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1 INTRODUCTION

ABSTRACT

Kozai—Lidov (KL) oscillations can accelerate compact object mergers via gravitational wave
radiation by driving the inner binaries of hierarchical triples to high eccentricities. We perform
direct three-body integrations of high-mass-ratio compact object triple systems using FEWBODY
including post-Newtonian terms. We find that the inner binary undergoes rapid eccentricity
oscillations (REOs) on the time-scale of the outer orbital period which drive it to higher eccen-
tricities than secular theory would otherwise predict, resulting in substantially reduced merger
times. For a uniform distribution of tertiary eccentricity (e;), ~40 per cent of systems merge
within ~1-2 eccentric KL time-scales whereas secular theory predicts that only ~20 per cent
of such systems merge that rapidly. This discrepancy becomes especially pronounced at low
e, with secular theory overpredicting the merger time by many orders of magnitude. We show
that a non-negligible fraction of systems have eccentricity >0.8 when they merge, in contrast
to predictions from secular theory. Our results are applicable to high-mass-ratio triple systems
containing black holes or neutron stars. In objects in which tidal effects are important, such
as white dwarfs, stars, and planets, REOs can reduce the tidal circularization time-scale by an
order of magnitude and bring the components of the inner binary into closer orbits than would
be possible in the secular approximation.
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These oscillations are known as Kozai-Lidov (KL) oscillations
(Kozai 1962; Lidov 1962).

Hierarchical triple systems are common (Raghavan et al. 2010) and
exhibit dynamics that are qualitatively different from binary systems
(Poincaré 1892). For example, if the tertiary is highly inclined with
respect to the inner binary, it induces slow oscillations of the orbital
parameters of the inner binary. In particular, the eccentricity of the
inner binary oscillates between a minimum and maximum value
(emax = v/ 1 —5/3cos?i in the limit of a test particle secondary
when the three-body Hamiltonian is expanded to quadrupole order)
over the time-scale (e.g. Holman, Touma & Tremaine 1997; Blaes,
Lee & Socrates 2002)
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KL oscillations have found application in a wide variety of as-
trophysical systems including the orbits of asteroids in the Solar
system (Kozai 1962), the orbits of artificial satellites around planets
in the Solar system (Lidov 1962), as a formation channel for hot
Jupiters (e.g. Wu & Murray 2003; Fabrycky & Tremaine 2007; Wu,
Murray & Ramsahai 2007), and as a formation channel for blue
stragglers (Perets & Fabrycky 2009).

KL cycles can drive the inner binary in some hierarchical triple
systems to merger via gravitational wave emission (Blaes et al.
2002; Miller & Hamilton 2002). If the inner binary consists of two
white dwarfs (WD), Thompson (2011) showed that these mergers
occur rapidly enough to potentially explain the Type la supernova
rate. Katz & Dong (2012) demonstrated that in a non-negligible
fraction of systems, perturbations to the secular KL oscillations can
drive the inner binary to collide head-on, rather than coalescing
due to gravitational radiation after tidal capture (see also Prodan,
Murray & Thompson 2013). Hamers et al. (2013) provide a more
detailed discussion of the rates of such collisions by accounting for
the evolution of the inner binary on the main sequence.
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In addition to WD-WD mergers, KL oscillations have also been
studied as a mechanism to drive other compact objects to rapid
merger. Neutron star—neutron star (NS-NS) and neutron star—black
hole (NS-BH) mergers have been proposed as engines of short
gamma-ray bursts (Paczynski 1986; Ruffert, Janka & Schafer 1995;
Ruffert, Janka & Schaefer 1996; Janka et al. 1999; Ruffert & Janka
1999), and such mergers may also be expedited by KL oscillations
(Thompson 2011). Several authors have studied mergers of stellar-
mass BH, particularly in globular clusters, to determine if they
can efficiently grow to intermediate-mass black holes (e.g. Miller
& Hamilton 2002; Wen 2003; Gultekin, Miller & Hamilton 2004;
Aarseth 2012). Hierarchical triples of supermassive black holes
(SMBHs) may also merge quickly as a result of KL oscillations
(Blaes et al. 2002; Hoffman & Loeb 2007; Amaro-Seoane et al.
2010). These effects can also produce interesting gravitational wave
signatures from stellar-mass binaries in orbit around one or more
SMBHs (e.g. Antonini & Perets 2012; Bode & Wegg 2014).

Given its general nature, the physics behind the KL. mechanism
has come under broader study in the past several years. Until re-
cently, almost all work exploring it has employed the secular ap-
proximation, which assumes that any changes to the orbital param-
eters of the system are slow compared to the orbital period of the
outer binary. The Hamiltonian is expanded in powers of the ratio
of the semimajor axis of the inner binary to the semimajor axis of
the outer binary (a,/a»), typically to quadrupole order, (a;/a»)>.
Krymolowski & Mazeh (1999) and Ford, Kozinsky & Rasio (2000,
2004) derived the equations of motion to octupole order, (a;/a>)’
(see Naoz et al. 2013). Lithwick & Naoz (2011) and Katz, Dong
& Malhotra (2011) explored the implications of these equations
and showed that the octupole-order terms can lead to substantially
larger eccentricities of the inner binary. This so-called eccentric
Kozai mechanism (EKM) has dramatically expanded the parameter
space in which mergers and other interesting dynamics can occur
(e.g. Naoz, Farr & Rasio 2012; Shappee & Thompson 2013).

It is becoming increasingly evident, however, that the secular ap-
proximation can fail in certain circumstances. Antonini & Perets
(2012) found that in extreme-mass-ratio systems, eccentricities
change rapidly compared to the period of the tertiary if the ter-
tiary is in an eccentric orbit (this behaviour can also be seen in
Antonini et al. 2010). Bode & Wegg (2014) found that in a more
general set of systems, the eccentricity of the inner binary varies
on the time-scale of the orbit of the tertiary. Recently, Katz &
Dong (2012) found that these rapid variations can lead to colli-
sions of WD-WD binaries if the tertiary is at very high inclination.'
Finally, Seto (2013) examined the impact of these rapid fluctuations
on gravitational wave astronomy.

In this paper, we revisit earlier calculations of the merger times
of compact objects by Blaes et al. (2002) and Hoffman & Loeb
(2007). We extend these works by directly integrating the equations
of motion of the three-body system and including post-Newtonian
(PN) force terms up to order 3.5 to account for general relativis-
tic (GR) effects. We show that motion of the tertiary on its orbit
(even in relatively low eccentricity orbits) leads to rapid eccen-
tricity oscillations (REOs) in the inner binary and we quantify the

! Katz & Dong (2012) distinguish between ‘head-on collisions’, in which
two objects merge without substantial tidal interaction, and ‘collisions’, in
which two objects merge with or without previous tidal interaction. We
use ‘collision’ to refer exclusively to mergers without tidal interaction. Any
event in which the two objects undergo substantial tidal interaction before
combining is termed a ‘merger’ in this paper.
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importance of these oscillations. Our goal is to better understand
the effect of the eccentric KL mechanism and non-secular effects
on the merger time distribution and dynamics of compact object bi-
naries. In systems with tertiaries in low-eccentricity orbits, we find
that the double-orbit-averaged secular approximation fails by pre-
dicting merger times many orders of magnitude longer than those
of the direct three-body integration.

