	·
Root1 (T ₁)	-3091.04000	-1308.58735		48.7
Root2		-1308.56180	-105.50796	64.8
Root3		-1308.54458		75.6
T ₁ (4.20)				
Root1 (T ₁)	-3091.03740	-1308.58589		49.6
Root2		-1308.56006	-105.50830	65.9
Root3		-1308.54288		76.6
T ₁ (3.80)				
Root1 (T ₁)	-3091.03360	-1308.58403		50.8
Root2		-1308.57084	-105.50637	59.1
Root3		-1308.52407		88.4
T ₁ (3.40)				
Root1 (T ₁)	-3091.03210	-1308.57722		55.1
Root2		-1308.55166	-105.50395	71.1
Root3		-1308.53503		81.6
T ₁ (3.00)				
Root1 (T ₁)	-3091.03050	-1308.57546		56.2
Root2		-1308.54952	-105.50281	72.5
Root3		-1308.53239		83.2
T ₁ (2.60)				
Root1 (T ₁)	-3091.03120	-1308.57402		57.1
Root2		-1308.54806	-105.50084	73.4
Root3		-1308.52975		84.9
T ₁ (2.20)				
Root1 (T ₁)	-3091.02660	-1308.57428		56.9
Root2		-1308.54933	-105.50043	72.6
Root3		-1308.52990		84.8

T ₁ (1.80)				
Root1 (T ₁)	-3091.02000	-1308.57222		58.2
Root2		-1308.54798	-105.49881	73.4
Root3		-1308.52735		86.4
T ₁ (1.60)				
Root1 (T ₁)	-3091.00730	-1308.56784		61.0
Root2		-1308.54434	-105.49885	75.7
Root3		-1308.53202		83.5
T₁ (1.50)				
Root1 (T ₁)	-3090.99850	-1308.56201		64.6
Root2		-1308.53920	-105.49880	78.9
Root3		-1308.53188		83.5
T ₁ (1.40)				
Root1 (T ₁)	-3090.99330	-1308.56969		59.8
Root2		-1308.54328	-105.50522	76.4
Root3		-1308.53386		82.3
T₁ (1.30)				
Root1 (T ₁)	-3090.98700	-1308.57112		58.9
Root2		-1308.55354	-105.50315	69.9
Root3		-1308.53778		79.8
T₁ (1.20)				
Root1 (T ₁)	-3090.98190	-1308.58039		53.1
Root2		-1308.56137	-105.50260	65.0
Root3		-1308.54954		72.5
T ₁ (1.10)				
Root1 (T ₁)	-3091.06580	-1308.62072		27.8
Root2		-1308.61423	-105.50109	31.9
Root3		-1308.52486		87.9
T ₁ (1.00)				
Root1 (T ₁)	-3091.07250	-1308.62498		25.1
Root2		-1308.61834	-105.50141	29.3
Root3		-1308.53120		84.0

Table S5. Absolute Energies (A.E., Hartree), Relative Energies (Δ E, kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from AU-S0 (Reaction Coordinate: N5-H Distance). The Corresponding Energy Profiles are Plotted in Figure S7 (Green Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₀-min (4.569)				
Root1 (S ₀)	-3091.13640	-1308.66500		0.0
Root2 (S ₁)		-1308.56356	-105.50711	63.7
Root3		-1308.53980		78.6
S ₀ (4.50)				
Root1 (S ₀)	-3091.13570	-1308.66443		0.4
Root2 (S ₁)		-1308.56291	-105.50739	64.1
Root3		-1308.53952		78.7
S ₀ (4.40)				
Root1 (S ₀)	-3091.13480	-1308.66374		0.8
Root2 (S ₁)		-1308.56222	-105.50754	64.5
Root3		-1308.53898		79.1
S ₀ (4.20)				
Root1 (S ₀)	-3091.13270	-1308.66211		1.8
Root2 (S ₁)		-1308.56079	-105.50760	65.4
Root3		-1308.53783		79.8
S ₀ (3.80)				
Root1 (S ₀)	-3091.12900	-1308.65797		4.4
Root2 (S ₁)		-1308.55658	-105.50643	68.0
Root3		-1308.53360		82.5
S ₀ (3.40)				
Root1 (S ₀)	-3091.12740	-1308.65407		6.9
Root2 (S ₁)		-1308.55247	-105.50426	70.6
Root3		-1308.52875		85.5
S ₀ (3.00)				
Root1 (S ₀)	-3091.12550	-1308.65089		8.9
Root2 (S ₁)		-1308.54982	-105.50362	72.3
Root3		-1308.52562		87.5
S ₀ (2.60)				
Root1 (S ₀)	-3091.12620	-1308.64934		9.8
Root2 (S ₁)		-1308.54865	-105.50179	73.0
Root3		-1308.52349		88.8
S ₀ (2.20)				
Root1 (S ₀)	-3091.12200	-1308.64842		10.4
Root2 (S ₁)		-1308.54949	-105.50098	72.5
Root3		-1308.52503		87.8

S ₀ (1.80)				
Root1 (S ₀)	-3091.10950	-1308.64182		14.5
Root2 (S ₁)		-1308.53210	-105.50012	83.4
Root3		-1308.52375		88.6
S ₀ (1.60)		·	·	
Root1 (S ₀)	-3091.09900	-1308.63812		16.9
Root2 (S ₁)		-1308.53005	-105.49849	84.7
Root3		-1308.52558		87.5
S ₀ (1.50)				
Root1 (S ₀)	-3091.08920	-1308.63237		20.5
Root2 (S ₁)		-1308.53290	-105.49883	82.9
Root3		-1308.52688		86.7
S ₀ (1.40)				
Root1 (S ₀)	-3091.07710	-1308.62796		23.2
Root2 (S ₁)		-1308.54729	-105.49879	73.9
Root3		-1308.53636		80.7
S ₀ (1.30)				
Root1 (S ₀)	-3091.06370	-1308.62194		27.0
Root2 (S ₁)		-1308.55415	-105.49875	69.6
Root3		-1308.53254		83.1
S ₀ (1.20)				
Root1 (S ₀)	-3091.05520	-1308.61768		29.7
Root2 (S ₁)		-1308.56700	-105.50334	61.5
Root3		-1308.53889		79.1
S ₀ (1.10)				
Root1 (S ₀)	-3091.05150	-1308.61623		30.6
Root2 (S ₁)		-1308.59343	-105.49812	44.9
Root3		-1308.56599		62.1
S ₀ (1.00)				
Root1 (S ₀)	-3091.04240	-1308.61612		30.7
Root2 (S ₁)		-1308.60072	-105.50033	40.3
Root3		-1308.55969	[66.1

Table S6. Absolute Energies (A.E., Hartree), Relative Energies (Δ E, kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from AD-S1 (Reaction Coordinate: N5-H Distance). The Corresponding Energy Profiles are Plotted in Figure S8 (Red Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₁-min (4.900)				
Root1 (S ₀)	-3091.10810	-1308.65130		8.6
Root2 (S ₁)	-3091.00480	-1308.57346	-105.50419	57.4
Root3		-1308.54162		77.4
S ₁ (4.80)				
Root1 (S ₀)	-3091.10760	-1308.65157		8.4
Root2 (S ₁)	-3091.00460	-1308.57398	-105.50405	57.1
Root3		-1308.54228		77.0
S ₁ (4.60)				
Root1 (S ₀)	-3091.10660	-1308.65317		7.4
Root2 (S ₁)	-3091.00500	-1308.57599	-105.50246	55.9
Root3		-1308.54442		75.7
S ₁ (4.40)				
Root1 (S ₀)	-3091.10530	-1308.65336		7.3
Root2 (S ₁)	-3091.00430	-1308.57664	-105.50244	55.5
Root3		-1308.54564		74.9
S ₁ (4.20)				
Root1 (S ₀)	-3091.10490	-1308.65393		7.0
Root2 (S ₁)	-3091.00430	-1308.57724	-105.50225	55.1
Root3		-1308.54651		74.4
S ₁ (3.80)				
Root1 (S ₀)	-3091.10240	-1308.65346		7.2
Root2 (S ₁)	-3091.00260	-1308.57722	-105.50276	55.1
Root3		-1308.54635		74.5
S ₁ (3.40)				
Root1 (S ₀)	-3091.10220	-1308.65279		7.7
Root2 (S ₁)	-3091.00260	-1308.57676	-105.50320	55.4
Root3		-1308.54509		75.2
S ₁ (3.00)				
Root1 (S ₀)	-3091.10380	-1308.65212		8.1
Root2 (S ₁)	-3091.00370	-1308.57213	-105.50339	58.3
Root3		-1308.54373		76.1
S ₁ (2.60)				
Root1 (S ₀)	-3091.10290	-1308.65085		8.9
Root2 (S ₁)	-3091.00260	-1308.57136	-105.50369	58.8
Root3		-1308.54272		76.7

S ₁ (2.20)				
Root1 (S ₀)	-3091.09660	-1308.64866		10.3
Root2 (S ₁)	-3090.99790	-1308.57019	-105.50319	59.5
Root3		-1308.54217		77.1
S ₁ (1.80)				
Root1 (S ₀)	-3091.08240	-1308.64402		13.2
Root2 (S ₁)	-3090.98840	-1308.56818	-105.50203	60.8
Root3		-1308.54067		78.0
S ₁ (1.60)				
Root1 (S ₀)	-3091.07220	-1308.63673		17.7
Root2 (S ₁)	-3090.98070	-1308.56740	-105.50067	61.2
Root3		-1308.53459		81.8
S ₁ (1.50)				
Root1 (S ₀)	-3091.06160	-1308.63125		21.2
Root2 (S ₁)	-3090.97330	-1308.55436	-105.50075	69.4
Root3		-1308.54138		77.6
S ₁ (1.40)				
Root1 (S ₀)	-3091.04760	-1308.62273		26.5
Root2 (S ₁)	-3090.96260	-1308.55244	-105.50323	70.6
Root3		-1308.54795		73.5
S ₁ (1.30)				
Root1 (S ₀)	-3091.03410	-1308.61714		30.0
Root2 (S ₁)	-3090.95530	-1308.56564	-105.50321	62.4
Root3		-1308.55125		71.4
S ₁ (1.20)				
Root1 (S ₀)	-3091.02460	-1308.61207		33.2
Root2 (S ₁)	-3090.95100	-1308.57542	-105.50448	56.2
Root3		-1308.53836		79.5
S ₁ (1.10)				
Root1 (S ₀)	-3091.01630	-1308.61256		32.9
Root2 (S ₁)	-3090.95320	-1308.59377	-105.50082	44.7
Root3		-1308.55410		69.6
S ₁ (1.00)				
Root1 (S ₀)	-3091.07030	-1308.62333		26.2
Root2 (S ₁)	-3091.06580	-1308.61877	-105.50725	29.0
Root3		-1308.55534		68.8

Table S7. Absolute Energies (A.E., Hartree), Relative Energies (Δ E, kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from AD-T1 (Reaction Coordinate: N5-H Distance).The Corresponding Energy Profiles are Plotted in Figure S8 (Blue Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
T₁-min (4.897)				
Root1 (T ₁)	-3091.03690	-1308.58297		51.5
Root2		-1308.56861	-105.50232	60.5
Root3		-1308.54294		76.6
T ₁ (4.80)				
Root1 (T ₁)	-3091.03650	-1308.58371		51.0
Root2		-1308.56914	-105.50194	60.2
Root3		-1308.54313		76.5
T ₁ (4.60)				·
Root1 (T ₁)	-3091.03650	-1308.58523		50.1
Root2		-1308.57090	-105.50164	59.1
Root3		-1308.54421		75.8
T ₁ (4.40)				·
Root1 (T ₁)	-3091.03680	-1308.58684		49.1
Root2		-1308.57230	-105.50071	58.2
Root3		-1308.54554		75.0
T ₁ (4.20)				
Root1 (T ₁)	-3091.03480	-1308.58714		48.9
Root2		-1308.57255	-105.50067	58.0
Root3		-1308.54545		75.0
T ₁ (3.80)				
Root1 (T ₁)	-3091.03520	-1308.58798		48.3
Root2		-1308.57301	-105.50070	57.7
Root3		-1308.54538		75.1
T ₁ (3.40)				
Root1 (T ₁)	-3091.03520	-1308.58688		49.0
Root2		-1308.57104	-105.50108	59.0
Root3		-1308.54383		76.0
T ₁ (3.00)				
Root1 (T ₁)	-3091.03680	-1308.58499		50.2
Root2		-1308.56885	-105.50080	60.3
Root3		-1308.54212		77.1
T ₁ (2.60)				
Root1 (T ₁)	-3091.03540	-1308.58502		50.2
Root2		-1308.56886	-105.50109	60.3
Root3		-1308.54122		77.7

T ₁ (2.20)				
Root1 (T ₁)	-3091.03110	-1308.58612		49.5
Root2		-1308.57029	-105.50077	59.4
Root3		-1308.54211		77.1
T ₁ (1.80)				
Root1 (T ₁)	-3091.01570	-1308.57979		53.5
Root2		-1308.56204	-105.50091	64.6
Root3		-1308.53094		84.1
T ₁ (1.60)				
Root1 (T ₁)	-3091.01180	-1308.57903		53.9
Root2		-1308.55829	-105.49840	67.0
Root3		-1308.53135		83.9
T ₁ (1.50)				
Root1 (T ₁)	-3091.00400	-1308.57232		58.2
Root2		-1308.55677	-105.49860	67.9
Root3		-1308.54306		76.5
T ₁ (1.40)				
Root1 (T ₁)	-3090.99610	-1308.56989		59.7
Root2		-1308.56131	-105.49855	65.1
Root3		-1308.54418		75.8
T ₁ (1.30)				
Root1 (T ₁)	-3090.99010	-1308.57537		56.2
Root2		-1308.56774	-105.49880	61.0
Root3		-1308.54805		73.4
T ₁ (1.20)				
Root1 (T ₁)	-3090.98730	-1308.58098		52.7
Root2		-1308.56826	-105.49856	60.7
Root3		-1308.56132		65.1
T ₁ (1.10)				
Root1 (T ₁)	-3090.98760	-1308.59838		41.8
Root2		-1308.58395	-105.49799	50.9
Root3		-1308.55184	ŀ	71.0
T ₁ (1.00)				
Root1 (T ₁)	-3090.98680	-1308.62518		25.0
Root2		-1308.61738	-105.49699	29.9
Root3		-1308.53195	Ē	83.5

