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Supporting Material

Derivation of Eq. of the Main Text

According to Eq.

dfs
Thus,
d*fs
5= a2 —fokpa = foksa = fs (k3o — Ksa) -

where kj,, := dkgo/dt. According to Eq.

fé' (tm> =0,
so that
k?ﬂa(tm) - k%a(tm) =0.
Using Eqgs. , , and @, K, (tm) is obtained as

, B TAH;
Koo (tm) = Wkﬁa(tm) ,

so that Eq. [S4] can be rewritten as

TAHE

gz Pt = k3o (tm) =0,
Blm

which further simplifies to
rAHj

2
kB Ty%pp

— kga(tm) = 0.
Using Eq. 7] again, we obtain
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and multiplication with AHj/4kp yields

rAHE koHj

_ B AS3/kp ,—AHS/kpTa™ 99
4k%T#prp2 4]{3 € € 3 ( )
which can be rewritten as
* 2 *
AHB eAHE/QkBTﬁf’p _ koAHB oASE/kB (SlO)
2k TPP 4kgr
By introducing
QZAHE//’{;B (S11)
and
koAHg’ AS?
* = LeAS/ks 312
r T (S12)
we obtain

2
< 4 e9/2mpp) =7r/r, (S13)

2 T#LPP

which can be solved for TP using the principal branch of the LambertW function, W (x),

by exploiting its property W (xze*) = z:
-1
TP =0 - [2W (\/r*/rﬂ : (S14)

Derivation of Eqgs. 16| and of the Main Text

In the following we expand the right hand side of Eq. [12]in powers of the natural logarithm
around an arbitrary heating rate ro. We start with the first derivative of T)Y?P with respect

to Inr:

Ty =7 =0 [ () (ew (VER))) L s
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which follows from the property W'(z) = W(z)/[z(1 + W(x))] of the LambertW function.

Around ry, TP can then be approximated as

TP (r) =To+ Cln(r/re) + O([In (r/'ro)]z) , (S16)

with
Ty = T3 (ro) = 0 2w (Ve | (S17)

and

1

o= (i), =0 [ (V) (ew (Vem))] st
For the particular choice 7y = r., we obtain Ty = 779 and C assumes the form

Tfnq2 T&q2
T 0421 6

(S19)
where we used W (s /r*/ req> = 0/(2T%7) and the last approximation is valid for § >> T2,

Heating-Rate-Dependence of the Transition Path Time

For a harmonic, large-enough barrier height AG*, the transition path time can be expressed

In [2e"AG*(T')/(kgT)]
(w)2D(T)/(ksT)

x In[2e”AG*(T")/(kgT)], (S20)

Tip(T') o

where v & 0.577 denotes the Euler constant, (w*)?

is the curvature of the barrier, and
D(T) « T is a diffusion coefficient®!. According to Eq. and with AG; = AHj; —TASY,
Typ 18 almost constant in the narrow temperature range 310 K < 7' < 330 K, corresponding
to the heating rates realized in this study. This is illustrated in Fig. , where 7, for
AHj = 318 kJ/mol and AS% = 0.77 kJ/(mol K) (compare with Table II, parameters for

n, = 31 und N; = 288) is plotted as a function of the temperature.
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Figure S1: Transition path time 7, for AHj; = 318 kJ/mol and AS; = 0.77 kJ/(mol K)
according to Eq. as a function of the temperature.

Determination of 6 and r* via the Kissinger method

Eq. can be rewritten in the Kissinger form®2,

In (Tﬁ;”?) — Tn’flpp +B, (S21)

with
A=—0 (S22)

and
B=1In (%)—I—Ak—i;zlnr*—i—ﬂn <§> (523)

A linear fit in the Kissinger plot (In (r/T%"?) versus 1/T%") then yields A and B. In Fig.
this is presented exemplarily for the large system (N, = 288) at excess hydration (n,, = 31),
where we obtain § = —A = (38.543.0) x 10> K and Inr* = B — 2In2/6 = 129411, both

consistent with Table II in the main text.
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Figure S2: Kissinger plot representation of r-dependent apparent melting temperatures 7977
for the large system at excess hydration. The solid straight line is a linear fit to the data
points.

Evolution of membrane area and number of gauche bonds for several

heating runs

Fig. [S3| shows the numbers of gauche bonds in both monolayers and the membrane area for
three independent representative heating runs across the chain melting transition. Data are
from large systems (IV; = 288) at excess hydration (N; = 288) and heating rate r = 0.125 K /ns.
It is seen that the number of gauche bonds increases roughly simultaneously, while the mem-

brane area always responds with a delay of several nanoseconds.
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Figure S3: Numbers of gauche bonds in both monolayers and membrane area for two inde-
pendent representative heating runs across the chain melting transition.
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