This paper is structured as follows. In Section 2, we describe our
numerical methods and characterize the accuracy of our integration
(see also the appendix). In Section 3, we describe the breakdown
of the secular approximation in calculating the eccentricity of the
inner binary. In Section 4, we demonstrate one regime in which
this breakdown of the secular approximation leads to catastrophic
failure, namely in predicting the merger times of compact objects.
We conclude and discuss a number of applications in Section 5.

As this paper was being completed, Antonini, Murray & Mikkola
(2014) presented similar results on the breakdown of the secular
approximation, the delay time distribution, and the eccentricity dis-
tribution of compact object binaries at merger.

2 NUMERICAL METHODS AND SETUP

We numerically evolve triple systems with the open source
FEWBODY suite (Fregeau et al. 2004). FEWBODY is designed to compute
the dynamics of hierarchical systems of small numbers of objects
(N < 10) either in scattering experiments or in bound systems.
The underlying integrator for the FEwBoDY suite is the GNU Scien-
tific Library (GSL) ordinary differential equations library (Gough
2009). By default FEwBODY uses eighth-order Runge—Kutta Prince—
Dormand integration with adaptive time steps. It is straightforward
to modify FEwWBODY to use any of the other roughly half-dozen in-
tegration algorithms supported by GSL.2 In our experience, the
choice of integration algorithm does not affect the results since the
adaptive steps force the size of the error to be within the same
target value regardless of the algorithm used. All results in this
paper were obtained using the default eighth-order Runge—Kutta
Prince-Dormand algorithm. To incorporate relativistic effects, we
have included PN terms up to order 3.5 in the integration. Details
of energy conservation, gravitational radiation, and a comparison to
secular calculations are provided in Appendix A. These additions to
FEWBODY and a direct application to the formation of gravitational-
wave sources for ground-based detectors will be presented in more
detail in Amaro-Seoane (in preparation).

Throughout this paper, we use m; and m; to refer to the masses
of the objects in the inner binary, and mj; to refer to the mass of
the tertiary. For other quantities the subscript ‘1’ refers to the inner
binary and the subscript ‘2’ refers to the outer binary. The semimajor
axis is represented by a, the eccentricity by e, the argument of
periapsis by g, and the mutual inclination by i.

3 RAPID ECCENTRICITY OSCILLATIONS

Most studies of three-body dynamics have employed the secular
approximation in which any changes to the orbital parameters of
either orbit are assumed to be slow compared to the orbital period
of both orbits. Such models cannot account for any changes that

2 GSL also supports an additional five integration algorithms, but these
require the calculation of the Jacobian. When PN terms are included this
becomes non-trivial to implement.
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Figure 1. Systems exhibiting REOs. The eccentricity of the inner binary during a KL cycle as calculated by direct three-body integration (black solid line)
and as calculated in the secular approximation (red dashed line) for g; = g» = 0° (left-hand panel) and g; — g» = 90° (right-hand panel). PN terms are not
included. The secular and three-body calculations match on average in the left-hand panel, but the three-body calculation exhibits oscillations in ej. In the
right-hand panel, the secular calculation correctly predicts the minimum eccentricity, but the REOs in the three-body calculation push the binary exclusively
to higher eccentricities. Blue dotted lines show the amplitude of the REOs predicted by equation (2). The period of the REOs is twice the period of the outer
binary. The asymmetry in the period of the oscillations is due to fact that the tertiary is on an eccentric orbit (¢ = 0.2). The initial conditions of the system are

presented in Table 1 but with g; and g5 fixed as stated above.

Table 1. Initial conditions for triple systems studied in this paper. Throughout this paper, g refers to
the argument of periapsis and i refers to the mutual inclination.

m my m3 aj a

e e 81 82 i

10'Mg  10°Mg  10'Mg  Ipc  20pc

0.1 0.1-0.8 0°-360° 0°-360°  80°

occur on more rapid time-scales, and it is implicitly assumed that if
such changes do occur, their effect would be negligible.

We find that over a broad region of parameter space, the inner
binaries in triple systems undergo oscillations in eccentricity (or,
equivalently, angular momentum) on the time-scale of the outer
orbital period (‘rapid eccentricity oscillations’, REOs). REOs are
typically small and do not affect the dynamics of the triple system
for almost all of its evolution. But when the inner binary is already at
high eccentricity, as during an eccentric Kozai cycle, the magnitude
of the oscillations in angular momentum becomes comparable to
the total angular momentum of the inner binary. REOs can then
drive the inner binary to rapid merger.

The existence of REOs was predicted by Ivanov, Polnarev &
Saha (2005), who found that the amplitude of the change in angular
momentum during an oscillation is

AL 15 ms C(a’

— = ——————CO0Simn | — | VGmsaz, 2)
" 4 my +my a

where pu is the reduced mass of the inner binary and iy, is the

minimum mutual inclination between the two orbits during a KL

cycle.? Equation (2) can also be written as a change in eccentricity,

3 See appendix B of Ivanov et al. 2005 for the complete derivation. Note
that in Ivanov et al. 2005, AL refers to the change in the specific angular
momentum from the average value to the maximum value. This quantity
therefore differs from our AL by a factor of ju/2.

although this form of the equation is somewhat more cumbersome:

Ael = —€]

2
+ 4|1 \/i—l— 15 e . ] a) "

e 3 \mrm COS Imin o .

3

These equations are only accurate near the eccentricity maximum
of a KL cycle.

Our numerical experiments are in agreement with Ivanov et al.
(2005). We show in Fig. 1 the evolution of two example systems
exhibiting REOs (see Table 1). The two systems are identical except
that the system in the left-hand panel begins with g; = g> = 0° and
the right-hand panel begins with g, — g, = 90°. To demonstrate
that REOs are a non-relativistic phenomenon, we have suppressed
PN terms in this figure.

Intuitively, REOs can be understood as similar to a KL oscillation
in miniature. In the double-orbit-averaged approximation, the KL
mechanism occurs due to the fact that the outer orbit exerts a stronger
force on the inner orbit at the line of nodes than at other regions
of the outer orbit. But because in reality the outer orbit is a point
mass in motion rather than a continuous hoop of matter, this force
is strongest along the line of nodes as the tertiary is actually passing
through the line of nodes. For weak KL oscillations, the driving
force contributed during any single orbit is small, so there is only a
gradual change in the eccentricity of the inner orbit and any REOs
are negligible. However, during a strong eccentricity maximum,

MNRAS 439, 1079-1091 (2014)
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the inner orbit has lost nearly all of its angular momentum and is
therefore extremely sensitive to torquing.