Table S8. Absolute Energies (A.E., Hartree), Relative Energies (Δ E, kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from AD-S0 (Reaction Coordinate: N5-H Distance).The Corresponding Energy Profiles are Plotted in Figure S8 (Green Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₀-min (4.910)				
Root1 (S ₀)	-3091.13820	-1308.65770		4.6
Root2 (S ₁)		-1308.55653	-105.50662	68.1
Root3		-1308.53173		83.6
S ₀ (4.80)				
Root1 (S ₀)	-3091.13750	-1308.65754		4.7
Root2 (S ₁)		-1308.55679	-105.50675	67.9
Root3		-1308.53223		83.3
S ₀ (4.60)				
Root1 (S ₀)	-3091.13760	-1308.65843		4.1
Root2 (S ₁)		-1308.55796	-105.50637	67.2
Root3		-1308.53396		82.2
S ₀ (4.40)		·	•	
Root1 (S ₀)	-3091.13470	-1308.65798	-105.50625	4.4
Root2 (S ₁)		-1308.55787		67.2
Root3		-1308.53424		82.1
S ₀ (4.20)		·	•	
Root1 (S ₀)	-3091.13560	-1308.65965		3.4
Root2 (S ₁)		-1308.55897	-105.50653	66.5
Root3		-1308.53480		81.7
S ₀ (3.80)		·	•	
Root1 (S ₀)	-3091.13460	-1308.65915		3.7
Root2 (S ₁)		-1308.55893	-105.50664	66.6
Root3		-1308.53497		81.6
S ₀ (3.40)		·	·	·
Root1 (S ₀)	-3091.13330	-1308.65722		4.9
Root2 (S ₁)		-1308.55732	-105.50701	67.6
Root3		-1308.53282		83.0
S ₀ (3.00)				
Root1 (S ₀)	-3091.13660	-1308.65451		6.6
Root2 (S ₁)		-1308.55433	-105.50664	69.5
Root3		-1308.52804		86.0
S ₀ (2.60)				
Root1 (S ₀)	-3091.13300	-1308.65368		7.1
Root2 (S ₁)		-1308.55444	-105.50764	69.4
Root3		-1308.52818		85.9

S ₀ (2.20)				
Root1 (S ₀)	-3091.12890	-1308.65327		7.4
Root2 (S ₁)		-1308.55502	-105.50667	69.0
Root3		-1308.52891		85.4
S ₀ (1.80)				
Root1 (S ₀)	-3091.11680	-1308.64744		11.0
Root2 (S ₁)		-1308.53767	-105.50525	79.9
Root3		-1308.52591		87.3
S ₀ (1.60)				
Root1 (S ₀)	-3091.10300	-1308.63999		15.7
Root2 (S ₁)		-1308.53306	-105.50552	82.8
Root3		-1308.52659		86.9
S ₀ (1.50)		·		
Root1 (S ₀)	-3091.09300	-1308.63517		18.7
Root2 (S ₁)		-1308.54033	-105.50558	78.2
Root3		-1308.53942		78.8
S ₀ (1.40)		·		
Root1 (S ₀)	-3091.08070	-1308.62903	-105.50554	22.6
Root2 (S ₁)		-1308.54767		73.6
Root3		-1308.53862		79.3
S ₀ (1.30)		·		
Root1 (S ₀)	-3091.06770	-1308.62480		25.2
Root2 (S ₁)		-1308.55530	-105.50483	68.8
Root3		-1308.52791		86.0
S ₀ (1.20)		·		
Root1 (S ₀)	-3091.05880	-1308.61889		28.9
Root2 (S ₁)		-1308.56866	-105.50813	60.5
Root3		-1308.54042		78.2
S ₀ (1.10)		·		
Root1 (S ₀)	-3091.05200	-1308.61497		31.4
Root2 (S ₁)		-1308.59183	-105.50463	45.9
Root3		-1308.56488		62.8
S ₀ (1.00)		·		
Root1 (S ₀)	-3091.05150	-1308.62264		26.6
Root2 (S ₁)		-1308.59981	-105.50319	40.9
Root3		-1308.56417		63.3

Table S9. Absolute Energies (A.E., Hartree), Relative Energies (Δ E, kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from BU-S1 (Reaction Coordinate: N5-H Distance). The Corresponding Energy Profiles are Plotted in Figure S9 (Red Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₁-min (3.779)				
Root1 (S ₀)	-3091.10120	-1308.64901		10.0
Root2 (S ₁)	-3090.99420	-1308.57422	-105.50836	57.0
Root3		-1308.54378		76.1
S ₁ (3.60)				
Root1 (S ₀)	-3091.10090	-1308.65203		8.1
Root2 (S ₁)	-3090.99400	-1308.56964	-105.50829	59.8
Root3		-1308.53937		78.8
S ₁ (3.40)				
Root1 (S ₀)	-3091.09930	-1308.65167		8.4
Root2 (S ₁)	-3090.99360	-1308.56973	-105.50754	59.8
Root3		-1308.53924		78.9
S ₁ (3.00)				
Root1 (S ₀)	-3091.09650	-1308.65059		9.0
Root2 (S ₁)	-3090.99210	-1308.56904	-105.50570	60.2
Root3		-1308.53896		79.1
S ₁ (2.60)				
Root1 (S ₀)	-3091.09140	-1308.64705		11.3
Root2 (S ₁)	-3090.98920	-1308.56689	-105.50528	61.6
Root3		-1308.53652		80.6
S ₁ (2.20)				
Root1 (S ₀)	-3091.08770	-1308.64560		12.2
Root2 (S ₁)	-3090.98630	-1308.56617	-105.50387	62.0
Root3		-1308.53559		81.2
S ₁ (1.80)		·		
Root1 (S ₀)	-3091.07640	-1308.64061		15.3
Root2 (S ₁)	-3090.97790	-1308.56333	-105.50368	63.8
Root3		-1308.53503		81.6
S ₁ (1.60)				
Root1 (S ₀)	-3091.06120	-1308.63307		20.0
Root2 (S ₁)	-3090.96620	-1308.55840	-105.50413	66.9
Root3		-1308.53287		82.9
S ₁ (1.50)				
Root1 (S ₀)	-3091.05000	-1308.62510		25.0
Root2 (S ₁)	-3090.95900	-1308.54754	-105.50412	73.7
Root3		-1308.53721		80.2

S ₁ (1.40)				
Root1 (S ₀)	-3091.04400	-1308.62523	-105.50173	25.0
Root2 (S ₁)	-3090.95450	-1308.55087		71.6
Root3		-1308.54781		73.5
S ₁ (1.30)				
Root1 (S ₀)	-3091.03070	-1308.61867		29.1
Root2 (S ₁)	-3090.94760	-1308.56559	-105.50194	62.4
Root3		-1308.55081		71.7
S ₁ (1.20)				
Root1 (S ₀)	-3091.01720	-1308.61269		32.8
Root2 (S ₁)	-3090.94370	-1308.57621	-105.50131	55.7
Root3		-1308.53925		78.9
S₁ (1.10)				
Root1 (S ₀)	-3091.01080	-1308.61485		31.5
Root2 (S ₁)	-3090.94790	-1308.59514	-105.49579	43.8
Root3		-1308.55641		68.1

Table S10. Absolute Energies (A.E., Hartree), Relative Energies (ΔE , kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from BU-T1 (Reaction Coordinate: N5-H Distance). The Corresponding Energy Profiles are Plotted in Figure S9 (Blue Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
T₁-min (3.886)				
Root1 (T ₁)	-3091.04450	-1308.58701		48.9
Root2		-1308.56492	-105.51578	62.8
Root3		-1308.54274		76.7
T ₁ (3.60)		·		
Root1 (T ₁)	-3091.04420	-1308.58603		49.6
Root2		-1308.56425	-105.51542	63.2
Root3		-1308.54097		77.8
T ₁ (3.40)		·		
Root1 (T ₁)	-3091.04230	-1308.58607		49.5
Root2		-1308.56568	-105.51544	62.3
Root3		-1308.54273		76.7
T ₁ (3.00)		·		
Root1 (T ₁)	-3091.04020	-1308.58066		52.9
Root2		-1308.55477	-105.51435	69.2
Root3		-1308.54076		78.0
T ₁ (2.60)				

Root1 (T ₁)	-3091.03870	-1308.58484		50.3
Root2		-1308.56402	-105.51224	63.4
Root3		-1308.52003		91.0
T ₁ (2.20)				
Root1 (T ₁)	-3091.03690	-1308.57857		54.2
Root2		-1308.55491	-105.51086	69.1
Root3		-1308.54275		76.7
T ₁ (1.80)				
Root1 (T ₁)	-3091.02780	-1308.57537		56.2
Root2		-1308.55165	-105.51124	71.1
Root3		-1308.49741		105.2
T ₁ (1.60)				
Root1 (T ₁)	-3091.01640	-1308.57141		58.7
Root2		-1308.54618	-105.51165	74.6
Root3		-1308.51292		95.4
T ₁ (1.50)				
Root1 (T ₁)	-3091.00900	-1308.56926	-105.51175	60.1
Root2		-1308.53707		80.3
Root3		-1308.53389		82.3
T₁ (1.40)				
Root1 (T ₁)	-3091.00050	-1308.56850		60.6
Root2		-1308.54393	-105.51169	76.0
Root3		-1308.53194		83.5
T ₁ (1.30)				
Root1 (T ₁)	-3090.99180	-1308.57149		58.7
Root2		-1308.55506	-105.51164	69.0
Root3		-1308.53823		79.6
T ₁ (1.20)				
Root1 (T ₁)	-3090.98730	-1308.58243		51.8
Root2		-1308.56305	-105.51038	64.0
Root3		-1308.54998		72.2
T ₁ (1.10)				
Root1 (T ₁)	-3091.06640	-1308.62293		26.4
Root2		-1308.61589	-105.50740	30.8
Root3		-1308.52889		85.4

Table S11. Absolute Energies (A.E., Hartree), Relative Energies (ΔE , kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from BU-S0 (Reaction Coordinate: N5-H Distance). The Corresponding Energy Profiles are Plotted in Figure S9 (Green Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₀-min (3.799)				
Root1 (S ₀)	-3091.13080	-1308.65591		5.7
Root2 (S ₁)		-1308.55442	-105.51084	69.4
Root3		-1308.52690		86.7
S ₀ (3.60)				•
Root1 (S ₀)	-3091.12970	-1308.65604		5.6
Root2 (S ₁)		-1308.55481	-105.51096	69.1
Root3		-1308.52823		85.8
S ₀ (3.40)				
Root1 (S ₀)	-3091.12850	-1308.65563		5.9
Root2 (S ₁)		-1308.55485	-105.51088	69.1
Root3		-1308.52832		85.8
S ₀ (3.00)				
Root1 (S ₀)	-3091.12530	-1308.65419		6.8
Root2 (S ₁)		-1308.55388	-105.51026	69.7
Root3		-1308.52722		86.5
S ₀ (2.60)				
Root1 (S ₀)	-3091.12250	-1308.65163		8.4
Root2 (S ₁)		-1308.55198	-105.50858	70.9
Root3		-1308.52501		87.9
S ₀ (2.20)				
Root1 (S ₀)	-3091.11850	-1308.64934		9.8
Root2 (S ₁)		-1308.55035	-105.50727	71.9
Root3		-1308.52258		89.4
S ₀ (1.80)				
Root1 (S ₀)	-3091.10790	-1308.64591		12.0
Root2 (S ₁)		-1308.54931	-105.50696	72.6
Root3		-1308.52072		90.5
S ₀ (1.60)				
Root1 (S ₀)	-3091.09480	-1308.63868		16.5
Root2 (S ₁)		-1308.53015	-105.50699	84.6
Root3		-1308.52118		90.3
S ₀ (1.50)				
Root1 (S ₀)	-3091.08530	-1308.63330		19.9
Root2 (S ₁)		-1308.53207	-105.50702	83.4
Root3		-1308.52525		87.7

S ₀ (1.40)				
Root1 (S ₀)	-3091.07270	-1308.62768	-105.50711	23.4
Root2 (S ₁)		-1308.54736		73.8
Root3		-1308.52818		85.9
S ₀ (1.30)				
Root1 (S ₀)	-3091.06580	-1308.62778		23.4
Root2 (S ₁)		-1308.55527	-105.50445	68.9
Root3		-1308.52514		87.8
S ₀ (1.20)				
Root1 (S ₀)	-3091.05110	-1308.61975		28.4
Root2 (S ₁)		-1308.56851	-105.50463	60.6
Root3		-1308.54016		78.3
S ₀ (1.10)				
Root1 (S ₀)	-3091.04790	-1308.61694		30.2
Root2 (S ₁)		-1308.59297	-105.50026	45.2
Root3		-1308.56664		61.7

Table S12. Absolute Energies (A.E., Hartree), Relative Energies (ΔE , kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from BD-S1 (Reaction Coordinate: N5-H Distance). The Corresponding Energy Profiles are Plotted in Figure S10 (Red Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₁-min (3.260)				
Root1 (S ₀)	-3091.10440	-1308.64520		12.4
Root2 (S ₁)	-3090.99350	-1308.56290	-105.51260	64.1
Root3		-1308.53104		84.1
S ₁ (3.10)		·		
Root1 (S ₀)	-3091.10300	-1308.64576	-105.51199	12.1
Root2 (S ₁)	-3090.99370	-1308.56398		63.4
Root3		-1308.53203		83.4
S ₁ (2.90)		·		
Root1 (S ₀)	-3091.10130	-1308.64527		12.4
Root2 (S ₁)	-3090.99340	-1308.56429	-105.51176	63.2
Root3		-1308.53214		83.4
S ₁ (2.70)		•		
Root1 (S ₀)	-3091.10040	-1308.64596	105 51114	12.0
Root2 (S ₁)	-3090.99300	-1308.56540	-105.51144	62.5

Root3		-1308.53308		82.8
S ₁ (2.50)		·		
Root1 (S ₀)	-3091.10000	-1308.64679		11.4
Root2 (S ₁)	-3090.99410	-1308.56652	-105.51040	61.8
Root3		-1308.53464		81.8
S ₁ (2.30)				
Root1 (S ₀)	-3091.09910	-1308.64722		11.2
Root2 (S ₁)	-3090.99510	-1308.56768	-105.50977	61.1
Root3		-1308.53637		80.7
S ₁ (2.10)				
Root1 (S ₀)	-3091.09370	-1308.64518		12.4
Root2 (S ₁)	-3090.99170	-1308.56686	-105.51026	61.6
Root3		-1308.53562	100101020	81.2
S ₁ (1.90)		·		
Root1 (S ₀)	-3091.08620	-1308.64167		14.6
Root2 (S ₁)	-3090.98660	-1308.56458	-105.51076	63.0
Root3		-1308.53525		81.4
S ₁ (1.70)				
Root1 (S ₀)	-3091.07450	-1308.63614		18.1
Root2 (S ₁)	-3090.97800	-1308.56087	-105.51107	65.3
Root3		-1308.53330		82.7
S ₁ (1.60)				
Root1 (S ₀)	-3091.06510	-1308.63069		21.5
Root2 (S ₁)	-3090.97210	-1308.55768	-105.51107	67.3
Root3		-1308.53175		83.6
S ₁ (1.50)				
Root1 (S ₀)	-3091.05920	-1308.62819		23.1
Root2 (S ₁)	-3090.96700	-1308.55572	-105.51076	68.6
Root3		-1308.53566		81.2
S ₁ (1.40)				
Root1 (S ₀)	-3091.04590	-1308.61924		28.7
Root2 (S ₁)	-3090.95890	-1308.54933	-105.51081	72.6
Root3		-1308.54426		75.8
S ₁ (1.30)				
Root1 (S ₀)	-3091.03180	-1308.61323		32.5
Root2 (S ₁)	-3090.95130	-1308.55927	-105.51076	66.4
Root3		-1308.54120		77.7
S ₁ (1.20)				
Root1 (S ₀)	-3091.01840	-1308.60670		36.6
Root2 (S ₁)	-3090.94840	-1308.57421	-105.50993	57.0
Root3		-1308.53610		80.9
S ₁ (1.10)				
Root1 (S ₀)	-3091.00880	-1308.60117		40.1
Root2 (S ₁)	-3090.94960	-1308.58936	-105.50858	47.5
Root3		-1308.54741		73.8

Table S13. Absolute Energies (A.E., Hartree), Relative Energies (ΔE , kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from BD-T1 (Reaction Coordinate: N5-H Distance). The Corresponding Energy Profiles are Plotted in Figure S10 (Blue Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
T₁-min (3.264)				
Root1 (T ₁)	-3091.04220	-1308.57619		55.7
Root2		-1308.55114	-105.51359	71.5
Root3		-1308.54145		77.5
T ₁ (3.10)		·	•	
Root1 (T ₁)	-3091.04190	-1308.57650		55.5
Root2		-1308.55182	-105.51372	71.0
Root3		-1308.54056		78.1
T ₁ (2.90)		·	•	
Root1 (T ₁)	-3091.04110	-1308.57664		55.5
Root2		-1308.55197	-105.51376	70.9
Root3		-1308.54008		78.4
T ₁ (2.70)		·	•	
Root1 (T ₁)	-3091.04160	-1308.57714		55.1
Root2		-1308.55219	-105.51340	70.8
Root3		-1308.54033		78.2
T ₁ (2.50)				
Root1 (T ₁)	-3091.04060	-1308.57702		55.2
Root2		-1308.54925	-105.51320	72.6
Root3		-1308.53111		84.0
T ₁ (2.30)		·	•	
Root1 (T ₁)	-3091.03930	-1308.57744		55.0
Root2		-1308.54977	-105.51303	72.3
Root3		-1308.53077		84.2
T ₁ (2.10)		·	•	
Root1 (T ₁)	-3091.03600	-1308.57663		55.5
Root2		-1308.54905	-105.51331	72.8
Root3		-1308.52903		85.3
T ₁ (1.90)				
Root1 (T ₁)	-3091.03090	-1308.57369		57.3
Root2		-1308.55041	105.51371	71.9
Root3		-1308.49560		106.3
T ₁ (1.70)				
Root1 (T ₁)	-3091.02290	-1308.57149		58.7
Root2		-1308.54739	-105.51387	73.8
Root3		-1308.50031		103.4

T ₁ (1.60)				
Root1 (T ₁)	-3091.01660	-1308.56966		59.8
Root2		-1308.54510	-105.51394	75.2
Root3		-1308.52329		88.9
T ₁ (1.50)		·		
Root1 (T ₁)	-3091.00840	-1308.56738		61.3
Root2		-1308.53960	-105.51405	78.7
Root3		-1308.53197		83.5
T ₁ (1.40)				
Root1 (T ₁)	-3091.00080	-1308.56786		61.0
Root2		-1308.54329	-105.51387	76.4
Root3		-1308.53008		84.7
T ₁ (1.30)				
Root1 (T ₁)	-3090.99160	-1308.57188		58.4
Root2		-1308.55267	-105.51384	70.5
Root3		-1308.53737		80.1
T ₁ (1.20)				
Root1 (T ₁)	-3090.98690	-1308.58128		52.5
Root2		-1308.56103	-105.51244	65.2
Root3		-1308.54776		73.6
T ₁ (1.10)				
Root1 (T ₁)	-3091.06850	-1308.62097		27.6
Root2		-1308.61441	-105.50906	31.8
Root3		-1308.52694		86.6

Table S14. Absolute Energies (A.E., Hartree), Relative Energies (ΔE , kcal/mol), and MM Energies (Hartree) of Optimized Structures for N5-H Bond Formation from BD-S0 (Reaction Coordinate: N5-H Distance). The Corresponding Energy Profiles are Plotted in Figure S10 (Green Line).

(N5-H)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₀-min (3.291)				
Root1 (S ₀)	-3091.13630	-1308.65013		9.3
Root2 (S ₁)		-1308.54893	-105.51498	72.8
Root3		-1308.52006		91.0
S ₀ (3.10)				
Root1 (S ₀)	-3091.13570	-1308.65021		9.3
Root2 (S ₁)		-1308.54932	-105.51497	72.6
Root3		-1308.52085		90.5
S ₀ (2.90)				

Root1 (S ₀)	-3091.13590	-1308.65058		9.1
Root2 (S ₁)		-1308.54988	-105.51462	72.2
Root3		-1308.52104		90.3
S ₀ (2.70)				
Root1 (S ₀)	-3091.13420	-1308.65042		9.2
Root2 (S ₁)		-1308.54999	-105.51463	72.2
Root3		-1308.52111		90.3
S ₀ (2.50)				
Root1 (S ₀)	-3091.13400	-1308.65074		9.0
Root2 (S ₁)		-1308.55073	-105.51422	71.7
Root3		-1308.52141		90.1
S ₀ (2.30)				
Root1 (S ₀)	-3091.13070	-1308.64971		9.6
Root2 (S ₁)		-1308.55049	-105.51443	71.9
Root3		-1308.52127		90.2
S ₀ (2.10)				
Root1 (S ₀)	-3091.12840	-1308.64875		10.2
Root2 (S ₁)		-1308.53632	-105.51422	80.8
Root3		-1308.52004		91.0
S ₀ (1.90)				
Root1 (S ₀)	-3091.12140	-1308.64606		11.9
Root2 (S ₁)		-1308.53485	-105.51458	81.7
Root3		-1308.52001		91.0
S ₀ (1.70)				
Root1 (S ₀)	-3091.11170	-1308.64173		14.6
Root2 (S ₁)		-1308.53256	-105.51453	83.1
Root3		-1308.52081		90.5
S ₀ (1.60)				
Root1 (S ₀)	-3091.10320	-1308.63697		17.6
Root2 (S ₁)		-1308.52985	-105.51466	84.8
Root3		-1308.52275		89.3
S₀ (1.50)				
Root1 (S ₀)	-3091.09340	-1308.63163		20.9
Root2 (S ₁)		-1308.53501	-105.51476	81.6
Root3		-1308.52518		87.7
S ₀ (1.40)				
Root1 (S ₀)	-3091.08100	-1308.62617		24.4
Root2 (S ₁)		-1308.54803	-105.51480	73.4
Root3		-1308.52561		87.5
S ₀ (1.30)				
Root1 (S ₀)	-3091.07370	-1308.62697		23.9
Root2 (S ₁)		-1308.55708	-105.51064	67.7
Root3		-1308.52466		88.1
S ₀ (1.20)				
Root1 (S ₀)	-3091.06130	-1308.62124		27.5
Root2 (S ₁)		-1308.57157	-105.51066	58.6
Root3		-1308.54206		77.1

S ₀ (1.10)				
Root1 (S ₀)	-3091.05310	-1308.61464		31.6
Root2 (S ₁)		-1308.59067	-105.50960	46.6
Root3		-1308.55920		66.4

Table S15. Absolute Energies (A.E., Hartree), Relative Energies (ΔE , kcal/mol), and MM energies (Hartree) of Optimized Structures for C4a-S Bond Formation from INT-S1 (Reaction Coordinate: C4a-S Distance). The Corresponding Energy Profiles are Plotted in Figure 3 (Red Line).

(C4a-S)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₁-min (3.727)				
Root1 (S ₀)	-3091.06960	-1308.62204		27.0
Root2 (S ₁)	-3091.06560	-1308.61784	-105.50212	29.6
Root3		-1308.55210		70.8
S ₁ (3.70)			•	
Root1 (S ₀)	-3091.06980	-1308.62239		26.7
Root2 (S ₁)	-3091.06590	-1308.61814	-105.50233	29.4
Root3		-1308.55296		70.3
S ₁ (3.50)			•	
Root1 (S ₀)	-3091.06810	-1308.62297		26.4
Root2 (S ₁)	-3091.06500	-1308.61839	-105.50358	29.3
Root3		-1308.55594		68.4
S ₁ (3.30)		·	•	·
Root1 (S ₀)	-3091.06570	-1308.62388		25.8
Root2 (S ₁)	-3091.06290	-1308.61842	-105.50401	29.2
Root3		-1308.55912		66.4
S ₁ (3.10)				
Root1 (S ₀)	-3091.06200	-1308.62536		24.9
Root2 (S ₁)	-3091.05890	-1308.61744	-105.50420	29.9
Root3		-1308.56080		65.4
S ₁ (2.90)				
Root1 (S ₀)	-3091.06010	-1308.62854		22.9
Root2 (S ₁)	-3091.05340	-1308.61673	-105.50352	30.3
Root3		-1308.56177		64.8
S ₁ (2.70)				
Root1 (S ₀)	-3091.05930	-1308.62827		23.1
Root2 (S ₁)	-3091.04240	-1308.60975	-105.50336	34.7
Root3		-1308.55685		67.9
S ₁ (2.50)				
Root1 (S ₀)	-3091.05980	-1308.62571	105 50279	24.7
Root2 (S ₁)	-3091.02200	-1308.59464	-103.30370	44.2

Root3		-1308.53768		79.9
S ₁ (2.30)				
Root1 (S ₀)	-3091.06630	-1308.63122		21.2
Root2 (S ₁)	-3090.99640	-1308.57892	-105.50313	54.0
Root3		-1308.53869		79.3
S ₁ (2.10)				
Root1 (S ₀)	-3091.05250	-1308.62154		27.3
Root2 (S ₁)	-3090.96300	-1308.57245	-105.50342	58.1
Root3		-1308.52678		86.7
S ₁ (1.90)				
Root1 (S ₀)	-3091.03290	-1308.61128		33.7
Root2 (S ₁)	-3090.93200	-1308.56566	-105.50374	62.3
Root3		-1308.51041		97.0

Table S16. Absolute Energies (A.E., Hartree), Relative Energies (ΔE , kcal/mol), and MM Energies (Hartree) of Optimized Structures for C4a-S Bond Formation from INT-T1 (Reaction Coordinate: C4a-S Distance). The Corresponding Energy Profiles are Plotted in Figure 3 (Blue Line).