This implies that the arguments of periapsis of the inner and
outer orbits determine the direction of the oscillation. If the apsides
are aligned with the line of nodes (as in the left-hand panel of
Fig. 1), the eccentricity will be driven to higher values relative to
the secular calculation when the tertiary passes through periapsis
and to lower values when the tertiary passes through apoapsis. If
the apsides are 90° from the line of nodes, however, the eccentricity
will be exclusively driven to higher values relative to the secular
calculation while the amplitude of the oscillations will remain fixed
(as in the right-hand panel of Fig. 1).

Although oscillations in the orbital elements on the time-scale
of the period of the outer orbit were first predicted by Soderhjelm
(1975), an explicit formula for the change in angular momentum was
first derived by Ivanov et al. (2005). Moreover, these oscillations
were not confirmed by three-body integrations until Bode & Wegg
(2014), who found them in the test-particle limit, and Antonini &
Perets (2012), who found them in the equal-mass case. Katz & Dong
(2012) further explored these oscillations in the context of WD-WD
collisions. They argued that these oscillations are fundamentally
a stochastic phenomenon, but only examined systems in which
the inclination of the tertiary was near the Kozai ‘pole’ of i ~
93°, where certain terms in the Hamiltonian formally diverge at
quadrupole order and KL oscillations become extremely strong
(Miller & Hamilton 2002). Although a complete analytic treatment
of REOs is beyond the scope of this paper, our results suggest that
at lower inclinations they could be modelled analytically. As we
discuss in Section 4.2, we only examine REOs in inner binaries on
prograde orbits.

4 EFFECT ON MERGER TIMES

REOs are important when 1 — e; ~ 0 and nearly all of the angular
momentum in the inner orbit has been transferred to the outer orbit.
Here, fluctuations in the angular momentum given by equation (2)
become comparable to the total angular momentum in the inner orbit
itself. REOs then can have a substantial impact on the long-term
dynamics. This is especially true if relativistic effects are important
because the PN terms are strong functions of distance and thus a
small change in the distance at periapsis dramatically changes their
strength. A secular calculation does not account for these effects and
will overpredict the merger time, in some cases by many orders of
magnitude. There are therefore certain regions of parameter space
in which the double-orbit-averaging approximation fails.

4.1 Test case

The importance of REOs for the long-term evolution of an example
system is illustrated in Fig. 2. The secular calculation (red dashed
line) closely matches the three-body integration performed by FEW-
BoDY (black line) during the first KL cycle, but afterwards they begin
to diverge. In this particular case, the eccentricity of the inner binary
in the three-body integration increases to 1 — e; < 10~*, whereas
in the secular calculation it only reaches 1 — ¢; ~ 1073. As a con-
sequence, the three-body integration predicts the inner binary to
merge within one eccentric-KL time-scale whereas the secular cal-
culation predicts that the inner binary will effectively never merge.
To demonstrate the importance of resonant PN eccentricity excita-
tion (Naoz et al. 2013b), we additionally show the same three-body
calculation without any PN terms (blue dotted line). We find that

MNRAS 439, 1079-1091 (2014)
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Figure 2. The impact of REOs on the evolution of the inner binary of a
hierarchical triple. We show the direct three-body integration (solid black
line) and the calculation in the secular approximation (red dashed line). To
illustrate the importance of relativistic terms at high eccentricities, we also
show the direct three-body integration without any PN terms (blue dotted
line). Although the direct integration matches closely with the two secular
calculations during the first KL cycle, the calculations diverge thereafter.
The secular calculation predicts that the system only reaches a maximum
eccentricity of 1 — e; ~ 1073 in the time period shown, whereas the di-
rect integration predicts that the inner binary is driven to sufficiently high
eccentricities to merge after ~2 x 10° yr.

without relativistic effects the inner binary gets excited to much
lower eccentricities, in agreement with Naoz et al. (2013b).

During the eccentric phase of the KL cycles the GR precession
time-scale, fgr, shortens since e; approaches unity (e.g. Blaes et al.
2002):

for ~ 2.3 x 100yr | L Em2 e T (1—¢)
R 2 x 10°Mg, 102 pe v
C))

If the eccentricity becomes sufficiently large, as in the final KL
cycles of the system presented in Fig. 2, tgr can become shorter
than the KL time-scale, 7x; (equation 1). This will ordinarily not
suppress the KL mechanism because at high eccentricity the inner
binary requires only very small torques to change its eccentric-
ity. Bode & Wegg (2014) therefore introduce the instantaneous
KL time-scale, fgr inge as the time-scale for the inner binary to
change its angular momentum by order unity. 7y i i related to
txL by

IKL,inst ™~ 4/ 11— 6% KL (5)

up to constant factors of order unity. If #x i €xceeds fgr the KL
cycles are ‘detuned’, and the KL mechanism will be suppressed
(Holman et al. 1997). This kind of detuning occurs in the regime
in which the secular approximation is valid. The detuning which
occurs in the system presented in Fig. 2 does not occur in this
regime, however. In this system, 7gr becomes shorter than P, before
it becomes shorter than xy in. When this occurs, it is impossible
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Figure 3. Timescales of the system presented in Fig. 2 calculated with direct integration (black line) and in the secular approximation (dotted red line).
Left-hand panel. The ratio between the KL time-scale (equation 1) and the GR precession time-scale (equation 4) of the inner binary. During the final several
KL cycles the GR precession time-scale becomes shorter than the KL time-scale. Although the KL mechanism is detuned, REOs are sufficient to restore the
system to lower eccentricities and continue the KL cycle. Right-hand panel. The ratio between the outer period and the GR precession time-scale. Once the
GR precession time-scale of the inner binary becomes comparable to the outer orbital period, the two orbits completely decouple and gravitational radiation

drives the inner binary to merge.

for the outer binary to exert any secular influence on the inner
binary. At this point, the inner binary decouples from the outer
binary and gravitational radiation drives the inner binary to rapid
merger because the inner binary is at high eccentricity. Hence, the
KL mechanism is detuned as a consequence of the breakdown of
the secular approximation. To emphasize that 7y is not relevant for
determining if KL cycles will be detuned in the middle of a KL
cycle, we show in the left-hand panel of Fig. 3 the ratio between
txL and fgr for the system presented in Fig. 2. During the final
KL cycles tgr becomes much shorter than tk;, but is driven back
to longer time-scales by REOs before the inner binary can merge
by gravitational radiation. The right-hand panel shows the ratio
between P, and fgr for the same system. Once this ratio reaches
unity, the inner binary decouples from the outer binary and merges
via gravitational radiation.