(C4a-S)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
	QM+QM-MM (ele)	QM+QM-MM (ele)	MM + QM- MM (vdw)	
T₁-min (3.720)				
Root1 (T ₁)	-3091.07250	-1308.62499		25.1
Root2		-1308.61834	-105.50141	29.3
Root3		-1308.53120		84.0
T₁ (3.70)				
Root1 (T ₁)	-3091.07240	1308.62499		25.1
Root2		-1308.61838	-105.50143	29.3
Root3		-1308.53126		83.9
T ₁ (3.50)				
Root1 (T ₁)	-3091.07030	-1308.62527		24.9
Root2		-1308.61792	-105.50260	29.5
Root3		-1308.53170		83.6
T ₁ (3.30)				
Root1 (T ₁)	-3091.06770	-1308.62482		25.2
Root2		-1308.61782	-105.50308	29.6
Root3		-1308.53246		83.2
T ₁ (3.10)				
Root1 (T ₁)	-3091.06410	-1308.62493	-105.50363	25.2

Root2		-1308.61766		29.7
Root3		-1308.53534		81.4
T ₁ (2.90)				
Root1 (T ₁)	-3091.05850	-1308.62062		27.9
Root2		-1308.61201	-105.50344	33.3
Root3		-1308.53109		84.0
T ₁ (2.70)		·		
Root1 (T ₁)	-3091.05170	-1308.61862		29.1
Root2		-1308.60563	-105.50328	37.3
Root3		-1308.53094		84.1
T ₁ (2.50)		·		
Root1 (T ₁)	-3091.03880	-1308.61386		32.1
Root2		-1308.59239	-105.50327	45.6
Root3		-1308.52552		87.5
T ₁ (2.30)				
Root1 (T ₁)	-3091.01810	-1308.60428		38.1
Root2		-1308.57093	-105.50312	59.0
Root3		-1308.53936		78.8
T ₁ (2.10)				
Root1 (T ₁)	-3090.99190	-1308.59626		43.1
Root2		-1308.55462	-105.50176	69.3
Root3		-1308.53567		81.2
T ₁ (1.90)		·		
Root1 (T ₁)	-3090.99630	-1308.58099		52.7
Root2		-1308.53455	-105.49963	81.9
Root3		-1308.52322		89.0

Table S17. Absolute Energies (A.E., Hartree), Relative Energies (ΔE , kcal/mol), and MM Energies (Hartree) of Optimized Structures for C4a-S Bond Formation from INT-S0 (Reaction Coordinate: C4a-S Distance). The Corresponding Energy Profiles are Plotted in Figure 3 (Green Line).

(C4a-S)	CASSCF A.E.	MS-CASPT2 A.E.	ММ	MS-CASPT2 ∆E
S₀-min (3.372)				
Root1 (S ₀)	-3091.04460	-1308.61977		28.4
Root2 (S ₁)		-1308.59870	-105.50016	41.6
Root3		-1308.56020		65.8
S ₀ (3.10)				
Root1 (S ₀)	-3091.04090	-1308.61996		28.3
Root2 (S ₁)		-1308.59628	-105.50173	43.1
Root3		-1308.55773		67.3

S ₀ (2.90)				
Root1 (S ₀)	-3091.04760	-1308.62686		23.9
Root2 (S ₁)		-1308.60095	-105.49963	40.2
Root3		-1308.55873		66.7
S ₀ (2.70)				
Root1 (S ₀)	-3091.07400	-1308.62980		22.1
Root2 (S ₁)		-1308.59564	-105.50264	43.5
Root3		-1308.54615		74.6
S ₀ (2.50)				
Root1 (S ₀)	-3091.08080	-1308.63161		21.0
Root2 (S ₁)		-1308.57746	-105.50288	54.9
Root3		-1308.53143		83.8
S ₀ (2.30)				
Root1 (S ₀)	-3091.09170	-1308.63893		16.4
Root2 (S ₁)		-1308.55375	-105.50294	69.8
Root3		-1308.53809		79.6
S ₀ (2.10)				
Root1 (S ₀)	-3091.10640	-1308.65158		8.4
Root2 (S ₁)		-1308.54295	-105.50411	76.6
Root3		-1308.52785		86.1
S ₀ (1.90)				
Root1 (S ₀)	-3091.10990	-1308.65142		8.5
Root2 (S ₁)		-1308.53769	-105.50470	79.9
Root3		-1308.51004		97.2

5. Comparison with Previous Theoretical Work

On the computational side, early TD-DFT and MCQDPT2 calculations addressed model systems of a photo-LOV1 domain from *Chlamydomonas reinhardtii*. [30, 31] The formation of the C4a-S covalent adduct in this photo-LOV1 domain was explored in the T₁ state at the QM/MM level using the restricted open-shell Hartree-Fock method. [32] This process was later reinvestigated in the S₀ and T₁ states using high-level CASSCF and MCQDPT2 calculations on a model system consisting of lumiflavin and thiomethanol, without considering the protein environment. [33] The photophysics and photochemistry of structurally modified deaza flavin derivatives in the YtvA LOV domain were investigated both experimentally and at the QM/MM level. [34] Recent QM/MM studies also addressed the photophysical properties of a LOV-based fluorescent protein (iLOV-Q489K). [35, 36] In the realm of the

YtvA photoreceptors, the spectroscopic properties of the YtvA LOV domain from *Bacillus subtilis* were explored at the TD-DFT and DFT/MRCI levels. [37]

At the QM(CASSCF)/MM level, we optimized four S₀ conformers of the dark-adapted state, which are referred to as AU, AD, BU, and BD in Fig. 2. In AU and AD, the cysteine residue is oriented toward the dimethyl substituted part of the flavin core, while it points toward the two carbonyl groups of the flavin in BU and BD. At the QM(MS-CASPT2)/MM level, AU is predicted to be most stable (Table S18), in agreement with previous work. [37] We also optimized the corresponding S₁ and T₁ conformers at the QM(CASSCF)/MM level. In the S₁ state, AU is still the most stable conformer, about 5 kcal/mol lower than the others at the QM(MS-CASPT2)/MM level, while BU is the lowest minimum in the T₁ state, 4.9 kcal/mol lower than AU (see Table S18). One should note that only the BD conformer was considered in previous theoretical calculations of photo-LOV1 domains, [30–33] although it is obviously not the most stable in our YtvA photoreceptor.

Table S18. QM(MS-CASPT2(12,9)/cc-pVTZ//CASSCF(10,8)/6-31G*)/MM Calculated Relative Energies (kcal/mol) of Reactants, Intermediates, Products, and Transition States in the S_0 , T_1 , and S_1 Electronic States.

	AU	AD	BU	BD	INT	Р
S ₀	0.0	4.9	3.4	4.4	32.7	10.0
$S_0(TS)$	36.3	33.0	34.9	36.3	-	-
T ₁	48.4	54.5	43.5	51.7	28.7	57.3
T₁(TS)	63.2	65.1	57.7	56.9	-	-
S_1	54.8	59.3	59.6	60.6	32.7	62.9
S ₁ (TS)	76.0	73.1	75.0	70.3	-	-

Only one intermediate and one adduct product could be located in the S_0 state at the QM(CASSCF)/MM level. In photo-LOV1 domains, the S_0 adduct product was previously estimated to be 8.7 kcal/mol higher in energy than the BD conformer at the QM(RHF)/MM level [32] which is close to our QM(MS-CASPT2)/MM value of 5.6 kcal/mol. In MCQDPT2//CASSCF (2,2) model calculations, this S_0 adduct was computed to be 12.8 kcal/mol lower than BD; [33] this qualitative discrepancy might be caused by the neglect of polarization effects from the surroundings. The energy of the T₁ intermediate was previously found to be 17.6 kcal/mol relative to BD at the QM(ROHF)/MM

level [32] which is smaller than our QM(MS-CASPT2)/MM value of 24.3 kcal/mol (see Table S18).

The computed $S_0 \rightarrow S_1$ vertical excitation energies at the four S_0 reactant minima are nearly the same, 63.5 kcal/mol for AD and BD, and 63.7 kcal/mol for AU and BU. They are very close to the experimentally measured absorption band maximum of 447 nm [63.7 kcal/mol] [38] and previous QM/MM results. [37] Model calculations on the isolated chromophore gave higher $S_0 \rightarrow S_1$ vertical excitation energies of 75.9 and 77.6 kcal/mol [33] at the MCQDPT2//CASSCF(2,2) and MCQDPT2//CASSCF(4,4) levels, respectively.

The computed $S_0 \rightarrow S_1$ vertical excitation energy of 70.4 kcal/mol [406 nm] at the S_0 product minimum is slightly lower than the experimentally measured absorption band maximum of 390 nm [73.3 kcal/mol]. [38] Model calculations on the isolated chromophore again gave higher values of 86.3 and 77.7 kcal/mol at the MCQDPT2//CASSCF(2,2) and MCQDPT2//CASSCF(4,4) levels, respectively. [33]

The photochemical reaction from the dark-adapted starts with an excitedstate hydrogen transfer that produces a diradical intermediate. We computed the corresponding minimum-energy pathways for all four conformers in the S₁ and T₁ states. The energies of the computed transition states range between 70.3-76.0 kcal/mol in the S₁ case and between 56.9-65.1 kcal/mol in the T₁ case at the QM(MS-CASPT2)/MM level (see Table S18). We note that previous theoretical calculations for photo-LOV1 domains at the QM(ROHF)/MM and MCQDPT2//CASSCF(2,2) levels predicted the T₁ energy of the BD transition state to be 81.0 and 61.4 kcal/mol, respectively, relative to the S₀ BD minimum. [32, 33]

6. References

- A. Möglich, K. Moffat, Structural Basis for Light-Dependent Signaling in the Dimeric LOV Domain of the Photosensor YtvA. J. Mol. Biol. 373(1): 112-126, 2007.
- [2] D. C. Bas, D. M. Rogers, J. H. Jensen, Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes. Proteins Struct. Funct. Bioinf. 73(3): 765-783, 2008.
- [3] M. R. Silva-Junior, M. Mansurova, W. Gärtner and W. Thiel, Photophysics

of Structurally Modified Flavin Derivatives in the Blue-Light Photoreceptor YtvA: A Combined Experimental and Theoretical Study. ChemBioChem, 14(13): 1648-1661, 2013.

- [4] A. D. MacKerell Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B, 102(18): 3586-3616, 1998.
- [5] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 79(2): 926-935, 1983.
- [6] K. Andersson, P.-Å. Malmqvist, B. O. Roos, A. J. Sadlej, K. Wolinski, Second-Order Perturbation Theory with a CASSCF Reference Function. J. Phys. Chem. 94(14): 5483-5488, 1990.
- [7] K. Andersson, P.-Å. Malmqvist, and B. O. Roos, Second-Order Perturbation Theory with a Complete Active Space Self-Consistent Field Reference Function. J. Chem. Phys. 96(2): 1218-1226, 1992.
- [8] F. Aquilante, R. Lindh, T. B. Pedersen, Unbiased Auxiliary Basis Sets for Accurate Two-Electron Integral Approximations. J. Chem. Phys. 127(11): 114107, 2007.
- [9] N. Försberg, P.-Å. Malmqvist, Multiconfiguration Perturbation Theory with Imaginary Level Shift. Chem. Phys. Lett. 274(1-3): 196-204, 1997.
- [10]G. Ghigo, B. O. Roos, P.-Å. Malmqvist, A Modified Definition of the Zeroth-Order Hamiltonian in Multiconfigurational Perturbation Theory (CASPT2). Chem. Phys. Lett. 396(1): 142-149, 2004.
- [11]J. P. Zobel, J. J. Nogueira, L. González, The IPEA Dilemma in CASPT2. Chem. Sci. 8(2): 1482-1499, 2017.
- [12]G. B. Luo, I. Andricioaei, X. S. Xie, M. Karplus, Dynamic Distance Disorder in Proteins is Caused by Trapping. J. Phys. Chem. B, 110(19): 9363-9367, 2006.
- [13]B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus, CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 4(2): 187-217, 1983.
- [14] D. Bakowies, W. Thiel, Hybrid Models for Combined Quantum Mechanical

and Molecular Mechanical Approaches. J. Phys. Chem. 100(25): 10580-10594, 1996.

- [15]I. Antes, W. Thiel, On the Treatment of Link Atoms in Hybrid Methods. ACS Symp. Ser. 712: 50-65, 1998.
- [16]A. H. de Vries, P. Sherwood, S. J. Collins, A. M. Rigby, M. Rigutto, G. J. Kramer, Zeolite Structure and Reactivity by Combined Quantum-Chemical-Classical Calculations. J. Phys. Chem. B 103(29): 6133-6141, 1999.
- [17]H. M. Senn, W. Thiel, QM/MM Methods for Biological Systems. Top Curr Chem 268: 173-290, 2007.
- [18]H. M. Senn, W. Thiel, QM/MM Methods for Biomolecular Systems. Angew. Chem. Int. Ed. 48(7): 1198-1229, 2009.
- [19]G. Henkelman, B. P. Uberuaga, H. Jónsson, A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 113(22): 9901-9904, 2000.
- [20]G. Henkelman, H. Jónsson, Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys., 113(22): 9978-9985, 2000.
- [21] J. Kästner, J. M. Carr, T. W. Keal, W. Thiel, A. Wander, and P. Sherwood.
 DL-FIND: An Open-Source Geometry Optimizer for Atomistic Simulations.
 J. Phys. Chem. A, 113(43): 11856-11865, 2009.
- [22] R. Ditchfield, W. J. Hehre, J. A. Pople, Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 54(2): 724-728, 1971.
- [23]M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, Self-Consistent Molecular Orbital Methods. XXIII. A Polarization-Type Basis Set for Second-Row Elements. J. Chem. Phys. 77(7): 3654-3665, 1982.
- [24]T. H. Dunning, Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 90(2): 1007-1023, 1989.
- [25] P. Sherwood, A. H. de Vries, M. F. Guest, G. Schreckenbach, C. R. A. Catlow, S. A. French, A. A. Sokol, S. T. Bromley, W. Thiel, A. J. Turner, et al., QUASI: A General Purpose Implementation of the QM/MM Approach

and Its Application to Problems in Catalysis. J. Mol. Struct (Theochem) 632(1-3): 1-28, 2003.

- [26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
 R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
- [27]G. Karlström, R. Lindh, P.-Å. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, et al. MOLCAS: A Program Package for Computational Chemistry. Comput. Mater. Sci. 28(2): 222-229, 2003.
- [28]F. Aquilante, L. De Vico, N. Ferré, G. Ghigo, P.-Å. Malmqvist, P. Neogrády, T. B. Pedersen, M. Pitoňák, M. Reiher, B. O. Roos, et al. MOLCAS 7: The Next Generation. J. Comput. Chem. 31(1): 224-247, 2010.
- [29]W. Smith, T.R. Forester, DL_POLY_2.0: A General-Purpose Parallel Molecular Dynamics Simulation Package. J. Mol. Graphics, 14(3): 136-141, 1996.
- [30]C. Neiβ, P. Saalfrank, Ab Initio Quantum Chemical Investigation of the First Steps of the Photocycle of Phototropin: A Model Study. Photochem. Photobiol. 77(1): 101-109, 2003.
- [31]K. Zenichowski, M. Gothe, P. Saalfrank, Exciting Flavins: Absorption Spectra and Spin–Orbit Coupling in Light–Oxygen–Voltage (LOV) Domains. J. Photochem. Photobiol. A 190(2-3): 290-300, 2007.
- [32]M. Dittrich, P.L. Freddolino, K. Schulten, When Light Falls in LOV: A Quantum Mechanical/Molecular Mechanical Study of Photoexcitation in Phot-LOV1 of Chlamydomonas Reinhardtii. J. Phys. Chem. B 109(26): 13006-13013, 2005.
- [33]T. Domratcheva, R. Fedorov, I. Schlichting, Analysis of the Primary Photocycle Reactions Occurring in the Light, Oxygen, and Voltage Blue-Light Receptor by Multiconfigurational Quantum-Chemical Methods. J. Chem. Theory Comput. 2(6): 1565-1574, 2006.
- [34]M.R. Silva-Junior, M. Mansurova, W. Gärtner, W. Thiel, Photophysics of Structurally Modified Flavin Derivatives in the Blue-Light Photoreceptor YtvA: A Combined Experimental and Theoretical Study. ChemBioChem 14(13): 1648-1661, 2013.

- [35] M.D. Davari, B. Kopka, M. Wingen, M. Bocola, T. Drepper, K.-E. Jaeger, U. Schwaneberg, U. Krauss, Photophysics of the LOV-Based Fluorescent Protein Variant iLOV-Q489K Determined by Simulation and Experiment. J. Phys. Chem. B 120(13): 3344-3352, 2016.
- [36]M.G. Khrenova, A.V. Nemukhin, T. Domratcheva, Theoretical Characterization of the Flavin-Based Fluorescent Protein iLOV and its Q489K Mutant. J. Phys. Chem. B 119(16): 5176-5183, 2015.
- [37]S. Salzmann, M.R. Silva-Junior, W. Thiel, C.M. Marian, Influence of the LOV Domain on Low-Lying Excited States of Flavin: A Combined Quantum-Mechanics/Molecular-Mechanics Investigation. J. Phys. Chem. B 113(47): 15610-15618, 2009.
- [38]S.-H. Song, D. Madsen, J.B. van der Steen, R. Pullman, L. H. Freer, K. J. Hellingwerf, D. S. Larsen, Primary Photochemistry of the Dark- and Light-Adapted States of the YtvA Protein from Bacillus subtilis. Biochemistry 52(45): 7951-7963, 2013.

7. Cartesian Coordinates of All Optimized Structures (QM part) In xyz format (unit: angström)

CASSCF method

AU-S0

С	27.218967000	29.283184000	14.934504000
Н	26.495216000	29.531513000	14.173592000
Н	26.930215000	29.714652000	15.880403000
S	27.277966000	27.473730000	15.121077000
Н	27.585032000	27.439508000	16.429275000
С	25.263589000	31.490006000	18.404716000
Н	24.737887000	32.428127000	18.423713000
Н	24.996779000	30.919691000	19.270745000
Ν	23.787415000	32.630794000	13.795081000
Н	23.585704000	33.153534000	12.959366000
С	23.534110000	31.301306000	13.764931000
0	23.042362000	30.741244000	12.819936000
С	23.904081000	30.600155000	15.020986000
С	24.484981000	31.404136000	16.101965000
Ν	24.664100000	32.694649000	16.006100000
С	24.333722000	33.337442000	14.858754000
0	24.489162000	34.535473000	14.729164000
Ν	23.654346000	29.342940000	15.088052000
С	23.987855000	28.688385000	16.249703000
С	24.583133000	29.353751000	17.308961000
Ν	24.799750000	30.740549000	17.223465000
С	23.738871000	27.306997000	16.310773000
Н	23.305071000	26.842529000	15.452029000
С	24.082110000	26.568237000	17.416777000
С	23.808001000	25.088591000	17.467613000
Н	23.565907000	24.698704000	16.488263000
Н	22.970741000	24.875392000	18.122160000
Н	24.660604000	24.538129000	17.847342000
С	24.719455000	27.238440000	18.496451000
С	25.132479000	26.469719000	19.723457000
Н	25.816108000	25.670879000	19.465766000
Н	24.271502000	26.023196000	20.209507000
Н	25.624839000	27.123216000	20.430076000
С	24.975912000	28.596658000	18.427731000
Н	25.560252000	29.047930000	19.205865000
Н	28.190045000	29.690653000	14.653357000
Н	26.337905000	31.668205000	18.451153000
AD-S	30		
С	27.163528000	29.239908000	14.843303000
Н	26.445381000	29.607878000	14.127365000
Н	26.901678000	29.557458000	15.843235000
S	27.137819000	27.420454000	14.883802000
Н	27.863191000	27.157854000	13.806531000
С	25.212915000	31.521205000	18.367324000

Н	24.692574000	32.461470000	18.367527000
Н	24.914321000	30.955032000	19.223691000
Ν	23.753919000	32.634492000	13.746702000
Н	23.554223000	33.150497000	12.907047000
С	23.500700000	31.305980000	13.726955000
0	23.005193000	30.736882000	12.789502000
Ċ	23.880885000	30.611535000	14.982823000
Ċ	24,454164000	31,424789000	16.060055000
Ň	24.626110000	32,716075000	15,959230000
C	24,297653000	33,349982000	14.807806000
Õ	24 452622000	34 546689000	14 670021000
Ň	23 650029000	29.350985000	15 051447000
C	23 989579000	28 702679000	16 213653000
C C	24 573915000	29.377962000	17 271118000
Ň	24 770212000	30 765621000	17 181964000
C	23 758005000	27 315759000	16 279607000
н	23 320291000	26 851334000	15 420556000
C	24 104280000	26 585130000	17 390422000
C C	23 834217000	25 102502000	17.457336000
н	23 586853000	24 697748000	16 484435000
н	22 998880000	24.007740000	18 117735000
н	24 685661000	24.004747000	17 841930000
C	24,000001000	27 268807000	18 468074000
C	25 170685000	26 505342000	19 691086000
н	25.846898000	25 702005000	19.001000000
н	24 316686000	26.061227000	20 192303000
н	25 67/317000	20.001227000	20.192303000
$\hat{\mathbf{C}}$	20.07 4017 000	28 620562000	18 303032000
ц	25 540217000	20.023302000	10.000000
н	28 1/6598000	29.0993030000	1/ 623282000
н	26 287032000	29.000120000	18/32601000
	20.201332000	31.0003030000	10.432001000
BU-S	S0		
С	27.384291000	29.004891000	14.412936000
Н	26.789000000	29.301820000	15.263872000
Н	27.633609000	27.959704000	14.535632000
S	26.506488000	29.179709000	12.824939000
Н	26.514675000	30.512158000	12.819496000
С	25.307522000	31.477378000	18.377619000
Н	24.796654000	32.423018000	18.368902000
Н	25.007413000	30.922617000	19.243295000
Ν	23.802632000	32.608264000	13.777327000
Н	23.594464000	33.128912000	12.942496000
С	23.538643000	31.279832000	13.756367000
0	23.022896000	30.727134000	12.820954000
С	23.937304000	30.577908000	15.003667000
С	24.533962000	31.384410000	16.074150000
Ν	24.693603000	32.677133000	15.981402000
С	24.356088000	33.316886000	14.835119000
0	24.505344000	34.515682000	14.702857000

Ν	23.699274000	29.319724000	15.074980000
С	24.077144000	28.663374000	16.222724000
С	24.677845000	29.334495000	17.273957000
Ν	24.866211000	30.722439000	17.191602000
С	23.841428000	27.277462000	16.293458000
Ĥ	23.380483000	26.809381000	15,446970000
C	24,193876000	26.550107000	17,406599000
Ĉ	23 887301000	25 076369000	17 491627000
н	23 634284000	24 672964000	16 520238000
н	23.041538000	24.899688000	18 147356000
н	23.041000000	24.000000000	17 886285000
$\hat{\mathbf{C}}$	24.720233000	27.222/65000	18 476710000
C	24.037339000	26 483875000	10.470719000
	25.200550000	20.403073000	19.707309000
	23.910134000	25.050029000	19.450501000
	24.40900000	20.071710000	20.220294000
	25.797843000	27.135586000	20.390279000
C	25.083036000	28.589900000	18.395886000
н	25.635950000	29.059765000	19.185207000
н	28.323065000	29.558705000	14.420695000
н	26.383249000	31.637682000	18.449596000
BD-S	60		
C	27.364676000	29.032000000	14.463423000
Ĥ	26,741278000	29.438701000	15,244612000
H	27.640117000	28.024155000	14,745610000
S	26.548646000	29.001926000	12.830092000
Ĥ	25 904776000	27 857433000	13 002935000
C	25 277580000	31 457056000	18 323386000
Ĥ	24 773074000	32 405932000	18 299325000
H	24.945179000	30,907466000	19,179515000
N	23 824300000	32 569607000	13 707013000
н	23 606127000	33 094518000	12 877730000
C	23 552506000	31 243198000	13 689146000
õ	23.002000000	30 690051000	12 769502000
C	23.010313000	30.539627000	1/ 93/51000
C	23.337333000	31 350/07000	16.006808000
N	24.343040000	37 638307000	15 907356000
C	24.723333000	33 2763/2000	14 757006000
Ő	24.334430000	33.270342000	14.737000000
N	24.0000000	20 201205000	14.023100000
	23.117033000	29.201293000	16,16600000
C	24.002009000	20.030090000	17,222201000
	24.004004000	29.300062000	17.223391000
	24.000040000	30.094302000	17.134030000
	23.040131000	27.243294000	10.247300000
П	23.395836000	26.768983000	15.399454000
	24.174415000	20.522001000	17.373338000
	23.000/58000	20.040208000	17.402310000
	23.03505/000	24.032835000	10.409259000
н	23.007750000	24.870280000	10.101354000
н	24.691746000	24.478613000	17.877655000

С	24.789109000	27.213186000	18.453426000
С	25.169428000	26.479301000	19.710894000
Н	25.832181000	25.650961000	19.496201000
Н	24.287881000	26.068773000	20.192704000
Н	25.657153000	27.140164000	20.415274000
С	25.041370000	28.569848000	18.361814000
Н	25.565684000	29.051784000	19.161042000
Н	28.297145000	29.594930000	14.422449000
Н	26.352684000	31.610271000	18.416903000
AU-S	51	00.044700000	4 4 9 7 9 5 9 7 9 9 9
C	27.196998000	29.244799000	14.973527000
н	26.491985000	29.528697000	14.205481000
Н	26.891892000	29.659927000	15.920102000
S	27.206839000	27.430922000	15.093864000
Н	27.716784000	27.337233000	16.331821000
С	25.245715000	31.499440000	18.378046000
Н	24.733411000	32.444023000	18.377540000
Н	24.969875000	30.955265000	19.260911000
Ν	23.778819000	32.648841000	13.779369000
Н	23.580747000	33.152723000	12.935475000
С	23.516319000	31.302603000	13.766812000
0	23.002533000	30.779110000	12.798919000
С	23.883618000	30.618475000	14.977475000
С	24.441573000	31.399221000	16.025108000
Ν	24.645696000	32.685282000	15.970340000
С	24.324462000	33.349206000	14.820488000
0	24.500346000	34.552195000	14.711483000
Ν	23.642477000	29.303803000	15.036430000
С	23.984674000	28.709727000	16.199862000
С	24.572933000	29.388096000	17.287824000
Ν	24.779995000	30,741338000	17.211876000
С	23.780389000	27.352097000	16.326923000
Ĥ	23.358446000	26.853433000	15.475590000
С	24.118111000	26.559839000	17.489281000
C	23.815477000	25.085917000	17.481376000
Ĥ	23.624848000	24,727899000	16.478511000
Н	22,935287000	24.873546000	18.079725000
н	24 638073000	24 512696000	17 896162000
С	24 727075000	27 213356000	18 548053000
č	25 133532000	26 484952000	19 797668000
н	25 799307000	25 664553000	19 561271000
н	24 267620000	26.004000000	20 308267000
н	25 647581000	20.070400000	20.000207000
\hat{c}	20.047001000	28 603502000	18 /1518000
Ц	24.331103000	20.000002000	10.413100000
Ц	28 18/71/000	29.00000000	1/ 733077000
	20.104/14000	23.000021000	19,100911000
	20.320300000	31.071101000	10.420903000