We emphasize that REOs are only important when the eccen-
tricity is large. REOs therefore only affect the dynamics during a
small fraction of the system’s lifetime. We illustrate in Fig. 4 the
fraction of time that the system spends at high eccentricity. The
fluctuations in the angular momentum of the inner binary become
10 per cent of the total angular momentum of the inner binary when
the inner binary reaches an eccentricity of ~0.9. From Fig. 4, REOs
are therefore non-negligible for only ~10 per cent of the system’s
lifetime. The secular approximation is therefore valid ~90 per cent
of the time. Nevertheless, as illustrated in Fig. 2 and in the next
subsection, these short periods in which the secular approximation
fails dramatically influence the evolution of the system and lead to a
sharp divergence from the secular predictions because of the strong
eccentricity dependence of the GR terms.

4.2 Population study

Here, we compare the merger times of a variety systems calcu-
lated in both the secular approximation and in the full three-body
integration. We fix the masses of the SMBHs (m; = 10’ Mg,
my = 10° Mg, my = 10’ M), the semimajor axes (a; = 1 pc,
a, = 20 pc), the initial eccentricity of the inner binary (e; = 0.1),

= T T IIIIII T T IIIIII T T IIIIII T “j’ T Illlt
: T
~_ B — N-body 7
() - -
A
-1 ---- Secular |
- 107k 3
- - 3
< [ .
-
= L -
(5] - 4
&
o 107%F 3
g F ]
= C ]
S L -
(@]
g L ]
= 1073k e
Q E 1 3
g F ! 3
= . / ]
- " =
- "' .
1 -4 K4 | L1l L1l L1
107 1073 1072 107! I

1—61,

Figure 4. The fraction of time that the system presented in Fig. 2 spends
at eccentricities greater than any given eccentricity in the direct integration
(solid line) and in the secular approximation (red dashed line). For com-
parison, we also present the line y = x and y = 3x (dotted lines). At low
eccentricities, the fraction of time that a hierarchical triple undergoing KL
cycles spends at eccentricities greater than ej is approximately 1 — e;. REOs
drive the system to spend more time at higher eccentricities. If eccentric KL
oscillations are also present, as in this case, the fraction of time spent at
higher eccentricities is slightly larger, but is always within a factor of a few
of 1 — e;. Although REOs are only important at high eccentricities, their
effect during these brief periods drastically changes the overall evolution of
the system.

the inclination of the tertiary (i = 80°), and the arguments of pe-
riapsis (g; = 0°, go = 90°). The initial mean anomalies are cho-
sen randomly. The eccentricity of the tertiary, e, is systematically
varied from e, = 0.1 to 0.85 in steps of 0.001. (Systems at e; = 0.85

MNRAS 439, 1079-1091 (2014)
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Figure 5. The time required for the inner binary of triple systems to merge
as a function of the eccentricity of the orbit of the tertiary (see Table 1
for the system parameters) using direct three-body integrations (points) and
using the secular approximation (red dashed line). The scatter in both the
direct three-body integration and in the double-orbit-averaged calculation
is due to the fact that these systems are chaotic. Slight changes in e; or the
initial mean anomalies can change fyerge by over an order of magnitude.
Approximately 25 per cent of the systems we study merge in fgxv (equation
6, solid line). The shaded region depicts merger times within 1 -2 X fgxm. At
e2 < 0.3 the eccentric KL mechanism weakens and cannot drive systems to
merger as shown by the large difference between the secular and three-body
calculations. As a consequence, REOs become an important mechanism
to drive binaries to merger. Because REOs are fundamentally non-secular,
the secular calculations overpredict the merger times by many orders of
magnitude at low e;.

are unstable and few systems with e, < 0.1 ever merge.) Note that
we do not choose our masses to model any specific physical sys-
tem (the REO phenomenon is not specific to any particular mass
range), but instead choose them for ease of comparison to Blaes
et al. (2002), and because we wish to study this phenomenon in the
test-particle case.

At each choice of e, we calculate the merger time. We define a
merger as occurring when the two components of the inner binary
come within 10 Schwarzschild radii (Rs.,) of each other (where
Rsch hereafter refers to the Schwarzschild radius of the larger BH).
We are forced to integrate only to 10 Rgc, rather than down to 1
or 2 Rs., because the PN terms begin diverging when the relative
velocity exceeds ~0.2¢ (see section 9.6 of Blanchet 2006). In the
systems we examine, the relative velocities start to become close
to ~0.2¢ when the two components come within 10 Rs, of each
other. In practice, when the inner objects come within 10 Rgc, of
each other, the orbital decay time-scale is short compared to the
overall merger time.*

The results of these calculations appear in Fig. 5. Because these
orbits spend the vast majority of time in the Newtonian regime,

4 To verify this, we reran the system displayed in Fig. 2 and set the merger
criterion to 100, 50, 20, 10, and 5 Schwarzschild radii. The overall merger
times are all within ~0.01 per cent of each other.
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they can be rescaled to other masses, distances, and times until the
small fraction of time prior to merger that the eccentricity becomes
large enough that relativistic effects become important. For this
reason, we run each calculation to completion even if the merger
time exceeds a Hubble time for the particular case that we analyse.
There is substantial scatter in #yeree. This scatter is a result of
the slightly different choices of e, from point to point, but also
the different mean anomalies. Two systems with identical starting
conditions but different initial mean anomalies can have merger
times that differ by up to two orders of magnitude. The most rapidly
merging systems all merge within one eccentric KL time-scale. This
time-scale is given by Katz et al. (2011) and Naoz et al. (2013) as
KL
fekm ~ —,
€oct
where €, is the strength of the octupole-order term in the expansion
of the three-body Hamiltonian. The eccentric KL time-scale can be
written as

—1/2 3/2
texm ~ 2.1 x 10° yr m .
2 x 10°Mg 1pc

» (ml-i-mz) (az/a1)4(1—e§)5/2' ©)
2ms3 20 (]

This function matches the lower envelope of the merger time dis-
tribution very closely. Systems above this line fail to merge within
a single eccentric KL cycle, but merge after several. Usually, how-
ever, the first eccentric KL cycle so disturbs the system that future
eccentric KL cycles operate on different time-scales. This is pri-
marily due to changes in the argument of periapsis of the inner
binary. The merger times are therefore not integer multiples of the
first eccentric KL time-scale.