AD-S1

С	27.162833000	29.240582000	14.843008000
Н	26.434336000	29.606870000	14.136138000
Н	26.904247000	29.561849000	15.841776000
S	27.146467000	27.420256000	14.886197000
Н	27.862048000	27.152792000	13.803400000
С	25.207423000	31.520533000	18.363630000
Ĥ	24.691728000	32.462509000	18.363365000
Н	24.909671000	30.967965000	19.230865000
N	23,754753000	32,656015000	13,745854000
Н	23 554659000	33 153929000	12 900020000
C	23 501531000	31 309771000	13 735329000
õ	22 997486000	30 772806000	12 767712000
C C	23 868687000	30 631435000	14 947682000
C	24 419866000	31 411049000	16 004929000
N	24.413000000	32 69/119000	15 9//615000
C	24.206068000	32.034113000	1/ 702006000
$\hat{0}$	24.230000000	34 557510000	14.792900000
N	24.409370000	20 21 0 21 0 0 0 0	14.091323000
	23.033780000	29.319013000	16 161033000
C	23.974077000	20.724409000	17 256740000
N	24.304309000	29.401071000	17.230749000
	24.756447000	27 266424000	16 270219000
	23.704047000	27.300424000	10.279310000
	23.315905000	20.092390000	17.423433000
	24.120911000	20.373343000	17.430731000
	23.033703000	25.097695000	17.430700000
	23.394314000	24.714009000	10.470440000
	22.992310000	24.000409000	10.109224000
	24.677511000	24.533234000	17.846394000
	24.744098000	27.226938000	18.499805000
	25.182109000	26.482352000	19.729586000
Н	25.863964000	25.681868000	19.475764000
н	24.334226000	26.039872000	20.241416000
Н	25.685372000	27.145759000	20.418909000
C	24.976645000	28.622690000	18.390056000
н	25.556064000	29.106406000	19.158123000
н	28.146154000	29.656127000	14.622852000
н	26.282748000	31.685422000	18.431120000
BU-S	51		
С	27.389226000	29.002509000	14.404651000
Н	26.780443000	29.308601000	15.242533000
Н	27.641969000	27.959063000	14.534844000
S	26.528020000	29.168153000	12.808258000
Н	26.494276000	30.499021000	12.823994000
С	25.301446000	31.475593000	18.372866000
Н	24.793804000	32.422382000	18.364060000
Н	25.004175000	30.934383000	19.249393000
Ν	23.802137000	32.628883000	13.774861000
Н	23.590650000	33.130172000	12.930823000
С	23.540090000	31.281937000	13.763174000

0	23.020167000	30.759392000	12.799353000
С	23.921975000	30.599019000	14.971917000
С	24.497243000	31.373686000	16.019200000
Ν	24.686890000	32.657306000	15.967571000
С	24.352499000	33.324698000	14.818862000
0	24.518885000	34.528593000	14.723743000
Ν	23.677748000	29.289646000	15.033651000
С	24.060802000	28.685922000	16.172004000
С	24.671819000	29.358317000	17.260296000
Ν	24.854322000	30.714725000	17.197624000
С	23.848705000	27.330128000	16.293924000
Н	23.379828000	26.861745000	15.448376000
С	24.215652000	26.539388000	17.452548000
С	23.886604000	25.071215000	17.490328000
Н	23.639600000	24.679139000	16.513339000
Н	23.034578000	24.891990000	18.137974000
Н	24.709361000	24,488666000	17.889520000
С	24.846545000	27.191241000	18.506927000
C	25.278977000	26.457633000	19.746685000
Н	25.934088000	25.632282000	19.503687000
Н	24.427769000	26.046918000	20.279300000
Н	25.807922000	27.117510000	20.419573000
С	25.084595000	28.583124000	18.390489000
H	25.648405000	29.068906000	19.164337000
Н	28.326261000	29.559143000	14.418514000
Н	26.377326000	31.633584000	18.447622000
חם	Q1		
с С	37 265024000	20 021261000	14 454204000
	27.303924000	29.031201000	14.404294000
	20.730404000	29.443403000	14 740021000
п с	27.040209000	20.020210000	14.740921000
о Ц	20.004007000	20.993000000	12.014020000
	25.900627000	21.002041000	12.990049000
	23.273331000	31.434230000	10.317310000
	24.771970000	32.403791000	10.209427000
	24.943303000	30.910737000	19.10390000
	23.023003000	32.307023000	13.703306000
	23.003302000	33.091332000	12.003100000
	23.332174000	31.242077000	13.097430000
0	23.000039000	30.721727000	12.748064000
	23.939307000	30.336111000	14.905592000
	24.512927000	31.337572000	15.954754000
N O	24.714494000	32.616045000	15.894640000
	24.388691000	33.281204000	14.740839000
U N	24.569704000	34.482592000	14.645643000
	23.705737000	29.248308000	14.970152000
	24.066320000	28.049924000	10.11/25/000
	24.000144000	29.329915000	17.214951000
	24.8506/8000	30.084190000	17.139496000
C	ZJ.848937000	27.294130000	10.245436000

Н	23.392248000	26.814852000	15.399316000
С	24.193777000	26.513082000	17.420890000
С	23.867582000	25.044708000	17.460960000
Ĥ	23.641831000	24.644949000	16.481727000
Н	23 002622000	24 867244000	18 091565000
н	24 683902000	24 467174000	17 879956000
C	24 795617000	27 173761000	18 484773000
Ĉ	25 179/01000	26 453254000	10.4047700000
ц	25.847747000	20.400204000	10 5/5365000
ц	23.047747000	26.027730000	20 244511000
	24.307413000	20.042013000	20.244311000
	25.000073000	27.123071000	20.440209000
	25.040597000	20.000107000	10.301372000
	20.07740000	29.004703000	19.147000000
	28.297749000	29.595729000	14.420453000
Н	26.348217000	31.606644000	18.414996000
AU-T	1		
С	27.196777000	29.302872000	14.945315000
Н	26.473851000	29.550362000	14.182419000
Н	26.911620000	29.746374000	15.887155000
S	27.228424000	27.494247000	15.142680000
Н	27.588728000	27.460644000	16.437410000
С	25.273977000	31.498838000	18.402613000
Ĥ	24.750793000	32.438594000	18.432797000
н	25.004380000	30.922377000	19.266012000
Ν	23.788009000	32.645063000	13.785827000
Н	23.581561000	33.158713000	12.945074000
С	23.545211000	31.303716000	13.774012000
0	23.045797000	30.738732000	12.831186000
C	23.929455000	30.619202000	15.007382000
С	24.491446000	31.419016000	16.095103000
N	24.652689000	32.707113000	15.998916000
С	24.319740000	33.354301000	14.845522000
Ō	24.471290000	34.555360000	14.730352000
Ň	23.678284000	29.265166000	15.066980000
С	23.985132000	28.681699000	16.189665000
Ċ	24.596837000	29.357259000	17.317961000
Ň	24.816678000	30.762970000	17.221037000
C	23.738800000	27.256805000	16.306709000
Ĥ	23 316757000	26 794078000	15 443662000
C	24.084062000	26.527204000	17.411981000
Ĉ	23.808030000	25.046950000	17.482588000
Ĥ	23 568713000	24 649358000	16 506712000
н	22 968053000	24 844086000	18 137767000
н	24 662067000	24 503132000	17 870007000
C	24,719463000	27.203604000	18,491987000
Č	25.127894000	26.462591000	19.732106000
Ĥ	25.811693000	25.660498000	19.481149000
Н	24.270005000	26.012931000	20.222818000
Н	25.621039000	27.118236000	20.435221000

С	24.979450000	28.615791000	18.375256000
Н	25.547730000	29.064598000	19.164515000
Н	28.172763000	29.695863000	14.660576000
Н	26.348712000	31.672508000	18.455996000
AD-T	1		
C	27.165581000	29.239861000	14.841431000
H	26.437026000	29.606470000	14.136863000
Н	26.910910000	29.558196000	15.842421000
S	27.155238000	27.418925000	14.887352000
H	27 862334000	27 150818000	13 799647000
C	25 199674000	31 512321000	18,356825000
н	24 679742000	32 451100000	18.328651000
н	24 894849000	30 967319000	19 225879000
N	23 762030000	32 667702000	13 759231000
н	23 563614000	33 178170000	12 917547000
C	23 503737000	31 327247000	13 742087000
0	22 997345000	30 780232000	12 781237000
C C	23 877241000	30 654787000	14 959270000
C C	24 411288000	31 420436000	15 986104000
N	24 617656000	32 717134000	15 952169000
C	24 303459000	33 373394000	14 809222000
õ	24 472342000	34 578565000	14 680971000
N	23 643187000	29 319345000	15 013029000
C	23 967540000	28.709079000	16 151829000
C C	24 565568000	29 410367000	17 254853000
N	24.0000000000	30 733427000	17 181699000
C	23 749690000	27 333939000	16 282761000
н	23 307440000	26 828723000	15 451980000
C	24 132067000	26 567558000	17 457155000
C C	23 841835000	25.007000000	17 471553000
н	23 612753000	24 723309000	16 480882000
н	22 983642000	24.72000000	18 101088000
н	22.000042000	24.070715000	17 86296/000
C	24.073213000	27 223862000	18 495907000
C	25 187595000	26 495295000	19 737216000
н	25 870519000	25 695032000	19 484695000
н	24 339988000	26.056712000	20 252589000
н	25 691744000	27 163312000	20.232303000
$\hat{\mathbf{C}}$	23.031744000	28 63271/000	
н	25 567916000	20.002714000	19 143527000
н	28 148834000	29.655815000	14 621741000
н	26.740004000	23.000010000	18 /23880000
11	20.274724000	51.079100000	10.423000000
BU-T	1		
С	27.351091000	29.027517000	14.475619000
Н	26.780381000	29.369397000	15.327295000
Н	27.567106000	27.977382000	14.619066000
S	26.464786000	29.202263000	12.891579000
Н	26.560197000	30.530816000	12.842153000

С	25.254806000	31.504533000	18.317407000
Н	24.734218000	32.445110000	18.322536000
Н	24.953759000	30.940467000	19.176844000
Ν	23.761716000	32.589428000	13.700729000
Н	23.559151000	33.092940000	12.854181000
С	23.490820000	31.250440000	13.710817000
0	22.961823000	30.697845000	12.778715000
С	23.887540000	30.574920000	14.944436000
С	24.478244000	31.390405000	16.005608000
Ν	24.636625000	32.672835000	15.902803000
С	24.302618000	33.309713000	14.743981000
0	24.461568000	34.507193000	14.623981000
Ň	23.633401000	29.232075000	15.044749000
С	24.013653000	28.659227000	16,131980000
C	24.660819000	29.353376000	17.239966000
Ň	24.821497000	30.752958000	17.139582000
С	23.806600000	27.227525000	16.270027000
Ĥ	23.339368000	26.741860000	15.439501000
C	24.183175000	26.534247000	17.379294000
Ĉ	23.885178000	25.064154000	17,500765000
Ĥ	23.650492000	24.636297000	16.535876000
н	23.029696000	24.912601000	18,150667000
н	24 716612000	24 515865000	17 926713000
C	24.852583000	27.237738000	18,454719000
Ĉ	25 300081000	26 512300000	19 693289000
Ĥ	25 939221000	25 670710000	19 452741000
н	24 449547000	26 115867000	20 243216000
н	25 842152000	27 175623000	20.355668000
C	25 084131000	28 628564000	18 333572000
н	25 637769000	29 116431000	19 113756000
н	28,308629000	29.548068000	14 460995000
н	26.330218000	31 668522000	18 385703000
	20.000210000	01.000022000	10.0007 00000
BD-	T1		
C	27.364403000	29.032352000	14.459428000
н	26.740442000	29.438036000	15.240880000
Н	27.644307000	28.024997000	14.738789000
S	26.545550000	29.004046000	12.828155000
Н	25.902132000	27.858995000	12.999395000
С	25.279250000	31.475083000	18.326324000
Н	24.780276000	32.428718000	18.317845000
Н	24.947543000	30.924663000	19.182855000
Ν	23.824443000	32.580421000	13.704600000
Н	23.603340000	33.087699000	12.866036000
С	23.562092000	31.242418000	13.708439000
0	23.012014000	30.689656000	12.785873000
С	23.970552000	30.557695000	14.930200000
С	24.548045000	31.364620000	16.000611000
Ν	24.719221000	32.645135000	15.897643000
С	24.389085000	33.290648000	14.739159000

0	24.559012000	34.485996000	14.621027000
Ν	23.718865000	29.212566000	15.013499000
С	24.054413000	28.636946000	16.113820000
С	24.669570000	29.324567000	17.243227000
Ň	24.864276000	30.721674000	17.141940000
C	23 826778000	27 208159000	16 238120000
н	23,378601000	26 736064000	15 389556000
C	24 162611000	26 504785000	17 354486000
Ĉ	23 861859000	25.004700000	17.004400000
н	23.626037000	20.001721000	16 / 85607000
Ц	23.020337000	24.865500000	18 00037/000
	23.000007000	24.003300000	17 972025000
$\hat{\mathbf{C}}$	24.091393000	24.474412000	19 459201000
C	24.791937000	27.202470000	10.40001000
	25.170544000	20.473173000	19.7 10131000
	23.037095000	20.040311000	19.509569000
	24.295315000	26.059080000	20.208072000
Н	25.658933000	27.137970000	20.415699000
	25.043824000	28.592160000	18.349601000
н	25.573662000	29.075580000	19.149473000
н	28.296976000	29.595351000	14.421921000
Н	26.355388000	31.619862000	18.421364000
INT-	S0		
С	27.185379000	29.116203000	14.596639000
Н	26.670164000	29.653137000	15.392389000
Н	27.467350000	28.157720000	15.023104000
S	26.161606000	28.856240000	13.094511000
Н	24.041086000	28.874753000	14.167948000
С	25.205316000	31.533860000	18.468693000
Н	24.679527000	32.470217000	18.474043000
Н	24.924452000	30.971498000	19.333466000
Ν	23.841562000	32.672493000	13.807726000
Н	23.635247000	33.191590000	12.971262000
С	23.670048000	31.338885000	13.752298000
0	23.176313000	30.736539000	12.838711000
С	24.063621000	30.668454000	15.013561000
С	24.474755000	31.466223000	16.154907000
Ν	24.560400000	32.759550000	16.084257000
С	24.282030000	33.397468000	14.910496000
0	24.377164000	34.598146000	14.802885000
Ň	24.004567000	29.378940000	15.065534000
С	24.249175000	28.682060000	16.218492000
C	24.653964000	29.392754000	17.334619000
Ň	24.761071000	30.781487000	17.281347000
С	24.056152000	27.285873000	16.227097000
Ĥ	23.745961000	26.809519000	15.320783000
С	24.262010000	26.567049000	17.373520000
Ċ	23,945364000	25.092790000	17.426291000
Н	23.768746000	24.694303000	16.436798000
Н	23.045806000	24.925201000	18.008776000

Н	24.741120000	24.516963000	17.883811000
С	24.764064000	27.267199000	18.518287000
С	25.103613000	26.502988000	19.768777000
Н	25.796213000	25.701592000	19.547753000
Н	24.215389000	26.055868000	20.200821000
Н	25.555213000	27.151343000	20.506238000
С	24.960555000	28.633265000	18.482746000
Н	25.434484000	29.105554000	19.319083000
Н	28.126893000	29.643483000	14.443037000
н	26.283241000	31.692487000	18.500045000
INT-	S1		
С	27.313305000	29.122815000	14.507267000
H	26.685371000	29.651911000	15.208715000
Н	27.522869000	28,142536000	14.915342000
S	26.487080000	28.974724000	12.894496000
H	23.288339000	28.873967000	14.323515000
С	25.236465000	31,498928000	18.384516000
Ĥ	24.714415000	32.438415000	18.401655000
Н	24.958086000	30.933587000	19.251342000
N	23.755545000	32.664882000	13.794356000
Н	23.561844000	33.171738000	12.949388000
С	23.549396000	31.328649000	13.769150000
Õ	23.084800000	30.737505000	12.806508000
C	23.914789000	30.668863000	14.992290000
C	24.452837000	31.425833000	16.076956000
Ň	24.597635000	32.729501000	16.005841000
С	24.266370000	33.379088000	14.868713000
0	24.390226000	34,586204000	14.746758000
Ň	23.739433000	29.341699000	15.079498000
С	24.081911000	28.649172000	16.225380000
C	24.626971000	29.347309000	17.280700000
Ν	24.786660000	30.754696000	17.202535000
С	23.889695000	27.264086000	16.279464000
Н	23.486011000	26.766562000	15.416294000
С	24.218433000	26.535149000	17.405639000
С	23.935019000	25.051938000	17.457486000
Н	23.828190000	24.629391000	16.464723000
Н	23.010815000	24.858252000	17.992425000
Н	24.721493000	24,503925000	17.962376000
С	24.797115000	27.229783000	18.496548000
С	25.185767000	26.498025000	19.754558000
Н	25.853435000	25.674399000	19.539559000
Н	24.312929000	26.088623000	20.252605000
Н	25.686352000	27.167085000	20.440368000
С	25.010923000	28.598347000	18.409218000
Н	25.538734000	29.074775000	19.212101000
Н	28.268318000	29.642608000	14.430891000
Н	26.311813000	31.670989000	18.430226000

INT-	T1		
С	27.331405000	29.107201000	14.433619000
Н	26.710982000	29.509771000	15.220459000
Н	27.567902000	28.083901000	14.710018000
S	26.473113000	29.021318000	12.840944000
Н	23.234419000	28.869041000	14.326701000
С	25.245043000	31.488213000	18.375481000
Н	24.717033000	32.424742000	18.401915000
Н	24.977082000	30.915114000	19.240449000
Ν	23.817914000	32.651615000	13.773556000
Н	23.625494000	33,159408000	12.929523000
С	23.571627000	31.321156000	13.757798000
Õ	23.094941000	30.751327000	12.788146000
Č	23.910137000	30.658179000	14.983640000
Ĉ	24.473767000	31,409403000	16.057356000
Ň	24.661123000	32,707646000	15,979019000
C	24 339963000	33 360561000	14 842003000
Õ	24 478908000	34 566864000	14 713959000
N	23 647901000	29.345183000	15 102926000
C	24 004952000	28 650555000	16 238759000
č	24 60162000	29.343029000	17 275212000
N	24.001020000	30 743998000	17 190155000
C	23 788017000	27 271358000	16 315761000
н	23 340183000	26 782205000	15 474249000
C	24 151092000	26 546643000	17 436064000
C	23.879344000	25.040040000	17 504360000
н	23.695602000	20.002210000	16 520930000
н	23.005002000	24.040423000	18 112466000
н	24 709491000	24.004012000	17 942210000
C	24.703431000	27 237619000	18 499459000
ĉ	25 211185000	26 50073000	10.7/828/000
ц	25.211103000	25 600312000	10 51/626000
Ц	23.030014000	25.099512000	20 266484000
Ц	24.337002000	20.003491000	20.200404000
$\hat{\mathbf{C}}$	25.713321000	28 6021/0000	18 380003000
ц	25.012012000	20.002140000	10.309903000
Ц	23.300021000	29.070012000	14 202718000
	26.279000000	29.042024000	19 424116000
п	20.319455000	31.005200000	10.424110000
P-SC)		
r -00	, 27 163696000	20 335128000	1/ 020015000
н	26.03/122000	29.600726000	15 920576000
Ц	20.934122000	29.09024000	15.000750000
S	25 82000/000	20.203134000	13 731532000
ы Ц	23.029094000	29.030033000	14 486108000
	22.977000000	20.933034000	19.291200000
Ц	20.000000000	37.381582000	18 258220000
Ц	24.100301000	30 881810000	10.200209000
II N	24.332303000 22 015050000	30.001019000	13.134331000
	23.313033000	32.337014000	13.074304000
	Z3.39704ZUUU	JJ.U/JZZJUUU	12.0000/4000

С	23.701120000	31.214521000	13.646091000
0	23.059282000	30.669351000	12.781134000
С	24.366592000	30.401791000	14.738164000
С	24.784965000	31.282034000	15.912653000
Ň	24 943487000	32 568456000	15 809637000
C	24 569687000	33 225991000	14 687781000
õ	24 719967000	34 421411000	14 561 363000
N	23.113307000	20 / 38630000	15 208788000
C	23.443372000	29.40000000	16.258066000
Č	23.929020000	20.040790000	17.230900000
	24.075776000	29.274200000	17.225555000
	24.949224000	30.671303000	17.081617000
	23.685245000	27.282845000	16.333348000
Н	23.163028000	26.813390000	15.522995000
C	24.113812000	26.529223000	17.419259000
С	23.813988000	25.049630000	17.476953000
Н	23.603534000	24.649955000	16.492634000
Н	22.946297000	24.851282000	18.097142000
Н	24.640208000	24.485066000	17.893622000
С	24.825696000	27.182109000	18.447130000
С	25.264502000	26.449596000	19.690053000
Н	25.934607000	25.633486000	19.455562000
Н	24.412060000	26.032572000	20.216854000
Н	25.776853000	27.124684000	20.363759000
С	25.130566000	28.531504000	18.315840000
Н	25.750850000	28.997793000	19.057500000
н	28.125539000	29.758231000	14.639347000
Н	26.374745000	31.633898000	18.388843000
		• • • • • • • • • • • • • • • • • • • •	
P-S1			
С	27.142780000	29.343263000	14.849761000
Ĥ	26,902685000	29.713432000	15.835719000
н	27 265121000	28 270341000	14 921091000
S	25 827786000	29 728036000	13 654645000
н	23 213/68000	28.728076000	1/ 330258000
\hat{C}	25 295728000	31 /60705000	18 208057000
С Ц	23.233720000	32 406525000	18 25/8/7000
	24.703304000	32.400323000	10.234047000
	24.903339000	20.934313000	12 726014000
	23.039302000	32.300330000	13.730914000
П	23.494578000	33.128790000	12.963925000
	23.678870000	31.263826000	13.676897000
0	23.056411000	30.695195000	12.802934000
C	24.394117000	30.460361000	14.734830000
С	24.697865000	31.305619000	15.887160000
Ν	24.925631000	32.615557000	15.813876000
С	24.501676000	33.291042000	14.756737000
0	24.607047000	34.505977000	14.614961000
Ν	23.606512000	29.298477000	15.101550000
С	23.991397000	28.614933000	16.205194000
С	24.652161000	29.332316000	17.260207000
NI	24 905414000	30 667719000	17 1/1270000

С	23.756482000	27.227092000	16.311527000
Н	23.314518000	26.732011000	15.468197000
С	24.116082000	26.507028000	17.424144000
С	23.840953000	25.029902000	17.507655000
Н	23.620064000	24.621787000	16.529599000
Н	22.982504000	24.833850000	18.141476000
Н	24.679400000	24.477148000	17.916719000
С	24.766063000	27.219227000	18.483800000
С	25.207307000	26.489381000	19.719498000
Н	25.882851000	25.683314000	19.457559000
н	24.359434000	26.044212000	20.233417000
н	25.717464000	27.157175000	20.400186000
C	25.026353000	28.578357000	18.373849000
Ĥ	25.588234000	29.055709000	19.153957000
H	28,119904000	29.747529000	14.585442000
н	26 368548000	31 629727000	18 390557000
••	20.0000 10000	01.020121000	10.000001000
P-T1			
С	27.149897000	29.339709000	14.836175000
Н	26.909571000	29.700100000	15.823435000
Н	27.278367000	28.266325000	14.908238000
S	25.839226000	29.723156000	13.634978000
н	23.173500000	28.813707000	14.356326000
С	25.294659000	31.438114000	18.304085000
Н	24.763615000	32.367839000	18.228130000
Н	24.983310000	30.912515000	19.184595000
Ν	23.831119000	32.579425000	13.744628000
н	23.482648000	33.126436000	12.976241000
С	23.689334000	31.256789000	13.648430000
0	23.063128000	30.712083000	12.763481000
С	24.416158000	30.423347000	14.691173000
C	24.757173000	31.275973000	15.854940000
Ň	24.923667000	32.608594000	15.822632000
С	24.493039000	33.280540000	14.773420000
Ō	24.591052000	34,497585000	14.631339000
N	23.553668000	29.350391000	15,106381000
С	23.994041000	28.619210000	16.185422000
C	24.644881000	29.331535000	17.263504000
Ň	24.906894000	30.622289000	17.135765000
C	23,771951000	27.251350000	16,293617000
Ĥ	23.313273000	26.744251000	15.467917000
C	24.129371000	26.531344000	17.425468000
č	23 848404000	25 055063000	17 504950000
н	23.626578000	24.649278000	16.526836000
н	22 989575000	24 862750000	18 140298000
н	24 683737000	24 501843000	17 918610000
C	24,773995000	27.242421000	18,516264000
č	25.215835000	26.483689000	19,735433000
н	25 886463000	25 680724000	19 459020000
н	24.365576000	26.039567000	20.242814000

Н	25.731014000	27.137483000	20.424882000
С	25.012492000	28.567536000	18.425806000
Н	25.581686000	29.047841000	19.196986000
Н	28.127540000	29.746615000	14.577893000
Н	26.365789000	31.621710000	18.387985000

B3LYP method

AU-	SO		
С	27.213907000	29.284835000	14.930188000
Н	26.476119000	29.538421000	14.168742000
Н	26.919492000	29.713505000	15.888143000
S	27.253437000	27.456076000	15.118998000
Н	27.593956000	27.438059000	16.445979000
С	25.268769000	31.486510000	18.410561000
Н	24.735245000	32.434547000	18.416918000
Н	25.001792000	30.912197000	19.291142000
Ν	23.788815000	32.646333000	13.785792000
Н	23.582618000	33.163428000	12.932200000
С	23.532562000	31.299630000	13.761116000
0	23.024790000	30.734640000	12.790821000
С	23.905272000	30.610210000	15.015034000
С	24.478243000	31.414536000	16.079121000
Ν	24.669978000	32.726203000	16.008345000
С	24.334305000	33.372380000	14.853329000
0	24.484791000	34.599732000	14.719324000
Ν	23.656832000	29.329022000	15.079499000
С	23.986618000	28.681390000	16.228706000
С	24.593363000	29.358337000	17.322039000
Ν	24.803358000	30.734201000	17.230907000
С	23.737434000	27.294175000	16.307059000
Н	23.297307000	26.829070000	15.435211000
С	24.077975000	26.556494000	17.420229000
С	23.807552000	25.076439000	17.472831000
Н	23.561726000	24.683296000	16.484633000
Н	22.962863000	24.850827000	18.133497000
Н	24.665608000	24.515231000	17.860164000
С	24.718150000	27.233813000	18.505199000
С	25.133502000	26.469724000	19.728237000
Н	25.819368000	25.658962000	19.462752000
Н	24.267955000	26.009213000	20.219208000
Н	25.634861000	27.125714000	20.442311000
С	24.977832000	28.598475000	18.437680000
Н	25.570313000	29.048909000	19.226929000
Н	28.186063000	29.690781000	14.650570000
Н	26.342503000	31.668142000	18.457160000
AD-	S0		
С	27.159424000	29.244078000	14.843541000
Н	26 426355000	29.617103000	14,128179000