Of the systems we study, approximately one-quarter merge within
one eccentric KL cycle. This is an overestimate of the true fraction
of systems that merge within gk since we study only a small region
of parameter space. Although our choice of inclination (i = 80°)
is not finely tuned, our choice of arguments of periapsis (g; = 0°,
g>» = 90°) is tuned to encourage strong eccentric KL resonances.
We do this for two reasons. First, it is computationally expensive
to integrate a sufficient number of systems to marginalize over
the arguments of periapsis and obtain good statistics. Secondly,
it demonstrates more clearly that the lower envelope of the fyerge
distribution is set by fgxm because both KL resonances and REOs
are stronger when the arguments of periapsis are different by 90°.

To examine the effect of a more realistic distribution of initial
arguments of periapsis on the merger time distribution, we pick
two choices of e, (0.2 and 0.6), and calculate the evolution of
100 systems with uniform distributions of g, and g,. We compare
this distribution of fyerge (black line) to the distribution when the
arguments of periapsis are fixed to g; = 0° and g» = 90° (blue
dashed line) in Fig. 6. As expected, the distribution shifts to longer
merger times when the arguments of periapsis are chosen randomly.
Nevertheless, about ~15 per cent of systems with e, = 0.2 and about
~30 per cent of systems with e, = 0.6 merge within a few X#ggy.
We additionally compare this result to that calculated in the secular
approximation and find that it is shifted to much longer fyeree than
either calculation performed using direct three-body integration.

Double-orbit averaging fails to correctly predict the merger
times most drastically for triple systems in which the tertiary is
at low eccentricity. At best, the secular calculation overpredicts the
merger time by two orders of magnitude, and at worst it overpre-
dicts the merger time by nearly four. The catastrophic failure of
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Figure 6. Merger time distribution for fixed e;. We compare the distribution when the arguments of periapsis are chosen randomly from a uniform distribution
(solid line) to when the arguments of periapsis are fixed at g; = 0° and g» = 90° calculated using direct three-body integration (blue dashed line) and in the
secular approximation with a uniform distribution of arguments of periapsis (red dotted line) for 100 systems. Since KL oscillations and REOs are stronger
when the arguments of periapsis differ by 90°, the merger time distribution shifts to longer merger times when the arguments of periapsis are chosen randomly.
About 15—30 per cent of systems still merge rapidly when the arguments of periapsis are chosen randomly. The last bin of the secular calculation is a lower
bound. The distribution is shifted to larger merger times when the secular approximation is employed.

double-orbit averaging is due to the fact that it cannot account
for REOs. When the orbit of the tertiary has a low eccentricity,
KL resonances (including eccentric KL resonances) are weakened.
Consequently, when the outer orbit is at sufficiently low eccentrici-
ties, the KL resonance is not strong enough to drive the inner binary
to merger on its own. KL resonances nevertheless drive the inner
binary to sufficiently high eccentricities that REOs become impor-
tant. REOs drive the inner binary to higher eccentricities, thereby
causing relativistic effects to become much more important. In par-
ticular, gravitational wave radiation is much more efficient when
the inner binary is at higher eccentricities.

5 DISCUSSION AND CONCLUSIONS

We have performed an exploration of a dynamical effect in hier-
archical triple systems that is not captured by secular double-orbit
averaging. By directly integrating the orbits of the three bodies and
including PN terms up to order 3.5, we show that the eccentricity
of the inner binary oscillates on the time-scale of the period of the
outer binary with amplitude given by equations (2) and (3) (see
Fig. 2 and Ivanov et al. 2005; Bode &Wegg 2014). During most of
the evolution of the triple system these oscillations are negligible
and secular calculations are valid. However, when the eccentricity
of the inner binary is close to unity, fluctuations in the angular mo-
mentum of the inner binary due to REOs become comparable to the
total angular momentum in the inner binary itself. This is because
the system spends more time at higher e; (see Fig. 4). We find that
the time spent at eccentricities greater than any given eccentricity
e is ~few x (1 —e}). As a consequence of this, REOs can sub-
stantially affect the dynamics of the triple system. Though we have
limited our analysis in this paper to triples of SMBHs for concrete-
ness, our results apply generally to any triple system for which the
inner binary consists of BH or NS. Because relativistic effects are
extremely strong functions of eccentricity, REOs can drive binaries
to merge more rapidly by many orders of magnitude. As this dis-

crepancy occurs over a broad range of parameter space, REOs will
drive many systems to merge which otherwise would not merge
within a Hubble time. Though a complete treatment of the delay
time distribution of compact object mergers across a broad range
of parameter space is beyond the scope of this paper, REOs may
be an important correction to calculations of the merger rate and
delay time distribution of compact object binaries in triple systems
(e.g. Thompson 2011; Katz & Dong 2012) and perhaps systems like
stars and planets that may be strongly affected by tides (see Fig. 5
and Section 5.3 below).

5.1 Implications for extreme-mass-ratio inspirals

Since we have examined hierarchical triples with extreme mass
ratios, a potential application of our results is to extreme-mass-
ratio inspirals (EMRIs). EMRIs consist of a binary of stellar-mass
objects in orbit around an SMBH (see, e.g. Amaro-Seoane et al.
2007; Amaro-Seoane 2012; Amaro-Seoane et al. 2013a). In such
cases, there is an extremely large mass ratio between the tertiary
and the inner binary. Although we ignore many important features
of real EMRIs (e.g. a stellar background, which leads to several
important phenomena, such as the Schwarzschild barrier, discussed
in Amaro-Seoane 2012, but also the role of the spin of the central
MBH; Amaro-Seoane, Sopuerta & Freitag 2013b), we here discuss
the potential impacts of REOs on EMRIs as a motivation to future
works. Because the amplitude of the eccentricity oscillations given
by equation (2) is proportional to the mass ratio, arbitrarily large
mass ratios can lead to arbitrarily large eccentricity oscillations. If
the oscillations are too large they can unbind the inner binary. But
encounters at large enough distances that the binary system does
not become unbound could therefore lead to REOs with amplitudes
comparable to the amplitude of the KL resonance itself. Eccentricity
oscillations for a fiducial EMRI are shown in Fig. 7. At the peak
of the KL cycle the oscillations reduce the distance at periapsis
of the inner binary by over a factor of 5. Since the gravitational
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Figure 7. REOs in an EMRI calculated with direct three-body integration
(solid line) and in the secular approximation (red dashed line). Because
the mass ratio between the inner binary and outer binary is very large, the
amplitude of the fluctuations in the angular momentum in the inner binary
due to REOs becomes comparable to the angular momentum in the inner
binary itself. Parameters of the system are provided in Table 1, but with
m3 =3 x 108 M@, g1 =0° g2 =90° and e; = 0.2.

wave merger time-scale for a very eccentric orbit is proportional to
(1 — €2)"/? (Peters 1964), this reduction in the distance at periapsis
due to REOs could lead to a significant reduction in the merger
time and increase gravitational wave luminosity if the dynamical
features of realistic EMRIs do not suppress this effect. These results
should be studied with more detail in the context of secular effects
in semi-Keplerian systems with relativistic corrections, such as in
the works of Merritt et al. (2011), Brem, Amaro-Seoane & Sopuerta
(2014).

5.2 Implications for gravitational wave emission

In this subsection, we discuss an important application of our find-
ings that will be soon expanded in a statistical study of the dynamics
and the implications for ground-based gravitational wave detectors
such as Advanced LIGO/VIRGO, along with the detailed descrip-
tion of the modification of the integrator to incorporate relativistic
effects (Amaro-Seoane, in preparation).

It is uncertain what the dynamics immediately prior to merger
will be in systems dominated by REOs. Although the orbit will
have substantially circularized by the time the two objects of the
inner binary come within 10 R, of each other, the orbit nevertheless
retains a non-negligible eccentricity (e; ~ 0.1) in most systems (Wen
2003; Gould 2011). Whether or not typical compact object binaries
retain non-negligible eccentricity immediately prior to merger is of
key importance to gravitational wave detectors like LIGO and LISA.
Because these experiments require gravitational wave templates
to find gravitational wave signals in their data, accurate a priori
predictions of the waveform shapes are crucial for the success of
these experiments. Gravitational wave searches like LIGO have
generally assumed that by the time a merging binary is emitting
gravitational waves at frequencies to which they are sensitive, it
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has completely circularized. But if a substantial number of compact
object binaries are driven to merger due to KL resonances, then the
assumption of perfectly circular inspirals will be mistaken. Since
gravitational radiation is a very strong function of distance, even
a modest residual eccentricity (e; 2 0.1) would suffice to bury a
gravitational wave signal in the data if a circular orbit template is
used (Brown & Zimmerman 2010).

We calculate the eccentricity distribution of the inner binaries
of the triple systems investigated in Section 4.2. Fig. 8 presents
the distribution of e; as the two components of the inner binary
come within 10 Rsq, of each other calculated using direct three
body integration (solid line) and in the secular approximation (red
dashed line). At 10 Rs.h, a Keplerian orbit becomes an increasingly
poor approximation to the true orbit of the inner binary. As such,
we define the eccentricity of the orbit to be

1~ G ()
er=4/1—-— | — |, @)
G(mo +mp)a; \ p

where L; is the angular momentum of the inner binary and pu, is
the reduced mass of the inner binary. We add PN corrections to
L, up to second order (e.g. Iyer & Will 1995). To increase the
computational efficiency, in the secular approximation we calculate
systems until @, has decreased to 1 per cent of its initial value. At
this point, the inner binary has decoupled from the outer binary and
can be calculated independently. We then calculate the eccentricity
of the orbit when the two components come within 10 Rg., of each
other using the adiabatic calculation of Peters (1964).

The eccentricity distribution calculated using direct integration
predicts that ~10percent of systems merge at high eccentricity
(e; > 0.8). In the secular approximation, however, nearly all systems
merge at low eccentricity (e; < 0.2). We also present the distribution
of e; at 10 Rscp, as a function of e, in the right-hand panel of Fig. 8.
Triples with larger e, have a greater chance of merging at high
eccentricity. Since we assume a uniform distribution of e, in the
left-hand panel of Fig. 8, a more realistic thermal distribution will
lead to a larger fraction of systems merging at high eccentricity.
Population synthesis studies of hierarchical triple systems which
employ the secular approximation will therefore miss an important
source of unique gravitational waveforms. If an important residual
eccentricity was indeed typical in these situations, gravitational
wave experiments would possibly have to take this into account in
the preparation of the waveform banks. This question is addressed
in detail in Amaro-Seoane (in preparation).

One interesting possible outcome of an NS—NS merger in a triple
system would be a head-on collision similar to those between WD
described in Katz & Dong (2012). In the case of binaries consisting
of objects more compact than WD, however, the chance of a colli-
sion is much smaller. This is due to two factors. First, the objects
themselves have a smaller cross-section than do WD by a factor of
~10°7. Secondly, close encounters will lead to circularization of
the orbit at larger distances relative to the object’s radius due to the
stronger relativistic effects. Head-on collisions between pairs of NS
or BH should therefore be rarer than collisions between WD-WD
binaries by a large factor.

5.3 Tides and implications for stars and planets

Another well-known class of triple systems with high mass ratios is
that of planets in binary star systems. The formation of hot Jupiters
is a long-standing problem in the theory of planet formation and KL
cycles have been proposed as a mechanism to drive planets formed
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Figure 8. The eccentricity distribution of the inner orbit when the inner two components of the systems calculated in Fig. 5 come within 10 Rsc, of each
other. Left-hand panel: the secular approximation (red dashed line) underpredicts the number of binaries which merge at high eccentricities (e 2 0.2) relative
to the direct integration (black line). In particular, the secular approximation predicts that no binaries will come within 10 Rscp at e; > 0.4, whereas the direct
integration predicts that ~20 per cent of hierarchical triples do. Right-hand panel: the distribution of egn, as a function of e;. A larger fraction of systems
merge at high efn, When e is large. Note that we have assumed a uniform distribution in ey; if e; is distributed thermally more systems will merge at high e .
Gravitational wave detectors will need to employ templates of eccentric binaries to detect such systems.

far from the host star into tight orbits (Wu et al. 2007). Tidal effects
are very important for stellar and planetary systems and while a
complete treatment is beyond the scope of this paper (though see
Naoz et al. 2012 for a discussion of the effect of tides on KL cycles),
we nevertheless make some qualitative statements about the impact
of tides on our results and the implications for stars and planets.

The overall effect of tides on eccentric orbits is to circularize
them and reduce the semimajor axis (Hut 1981) on a characteristic
tidal friction time-scale ¢rg. If the eccentricity is very close to unity,
trr o< (1 — e)™3/? (Hut 1982). Tides therefore prevent stars and
planets from remaining on high-eccentricity orbits for long periods
of time and will disrupt sufficiently strong KL cycles. However,
REOs occur on a shorter time-scale than the KL cycle by a factor of
P,/P;. Tides may not have enough time to circularize the orbit at
a relatively low eccentricity before REOs drive the orbit to higher
eccentricities. Because REOs can reduce (1 — e;) by a factor of
~5, this results in a reduction in #rr by an order of magnitude. The
orbit will thus circularize more rapidly and be brought into a closer
orbit than it would by KL oscillations calculated in the secular
approximation.
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APPENDIX A: DETAILS OF THE NUMERICAL
METHODS

We have extended FEwBoDY to include PN force terms up to order
3.5, presently the state of the art. Due to their length, we do not re-
produce the terms here (the third-order term alone spans more than
a page), but instead refer the reader to equations 182, 183, 185, and
186 of Blanchet (2006). These terms are conjectured to accurately
reproduce GR effects to within several Schwarzschild radii. Though
analytic error estimates do not exist in the literature, comparisons
of PN calculations with direct integration of the Einstein field equa-
tions support the consensus that the PN terms are effective to within
this range (Will 2011).