Н	26.426355000	29.617103000	14.128179000
Н	26.895223000	29.559191000	15.856501000

S	27.124647000	27.405902000	14.887624000
Н	27.875272000	27.148983000	13.796453000
С	25.217327000	31.520281000	18.373452000
Н	24.691266000	32.471549000	18.365266000
н	24.918166000	30.948059000	19.242786000
N	23,754578000	32,651084000	13,739670000
H	23,550470000	33,162329000	12.883652000
C	23 499600000	31 305090000	13 721654000
õ	22 987927000	30 732819000	12 758578000
Č	23 881751000	30 618321000	14 974372000
ĉ	20.001701000	31 / 32615000	16 036005000
N	24,447,423000	32 7/3605000	15 060806000
C	24.032300000	32.743003000	14 804271000
0	24.300003000	34 610342000	14.004271000
N	24.434340000	20 225024000	14.003031000
	23.040027000	29.333634000	15.040155000
	23.963016000	20.094091000	10.194159000
	24.580217000	29.380626000	17.284921000
N O	24.772070000	30.759902000	17.190400000
	23.754412000	27.302409000	16.275498000
Н	23.308790000	26.830082000	15.409550000
C	24.101546000	26.574667000	17.393140000
C	23.835153000	25.094193000	17.458802000
н	23.583040000	24.689200000	16.476500000
н	22.992440000	24.877910000	18.125764000
Н	24.690448000	24.534830000	17.853520000
С	24.737878000	27.262535000	18.476341000
С	25.173135000	26.503393000	19.696067000
Н	25.851767000	25.686937000	19.432120000
Н	24.313942000	26.047775000	20.203425000
Н	25.682909000	27.162921000	20.401025000
С	24.977500000	28.630558000	18.406178000
Н	25.553818000	29.101114000	19.198800000
Н	28.143524000	29.658172000	14.624130000
Н	26.292023000	31.690302000	18.438164000
BU-	S0		
C	27.382517000	29.006184000	14.414218000
Ĥ	26.777362000	29.301696000	15.274475000
H	27.640521000	27.951686000	14.538278000
S	26 494574000	29 170904000	12 809987000
Ĥ	26 509971000	30 526292000	12 826175000
C	25 311724000	31 476091000	18 382903000
й	20.011124000	32 431003000	18 363053000
н	25.012075000	30 91/193000	10.000000000
N	23 800366000	32 62/398000	13 76827/000
Н	23 588546000	33 139385000	12 91670000
C	23 537915000	31 277871000	13 749742000
õ	23 009583000	30 718403000	12 780038000
č	23 938581000	30 584828000	14 995247000
č	24 527075000	31 396660000	16 050467000
-		31.000000000000000000000000000000000000	1010001010000

Ν	24.699586000	32.709775000	15.981959000
С	24.355810000	33.351453000	14.829427000
0	24.500294000	34.581681000	14.691915000
Ν	23.705674000	29.305348000	15.062742000
С	24.076529000	28.656047000	16.202950000
С	24.686021000	29.339724000	17.287721000
Ň	24.869502000	30.719200000	17.197706000
C	23.840345000	27,265979000	16,291699000
Ĥ	23 372820000	26 794589000	15 436307000
C	24 188869000	26.537774000	17 409203000
C	23 885334000	25.065238000	17.100200000
н	23 627382000	24 653919000	16 512167000
н	23.027983000	24.881358000	18 154982000
ц	24 723760000	24.001000000	17 806213000
$\hat{\mathbf{C}}$	24.723700000	27.225062000	18 485727000
C	24.030723000	27.223003000	10.403727000
	25.270201000	20.477093000	19.7 13034000
	23.921000000	20.007040000	19.437400000
	24.400703000	20.034372000	20.241509000
	25.804984000	27.136418000	20.401635000
	25.082992000	28.589737000	18.408981000
н	25.649201000	29.063791000	19.206018000
н	28.321904000	29.558967000	14.421229000
н	26.387152000	31.638532000	18.454558000
	٠ ٠		
с-00	27 250792000	20 020650000	14 461 422000
	27.339703000	29.039039000	14.401423000
	20.121919000	29.442717000	13.233077000
П С	27.044070000	20.021400000	12 011 40000
о Ц	20.000700000	29.000994000	12.011400000
	25.090047000	21.030070000	10.002000000
	23.202003000	31.454105000	10.327 144000
	24.771169000	32.412301000	18.289305000
	24.950755000	30.898847000	19.196163000
	23.824585000	32.584339000	13.698464000
Н	23.600989000	33.101451000	12.850254000
C	23.551637000	31.240735000	13.684944000
0	22.995772000	30.683538000	12.739903000
C	23.959547000	30.545673000	14.928131000
С	24.542522000	31.358827000	15.983941000
N	24.729808000	32.667995000	15.908704000
С	24.394802000	33.309797000	14.752376000
0	24.554058000	34.535921000	14.615851000
Ν	23.725762000	29.264842000	14.999159000
С	24.081297000	28.621744000	16.149248000
С	24.671586000	29.311482000	17.239413000
Ν	24.863651000	30.688116000	17.140637000
С	23.843197000	27.232445000	16.244401000
Н	23.386570000	26.752761000	15.388025000
С	24.168872000	26.512011000	17.375086000
С	23.866301000	25.039233000	17.461040000

Н	23.629342000	24.619423000	16.480711000
Н	23.001107000	24.857064000	18.108907000
Н	24.698013000	24.467114000	17.886648000
С	24.786954000	27.208084000	18.462399000
С	25.171407000	26.472522000	19.714502000
Н	25.837085000	25.631649000	19.498804000
Н	24.286275000	26.050522000	20.206351000
Н	25.665085000	27.142636000	20.421239000
С	25.039971000	28.571987000	18.378445000
Ĥ	25.578177000	29.058939000	19.187729000
Н	28,294831000	29.598508000	14.423485000
н	26 357151000	31 611133000	18 421649000
	201001 101000	0110111000000	101121010000
AU-T	1		
С	27.209577000	29.289770000	14.931403000
Н	26.466077000	29.537511000	14.173843000
Н	26.917057000	29.721390000	15.888820000
S	27.245818000	27.460893000	15,121670000
Ĥ	27.596197000	27.441302000	16.445214000
C	25 270542000	31 482492000	18 411231000
н	24 739105000	32 431687000	18 427176000
н	25 004747000	30 917112000	19 298017000
N	23 790934000	32 665819000	13 777683000
Н	23.730334000	33 169654000	12 917356000
\hat{C}	23.502174000	31 301825000	13 760729000
õ	23.000220000	30 758236000	12 77560000
C	23.013520000	30.608873000	1/ 086/31000
C	23.300130000	31 387/07000	16.040877000
N	24.432137000	37.307407000	15.04061000
C	24.040933000	33 37/50/000	1/ 8302/8000
0	24.322070000	34 608053000	14.030240000
N	24.409557000	20.294664000	14.740419000
	23.047954000	29.204004000	16 100717000
	23.902410000	20.072300000	17.190717000
	24.394920000	29.330667000	17.313399000
	24.004310000	30.7 19790000	17.241090000
	23.729296000	27.305754000	16.305714000
П	23.293631000	26.823275000	15.443075000
C	24.079774000	26.562507000	17.433481000
C	23.812608000	25.089111000	17.471964000
н	23.564787000	24.694159000	16.485425000
н	22.968122000	24.866412000	18.136862000
Н	24.667876000	24.529795000	17.870729000
C	24.723477000	27.227144000	18.529321000
С	25.138370000	26.457030000	19.748022000
н	25.827547000	25.649662000	19.482370000
Н	24.2/7343000	25.995656000	20.245955000
Н	25.642019000	27.111156000	20.461588000
С	24.979191000	28.584703000	18.437594000
Н	25.567866000	29.047996000	19.220828000
Н	28.182588000	29.692601000	14.650256000

AD-T	[1		
С	27.156711000	29.244758000	14.844598000
Ĥ	26 415526000	29 616807000	14 136713000
н	26.895871000	29 55/75/000	15 8597/7000
۱۱ ۹	20.03307 1000	23.334734000	1/ 887012000
С Ц	27.124740000	27.403200000	12 709065000
	27.878211000	27.149750000	13.798065000
C	25.218005000	31.515905000	18.374523000
Н	24.694072000	32.468764000	18.375537000
Н	24.920400000	30.953700000	19.251242000
Ν	23.755992000	32.672556000	13.733393000
Н	23.549215000	33.170297000	12.869766000
С	23.501842000	31.308403000	13.723013000
0	22.983780000	30.757693000	12.743795000
С	23.873869000	30.619921000	14.947582000
Ĉ	24 420052000	31 404120000	15 998482000
N	24 61/532000	32 710533000	15 9/8177000
C	24.014002000	32 386533000	1/ 781183000
õ	24.290734000	24 64 95 5 2000	14.701103000
U N	24.403227000	34.010002000	14.093993000
N	23.635290000	29.292817000	14.981772000
C	23.974799000	28.688477000	16.158043000
С	24.580791000	29.374370000	17.276801000
Ν	24.770586000	30.745338000	17.202365000
С	23.750392000	27.316970000	16.274137000
Н	23.306413000	26.828673000	15.419074000
С	24.108085000	26.581162000	17.408827000
С	23.841771000	25.108142000	17.456826000
H	23,587775000	24,703595000	16,475434000
H	22 997577000	24 894684000	18 126070000
н	24 691633000	24 546626000	17 863077000
$\hat{\mathbf{C}}$	24.031000000	27.255/10000	18 500282000
Č	24.743923000	27.233419000	10.300202000
	25.179369000	20.491030000	19.717103000
н	25.861837000	25.677390000	19.454296000
н	24.323754000	26.035293000	20.2311/2000
н	25.691512000	27.148116000	20.422513000
С	24.979400000	28.617373000	18.405280000
Н	25.551861000	29.099813000	19.191643000
Н	28.140739000	29.658740000	14.624655000
Н	26.292408000	31.687209000	18.440701000
BU-T	71		
C	27.382717000	29.005814000	14,412027000
н	26 772755000	29 299672000	15 269803000
н	27 620177000	27 950/57000	1/ 52/561000
с С	21.009111000	21.330431000	12 205277000
ы П		23.111140000	12.00007/1000
	20.499013000	30.527023000	
	25.311835000	31.4/30/8000	18.384020000
Н	24.796063000	32.430426000	18.375331000
Н	25.014175000	30.921169000	19.269659000

26.344004000 31.665245000 18.459692000

Н

Ν	23.801290000	32.643599000	13.760822000
Н	23.582658000	33.145179000	12.902077000
С	23.545565000	31.277893000	13.749504000
0	23.009533000	30.739531000	12.773973000
С	23.934915000	30.585761000	14.968517000
Ĉ	24,502067000	31,366917000	16.012269000
Ň	24 681765000	32 685344000	15 968385000
C	24 344243000	33 354027000	14 805335000
õ	24.544240000	3/ 588306000	1/ 721/71000
N	23 678/10000	20 262252000	15 01/200000
C	23.070410000	29.202252000	16 167096000
	24.00400000	20.000000000	10.107900000
	24.089304000	29.333808000	17.280316000
N O	24.867477000	30.705709000	17.210591000
C	23.840497000	27.276357000	16.286945000
Н	23.372443000	26.791375000	15.442674000
С	24.195898000	26.543307000	17.421039000
С	23.890594000	25.078439000	17.488766000
Н	23.630493000	24.668410000	16.511062000
Н	23.036955000	24.897696000	18.155342000
Н	24.724152000	24.500404000	17.904904000
С	24.845465000	27.218349000	18.507320000
С	25.274122000	26.466627000	19.733490000
Н	25.929401000	25.629190000	19.477778000
Н	24.414110000	26.041687000	20.266790000
н	25.810981000	27.121933000	20.423012000
С	25.087117000	28.578037000	18.407109000
Ĥ	25 646826000	29 061537000	19 200677000
н	28.321609000	29 559416000	14 420692000
н	26.3870/8000	31 636225000	18 /57280000
	20.007040000	01.000220000	10.407200000
BD-T	1		
C .		29.039163000	14 458318000
н	26 721660000	29 441002000	15 248442000
н	27 6/2/32000	28 01080000	1/ 735/00000
S	26 5368/1000	20.010000000	12 806967000
ц	25,803100000	27.8/3200000	13 00/566000
$\hat{\mathbf{C}}$	25.093199000	21.043299000	19 227922000
	23.203797000	31.455000000	10.327032000
	24.774233000	32.413036000	10.300049000
Н	24.952319000	30.906470000	19.202675000
N	23.826541000	32.602460000	13.689792000
Н	23.598050000	33.106474000	12.834669000
С	23.558659000	31.239862000	13.686503000
0	22.993864000	30.703026000	12.726649000
С	23.956712000	30.546105000	14.901713000
С	24.516973000	31.329026000	15.946403000
Ν	24.710310000	32.645287000	15.895007000
С	24.382155000	33.311615000	14.727287000
0	24.558459000	34.543502000	14.644808000
Ν	23.707031000	29.218895000	14.948006000
С	24.069518000	28.616218000	16.114275000

С	24.673499000	29.306544000	17.233668000
Ν	24.863336000	30.676541000	17.152167000
С	23.842401000	27.241443000	16.242067000
Н	23.386138000	26.747491000	15.395694000
С	24.173718000	26.517732000	17.387189000
С	23.871817000	25.051395000	17.460104000
Н	23.632633000	24.633284000	16.480165000
Н	23.005941000	24.871383000	18.110920000
Н	24.700024000	24.478620000	17.894322000
С	24.794315000	27.202142000	18.484298000
С	25.176396000	26.461343000	19.733131000
Н	25.844769000	25.623314000	19.515823000
Н	24.295408000	26.037045000	20.231106000
Н	25.673384000	27.126379000	20.442337000
С	25.041026000	28.561009000	18.377570000
Н	25.573347000	29.058626000	19.182737000
Н	28.293296000	29.598983000	14.422028000
Н	26.358128000	31.609981000	18.424041000