The PN terms are stronger functions of velocity and radius than
the Newtonian term. Consequently, the inclusion of the PN terms
makes integration of the orbits much more difficult, particularly
for highly eccentric orbits where the radial distance and velocity
are both changing very rapidly. Thus, while the PN terms might
in principle be accurate down to several Schwarzschild radii, in
practice the efficient computation of the orbit may limit the regime
of applicability.

These difficulties are compounded by the roundoff error intro-
duced by integrating close encounters far from the origin (see, e.g.
Mikkola & Merritt 2008 for further discussion). If the positions of
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two nearby objects are represented with respect to a distant origin,
the numerical precision is reduced by roughly the ratio of the dis-
tance of the two objects from the origin to their separation. (For
example, if a computer has only four digits of precision and two
objects are separated by 1.234 x 1073 and are at a distance of 1 from
the origin, their positions must be represented by 1.001, leading to
a loss of three digits.) In practice, this can lead to a loss of six or
seven orders of magnitude of precision and can render the evolution
of high-eccentricity systems intractable. In general, roundoff error
in N-body dynamical simulations can be avoided with some vari-
ation of algorithmic regularization (see, e.g. Mikkola & Tanikawa
1999; Aarseth 2003). However, because we are only concerned with
the special case of hierarchical triple systems, we have modified
FEWBODY to avoid roundoff error by automatically recentring the
triple on every step so that the centre of mass of the inner binary is
placed at the origin.

To test the correctness of our implementation and to character-
ize its regime of accuracy, we run several numerical tests. We first
examine the degree of energy conservation in orbits at several ec-
centricities when no PN terms are included and when non-radiative
PN terms are included. We then show that the orbital decay due to
the 2.5 order PN term closely matches analytic calculations. Finally
we compare the results from FEWBODY to an octupole-order secular
model in several simple cases to demonstrate that systems in which
the approximations of the secular model are valid produce similar
behaviour as direct three-body integration.

A1l Energy conservation

The most straightforward way to determine the numerical accuracy
of an N-body integrator is to determine how well energy is con-
served. Once the change in energy becomes non-negligible com-
pared to the total energy it is certain that the calculated dynamics
are qualitatively incorrect. Typical energy conservation tolerances
are set at least several orders of magnitude below this point. The
largest tolerance often invoked is of the order of 1073,

In ordinary integration (i.e. without taking a Kustannheimo—
Stiefel or similar transformation), energy conservation is worst dur-
ing close encounters of extremely eccentric orbits. Due to the steep
1/r? profile of the gravitational force and the rapid change in r near
the periapsis of a highly eccentric orbit, such orbits are difficult to
calculate accurately. This problem is exacerbated with the introduc-
tion of PN terms since the PN terms are even stronger functions
of distance and include strong velocity terms which vary rapidly
as well. For an orbit with a given semimajor axis, there is thus a
maximum eccentricity to which we can accurately integrate.

To estimate FEWBODY’s numerical accuracy and determine this
maximum eccentricity, we integrate 3 x 10° orbits (approximately
one Hubble time) of two 10’ M SMBHs with a semimajor axis
of 1pc and eccentricities ranging from 1 — ¢ = 1 to 107>. This
system is the inner binary of the systems we integrate in Section 4.
Since the triple systems we later integrate consist of a tertiary with
a mass of 10’ M at a distance of 20 pc, we offset the binary in
these energy tests to a distance of 10 pc so as to account for roundoff
error that will be present when we integrate the triple systems. This
initial offset has only a negligible effect on the calculation, however,
because our code automatically recentres the triple system on the
centre of mass of the inner binary on every step so as to eliminate
this roundoft error.

We perform these calculations both with and without the PN
terms. In calculations with the PN terms, we exclude the odd-
order 2.5 and 3.5 terms since these serve to describe the effects of
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Figure Al. Energy conservation in FEwBoDY for orbits over a range of ec-
centricities in the Newtonian case (red squares) and including non-radiative
PN terms up to order 3 (black dots). We integrate the orbits for a Hubble
time or for the gravitational radiation inspiral time, whichever is less. In all
cases, energy conservation is better than 107.

gravitational radiation. These force terms are not conservative and
are therefore not appropriate in our checks for energy conservation.
The accuracy of these odd terms is characterized in Appendix A2.
We further note that when PN force terms are included in the in-
tegration, the expression for the energy changes. The energy term
including PN terms up to third order is lengthy, so like the force
terms, we do not reproduce it here, but instead refer the reader to
equation 2.11 of Mora & Will (2004). (The energy term is also
provided in equation 170 of Blanchet 2006, but is represented in a
different gauge that contains an undesirable logarithm.)

For the low-eccentricity systems (I — e > 1073), gravitational
radiation is weak and so we integrate them for a Hubble time.
The high-eccentricity systems will merge in under a Hubble time,
however, so we simply integrate them for as long as it takes them to
merge via gravitational radiation. The results of these integrations
are presented in Fig. Al. The results from including the PN 1 term
alone and from including just the PN 1 and PN 2 terms are very close
to the results from including all three PN terms. They are therefore
not displayed in Fig. Al. As expected, FEWBODY conserves energy
best at low eccentricities. At high eccentricities, energy conservation
is also quite good because only a small number of orbits need to
be integrated. At all eccentricities, however, FEWBODY performs the
integration for the necessary number of orbits and conserves energy
to well under 107> (and often much better).

A2 Inspiral time

To test the accuracy of the radiation reaction terms we compare the
orbital decay of a highly eccentric orbit to the analytic expressions
of Peters (1964). From Peters (1964), the semimajor axis and ec-
centricity evolution of the orbit are described by the following two
differential equations:

da 64 G3myma(m, + my) 73, 37,
fa _ DT it T e e 12 22
<dt > 5 Sad(l— ey 4% T 56°
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The orbital decay time of the system is given by the integral
1181/2299

12¢} [0 ¥/ [1+(121/304)¢?

T(ao, e0) = 5 & (1 — e2)3/2
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19 8 Jo

where
64 G3mymy(my + my)
5 cs ’
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and

_ao(l—eg) | 121 —870/2299
Co = 212/19 +ﬁe :

To compare FEWBODY to the analytic results, we calculate the
evolution of the orbital parameters of the orbit of two 10’ M
SMBHs with a semimajor axis of 1 pc and an initial eccentricity of
1 — e = 10~*. For the purposes of this comparison, we perform the
FEWBODY calculation with the 2.5 PN term alone. This is because
Peters (1964) assumes that the orbits are Keplerian and calculates
the gravitational wave power in the quadrupole approximation. For
very eccentric orbits, the deviation from a perfect ellipse manifests
itself as a longer dwelling time at periapsis. Since most of the grav-
itational radiation is emitted near periapsis, a fully relativistic orbit
results in more radiation emitted than Peters (1964) predicts. As
the 2.5 PN term is the only term that captures quadrupole radiation
emission, this is the only term consistent with the assumptions of
Peters (1964).

We find that the difference in the overall merger time between
rEwBoDY and Peters (1964) is less than 1073, We believe this dis-
crepancy is due to the fact that FEwBODY treats the energy loss more
realistically by emitting most of the orbital energy during passage
through periapsis. Peters (1964), however, assumes that energy loss
is continuous throughout the orbit. For very eccentric orbits like
the ones we are modelling, FEWBODY’s treatment leads to stepwise
changes in the orbital parameters, whereas Peters (1964) assumes
that these orbital parameters vary continuously across the entire
orbit. Over many orbits, this difference manifests itself in small dis-
crepancies in the orbital parameters between the two calculations.

During most of the orbit the semimajor axis calculated by
FEWBODY is within 1072 of the semimajor axis predicted by Peters
(1964). At the end of the inspiral the discrepancy is much worse,
but this is simply because the overall merger time of the orbit is
slightly different between FewsoDY and Peters (1964). Although we
therefore cannot adequately test FEWBODY in this regime, however,
we are not interested in the precise dynamics prior to merger, only
the overall merger time.

The orbital decay including only the 2.5 PN term is presented in
Fig. A2. The effect of adding the additional PN terms is a 0.5 per cent
change in the overall merger time. At higher eccentricities the other
PN terms become stronger and yield even larger discrepancies.

A3 Comparison to the secular approximation

If any changes to the orbital parameters in a hierarchical triple
are slow compared to the outer orbital period, the orbits need not
be integrated directly, but instead can be calculated from a time-
averaged Hamiltonian (e.g. Blaes et al. 2002). Although we show
in this paper that this approximation breaks down in important
regions of parameter space, there are broad regimes in which this
approximation works well. In particular, the secular approximation
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Figure A2. The evolution of the semimajor axis of a binary of two 107 Mo
SMBHs with an initial semimajor axis of 1 pc and an initial eccentricity of
1 — e~ 1073 For purposes of comparison with Peters (1964), the calculation
shown includes only the 2.5 PN term. The difference between our results and
Peters (1964) is much less than the thickness of the line. We also calculate the
evolution using all PN terms up to and including PN 3.5. In this experiment,
the difference in the merger time between this calculation and the full PN
calculation is 0.5 per cent. For clarity, we omit displaying the evolution in
the full PN approximation. At higher initial eccentricities the discrepancy
between the full PN calculation and the 2.5 PN term alone is larger. The
inner binaries that we examine in this paper begin to suffer copious energy
loss due to gravitational radiation at an eccentricity of 1 — e ~ 10~%. At this
eccentricity, the difference between the full PN calculation and the 2.5 PN
approximation in Peters (1964) is ~5 per cent.

works very well when the KL mechanism does not excite extremely
high eccentricities.

We here show the agreement between the orbital evolution in the
secular approximation with the direct three-body integration. For the
secular approximation, we use the formalism of Blaes et al. (2002),
which is an octupole-order calculation that includes GR precession
and gravitational radiation. (Note that Blaes et al. 2002 use the
equations of GR orbital decay from Peters 1964. As discussed in
Appendix A2, this slightly underpredicts the merger time for highly
eccentric orbits.) The orbital evolution is compared to the explicit
orbit integration using FEwBODY for a slowly varying hierarchical
triple undergoing KL oscillations. Because the Hamiltonian in Blaes
et al. (2002) uses the results from Peters (1964) to account for
gravitational radiation, the only radiation term we include is PN
2.5. Similarly, the formalism for handling apsidal precession in
Blaes et al. (2002) is equivalent to the first PN term. Thus, the only
PN terms we include in this comparison are PN 1 and PN 2.5.

We calculate the evolution of a triple system in which the KL
mechanism is present, but does not excite extremely high eccen-
tricities. Properties of this system are listed in Table A1. We evolve
the system for 10'"yr, or about 15.5 KL cycles. The eccentricity
evolution of both calculations is presented in Fig. A3. The differ-
ence between the two systems is equivalent to a 0.1 per cent scaling
in time. This small difference is due to the fact that FEwBODY be-
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Table Al. Initial conditions for a system
that undergoes weak KL oscillations. See
Fig. A3 for the evolution of this system.

Parameter Value
m 10" Mg
ny 10’M
m3 3 x 10°Mcg
ay 1pc
a 20 pc
el 0.1
e 0.2
81 0
& 0

cosi 0.5

1.0

0.8t 1

0.6f 1

]—61

0.4r 1

0.2r 1

0 2%x10° 4x10° 6x10° 8x10% 1x10'
t (yr)

Figure A3. The evolution in eccentricity of a system undergoing KL oscil-
lations. This system does not exhibit oscillations to extremely high eccen-
tricities, so it is in the regime in which the secular approximation is valid.
Properties of this system are listed in Table A1. We evolved this system for
10'0 yr using both the secular model of Blaes et al. (2002) and by performing
the direct three-body integration using FEwBopY. The difference between the
two techniques is much less than the thickness of the line and amounts to an
~0.1 per cent offset in time at the end of the calculation. The difterence be-
tween the calculation in the secular approximation and the direct three-body
integration is explored further in Fig. A4.

gins the integration with each object at a random point along its
orbit and at random longitudes of ascending node. These different
starting conditions yield slightly different orbits. The initial phases
of the orbits and longitudes of ascending node do not impact the
orbit-averaged evolution of Blaes et al. (2002). The variation due
to these random initial conditions from one realization to the next
is consistent with the difference between any particular realization
and the orbit-averaged calculation.

To more clearly illustrate the differences between the secular and
FEWBODY calculations, we run the FEwWBoDY calculation 100 times
with random initial mean anomalies for each run. The variation
in the evolution of the eccentricity of the inner orbit is shown in
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Figure A4. The final moments of the evolution in eccentricity of the system
presented in Fig. A3. Properties of this system are listed in Table Al. The
secular calculation (dotted line) is shown with the results of 100 runs using
FEWBODY (grey region). The orbits of the triple system in each run were
given random initial mean anomalies. The variation in the orbital evolution
due to these random initial mean anomalies results in an ~0.15 per cent
offset in time. The difference between the secular calculation and any given
calculation using FEWBODY is consistent with this variation.

Rapid eccentricity oscillations 1091
Fig. A4. The magnitude of this variation is an ~0.15 per cent scaling
in the time, which amounts to an offset of ~15Myr after 10" yr.

The evolution predicted by the secular calculation is consistent with
the range calculated by FEWBODY.

This paper has been typeset from a TX/IATEX file prepared by the author.
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